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Substrate curvature as a cue to guide spatiotemporal cell and tissue
organization

Sebastien J.P. Callens∗, Rafael J.C. Uyttendaele, Lidy E. Fratila-Apachitei, Amir A. Zadpoor
Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands

A B S T R A C T

Recent evidence clearly shows that cells respond to various physical cues in their environments, guiding many cellular processes and tissue morphogenesis, pa-
thology, and repair. One aspect that is gaining significant traction is the role of local geometry as an extracellular cue. Elucidating how geometry affects cell and
tissue behavior is, indeed, crucial to design artificial scaffolds and understand tissue growth and remodeling. Perhaps the most fundamental descriptor of local
geometry is surface curvature, and a growing body of evidence confirms that surface curvature affects the spatiotemporal organization of cells and tissues. While
well-defined in differential geometry, curvature remains somewhat ambiguously treated in biological studies. Here, we provide a more formal curvature framework,
based on the notions of mean and Gaussian curvature, and summarize the available evidence on curvature guidance at the cell and tissue levels. We discuss the
involved mechanisms, highlighting the interplay between tensile forces and substrate curvature that forms the foundation of curvature guidance. Moreover, we show
that relatively simple computational models, based on some application of curvature flow, are able to capture experimental tissue growth remarkably well. Since
curvature guidance principles could be leveraged for tissue regeneration, the implications for geometrical scaffold design are also discussed. Finally, perspectives on
future research opportunities are provided.

1. Introduction

Complex shapes are omnipresent in our physical world and are
found at all length scales, ranging from nanostructured materials [1] to
the abstract shape of the universe [2]. Such shape complexity is also
observed in biology, and the intriguing way it could emerge from a
single zygote forms a central topic in embryogenesis. It has long been
understood that biological form and function are intimately connected,
and that mechanical forces are at play in the growth of complex bio-
logical shapes [3]. The appreciation for this interplay between force
and shape on one hand, and biology on the other, has laid the foun-
dation for mechanobiology as an important discipline explaining cell
behavior [4]. Indeed, it is now well established that the physical aspects
of a cell's surroundings deserve as much attention as the chemical
nature of the environment. For example, cell shape, motility, and fate
could all be affected by physical cues in the environment such as
stiffness [5,6], viscoelasticity [7], or the applied mechanical stretch
[8,9]. These physical cues are sensed by cells through integrin-medi-
ated force-feedback between the cell and the extracellular matrix (ECM)
or through cell-cell interactions, and elicit a cell-level response that
contributes to the emergent organization of tissue and organism shapes
[10–12]. The transduction of physical signals into biochemical re-
sponses is enabled through mechanotransduction pathways, which are
not limited to conformation-dependent molecular processes at the cell

surface but also involve the nucleus, being mechanically linked to the
ECM through the cytoskeleton [10,13].

In addition to material-dependent physical cues [14], purely shape-
dependent signals can also affect cell response. For example, it has long
been known that small-scale topographies in the environment (e.g.,
grooves or pillars) could affect cell fate and motility [15–18]. In addi-
tion to such sub-cellular-scale features, however, it is now understood
that the three-dimensional (3D) shape of the environment at a larger
scale (≥ cell size) can also guide cell and tissue behavior [19]. As such,
it is of crucial importance to be able to quantitatively describe the (3D)
shape of the cell environment. This may be best achieved using the
notion of surface curvature. Surface curvature is a fundamental concept
within the mathematical field of differential geometry, capable of de-
scribing the local geometry of a 3D object (i.e., the geometry of the
bounding surface of that object). Indeed, a rapidly growing body of
experimental evidence, supported by computational insights, shows
that the organization, dynamics, and fate of individual cells can be
influenced by substrate curvature, on a scale larger than the individual
cell size. Furthermore, the impact of substrate curvature extends to the
tissue level, and affects both the temporal and spatial organization of
tissue growth.

Here, we review the recent evidence demonstrating the role of
substrate curvature on cell organization and motility, as well as on de
novo tissue growth. We first introduce the “language of shape” [20] in
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terms of the formal descriptions of surface curvature, aiming to provide
a bridge between the fields of differential geometry and biology. Then,
we discuss the response of individual cells to mesoscale substrate cur-
vature and address the specific roles of intracellular components, such
as the cytoskeleton and the nucleus. Next, we move on to the collective
behavior of cells, starting with cell monolayers and continuing with
more advanced (often bone-like) tissue constructs. We also show how
cell and tissue-level computational models can reproduce many of the
experimental observations on curvature guidance. Understanding the
response of cells and tissues to substrate curvature is important, not
only to elucidate the mechanisms involved in tissue morphogenesis,
pathology, and repair, but also to advance the development of novel
biomaterial strategies for tissue engineering and regenerative medicine.
Therefore, we also briefly address the implications of the reviewed
curvature guidance principles for scaffold design. We conclude with an
outlook on future research directions.

2. Understanding substrate curvature

2.1. A geometrical treatment of curvature

The concept of curvature is unavoidable to everyone attempting to
describe shape. Whether dealing with lines, surfaces, or higher-di-
mensional objects, curvature is a fundamental geometrical property
that provides local information about the shape of the object. Though
intuitive to some extent, curvature is often informally treated in applied
contexts using ambiguous terms such as “concavity” and “convexity”
that do not capture its full complexity. However, the field of differential
geometry provides formal curvature definitions, enabling precise and
unambiguous descriptions of the local shape of objects. Here, we aim to
introduce these definitions and equip the reader with a more formal
understanding of surface curvature, in order to better discuss its re-
levance within mechanobiology.

Perhaps the most intuitive notion of curvature is that of a curved
line drawn on a two-dimensional plane. In this case, the curvature can
be calculated at any point along the line as the reciprocal of the radius
of the osculating circle at that point (Fig. 1a). The curvature of this one-
dimensional (1D) line embedded in a two-dimensional (2D) plane
provides a measure for how much the line deviates from a straight line
at any particular point. Increasing the dimension by one order, it is
possible to consider the curvature of a two-dimensional (2D) surface
that is embedded in three-dimensional (3D) space. Analogous to the
previous case, the surface curvature is again evaluated at a single point,
and it describes how the surface deviates from the tangent plane at that
point [21]. This means that curvature is a local property of a surface. It
is, therefore, not possible to assign a single value of curvature to a
surface, unless that surface has constant curvature. Within the context
of this paper, we are concerned with this concept of surface curvature.
That is, we are interested in the curvature of the outer surface of the
substrates that cells are situated on. Surface curvature is an inherently
more complex concept than the curvature of a line in a 2D plane, since
surface curvature depends on the direction that is being considered. For
example, a surface might be curved in one direction while remaining
flat in the orthogonal direction (e.g., the curvature of a cylinder). To
quantitatively describe surface curvature, two important measures have
been established, namely the mean curvature, H , and the Gaussian cur-
vature, Κ , both of which are useful and provide complementary per-
spectives on curvature.

To define both mean and Gaussian curvatures, it is useful to first
introduce the principal curvatures at a point on the surface. Imagine
intersecting a curved surface at a given point with a normal plane, i.e. a
plane that contains the normal to the surface at that point. The plane
and the surface intersect along a curved line, with normal curvature κn
(determined as the inverse of the radius of the osculating circle,

=κ r1/n n). Rotating through all possible normal planes at this particular
point yields a maximum and minimum value for the normal curvature,

which are the principal curvatures, κ1 and κ2, of the surface at that point.
The principal curvatures can then be used to define both the mean (H )
and Gaussian (K ) curvatures as:

= +H κ κ1
2

( )1 2 (1)

= ⋅K κ κ1 2 (2)

For every point on a curved surface, it is possible to calculate a
single real-valued mean and Gaussian curvature using the above defi-
nitions. Note that both measures are dimensional, with the mean cur-
vature having the dimension l[1/ ] and the Gaussian curvature having
the dimension l[1/ ]2 , where l is the length dimension. A flat plane, not
surprisingly, has mean and Gaussian curvatures of zero, since

= =κ κ 01 2 . Rolling a flat plane into a cylinder produces nonzero mean
curvature, but leaves the Gaussian curvature unaffected since one of the
two principal curvatures remains zero for a cylinder. To achieve non-
zero Gaussian curvature, both principal curvatures have to be nonzero.
This is, for example, the case on a sphere, where the principal curva-
tures are equal and positive, or on a saddle, where the principal cur-
vatures have opposite sign (Fig. 1a). As a consequence, the Gaussian
curvature is always positive on sphere-like or “elliptic” geometries
( >K 0) while it is negative for saddle-like or “hyperbolic” geometries
( <K 0). It is important to realize that the sign of the Gaussian curvature
is an important indicator of the type of surface that is dealt with, since it
remains unchanged regardless of the side of the surface being con-
sidered. For example, the Gaussian curvature of a point on a sphere is
always positive, no matter when looking at the outside (“convex” part)
or inside (“concave” part) of the sphere. This is different for the sign of
the mean curvature, which depends on the chosen convention for the
positive and negative principal curvatures, i.e. it depends on the chosen
direction of the surface normal. This fact hints at a deeper difference
between the mean and Gaussian curvatures: the mean curvature is an
extrinsic measure, meaning that it can be defined from outside the
surface, while the Gaussian curvature is an intrinsic measure, which can
be defined from within the surface itself [20–22]. Otherwise stated, a
resident living on a curved surface would be able to measure the
Gaussian (or the intrinsic) curvature of that surface. This could, for
example, be achieved by calculating the sum of the interior angles of a
triangle drawn on the surface. On an intrinsically flat surface, such as a
plane or a cylinder, the sum of the interior angles would equal π . On a
spherical surface, however, the sum of the interior angles would exceed
π , while the sum would be less than π on a saddle-shaped surface. It
would, therefore, be possible to extract information about the intrinsic
curvature of the surface merely by measuring the angles within a sur-
face. This is, however, not true for the mean or extrinsic curvature, as
this type of curvature depends on the way the surface is embedded in
the reference 3D space. That is, the resident living on the surface would
not be able to distinguish between, say, a cylinder and a flat plane [21].

While surface curvature remains a local property, an intimate re-
lationship between the curvature of a surface and its global topology, or
“connectedness”, exists. The Gauss-Bonnet theorem dictates that the
area-integrated Gaussian curvature, or the total curvature of a surface is
proportional to the genus (g) of that surface, which is a topological
invariant describing the number of “handles” of the surface [20]:

∫ = −Κda π g4 (1 )
A (3)

The Gauss-Bonnet theorem, therefore, shows that any surface with
given genus, g, has the same integral Gaussian curvature. Moreover, the
genus provides information on the sign of the integral Gaussian cur-
vature. A surface with =g 0 (e.g., a sphere), should have a positive in-
tegral Gaussian curvature. A surface with =g 1 (e.g., a torus), has zero
integral Gaussian curvature. Indeed, the region with positive Gaussian
curvature on the outside of the torus is balanced by the negative
Gaussian curvature on the inside. Any surface with a higher genus, has

S.J.P. Callens, et al. Biomaterials 232 (2020) 119739

2



negative integral Gaussian curvature (Fig. 1c). In other words, surfaces
with >g 1 are, in an integral sense, hyperbolic [20].

Equipped with these definitions of the mean and Gaussian curva-
tures, it is possible to more formally describe the surface curvature and
link it to the mechanobiological response of cells. It should be clear that
surface curvature should primarily be discussed using these formal
descriptors, and not solely using ambiguous terms such as “convex” and
“concave” surfaces. For example, the inner surface of a cylinder and a
spherical cap could both be considered as concave, but they are very
different from a more formal curvature perspective (i.e., a cylinder has

=K 0 everywhere whereas a sphere has >K 0 everywhere). Moreover,
the inner and outer sides of a sphere surface are often distinguished
from each other using convexity and concavity, but could more for-
mally be described using mean and Gaussian curvatures: the Gaussian
curvature is the same for both cases (and it is positive), but the mean
curvatures are opposite in sign. The usefulness of convexity and con-
cavity fades further away when discussing saddle surfaces ( <K 0),
which are convex in one direction and concave in another. Hence, the
usage of the terms “convex” and “concave” should be accompanied by
the more formal descriptions of the mean and Gaussian curvatures.

2.2. Examples of curved biological shapes

While in vitro biological experiments often deal with cells that are
constrained to 2D flat surfaces, the natural environment that cells in-
habit in vivo is 3D, and can be highly complex. The extracellular en-
vironment is not only complex due to its hierarchical and composite
nature, but is also structured in such a way that gives rise to spatially

varying Gaussian and mean curvature distributions, resulting in a
myriad of shapes that are geometrically and topologically more com-
plex than planar surfaces. Curvature appears on various scales in bio-
logical matter, ranging from the sub-cellular (radius of curvature
≈ − nm10 101 3 ) to the supra-cellular scales (radius of curvature
≈ − μm10 101 3 ), and plays an important role in both morphogenesis
and pathology [23,24]. On the smallest scale, lipid bilayer membranes
can take on complex curved shapes, a consequence of the interplay
between the biochemistry of the membrane formation, membrane
mechanics, and geometrical frustration [25–27]. Examples of in-
trinsically curved membrane structures are membrane-bound spherical
vesicles (positive Gaussian curvature), cleavage furrows during cyto-
kinesis (negative Gaussian curvature) [26], or the intracellular struc-
tures of the endoplasmatic reticulum and the Golgi apparatus [25] that
exhibit high degrees of curvature variation. More convoluted mem-
brane organizations have also been observed, whereby the membrane
adopts a 3D minimal surface morphology with cubic periodicity, for
example, in the mitochondria of giant amoebae Chaos carolinensis
[28,29]. It is, however, the curvature that appears on a larger scale in
the extracellular environment that we are primarily concerned with in
this paper. A high level of shape complexity is observed throughout
many organs, which are lined by epithelial tissue. One type of recurring
geometry that is, to some extent, representative for many epithelial
tissue constructs are cylindrical structures. Examples are tubular ves-
sels, ranging from small capillaries to large arteries, tubular glands, and
ducts [30]. Despite their tubular nature, the geometry of these biolo-
gical structures quickly deviates from mathematically defined cylinders
(with zero Gaussian curvature everywhere) once the tubular structures

Fig. 1. The definition of surface curvature and some examples from biology. a) Top left inset displays curvature of a 1D line embedded in a 2D plane. Remainder of
the panel displays mean (H ) and Gaussian (Κ ) surface curvatures as functions of the principal curvatures, demonstrated on a saddle shape. b) Some examples of
intrinsically flat and intrinsically curved geometries: a cylinder (left), an elliptic surface (middle), and a hyperbolic surface (right). c) The relation between the genus
of a surface (topology) and the Gaussian curvature of that surface. d) Some examples of Gaussian curvature in biological structures. Top: a cleavage furrow during
cytokinesis [211]. Middle: Branching in an arterial network [212]. Bottom: Diverticula on the colon [213].
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are bent or branched, as this introduces curvature in the second prin-
cipal direction, hence resulting in regions with positive or negative
Gaussian curvatures (Fig. 1d). The intricate epithelial geometries of
complex organs, such as the kidney, lung or intestine, all emerge from a
simple planar cell sheet during embryonic development [31]. Interest-
ingly, this morphogenetic sculpting from a planar to a complex, curved
geometry is not solely driven by genetic factors, but also relies heavily
on thin-sheet mechanics. It has been found that mechanical instabilities
in cell sheets, in the form of buckling and wrinkling, could drive the
morphogenesis of the cerebral cortex [32], intestinal villi [33], airway
branching [34], or tooth development [31,35]. Such mechanical in-
stabilities arise as a consequence of a faster growth of the epithelial
sheet with respect to the constraining mesenchyme that surrounds it,
causing the sheet to buckle within the mesenchyme (in engineering
mechanics, this problem is known as the buckling of a plate on an
elastic foundation [36]). The mechanical forces applied to flat epithelia
could, therefore, explain much of the spontaneous formation of com-
plex curvature distributions during morphogenesis. The convoluted
geometries that arise from these instabilities could, in turn, control
further morphogenesis, for example, by regulating the spatial patterns
of cell proliferation [37,38] or by controlling the spatial distribution of
morphogens [23]. In addition to epithelial morphogenesis, complex
curvatures could also emerge during disease, for example, in colonic
diverticulosis [39] or polycystic kidney disease [40]. In both cases,
outwards-bulging spherical pouches are formed on the colon (Fig. 1d)
or kidney respectively, characterized by a primarily positive Gaussian
curvature, with negative Gaussian curvature in the neck region. Some
similar types of curvature distributions could be observed in the pre-
sence of tumors. In fact, tumorigenesis has been found to be partly
controlled by geometrical cues, such as curvature [24,41]. In mice
pancreatic ducts subject to oncogenic transformation, for example, the
direction of tumor growth was found to depend on the radius of cur-
vature of the duct: tumors expanded outwards on narrow ducts (exo-
phytic), while they grew inwards on larger ducts (endophytic) [24].

Among the other types of tissue, osseous tissue is also well known to
exhibit complex curvature fields. At a small scale, osteoclasts generate
small pits and trenches in the surface of the mineralized matrix during
bone resorption, resulting in local curvature variations sensible by os-
teocytes and osteoblasts. On a slightly larger scale, however, bone
tissue is also characterized by complex curvature distributions, parti-
cularly trabecular bone. The network-like structure of trabecular bone
has been shown to be characterized by an average negative Gaussian
surface curvature, rendering trabecular bone on average “hyperbolic”
or saddle-shaped [42,43]. Moreover, the average mean surface curva-
ture of trabecular bone was found to be close to zero ( ≈H 0), attributed
to an energy-minimizing bone formation process [42].

It should be clear that a plethora of curved biological structures
exists, and that truly flat structures are rather the exception than the
rule in native tissues. However, the question of scale should not be
neglected when discussing curvature, as this only makes sense when
doing so relative to the cell size. For example, very low values of cur-
vature, with very large radii of curvature, might not be “noticed” by the
cells at all. On the other hand, very high values of curvature, with radii
much smaller than the characteristic cell length, should be considered
more as a topographical feature (i.e. micro- or nanotopographies
[15,17,44,45]) rather than a truly curved substrate. At such small
scales, curvature is manifested in the form of local, curved deformations
in the cell membrane [10]. In this case, BAR (Bin/Amphiphysin/Rvs)
domain proteins have been known to be involved, both as curvature
generators and as curvature sensors [46]. Due to the inherent curved
nature of these BAR domains, they could impose curvature in initially
flat membranes when binding to the membrane through electrostatic
interactions [47]. Alternatively, the BAR domain structures could act as
sensors of already curved membranes (e.g., curved due to an external
geometrical feature) by preferentially binding to these curved portions
of the membrane and recruiting small G proteins [10,48]. Because the

cell membrane is a bilayer, curving it will induce differences in stress
distributions between both sides of the membrane, which could lead to
ion channel opening in the membrane [49]. It has been suggested that
this selective channel opening could constitute another curvature sen-
sing mechanism [10]. While membrane curvature is important for
various cell processes, such as endocytosis [50] and membrane fusion
[51], we are dealing with curvature at much larger length scales in this
paper, and we refer the interested reader to other reviews on the
physics behind membrane curving [46,47,51]. For the remainder of this
review, we will focus on substrate curvature on length scales equal to or
higher than that of typical (mammalian) cell sizes, i.e. the radii of
curvature in the approximate range of −10 10 μm1 3 .

3. Single cell response to substrate curvature

The appreciation for substrate curvature as a mechanism to guide
cellular behavior (i.e., “curvotaxis” [52]) is much more recent than that
for other environmental cues such as chemical gradients (“chemotaxis”)
or substrate stiffness (“durotaxis”). Nevertheless, there is a growing
body of experimental evidence demonstrating that individual cells can
respond to substrate curvature in various ways, ranging from initial
migratory patterns to the differentiation behavior. While substrate
curvature originally seemed to be considered within the perspective of
contact guidance, i.e. the guiding principle where cells align along
(small) ECM fibers [53,54], it is now typically being considered as se-
parate guiding mechanism, i.e. “curvotaxis” [52] or “curvature gui-
dance”, rather than a subset of contact guidance [55]. This is primarily
due to the larger curvature radii in the context of curvature guidance (≥
cell size) as opposed to the subcellular-scale features in the case of
contact guidance.

Despite a rapidly growing interest in single-cell experiments on
curved substrates, only a few types of curved geometries have been
considered so far, in part due to the challenge of fabricating precisely-
defined microscale substrates with controllable curvatures [56]. In
many studies, cylindrical substrates have been employed, either by
seeding cells on thick (compared to cell size) fibers [54,57–60], or on
hemi-cylindrical patterned substrates [61–63]. In addition to these
discrete cylindrical geometries, smoothly-varying sinusoidal or “wavy”
patterns have also been used [64–66]. From a formal curvature per-
spective, all these geometries are examples of developable surfaces,
which have non-zero mean curvatures ( >H 0 on the convex parts and

<H 0 on the concave parts), but zero Gaussian curvature ( =K 0) ev-
erywhere. In addition to cylindrical geometries, substrates patterned
with hemispherical convex caps ( > >H K0, 0) or concave pits
( < >H K0, 0) have also been employed in several studies [61,67–70],
as well as smoothly-varying, wavy patterns of alternating caps and pits
[52]. Surprisingly, little research has been performed on the response of
cells to substrates with negative Gaussian curvatures ( <K 0), which are
saddle-shaped substrates [30,63]. In this section, we outline recent
results on the behavior of individual cells on curved substrates, first by
describing how curvature affects cell alignment and migration, and
later by addressing the specific roles of cytoskeletal tension and the cell
nucleus in sensing and responding to curvature.

3.1. Curvature-guided cell alignment and migration

Cell alignment and migration are the most commonly investigated
phenomena in single-cell experiments on curved substrates.
Throughout the lifetime of multicellular organisms, cell migration plays
a fundamental role in the development, maintenance, pathology, and
repair of tissue. Although it is a complicated multi-step process invol-
ving bi-directional cell-ECM interactions [71] and variations among
different cell types, some basic principles of the cell migration cycle are
conserved [72]. An adherent cell migrating on flat surfaces first es-
tablishes polarity, developing distinct leading (front) and trailing (rear)
edges in the direction of migration. This polarity is characterized by a
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polarized cytoskeletal structure and different molecular processes at the
front and rear of the cell, regulated in part by Rho GTPases [72–74].
Upon polarization, the leading edge of the cell develops protrusions in
the form of broad lamellipodia and “spiky” filopodia, enabled by actin
polymerization [72,75]. Subsequently, the protrusions bind to the ECM,
forming anchoring points for the cytoskeletal network to exert traction
and pull the cell forward over these adhesion sites [73,76]. Finally,
detachment at the rear of the cell and the retraction of the trailing edge
occurs in order for the cell to translocate across the substrate.

Associated with migration is the tendency of cells to align (and
elongate) in response to curvature. Fibroblasts, smooth muscle cells,
and mesenchymal stromal cells seeded on cylindrical substrates (convex
side, i.e., >H 0 and =K 0) have been shown to preferentially align
their elongated bodies and cytoskeletal structure along the cylinder axis
[54,57,61,63–65,77–79]. As such, the cells tend to avoid curvature by
aligning along the (principal) direction of zero curvature. Epithelial
cells on the other hand, have been found to orient their cytoskeletal
structure in circumferential direction and “wrap” the cylindrical sub-
strate [58–60,80], thereby aligning in the (principal) direction of
maximum curvature. In experiments with fibroblasts on cylindrical
substrates, the degree of longitudinal alignment was found to increase
with curvature (i.e., a decreasing radius of curvature) [57,61,63]. In-
deed, the scale of the substrate curvature is important, since too large
curvature radii (i.e., ≫κ cell size) cannot be detected by individual
cells. Interestingly, sufficiently large curvature cues could overrule a
competing cue in the form of nanoscale contact guidance in de-
termining cell alignment [61]. While cylinders could induce pre-
ferential cell alignment, this is not observed on spherical substrates
( >K 0), because the curvature is constant in all directions (both the
mean and Gaussian curvatures are constant and positive on a sphere).
As opposed to cylinders, there is no option for cells on spheres to find an
orientation that either minimizes or maximizes curvature. In this re-
gard, it would be interesting to observe cellular alignment on ellipsoidal
substrates ( >K 0 and varying), where the principal curvature in one
direction is higher than in the other. It might be expected that cells with
pronounced stress fibers would then align preferentially along the di-
rection with the lowest curvature. Furthermore, cell alignment on
saddle surfaces ( <K 0) is still largely unexplored [30,63].

In addition to static cell body alignment, time-lapse microscopy has
revealed that substrate curvature also impacts directional cell migra-
tion. Human bone-marrow derived stromal cells (hBMSCs) cultured on
convex cylindrical substrates ( = >K H0, 0) were shown to migrate
increasingly along the cylinder axis for increasing curvatures (de-
creasing radii) [61,63]. However, hBMSCs on concave cylindrical sub-
strates ( = <K H0, 0) were shown to exhibit a non-aligned and non-
persistent migration mode without angular preference [63]. In the case
of T-cells seeded on sinusoidal wavy surfaces ( =K 0, H is varying), a
zigzagging migration mode in the concave grooves of the waves
( <H 0) was observed [66]. On (hemi-)spherical substrates, a different
migration behavior has been observed on the convex ( > >K H0, 0)
sides as opposed to the concave ( > <K H0, 0) sides of the spheres
[69,70]. Fibroblasts and mesenchymal stromal cells (MSCs) migrate
significantly faster inside concave pits as compared to convex caps and
flat surfaces, with no significant difference between the latter two
[69,70]. Moreover, two distinct migration modes have been observed: a
typical 2D migration response on the convex caps, but a faster, spider-
like “extend-and-pull” movement in the concave pits, whereby the cells
first form long body extensions that span over the pits, and conse-
quently retract their cell body towards the attachment sites of the ex-
tension [69]. On a smoothly varying “double-sinusoid” landscape
(Fig. 2f), exhibiting varying mean and Gaussian curvatures, MSCs and
fibroblasts consistently migrate into the valleys ( > <K H0, 0) and
avoid the hills ( > >K H0, 0) along their trajectory, a response that
increases with increasing curvature values (Fig. 3d) [52]. During the
migration phase, the nuclei of the cells are first located near the deepest
point of the valleys, while the cell protrusions probe the environment.

During a translocation step, the nuclei quickly locate from one valley to
the next, reaching high velocities on the hills. This increased velocity on
the convex parts is conflicting with some of the earlier results [69,70],
but is likely a consequence of the dynamic exploration behavior of the
cells in this smoothly varying, hilly landscape, as opposed to the more
discrete, separated hemispheres in other studies. The observation that
cells avoid convex spherical caps ( > >K H0, 0) is common
[30,67,68], provided that the curvature values are sufficiently large
(e.g., spheres with <r μm500 for fibroblasts [67]). In addition to fi-
broblasts or stromal cells, this observation is also made with macro-
phages (Fig. 3d bottom): cells avoid the regions with positive values of
mean and Gaussian curvatures (i.e., convex caps) and actively migrate
into regions of negative mean and positive Gaussian curvatures (i.e.,
concave pits) [68]. In curvature landscapes with larger feature sizes,
however, macrophages do not exhibit this curvature-driven behavior,
potentially due to relatively lower curvature values as compared to the
macrophage cell size [52]. Despite the general avoidance of convex
caps, however, active cell migration on shallow convex caps has been
observed in some studies [70,81]. These shallow caps are spherical
sections with an aspect ratio below 0.5, which would correspond to a
hemispherical section. Such shallow convex caps may pose less of an
obstruction to the cells migrating from the flat surroundings, as com-
pared to truly hemispherical caps.

While cell migration on developable ( =K 0) and spherical ( >K 0)
surfaces has been the subject of several studies, cell behavior on hy-
perbolic ( <K 0) surfaces is largely unexplored. In one study, axisym-
metric sphere-with-skirt substrates have been used for culturing fibro-
blasts [30]. The substrates consisted of convex caps ( >K 0) that
smoothly transitioned towards the flat surroundings ( =K 0) through a
saddle-shaped region ( <K 0) (Fig. 2d). Cells on such substrates avoided
the convex spherical part of the substrate, but occasionally “probed” it
using short-lived lamellipodia [30]. Instead, the cells showed an azi-
muthal cell polarity and migrated around the cap on the saddle-shaped
region. In another recent study, mesenchymal stromal cells were cul-
tured on a saddle-shaped section of a torus, and preferential migration
along the concave direction of the saddle was observed [63]. While
deliberate investigations into the response of cells to saddle shapes are
still uncommon, it is important to understand that many other sub-
strates also contain saddle-shaped regions. For example, the transition
region from a hemispherical cap to the flat surroundings must have a

Fig. 2. Some examples of the curved substrates used in single-cell experiments.
The mean (top) and Gaussian (bottom) curvature distributions of cylinders (a),
hemicylindrical substrates (b), sinusoid wavy substrates (c), sphere-with-skirt
substrate (d), hemispherical substrates (e), and double-sinusoid wavy substrate
(f). While a-c are examples of developable (intrinsically flat) surfaces, d-f
showcase non-developable (intrinsically curved) surfaces.
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negative Gaussian curvature, though this region could be very narrow
and is typically not considered in curvature-guided cell culture studies
(Fig. 2e). Nonetheless, the relevance of hyperbolic geometry in biolo-
gical tissue necessitates more dedicated investigations to elucidate the
role of saddle shapes on cell migration.

3.2. The central role of cytoskeletal mechanics

A recurring theme in the discussions of cell response to curved
substrates is the central role that cytoskeletal arrangement and tension
seem to play. The contractile stresses that arise in the filamentous cy-
toskeletal network endow cells with both a sensory function, enabling
them to sense the physical properties of their environment [5], and a
force generation function [19], not only facilitating cell migration and
cytokinesis [82] but also enabling the wrinkling of soft substrates [83]
and even cell-scale origami folding [84]. The contraction of the cytos-
keleton, which consists of a network of actin microfilaments, inter-
mediate filaments, and microtubules, is governed by the actomyosin
machinery, consisting of filamentous actin (F-actin) in conjunction with
myosin II motors that sit in between [82]. A crucial ingredient for the
contractility-induced sensory and force generating functions is the ad-
hesion of the cells to the substrate that they are situated on and the
ability to transmit force [85]. Cells use transmembrane proteins, called
integrins, to bind to ligands in the extracellular matrix (e.g., fi-
bronectin). Upon activation by force, several proteins are recruited,

such as talin [86] and vinculin [87], through which a mechanical link
between the ECM and the actin filaments of the cytoskeleton can be
established [88]. Moreover, the exertion of force on the integrins also
activates the RhoA signaling pathway, which, through the activation of
Rho kinases (ROCK) and myosin light chain (MLC), ultimately triggers
the assembly of myosin II filaments [88]. Those myosin II filaments
interact with actin to enable contraction and cross-linking [89], and
have also been implicated in actin polymerization [90], thereby con-
tributing to the force-induced remodeling of the cytoskeleton, as well as
the establishment of mature focal adhesions [88]. In other words, this
mechanical interaction between the extracellular environment and the
intracellular cytoskeleton results in a force-feedback mechanism that
triggers the cell to remodel its cytoskeleton. This force-feedback me-
chanism will be affected when a cell is situated on a 3D, curved geo-
metry instead of an isotropic planar substrate, which is why cytoske-
letal arrangement and contractility are important aspects to consider in
any discussion of curvature guidance.

As mentioned before, fibroblasts and MSCs seeded on convex cy-
lindrical substrates ( > =H K0, 0) typically align longitudinally along
the cylinder axis, an effect that increases with curvature. Typically, this
global cell alignment is accompanied by an arrangement of stress fibers
(i.e., bundles of actin microfilaments) [91] in the longitudinal direction
(i.e., in the direction of zero principal curvature) [54,57,61,63,78]. In a
seminal work, Dunn and Heath hypothesized that this cytoskeletal ar-
rangement (and cell body alignment) occurs because the stress fibers

Fig. 3. Single-cell response on curved substrates. a) Fibroblastic-like cells align longitudinally on cylindrical substrates, while epithelial cells wrap the substrates.
Insets show increasing hBMSC alignment for increasing curvature on convex cylindrical substrates [61], reproduced with permission from The Royal Society. b) MSCs
on concave and convex hemispherical substrates. Insets obtained with permission from Ref. [69] c) Fibroblasts on sphere-with-skirt substrates, exhibiting apical and
basal stress fiber alignment, reproduced with permission from Elsevier [30]. d) Top: the migration trajectories of MSCs (obtained with time-lapse microscopy) on
double-sinusoid wavy substrates. Obtained with permission from Ref. [52]. Bottom: the positioning of macrophages on substrates with various types of convex hills
and concave valleys. Obtained with permission from Ref. [68]. e) Curvature-induced compression of the nucleus on flat, concave spherical and convex spherical
substrates. The schematic drawing is adapted from Ref. [69]. Bottom insets show the shape of the nucleus on concave and flat substrates, obtained with permission
from Ref. [52].
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cannot assemble or operate in a bent condition (i.e., there is a bending
energy penalty), which is why the cells avoid the substrate curvature
and align longitudinally [54]. While plausible, this theory does not
explain the different behavior exhibited by epithelial cells where stress
fibers align circumferentially [58–60]. It has, therefore, been suggested
that the cell and cytoskeletal orientation on convex cylindrical sub-
strates ( = >K H0, 0) is driven by a competition between the bending
resistance of the stress fibers and a shear deformation that develops as a
consequence of cell contractility [92] (Fig. 6a and Section 5.1). When
adhering to a flat substrate, the top surface of the cell is free to contract
in the direction of the stress fibers, while the attached (bottom) surface
is constrained, resulting in a shear deformation throughout the cell
thickness. When the cell is bent along a convex cylindrical substrate, an
additional deformation ensues: the top surface is subject to extension
while the bottom surface contracts. In this case, it is energetically fa-
vorable for the cell to align its stress fibers perpendicularly to the cy-
linder axis, since the actomyosin-induced contraction could partly
compensate for the bending-induced extension. However, this imposes
an energetic penalty due to stress fiber bending, which prefer to
alignment along the zero-curvature direction [92]. The stress fiber or-
ientation is, therefore, determined by an energy trade-off: longitudinal
alignment is predicted when the bending energy dominates (e.g., in the
case of thick stress fibers in fibroblasts), while circumferential align-
ment is predicted when the contractility-term dominates (e.g., for the
relatively thin stress fibers in epithelial cells) [92]. Indeed, cells with
pronounced straight stress fibers (e.g., polarized fibroblasts) have been
found to orient longitudinally on cylinders, while cells with circular
actin bundles (e.g., epithelial cells) or cells with insufficient or no stress
fibers (e.g., transformed L fibroblasts) bend around the cylinder with
much lower elongation and longitudinal orientation (Fig. 3a) [59].
While this theoretical explanation provides an interesting mechanistic
perspective, it cannot elucidate all the aspects at play in stress fiber
orientation. For example, in experiments on convex cylinders
( = >K H0, 0) with fibroblasts and smooth muscle cells, two distinct
stress fiber populations have been observed that are not predicted by
this theory: a set of long, apical stress fibers located above the nucleus
and a set of shorter, basal stress fibers situated beneath the nucleus
[57]. The apical and basal stress fibers increasingly align in axial and
circumferential directions respectively with increasing curvature [57].
Interestingly, the circumferentially aligned stress fibers lie underneath
the nucleus, while it might be expected from the theoretical explanation
that they should lie close to the upper side of the cell to maximally
compensate for the extension caused by cell bending. It, therefore,
seems likely that predicting the energetically optimal orientation of
cells encompasses more aspects than cell contractility and stress fiber
bending.

Cells have no way to “avoid” curvature on convex spherical caps
( > >H K0, 0). In other words, the stress fibers in cells adhering to
such spherical substrates must bend regardless of their orientation.
Bone marrow stromal cells seeded on convex spherical caps were found
to exhibit lower F-actin levels (i.e., less pronounced stress fibers), yet
higher phosphorylated myosin levels, indicative of higher myosin II
filament activity as compared to the cells residing on convex cylindrical
substrates of the same diameter [61]. It has been suggested that these
increased phosphorylated myosin levels are necessary to compensate
for the lower number of stress fibers whose formation seems to be
impeded on convex curved substrates, such that an adequate cytoske-
letal tension and cell motility could still be maintained [61]. This ob-
servation has been confirmed in other studies, where less pronounced,
shorter stress fibers or lower F-actin levels were observed on the convex
spherical caps as compared to other geometries in the surroundings
[30,67,69]. From a curvature perspective, one expects a concave
spherical pit ( > <K H0, 0) to elicit the same response, since there is
also no direction of zero principal curvature ( >K 0 on the concave and
convex sides). However, there is a way in which cells could still avoid
stress fiber bending: by spanning the pit with strong actin bundles,

attached to a few anchoring points on the side walls, that contract and
lift the cell body away from the substrate. Indeed, mesenchymal stromal
cells cultured on spherical pits or inside spherical confinements form
large extensions to bridge the concavity underneath and adopt a spider-
like morphology, with most focal adhesions being located at the an-
choring sites on the periphery of the cells (Fig. 3b) [69,93]. A similar
lift-off behavior has recently been observed for stromal cells on concave
cylindrical substrates ( = <K H0, 0), and this has been linked to the
non-aligned, non-persistent migration behavior that these cells exhibit
[63]. The spider-like morphology is reminiscent of the shape of cells on
micropatterned adhesive substrates, exhibiting arc-like boundaries that
form naturally due to cellular contractility (Fig. 5c) [94,95]. Cells on
smooth, double-sinusoid substrates (varying K and H ) seem to exhibit a
somewhat similar behavior: the nucleus is typically positioned in a
valley ( > <K H0, 0), and most focal adhesions are situated on the
surrounding hills ( > >K H0, 0), though some more stable, higher
tensioned FA could be present in the valleys [52]. Lower nuclear
compression has been observed in the valleys, yet it is unclear if the
cells were fully lifted away from the double-sinusoid substrate.

Based on these results for convex and concave spherical geometries
( >K 0), a natural question to ask is what happens to the actin orga-
nization when cells are subjected to both convex and concave curva-
tures simultaneously (i.e., saddle surfaces <K 0)? On the saddle-
shaped region of sphere-with-skirt substrates, two distinct subpopula-
tions of stress fibers have been observed in fibroblasts: apical stress
fibers (above the nucleus) that align in the radial direction, and basal
stress fibers (below the nucleus) that align in the circumferential di-
rection. Interestingly, the apical stress fibers do not follow the local
concave curvature of the substrate but bridge this concavity instead,
much like the previously described spanning behavior on concave pits
(Fig. 3c) [30]. Therefore, by aligning along the concave principal di-
rection ( <κ 01 ) and consequently spanning the substrate, the apical
stress fibers can avoid bending. The basal stress fibers, however, do not
avoid bending and are oriented in the other principal (convex, >κ 02 )
direction, showing a similar behavior as on cylindrical substrates in a
previous study [57]. Therefore, while the argument of bending avoid-
ance seems to hold for the apical stress fibers, it does not explain the
orientation of the basal stress fibers: why do the basal fibers align in the
“most curved” direction instead of trying to avoid curvature altogether?
Elucidating the underlying mechanisms requires further investigation,
but it is noteworthy that the cells cultured on the saddle region migrate
in the direction of the basal stress fibers, while they typically migrate in
the direction of the apical stress fibers on planar substrates [30]. Mi-
gration and basal stress fiber orientation may, therefore, be linked on
those regions of negative Gaussian curvature.

The effects of cytoskeletal mechanics can be studied more in-depth
by using drugs to inhibit or enhance specific cell components.
Activation of Rho GTPases (i.e., regulators of stress fiber formation
[96]) in fibroblasts and vascular smooth muscle cells on the outside of
cylinders ( = >K H0, 0) results in a strong reduction of apical, long-
itudinally aligned stress fibers, while basal stress fibers become more
pronounced and align circumferentially [57]. While the opposite was
expected (following the stress fiber bending argument), it has been
hypothesized that this observation is due to a shift in the balance be-
tween the bending energy of stress fibers and cell contractility [57].
Rho inhibition, on the other hand, results in the loss of the curvature
sensing ability of mesenchymal stromal cells cultured on double-sinu-
soid substrates (with varying K and H ) [52]. A similar effect is obtained
by drug-induced actin depolymerisation and myosin II blocking, both of
which are among the components of the actomyosin contractile appa-
ratus [52]. These results underpin the intimate connection between the
formation of a contractile cytoskeletal structure and the ability of the
cells to sense and respond to substrate curvature. While the full set of
the mechanisms behind curvotaxis are not yet fully uncovered, the
experimental observations seem to support at least some aspects of the
hypothesis that cytoskeletal (and cellular) alignment is driven by an
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energetic balance between contractility and stress fiber bending on
curved substrates.

3.3. The nucleus as a curvature sensor and regulator

Located in between the cytoskeletal network of eukaryotes is the
cell nucleus, the largest organelle that contains the cell's genetic ma-
terial. Mechanically, the nucleus is a membrane-bound structure that is
internally supported by a fibrous network-like nucleoskeleton, built up
of lamins, actin, and other proteins [97,98]. The nucleus behaves like a
viscoelastic solid [99], and is considerably stiffer than the cytoskeleton
[98,100]. Nevertheless, it is still a deformable structure, and nuclear
shape and deformability have been shown to play a role in various cell
processes, including the regulation of gene expression, and have been
associated with various diseases (e.g., laminopathies) [100–102]. The
deformation of the nucleus is enabled through intimate connections
between the nuclear envelope and the cytoskeleton in the form of the
LINC (linkers of nucleus and cytoskeleton) complex [103]. On the outer
side of the nuclear envelope, nesprin proteins bind to the various
components of the cytoskeleton: nesprins 1/2 bind to actin, nesprin 3
binds to intermediate filaments, and nesprin 4 to microtubules. At their
other ends, nesprins bind to SUN proteins, which pass through the
nuclear envelope and bind to nuclear lamins (proteins that form a re-
inforcing layer on the inner side of the nuclear membrane). These la-
mins are, in turn, connected to the chromatin cargo inside the nucleus
[102,104]. Hence, there is a mechanical connection between the cy-
toskeleton and the nucleus, enabling force transmission of in-
tracellularly and extracellularly generated forces [102]. This force
transmission results in dynamic deformations of the nucleus, which
have been linked to different mechanotransduction mechanisms. For
example, nuclear deformation could result in conformational changes
of proteins at the nuclear lamina, affecting their interaction with en-
zymes [105]. Additionally, nuclear deformation could rearrange the
spatial distribution of chromatin (into loose and compact regions), af-
fecting gene expression [101,104–106]. For these reasons, the cell nu-
cleus could actually be considered a “sensor” that plays an important
role in mechanotransduction [13,104].

The nuclei of certain cells (e.g., fibroblasts) adhering to flat surfaces
are naturally flattened due to the presence of a “perinuclear actin cap”,
which is a dome-like arrangement of apical stress fibers that lie on top
of the nucleus and that exert a compressive force on the nucleus due to
actomyosin contraction [107] (Fig. 3e top row). Alterations in the
shape of the nucleus are, therefore, expected to arise in the cells re-
siding on curved substrates as compared to those cultured on planar
substrates, due to the curvature-induced cytoskeletal rearrangement
and the cell morphology that we described previously. Indeed, the
nuclei of mesenchymal stromal cells seeded on planar ( = =K H0, 0),
convex spherical ( > >K H0, 0), or concave spherical ( > <K H0, 0)
substrates exhibit distinctly different shapes: a flattened morphology on
flat and convex spherical substrates and a more spherical morphology
on concave spherical substrates [69]. For a cell on a planar substrate,
the perinuclear actin cap generates a relatively small compressive force,
flattening the nucleus. On a convex spherical cap ( > >K H0, 0),
however, this vertical force component increases due to the increased
vertical arrangement of the stress fibers, leading to a more flattened
shape. On a concave spherical pit ( > <K H0, 0), on the other hand,
the nuclear compression is relieved because the cell is lifted off the
surface, leading to a more spherical shape of the nucleus (Fig. 3e)
[52,69].

One of the primary components governing nuclear deformability is
lamin A. This is a type V intermediate filament that is a key constituent
of the nuclear lamina, a reinforcing meshwork at the nuclear envelope
[102,108]. Increased lamin A intensity levels have been measured in
cells on convex spherical substrates, as opposed to concave spherical
and flat substrates, suggesting a nuclear stress-protection response in-
duced by curvature [69]. On the other hand, active lamin A silencing

using small interfering RNAs has been shown to significantly reduce the
curvature-sensing ability of cells [52]. In addition to nuclear deforma-
tion due to curvature-induced forces, the nucleus has also been found to
dynamically change its intracellular position in response to curvature,
essentially positioning itself in the locations of low deformation (i.e.,
valleys instead of hills) and potentially playing an important role in
guiding cell migration [52,68].

Curvature-induced deformation of the nucleus has also been linked
to gene expression and differentiation. On substrates with a zero
Gaussian curvature (i.e., cylindrically-shaped hydroxyapatite sub-
strates), no curvature-induced changes in the differentiation and mi-
neralization rates of pre-osteoblast cells have been observed (using
RUNX2, ALP, DMP1 and Osteopontin markers) [64]. However, curva-
ture-dependent differentiation behavior has been observed on sub-
strates with non-zero (positive) Gaussian curvatures [69]. Higher os-
teocalcin levels, a marker for osteogenic differentiation, were observed
in MSCs seeded on hemispherical caps as opposed to flat and hemi-
spherical pits (both in expansion and osteogenic medium) [69]. Re-
markably, these higher osteocalcin levels were associated with lower F-
actin levels and vice versa, while previous results on planar substrates
indicated that higher cytoskeletal forces enhance osteogenic commit-
ment [109]. This difference could indicate that surface curvature plays
an equally important role in governing nuclear deformation, next to the
magnitude of cytoskeletal tension. Nuclear deformation might also
explain the lack of increased differentiation activity on cylinders as
opposed to hemispherical caps: on the cylindrical substrates ( =K 0),
the stress fibers orient in the longitudinal direction and, therefore,
might not compress the nucleus as much as on hemispherical caps
( >K 0), and, thus, may not trigger the osteogenic pathways. The
transcriptome of MSCs cultured on double-sinusoid substrates (varying
K and H ) has also been compared to that of the cells cultured on planar
substrates ( = =K H 0), showing several downregulated genes in cells
on the sinusoid substrates, including factors involved in differentiation
and cytoskeletal remodeling [52].

In conclusion, it should be clear that individual cells could sense and
respond to various types of substrate curvatures (see Table 1 for an
overview of studies on cell-scale curvature guidance). While generating
and sensing curvature at membrane scale involves dedicated bio-
chemical pathways and proteins at the membrane [10,46,47,51], the
interaction with curvature at larger scales requires a more holistic,
mechanical explanation [52]. In general, the mechanisms driving spa-
tiotemporal organization of individual cells on curved substrates seem
to be governed by the interplay between the cell's contractile apparatus
and the relatively stiff, yet deformable nucleus [19,52,69]. By means of
protrusions at their periphery [30], cells dynamically explore the 3D
curved substrate and establish discrete focal adhesion sites, enabling
them to anchor to the substrate, remodel their cytoskeleton, and build
up cellular tension. This cytoskeletal contraction, in conjunction with
the specific geometry that the cell is constrained to (e.g., convex or
concave spherical pits), results in different net forces on the nucleus as
opposed to cells adhering to isotropic flat substrates. As a first con-
sequence, these anisotropic force distributions could result in in-
tracellular nuclear sliding, potentially driving whole-cell migration in a
particular direction [52]. Additionally, the specific substrate that cells
adhere to could result in varying degrees of nuclear compression, af-
fecting chromatin distribution and potentially triggering other nuclear
pathways [61,69]. The preferred orientation and migration trajectory
that the cells then commit to, is typically discussed from an energy
minimization perspective. Although it is still unclear to what extent
different cell components contribute to the energy balance, it has been
argued several times that stress fiber bending plays a major role
[57,92]. Indeed, cells with pronounced stress fibers seem to favor or-
ientations that minimize bending, such as a longitudinal alignment on
convex cylinders or a “spanning” configuration over local concavities
(e.g., on concave pits, concave cylinders or saddles) [60,63]. While the
full set of the involved mechanisms remains elusive, it should be clear
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that cell-scale curvature guidance is not purely a biochemical process
that is restricted to specific regions inside the cell, but instead requires a
whole-cell approach involving the interplay between the cell as a dy-
namic mechanical system and the constraining extracellular geometry.

4. Collective cell and tissue response to substrate curvature

While single-cell experiments offer useful insights into the me-
chanisms behind curvature sensing and response, cells are generally not
solitary agents in vivo, but are, instead, linked together in a multi-
cellular network [11]. This could be a direct link through intercellular
connections such as tight junctions, gap junctions, desmosomes, and
adherens junctions [11], or an indirect connection via cell-ECM adhe-
sion [88,110]. These cell-cell and cell-ECM interactions establish a
mechanical linkage that enables force transmission between different
cells. As mentioned before, cell-ECM force transmission involves
transmembrane integrins that bind to extracellular matrix ligands and
link back to the cell cytoskeleton [111]. In the case of cell-cell inter-
actions, a similar force transmission mechanism exists, this time
mediated by transmembrane cadherins [88]. The extracellular domains
of the cadherins of different cells form adhesive bonds that link the cells
together. At the cytoplasmic domain of the cadherins, different proteins
are recruited, such as α-catenin, β-catenin, or vinculin, that enable
direct or indirect binding to actin [88,112]. As such, a mechanical
connection between the cytoskeleton of different cells is constructed.
Through these cell-cell and cell-ECM connections, a multicellular force-
feedback network is established that increases the range within which
cells could sense and respond to their environment, enabling them to
act cooperatively [19]. For example, collective cell contraction on
patterned adhesive islands or confinements could result in stress gra-
dients in the multicellular constructs that drive spatial cell proliferation
patterns [37] and the spatial distribution of biochemical signals [23].
Hence, the collective force-generation of multicellular systems coupled
with constraining extracellular geometries could initiate heterogeneous
cell patterning and guide the structural organization of the extracellular
matrix [19]. In the current section, we approach this coupling between
collective cell action and extracellular geometry from the perspective of
substrate curvature, first by discussing the response of single-layer cell
sheets and later by considering the shaping of more convoluted ECM-
rich tissues.

4.1. Curvature-driven organization and dynamics of cell sheets

Upon reaching confluence, cells link up to form a cohesive cell
sheet, or monolayer, that covers the substrate they are situated on. At
this moment, cells can operate collectively, for example, to generate
forces across the entire sheet [110]. While various cell types could form
monolayers, most studies of monolayer mechanics and structure are
focused on epithelial cell sheets, which have a high physiological re-
levance, since they line the surfaces of many 3D curved structures in
vivo, such as organs, cysts, and vessels [113,114]. In addition to indu-
cing, for example, spatial proliferation patterns, the collective organi-
zation can enable cells in monolayers to sense and respond to weaker
curvature fields than individual cells. Indeed, confluent monolayers of
fibroblasts and vascular smooth muscle cells residing on cylindrical
substrates ( = >K H0, 0) align along the cylinder axis more strongly
than individual cells on cylinders with low curvature (Fig. 4a) [57]. As
a potential explanation, it was suggested that these monolayers have a
larger “effective length scale” due to the cell-cell connections that link
stress fibers together, thereby creating a stress fiber network that has a
higher bending energy penalty than in individual cells [57]. Cylindrical
geometries also play an important role in the organization and dy-
namics of epithelial and endothelial sheets (e.g., during tubular mor-
phogenesis) [115]. Indeed, cells in such monolayers plated on cylind-
rical substrates align and elongate in response to curvature, although
the orientation and curvature sensitivity depends on the cell type.

Longitudinal alignment is observed for umbilical vein endothelial cells
cultured on convex cylinders ( >H 0) and renal epithelial cells in con-
cave cylinders ( <H 0), while renal epithelial cells align perpendicu-
larly to the cylinder axis on convex cylinders (Fig. 4b) [80,116–118].
The curvature sensitivity seems to be reduced in cell sheets with
stronger cell-cell junctions and/or higher cell stiffness, which has been
linked to an organ-dependent requirement to minimize paracellular
transport (e.g., in the blood-brain barrier) [116,117]. On double-sinu-
soid substrates with varying, non-zero Gaussian curvatures, an ex-
panding epithelial monolayer showed curvature-dependent organiza-
tion at the leading edges of the front, where cells are positioned in the
concave areas, but not in the central part [52]. As a potential ex-
planation, it was suggested that the cells at the edges of the expanding
colony have a higher freedom to reposition themselves in response to
curvature, while the cells in the center part do not have such freedom
due to cell-cell interactions which provide constraints on the position of
the cell within the epithelium [52].

When organized in monolayers, cells also exhibit a collective mi-
gration behavior that plays a crucial role during morphogenesis, wound
healing, and cancer progression, and has been found to depend on
substrate curvature [73,119,120]. Epithelial cell sheets on the outside
of cylindrical wires ( >H 0) migrate collectively in the longitudinal
direction, and the migration speed increases with curvature [80]. On
the inside of hollow cylindrical substrates ( <H 0), however, the mi-
gration speed of an advancing epithelium decreases with increasing
curvature, potentially due to cell jamming (Fig. 4c) [114,118]. More-
over, cells can detach from the front edge of the monolayer on cy-
lindrical substrates at high curvatures, and switch to an individual
migration mode, a phenomenon that is reminiscent of epithelial-to-
mesenchymal transition [80,121]. Despite ample evidence showing that
curved substrates guide cell sheet organization and migration, this does
not mean that the sheet maintains this geometry for extended periods of
time [122]. Instead, cell sheets can detach from concave cylindrical
substrates ( <H 0), a phenomenon that is more profound for increased
curvatures and increased cell contractility and can be explained by the
existence of a net normal stress pointing away from the surface (Fig. 4d)
[122,123]. Cell sheet detachment is not limited to cylindrical geome-
tries, but can also occur on substrates with non-zero Gaussian curva-
tures. For example, epithelial cell sheets grown in bent cylindrical
tubes, effectively representing a portion of a torus with <K 0 at the
inside and >K 0 at the outside of the bend, consistently detach from
the outer side of the bend as a consequence of cell sheet contraction
(Fig. 4e) [123]. Moreover, cell sheet contraction can cause initially
planar substrates to buckle into spherical-like microlenses ( >K 0),
hence giving rise to spontaneous curvature formation [124].

Substrate curvature not only influences the organization, migration,
and detachment of entire cell sheets, but can also affect individual cells
within the sheet. More specifically, recent evidence has shown that
some cells in a curved epithelium must adopt a previously unknown
mathematical shape, termed a scutoid, in order to geometrically enable
the packing of cells in such a curved morphology (Fig. 4f) [125]. Si-
milar to a prism and a frustum, a scutoid is a polyhedron connecting
two parallel polygonal faces. In contrast to the prism and frustum,
however, a scutoid connects different polygons at the top and bottom
(e.g., a hexagon on top and a pentagon on the bottom, Fig. 4f). Pre-
viously, it was assumed that epithelial cells adopt a prism or frustum
shape in a closely-packed epithelial sheet [126,127]. Mathematical
models, however, revealed that certain cells in a curved epithelium
have different neighboring cells at the apical and basal sides, necessi-
tating scutoid shapes in the epithelial packing rather than only prisms
and frusta [125].

4.2. Curvature-dependent, fluidic shaping of ECM-rich tissues

Cell sheets could, thus, exhibit complex shape formation and
adaptation in response to geometrical cues in their environment.
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Moreover, spatial force patterns or mechanical instabilities arising from
differential growth further contribute to shape formation in cell sheets,
as was already mentioned in Section 2.2 in connection to morphogen-
esis and pathology [24,31,32,37]. Such complex shape formation is,
however, not restricted to cell sheets but could also be observed in 3D
bulk tissue constructs in which extracellular matrix is gradually de-
posited as 3D tissue grows. This matrix reinforces the cell collective and
enhances the load-bearing capacity of the developing tissue [128].
Despite the fact that a dense cell-ECM network is formed, these tissue
constructs still exhibit geometry-dependent, fluid-like shape formation
[129]. The effects of geometry in general and curvature in particular on
the shape and kinetics of tissue growth has been studied primarily using
osteoid-like tissues as model systems [129–131]. This is likely driven by
the clinical demand for geometrically optimized porous biomaterials
that facilitate bone tissue regeneration. Typically, curvature-guided
tissue growth has been studied in vitro and has involved non-miner-
alized (osteoid-like) tissue, although in vivo curvature guidance of mi-
neralized tissue has been also recently reported [132]. In the current
section, the general observations regarding curvature-guided tissue
growth will first be outlined, after which the physical basis for this
behavior will be discussed by comparing it to surface tension-driven
shape formation in inanimate materials.

Following the seminal work of Rumpler et al. [130], several in vitro
studies involving pre-osteoblasts or mesenchymal stromal cells seeded
inside straight channels with pre-defined pore shapes have consistently
revealed that the curvature of the pores affects the shape and kinetics of
tissue growth (Fig. 5a) [130,131,133–138]. More specifically, after an
initial stage that is dependent on cell-material interactions, pore cur-
vature becomes the dominant factor for tissue growth [135]. In chan-
nels with circular pores, non-mineralized tissue has been found to grow

uniformly inwards, with larger tissue thickness for higher curvatures
(i.e., narrower pores) [130,133,134], and similar results have been
obtained for mineralized tissue under static and perfused conditions
[136]. In non-circular channels (e.g., with triangular or square cross
sections), preferential tissue growth starts in the pore corners (i.e., the
regions of high curvature), while no tissue is formed on the flat sides
initially [130,131,135,138]. As tissue is progressively deposited in the
corners, effectively rounding the pore, the local geometry of the flat
sides is altered and tissue starts to grow on those locations too. With
time, this leads to a circular tissue front that grows uniformly inwards.
In channels with convex polygonal pores, the tissue growth rate in the
corners increases with corner curvature, meaning that it is higher in the
corners of triangular than in square or hexagonal pores [130]. Never-
theless, the average growth rate of convex pores with the same peri-
meter is independent of their shape, which has been attributed to the
fact that, in convex polygons, the average curvature and, thus, average
growth rate is inversely proportional to the perimeter [130,131].
However, in channels with concave polygonal cross sections such as
cross shapes, the initial overall growth rate can be significantly higher
than in square (convex) shapes, due to the higher number of “growth-
inducing” corners in the cross (8 concave corners) as compared to the
square (4 concave corners) shape [131]. This implies that the pore
geometry of artificial tissue scaffolds should be optimized not only for
mass transport and mechanical properties, but also for the desired
tissue growth rate [131].

These straight pore channels, whether with convex or non-convex
cross-sectional shapes, all classify as “generalized cylinders” (i.e., de-
velopable geometries, K=0) with parallel ruling lines that are curved in
one direction but remain flat in the other. Other examples are hemi-
cylindrical, open channels, or wavy substrates that only curve in one

Fig. 4. The response of cell sheets to the substrate curvature. a) A confluent layer of fibroblasts senses substrate curvature better than individual cells, obtained with
permission from Ref. [57]. b) Top: human umbilical vein endothelial cells (HUVEC) show increasing alignment in the longitudinal direction on cylindrical substrates,
obtained with permission from Ref. [116]. Bottom: human kidney (HK-2) epithelial cells showing different alignments on concave and convex hemicylindrical
substrates, obtained with permission from Ref. [117]. c) Top: the collective migration of an epithelium on the outside of a cylindrical wire, obtained with permission
from Ref. [80]. Bottom: the collective migration of an epithelium inside cylindrical channels, with decreasing speeds for increasing curvatures, obtained with
permission from Ref. [118]. d) A schematic drawing of cell sheet detachment in response to the substrate curvature, reproduced with permission from Elsevier [122].
e) An epithelium cultured inside a bent cylindrical tube, detaching from the outer side (positive Gaussian curvature). Experimental images and inset on the right were
reproduced with permission from Ref. [123]. f) The scutoid cell shapes emerging in a cylindrical epithelial packing, obtained with permission from Ref. [125].
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direction. A general and important observation regarding such geo-
metries is that the tissue is predominantly formed on concave regions
( <H 0), with virtually no (initial) tissue deposition on the convex re-
gions ( >H 0, Fig. 5b). In hemicylindrical channels, for example, tissue
progressively grows in the concave part of the substrate, effectively
“flattening” the cylindrical cavity, and the tissue front is pinned at the
convex edges [131]. Moreover, the tissue grows at a significantly lower
rate than in full cylindrical channels of the same radius, which is at-
tributed to the presence of the convex boundaries on which no tissue is
formed until the local geometry becomes concave due to the advancing
tissue front [131]. On wavy substrates, exhibiting alternating patterns
of convex and concave regions (i.e., positive and negative mean cur-
vatures), tissue is also almost exclusively generated inside the concave
regions [134,139]. Similar results are seen inside prismatic channels
with non-convex pores, such as a cross shape, where tissue starts
growing from the concave corners and only forms on the convex corners
once they become immersed in the advancing tissue front [131].

In most curvature-guided tissue growth studies, channel-like (i.e.,
intrinsically flat, =K 0) substrates have been employed, and tissue
growth has been typically quantified from a 2D perspective by using the
projected tissue area perpendicular to the channel length
[130,131,134,135,137]. However, the projected tissue area as seen
from the top (or bottom) of the channel would only be an accurate
measure of the total tissue formation, if the tissue growth is uniform
along the depth of the channel, which might not be the case due to the
non-uniform initial cell density or the disturbing presence of the convex
boundaries [134]. Indeed, it has been suggested that the tissue growing
in a cylindrical channel should exhibit curvature in both principal

directions (i.e., intrinsic curvature) and adopt a catenoid-like saddle
shape ( <K 0) [131], although the 3D reconstructions of in vitro grown
mineralized tissue under static and perfused conditions could not con-
firm this hypothesis [136]. Nevertheless, it seems plausible that tissue
could develop into more complex architectures than developable geo-
metries ( =K 0) and instead adopt intrinsically curved shapes ( ≠K 0).
It would, thus, be relevant to also study tissue growth on such in-
trinsically curved (sphere-like or saddle-like) geometries, yet surpris-
ingly little research has been conducted in this direction. A recent study
involving human corneal stromal cells seeded on shallow dome-like
substrates ( >K 0) shows that substrate curvature enables the formation
of highly aligned extracellular matrix in the radial direction, giving rise
to tissue equivalents that resemble many of the characteristics of nat-
ural corneal tissue [81]. In another recent study, osteoid-like tissue was
grown from pre-osteoblasts on saddle-shapes with controlled curvature
[129]. More specifically, the tissue was formed on rotationally sym-
metric capillary bridges of constant mean curvature and non-constant
negative Gaussian curvature. The saddle-shaped tissue front is pinned
by the convex edges of the substrates and progressively extends out-
wards, effectively flattening the initial geometry. Accordingly, the final
tissue thickness is higher on substrates with narrow neck regions (i.e.,
higher concave principal curvature and higher Gaussian curvature)
[129]. These intriguing initial results call for more detailed investiga-
tions into tissue growth on intrinsically curved geometries, both sphe-
rical and hyperbolic, as these bear significant physiological relevance.

It should, thus, be clear that the shape of newly formed, ECM-rich
tissue depends on the geometry, more specifically curvature, of the
underlying substrates. But why does tissue adopt these particular

Fig. 5. Curvature-driven tissue growth. a) Bone-like tissue growth front evolving towards a circular geometry in pore channels with various cross-sectional shapes.
The experimental images on top and on the right are obtained with permission from Ref. [130] and Ref. [131], respectively. b) The differences in the bone-like tissue
growth on concave cylindrical versus convex cylindrical regions. The experimental images on top and on the right are obtained with permission from Ref. [139] and
Ref. [134], respectively. c) Surface tension determines confined cell and tissue shapes. Top left: A buffalo rat liver cell on a micropatterned adhesive substrate,
obtained with permission from Elsevier [146]. Top right: similarity between clustering soap bubbles and cone cells in the developing Drosophila retina, obtained with
permission from Springer-Nature [140]. Bottom: Tension-driven shape adaption of a collagen gel tissue model pinned at discrete locations, obtained with permission
from Elsevier [146]. d) Actin alignment and increased concentration at the tissue front. Experimental images obtained with permission from Ref. [131] (top left), Ref.
[138] (top right) and Ref. [148] (bottom). e) Top: additively manufactured scaffold implanted in a critical-sized defect in an ovine animal model. Bottom: Soft tissue
growth towards cylindrical pores (left and middle), and mineralized cones as obtained with microcomputed tomography (right). Images are obtained with permission
from Elsevier [132].
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shapes? A consistent observation that could elucidate this matter is that
the tissue shapes are reminiscent of the shapes that viscous fluids would
adopt, as dictated by the laws of physics [19]. In other words, the
emergent shape of biological materials is somewhat similar to ob-
servations made in physics-driven inanimate materials, such as wetting
droplets, soap bubbles, or other systems involving liquid interfaces. For
example, the pattern formation of cone cells in the developing Droso-
phila retina exhibits a striking similarity to soap bubble clustering
(Fig. 5c) [140]. The underlying physical mechanism driving shape
formation of these inanimate materials is the minimization of surface or
interfacial tension, resulting in a tendency to minimize the surface area
[20]. Due to the apparent similarity between the liquid and biological
shape formations, on long enough timescales, tissues are said to behave
like viscous liquids with a certain surface tension [141–143]. As such,
the emergent organization of tissue on curved substrates is often at-
tributed to surface tension minimization, although other factors are at
play as well [19,144]. The relation between the shape and surface
tension is governed by the Young-Laplace equation [145], which states
that the pressure difference ( pΔ ) sustained across a fluid interface is
proportional to the surface tension (σ) and the mean curvature (H ):

=Δp σH2 (4)

Indeed, the Young-Laplace equation, or a slightly modified version
thereof, has been employed to describe the shape of cells and tissues
pinned at discrete sites on a flat substrate [146,147], but also that of the
osteoid-like tissue grown on intrinsically curved substrates [129]. While
tension in a liquid results from various intermolecular cohesive inter-
actions (e.g., van der Waals forces), the origin of tissue tension has been
explained using different theories, such as the “differential adhesion
hypothesis”, but seems to involve both intercellular adhesion and cor-
tical contractility [141,142]. Indications of interfacial tension in the in
vitro curvature-driven growth of connective tissue are provided in the
form of strong actin fibers that are highly aligned with the tissue-
medium interface [130,131,133–135]. Moreover, the actin density is
higher close to the tissue-medium interface, despite uniform cell density
throughout the tissue bulk (Fig. 5d) [131,134]. It has been hypothe-
sized that the collective alignment of actin at the tissue front could
result in a net normal force pointing away from the surface, thereby
driving further advancement of the tissue front [133]. Additionally, the
high tension that exists at the growth front can induce cell transitions,
such as a reversible transition between fibroblasts and myofibroblasts
that is essential in wound healing [148]. In addition to cell-scale actin
orientation, the collagen fibers in the synthesized extracellular matrix
follow the same alignment, indicating also tissue-level organization
[131]. In fact, the tensile forces generated by cytoskeletal contractions
are gradually transferred to the collagen fibers as tissue progresses,
resulting in a permanently stressed matrix that can partly take over
some of the cell-generated tension [138]. On saddle-shaped substrates
( <K 0), actin fibers have been shown to exhibit chirality and align
roughly in the direction of local zero curvature [129]. This could po-
tentially indicate an energetically favorable orientational order in line
with the recent hypotheses that tissues can behave like active nematic
liquid crystals, with cells being the nematic agents, although more
evidence is required to confirm this hypothesis [129,149].

Most curvature-driven tissue growth studies have been performed in
vitro, yet some in vivo results also indicate that curvature plays a role in
the organization and kinetics of tissue formation. In strut-based scaf-
folds used for the treatment of large bone defects in vivo, fibrous tissue
formation has been found to be guided by the scaffold geometry with
fibers aligning and spanning between cylindrical struts [150]. Fur-
thermore, newly formed blood vessels were found to be primarily si-
tuated in the concave regions ( <H 0) of a bone implant in the initial
stages after implantation, potentially indicating curvature-guided an-
giogenesis during bone regeneration [151]. Using a scaffold with hor-
izontal struts in a °0/90 pattern, it was recently shown that scaffold
curvature drives soft tissue formation in vivo, and a novel matrix

mineralization process was observed (Fig. 5e) [132]. More specifically,
tissue growth was initiated at the scaffold regions of high mean cur-
vature, and could be predicted effectively using a curvature-driven
tissue growth model (Fig. 7c) [132].

In conclusion, it should be clear that the interplay between me-
chanics and geometry extends beyond the level of individual cells, and
also plays an important role in shaping more complex, multicellular
tissue constructs. In the case of single-layer cell sheets, such as epi-
thelial monolayers, the balance between substrate curvature, cell-cell
adhesion, and collective sheet contraction could affect collective mi-
gration [80,118], sheet detachment [122,123], or even the shape of
individual cells [125]. Additionally, these thin cell sheets could buckle,
wrinkle, or fold from a flat state into complex, curved shapes in re-
sponse to externally applied loads (potentially balanced by internal pre-
stress [152]). In the case of ECM-rich tissues, such as osteoid-like tis-
sues, an apparent liquid-like behavior is observed as the tissue grows in
a 3D (curved) environment. In general, such tissues grow preferentially
on concave areas (e.g., in the corner regions of straight-sided pores)
causing a gradual smoothing in the extracellular geometry that is
sensed by new cells [130,134]. These growing tissues exhibit cells with
aligned actin fibers (primarily at the tissue front) [131]. Similar
alignments are also observed in the ECM fibers that are deposited
[138]. The liquid-like shape-formation observed in these ECM-rich
tissues has, consequently, been linked to the concept of surface tension
[129]. Mechanical principles, therefore, seem to govern much of the
shape formation at the tissue level in a manner similar to the spatio-
temporal organization of single cells on curved substrates. While force-
transmission and long-range cytoskeletal remodeling through cell-cell
or cell-ECM interactions undoubtedly plays a key role in this emergent
organization, more insights are required to uncover how cell-level or-
ganization translates to tissue-level organization.

5. Computational models for curvature guidance

In addition to in vivo and in vitro experiments, the role of substrate
curvature on the cell and tissue response could be elucidated further
using in silico models. Computational approaches are particularly re-
levant for the design and optimization of artificial tissue scaffolds, and
their importance is expected to increase significantly in the future
[153]. Many phenomenological and mechanistic theoretical models
capable of predicting experimentally observed behavior have been de-
veloped on various scales. Here, we aim to highlight those models that
have been specifically directed at modelling the behavior of cells and
tissues on curved geometries, and we refer to other reviews for a
broader perspective on the in silico models of cells and tissues
[19,154,155].

5.1. Cell-scale models

Mathematical models of the cell, either discrete or continuum, have
been developed to describe and predict a variety of cell-scale processes,
including cell contractility [156], focal adhesion formation [157], or
migration [158]. Given the relatively recent interest in cell-scale cur-
vature guidance, however, theoretical models that specifically address
the effects of substrate curvature on single-cell response are not yet
widespread. In one of the earliest models (briefly mentioned in Section
3.2, Fig. 6a), the cell body and stress fibers are respectively modelled as
elastic plates and rods, and the stress fiber orientation is predicted by
minimizing the total elastic energy of the system. Essentially, the or-
ientation is determined by a competition between the bending energy
of the stress fibers and the energy arising from cell contractility, the
balance of which can be captured using a dimensionless parameter
[92]. Consequently, the model is able to predict that fibroblasts, with a
high stress fiber bending modulus, should align along the cylinder axis,
while epithelial cells, with thin stress fibers, should align perpendicu-
larly, in accordance with experimental results [59].
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Another study implemented a phenomenological constitutive model
based on a theoretical description of actomyosin contractility homo-
genized to the macroscale cell level in commercial finite element soft-
ware to investigate the cytoskeletal stress distributions in the cells ad-
hering to curved substrates [159]. According to this model, the
substrate curvature can inhibit actomyosin contractility in two in-
dependent ways: through stress fiber bending, causing the contractile
apparatus to perform sub-optimally, and through a pre-stress that arises
when a flat cell should conform to a curved substrate. This last aspect is
particularly interesting, as it allows delineating between intrinsically
curved substrates (i.e., spheres or saddles) and intrinsically flat sub-
strates such as cylinders (Fig. 6b). On cylinders, the pre-stress is not
present since an isometric transformation (i.e., a transformation that
does not require stretching) between a flat cell and the cylindrical
substrate is possible. On spheres and saddles, however, the cell should
locally stretch or shrink in order to conform to the substrate, a con-
sequence of Gauss’ “remarkable theorem” [21], giving rise to a pre-
stress in the cell. The model, thus, dictates that contractility in cells on
cylinders (or other developable substrates) is only impeded by the
bending of stress fibers, while cell contractility on intrinsically curved
substrates is affected by both the bending of stress fibers and a cellular
pre-stress.

In a more recent numerical model, a discrete approach was em-
ployed where the cell is modelled as a tensegrity system (i.e., a network-
like structure containing isolated compression elements stabilized by

tension elements) [160], using non-smooth contact dynamics [161].
Several intracellular components that are important in cell mechanics
were explicitly implemented in the model, such as the cell membrane,
focal adhesions, and the different types of cytoskeletal filaments. The
non-smooth contact dynamics method treats the intracellular compo-
nents as collections of rigid elements that interact with each other
through contact, cable, or spring interactions [161,162]. The ensemble
of all these components and their interactions then constitutes a model
that, after calibration and verification using experimental data, enables
the estimation of the forces and strains acting on all considered in-
tracellular components in response to curved, perfectly rigid substrates.
For example, the model predicts a more stable and rounder nucleus on
concave ( > <K H0, 0) than on convex ( > >K H0, 0) hemispherical
substrates, in accordance with some single-cell experimental results
[52,69,161]. Furthermore, the discrete nature of the model enables the
investigation of the relative importance of certain cellular components
(e.g., microtubules) on the overall mechanics, reminiscent of drug tar-
geting that has been used experimentally to inhibit certain cell com-
ponents [161].

Another recent discrete approach models cells on convex and con-
cave cylindrical substrates as a collective of a deformable cell mem-
brane, a solid spherical nucleus, and a string-like cytoskeletal structure
[163]. By modelling temporary integrin-ligand bonds to account for the
cell-substrate adhesion, and by calculating the protrusion forces created
at the adhesion sites, the model aims to simulate the migration of the

Fig. 6. Cell and tissue-scale computational models. a) A schematic overview of the through-thickness strain variation of a cell adhering to a convex cylindrical
substrate, showing the combined effects of active contractility and cell bending. Adapted from Ref. [92]. b) A schematic illustration of a cell (orange) adhering to
developable (top) and non-developable (bottom) substrates. The conformation of an initially flat cell to a non-developable substrate requires cell stretching or
shrinking. c) Three consecutive evolutions of the tissue front as predicted by the curvature-driven growth model of Rumpler et al. Obtained with permission from Ref.
[130]. d) 3D tissue growth predictions of a level-set curvature-driven growth model, with experimental images from in vitro grown bone tissue on day 7 (left) and day
14 (right), obtained with permission from Springer-Nature [167]. e) The geometrical chord model [134], representing tissue front evolution as an assembly of tensile
elements. f) The predictions of a curvature-driven growth model (using a scanning mask) on different types of geometries, obtained with permission from Springer-
Nature [170].
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cells residing on curved substrates. The purely mechanics-based model
indicates that the curvature of the substrate provides a geometrical
constraint on the protrusion force direction, meaning that it promotes
protrusion in the longitudinal direction and consequent migration in
that direction [163].

Despite capturing various experimental observations, these con-
tinuum and discrete models have, thus far, primarily provided quali-
tative insights on cell response to curvature. To a large extent, this is the
consequence of the major assumptions that are necessary in the model
development stage, either because the biophysical mechanisms are not
yet fully understood, or to keep the model tractable. For example, most
models assume that cells fully conform to the curved substrates, while
experimental evidence seems to indicate that cells might lift off from
some substrates [69]. Additionally, most models employ a purely me-
chanics-based approach, neglecting various biochemical processes, and
typically consider a quasi-static situation, despite the dynamic behavior
observed in the experiments [161]. Nevertheless, in silico attempts at
understanding curvature-guided cell response are valuable for eluci-
dating the importance of intracellular components, and their value will
only increase when more of the underlying physical principles are un-
derstood and implemented.

5.2. Tissue-scale models

While single-cell models could eventually lead to a deeper under-
standing of the cell-scale mechanisms behind curvature-sensing, most
theoretical efforts on this matter have been directed at the tissue level,
often by means of phenomenological tissue growth models that con-
sider a continuum or interfacial evolution perspective [19]. In most
cases, these models are specifically used to predict bone tissue growth,
although the components of the tissue (e.g., collagen fibrils) are gen-
erally not explicitly modelled.

The simplest (and first) curvature-driven tissue growth model con-
siders a 2D case, simulating tissue growing progressively inwards in
pores with pre-defined cross-sectional shapes (Fig. 6c) [130]. In this
type of phenomenological models, tissue is deposited only in concave
regions ( ≤κ 0), at a rate (ds dt/ ) proportional to the curvature (λ is a
growth rate constant):

≤ = −κ ds dt λκ0: / (5)

> =κ ds dt0: / 0 (6)

Despite its simplicity, this 2D growth law is able to replicate ex-
perimentally observed tissue growth (in terms of the projected tissue
area) in various pore types remarkably well, showing the typical corner
smoothing and the development of a circular growth front [130,133].
To a first approximation, the local curvature at discrete points along the
pore can be estimated from the radius of the circumcircle that passes
through each point and its two immediate neighbors [130]. In a more
general version of the model, the local curvature is estimated using the
Frette's algorithm [164], by sliding a circular mask across the scaffold-
medium interface on binarized images and calculating the curvature as
a function of the ratio of the pixels present on both sides of the interface
[134,164]. This enables the simulation of tissue growth on the digital
images of as-manufactured pore geometries, and facilitates consequent
comparison with the corresponding experimental results [131,134].
The radius of the circular mask, defined in terms of the number of
pixels, should be chosen appropriately (e.g., in the order of the cell
size), as it directly affects the curvature estimation. Furthermore, this
growth law has no intrinsic time dependency. A time scaling is,
therefore, necessary in order to match the experimentally observed
tissue growth rates with the simulations [131,134]. Considering the
evolution of the (projected) tissue-medium interface, this 2D curvature-
driven growth law is in fact equivalent to the mathematical concept of
curve-shortening flow, during which points on a smooth, closed curve
move inwards perpendicularly, at a speed proportional to the

curvature, thereby shortening the curve and decreasing the enclosed
area [165]. Eventually, this causes convex and non-convex shapes to
smoothen into a circle that uniformly shrinks towards a single point,
reminiscent of the tissue front evolution observed experimentally
[130,131,134,135].

The same type of growth law can be extended to 3D, by employing a
spherical, voxelized scanning mask for curvature estimation rather than
a circular mask (Fig. 6f) [166]. In this case, the tissue growth rate is
taken to be proportional to the mean curvature, H , of the substrate and
tissue is only deposited in concavities, with <H 0 (or >H 0 depending
on the normal definition). Similar to the 2D case, the 3D implementa-
tion requires some fine-tuning of the mask diameter and time scale
parameter, to achieve a realistic growth behavior that matches the
experimental results. Additionally, in order to accurately model growth
in the third dimension (e.g., in a 3D pore channel), the volume scanned
by the mask should progressively increase downwards, effectively si-
mulating the migration of cells down the pore channel [166]. Instead of
using a scanning mask for curvature estimation, a similar growth law
could be implemented in a model that is based on the level set method
[167]. This is a numerical approach to track the interface evolution
between two domains, Ωa and Ωb, that has applications in diverse fields
[168,169]. The level set function, ϕ, is defined to be zero on the in-
terface between both domains, and non-zero inside the domains. By
numerically solving an advection equation of the level set function,
with an advection velocity that is proportional to the mean curvature,
the evolution of tissue growth can realistically be simulated, albeit
some time scaling is required to match the growth rate to the experi-
ments. An important advantage of the level set method is its intrinsic
curvature evaluation, eliminating the need for a scanning mask and the
associated fine-tuning [167]. 3D growth models like these can be
readily applied for the in silico investigations of tissue growth on various
types of artificial scaffolds, thereby facilitating the optimization of
scaffold geometries in terms of the predicted tissue growth behavior
(Fig. 6d) [167,170]. Essentially, the tissue evolution predicted by these
3D growth models is intimately connected to the mathematical concept
of mean curvature flow, which is a more general, higher-dimensional
form of the curve shortening flow that could describe the 2D growth
models [171]. The fact that mean curvature-driven growth models can
capture experimental observations so well once more supports the idea
that (apparent) surface tension plays a role in tissue front evolution,
because the evolution of systems governed by surface tension, such as
soap films, has been described using mean curvature flow. Moreover,
such soap-film-like systems evolve towards energy-minimizing config-
urations in the form of minimal surfaces (i.e., surfaces of zero mean
curvature) [20,166]. Indeed, the natural structure of trabecular bone
has been found to exhibit a mean surface curvature close to zero
[42,43], which is why minimal surfaces have seen a surge of interest for
the design of bone-substituting biomaterials [172]. While more re-
search is needed to confirm that tissue, indeed, evolves towards a sur-
face with =H 0 (recent results suggest it might evolve towards a con-
stant, non-zero mean curvature configuration [173]), it is clear that
surface tension plays an important role, and that models describing the
interface evolution based on some applications of the mean curvature
flow can yield realistic predictions.

In addition to the phenomenological models describing the interface
evolution, attempts have been made at developing more mechanistic
theories to describe tissue growth. For example, a thermodynamically
admissible growth law for volumetric tissue growth can be constructed
in terms of an eigenstrain that arises as new tissue is added to the bulk
[174]. This continuum model, thus, predicts tissue growth as a function
of the stress state that would be felt by the cells in the tissue. While still
requiring some phenomenological input, the model can replicate the
experimentally observed tissue deposition in circular pores, and pre-
dicts higher circumferential stress close to the tissue-medium interface,
in line with the observations of strong actin signals at the interface
[130,174]. By extending the growth law to incorporate the surface
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stress in addition to the eigenstress, the model is capable of replicating
the inhibition of tissue growth on convex as opposed to concave cy-
lindrical substrates [139]. Alternatively, experimentally observed
smoothing of the substrate and tissue growth slowdown could be si-
mulated by modelling the changes in cell density and spreading due to
curvature (volumetric crowding), and also accounting for cell diffusion
and depletion [175,176].

Another mechanistic explanation builds upon a remarkably simple
geometrical analysis in 2D, yet captures experimental results surpris-
ingly well [134]. By considering the tissue as a set of stretched cells
represented by straight lines with a fixed length that span a curved
substrate, the evolution of the tissue front can be visualized in a layer-
by-layer fashion (Fig. 6e). This geometrical interpretation, while not
explicitly modelling the formation of new tissue, is supported by the
frequent observations of aligned actin filaments in pore channels and
cells spanning concave spherical ( > <K H0, 0) substrates
[69,130,134].

One aspect that is often not explicitly considered in these tissue
growth models is the change in fluid flow properties that occurs as
tissue progresses and fills the scaffold structure, potentially lowering
the permeability and inhibiting the transport of oxygen and nutrients.
Some models, however, consider the flow-induced shear stress in ad-
dition to the effects of substrate curvature [177,178]. This could be
useful to quantitatively match the tissue growth predictions to in vitro
experiments performed in a perfusion bioreactor [177]. Moreover, such
models could assist in determining how to optimize scaffolds for tissue
regeneration that balance curvature cues with a sufficient level of
permeability [178]. In conclusion, it should be clear that relatively
simple tissue growth laws, often based on some phenomenological
applications of the curvature flow, perform remarkably well in pre-
dicting the shape and kinetics of tissue growth observed in vitro, and
even in vivo [132]. It is, therefore, expected that such models will play
ever more prominent roles in the scaffold design, especially when more
of the underlying curvature guidance mechanisms are elucidated.

6. Discussion

We have reviewed the experimental evidence demonstrating that
both individual cells and multicellular tissue constructs respond to the
curvature of the underlying substrate, and have highlighted the dedi-
cated theoretical models that aim to simulate this phenomenon. By
emphasizing the notions of mean and Gaussian curvature, which are
well-defined concepts from differential geometry, we hope to provide a
more formal framework to describe cell- and tissue-level curvature
guidance, with the ultimate aim of better understanding geometry-
driven tissue regeneration. While many of the underlying mechanisms
are still not understood, it is clear that mesoscale substrate curvature
should be considered as an important cue for directing the organization
and kinetics of cells and tissues. The experimental and theoretical re-
sults that we have reviewed provide some general insights into curva-
ture guidance at the cell and tissue levels, the most important of which
are summarized below.

First, cells with pronounced stress fibers (e.g., fibroblasts) seem to
avoid curvature whenever possible. On cylindrical substrates, such cells
align in the longitudinal direction (i.e., the direction of zero curvature).
On the concave side of spherical substrates, where curvature is omni-
present, cells have the option to span the substrate to avoid being
curved. Even on saddle shapes, which are convex in one direction and
concave in the other, cells could span the concave part to avoid cur-
vature as much as possible. As such, one might use the term curvature-
avoidance rather than curvature guidance [61].

Second, both individually operating cells and multicellular ECM-
rich tissue seem to favor concavities ( <H 0) over convexities ( >H 0).
This observation holds for cylindrical-like ( =K 0) as well as spherical-
like ( >K 0) substrates. Individual cells seem to favor migration towards
concavities and avoid convex spherical caps, unless they are shallow.

Osteoid-like tissue grows faster in concavities with higher curvature,
and hardly shows any growth on convex regions, until the moment
when the local curvature becomes concave due to tissue progression.

Third, tensile forces form the foundation of curvature guidance at
both the single-cell and tissue-level scales. At the cell level, actomyosin
contractility in conjunction with substrate geometry gives rise to a net
normal force that either relieves or compresses the nucleus, thereby
enabling individual cells to sense and respond to mesoscale curvature.
The collective organization of cells in osteoid-like tissue results in a
surface tension, causing the developing tissue to exhibit a viscous fluid-
like behavior that evolves towards seemingly energy-minimizing con-
figurations.

Finally, surfaces with negative Gaussian curvature (i.e., saddle
shapes) are largely unexplored in the current cell-response and tissue-
growth studies, despite bearing high physiological relevance. Most re-
search has been performed using either developable or spherical geo-
metries, and the focus has been on either line curvature (i.e., the cur-
vature of pore cross sections), or on the mean curvature. The geometries
that cells encounter in vivo are generally more complex, exhibiting wide
variations of both mean and Gaussian curvatures, rendering purely
spherical and intrinsically flat shapes rather the exception than the rule.
For example, saddle shapes will emerge wherever branching and
bending of tubular structures occurs, such as in blood vessels or the
respiratory system. Additionally, every outwards-bulging spherical
pouch, cyst, or vessel-like structure attached to a relatively flat tissue
layer will exhibit negative Gaussian curvature at the neck region (the
transition between the flat substrate and the spherical bulge).
Moreover, complex network topologies, such as those found in trabe-
cular bone, are known to be hyperbolic (saddle-shaped) on average. As
such, it is essential to include substrates with negative Gaussian cur-
vature within the spectrum of future curvature guidance studies.

Despite such general observations, it is important to emphasize that
different cell types could be expected to behave differently to substrate
curvature. For example, epithelial cells and fibroblasts align differently
on cylindrical substrates, attributed to a change in the elastic energy
balance [59,92]. Moreover, the curvature magnitudes that can be
sensed by cells depend on the cell size. For example, MSCs might re-
spond to certain curvature magnitudes while macrophages do not,
possibly because of the smaller sizes of the latter [52]. Nonetheless, it is
safe to state that substrate curvatures with the appropriate magnitude
present an important cue to various types of adherent cells, and that the
response of those cells can be understood from a mechanics-based
perspective. Regarding tissue growth, most research has focused on
osteoid-like tissue, with the ultimate aim of understanding scaffold
geometry-guided tissue regeneration. Despite consistent experimental
observations and promising predictions with theoretical models, a more
mechanistic understanding of tissue evolution in response to curvature
would be desirable. In this respect, it would be of interest to better link
the insights made at the level of individual cells to the tissue scale, to
understand how the response of single cells eventually gives rise to
emergent tissue organization.

6.1. The implications for porous scaffold design

Within the field of tissue engineering, porous scaffolds are increas-
ingly being considered for the active guidance and stimulation of the
tissue regeneration process [154]. The rapid advances in additive
manufacturing have resulted in an unprecedented freedom and control
in the design of 3D porous scaffolds [179]. As such, the curvature of
these scaffolds could be optimized to meet the various criteria that are
relevant for tissue engineering applications including the mechanical,
mass transfer, and biological properties. For example, scaffold curva-
tures could be optimized to provide a high initial tissue growth rate, yet
maintain a desirable level of permeability [131,170], an endeavor that
significantly benefits from efficient in silico models that consider both
criteria [177]. The majority of the research into geometrical scaffold
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design and the effects of scaffold geometry on cell and tissue response
has been directed at bone scaffolds, used in the treatment of segmental
bone defects [180]. This is partly because bone itself is characterized by
a highly complex, porous geometry, making it only natural that geo-
metrical cues are considered in the design of synthetic bone substitutes
[154]. Moreover, the developments in additively manufactured bone
scaffolds build upon several decades of research into orthopedic im-
plants, making this type of tissue scaffolds one of the most widely
studied. As such, we will focus on bone scaffolds in this section, but we
emphasize that the same principle of involving curvature in the design
process could be applied to the other types of tissue scaffolds as well.

Although a myriad of 3D scaffold designs could be generated, such
designs can roughly be classified in two major categories: 1. strut-
based, network-like scaffolds and 2. sheet-based, foam-like scaffolds,
both of which could be periodic or irregular [181]. The former has been
widely considered for bone tissue applications, and could, for example,
be derived from space-filling tessellations of polyhedra or well-known
crystallographic arrangements (Fig. 7a). Sheet-based scaffolds exhibit
more complex, smooth morphologies that could, for example, be de-
signed using numerically simulated spinodal decomposition (Fig. 7b)
[182,183]. From a curvature perspective, the sheet-based morphologies
offer a richer design space, whereby large variations in both mean and
Gaussian curvatures throughout the scaffold are possible. The strut-

based scaffolds, however, offer a much smaller and more discrete cur-
vature spectrum. For example, typical scaffolds with cylindrical struts
exhibit zero Gaussian curvature and constant (positive) mean curvature
on the strut surface, and only show concave regions with higher mean
curvatures and non-zero Gaussian curvatures at the strut intersections
(Fig. 7a). Given the experimental evidence showing very limited tissue
growth on convex regions, it could be argued that cylindrical-strut
based scaffolds are not very efficient from a curvature-guided tissue
growth perspective. Indeed, in vivo and in silico results have confirmed
that tissue growth initiates from the strut intersections in a simple strut-
based scaffold (Fig. 7c) [132]. It, therefore, seems desirable to tune the
mean and Gaussian curvatures of a scaffold in such a way to favor fast
tissue regeneration. However, there are geometrical restrictions to the
possible combinations of the mean and Gaussian curvatures, making it
impossible to tune them independently or to fully decouple them from
the global scaffold topology. For example, constant positive Gaussian
curvature can only be achieved on the surface of a sphere, while a
surface with constant negative Gaussian curvature can even not be
realized in 3D Euclidean space according to Hilbert's theorem [21].
Moreover, curvature is scale-dependent, which means that a change in
the curvature must be accompanied by a change in size. However, it is
primarily the connection between surface curvature and global to-
pology that places constraints on the ability to tune curvature

Fig. 7. 3D porous scaffolds for bone tissue regeneration. a) Some examples of strut-based scaffolds: the diamond lattice (top left), the truncated octahedron lattice
(top right), and the cubic lattice (bottom left). Lattice structures with cylindrical struts exhibit non-zero Gaussian curvatures at the locations of the strut connections.
b) Some examples of sheet-based scaffold designs: a Neovius sheet-scaffold (top left), a stochastic network-scaffold obtained with Gaussian random fields (top right),
a Gyroid sheet-scaffold (bottom left), and a Gyroid network-scaffold (bottom right). The Neovius and Gyroid scaffolds are examples of scaffolds based on TPMS. c)
Curvature-driven tissue growth predictions on the °0/90 scaffold used in vivo by Paris et al. [132]. Tissue starts growing from the strut intersections. Obtained with
permission from Elsevier.
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distributions throughout a scaffold. As mentioned in Section 2.1, the
Gauss-Bonnet theorem dictates that the area-integrated Gaussian cur-
vature of a surface is proportional to the genus (number of “handles”) of
that surface. More specifically, surfaces with >g 1 will be, in an in-
tegral sense, saddle-shaped or hyperbolic. The intricate network- or
foam-like topologies of strut- and sheet-based scaffolds have ≫g 1,
which means that they must contain regions with <Κ 0 to satisfy the
Gauss-Bonnet theorem. Even the strut-based scaffolds, in which most of
the area has =Κ 0 (on the strut surfaces), must contain saddle-shaped
regions to balance the integral Gaussian curvature. Indeed, saddle-
shaped regions are found at the intersections. The inherent hyperbolic
nature of 3D porous scaffolds calls for a deeper investigation into the
effects of negative Gaussian curvature on cells and tissues, yet very few
studies have employed saddle-shaped substrates in single cell and tissue
growth studies so far. Nonetheless, a particular class of saddle-shaped
sheet-like morphologies, namely triply periodic minimal surfaces
(TPMS), has recently started to receive widespread attention, in part
due to the curvature arguments. TPMS are periodic, bicontinuous
morphologies that locally minimize area and have =H 0 and ≤K 0
everywhere (Fig. 7b). It has been hypothesized that TPMS-based scaf-
folds could present “biomimetic” curvature cues, due to the similar
mean curvature profile that has been observed in trabecular bone
[172,184,185]. However, it remains unclear whether regular TPMS or
their variations could, indeed, constitute optimal “curvature-guiding”
scaffolds. In this regard, it could be questioned whether designing
scaffolds based on the structure of healthy bone (i.e., the homeostatic
“end-state”), is an effective strategy towards fast regeneration of new
tissue [186].

6.2. Opportunities for 4D printing

While 3D printing enables the fabrication of a wealth of complex
porous geometries, emerging 4D printing technologies have recently
started to receive considerable interest too. 4D printing adds time as
another dimension to conventional 3D printing, resulting in structures
that can change shape over time, typically by employing stimuli-re-
sponsive materials [187–189]. Since inception, 4D printing (or shape-
shifting in general) has been considered as a novel platform for bio-
medical applications [190–192], opening new avenues towards en-
capsulation [84,193], biomedical devices [194,195], shape-changing
scaffolds [196,197], or 2D-to-3D fabrication of cellular solids
[198,199]. In the light of the curvature guidance principles discussed
here, shape-shifting could enable temporal control over the geometrical
environment of cells and tissues, in order to guide their evolution. For
example, stimuli-responsive materials can be used to develop shape-
changing substrates that allow for dynamic spatio-temporal control
over the single-cell environment [200]. This might, for example, be
useful to endow stem cells with a history of curvature cues that could
affect their fate, as the lineage commitment of stem cells has been
shown to be influenced by their past physical environments [201,202].
Furthermore, precisely patterning mesenchymal stromal cells in a col-
lagenous ECM gel enables spontaneous in vitro tissue shape-shifting,
reminiscent of the complex shape formation observed during in vivo
development [203]. While 4D printing for tissue engineering is still in
its infancy, it is expected that the ability to change the local geometry
(i.e., curvature) of the cellular environment with time could offer novel
pathways to enhance the guiding and stimulating functions of tissue
scaffolds.

6.3. Outlook

We already mentioned that a limited number of different substrate
geometries has been employed in many single cell studies, often in-
volving cylindrical or spherical shapes. This could, in part, be explained
by the challenges associated with the microfabrication of cell-scale
substrates. For example, most early studies resorted to cylindrical wires

[54,58–60] to present the cells with a curved environment. However,
rapid advances in microfabrication techniques, including micro-
machining [52,204], soft lithography [205,206], and two-photon
polymerization [207,208] are enabling the robust fabrication of curved
cellular environments with unprecedented design freedom [209].
Consequently, these technologies are expected to facilitate more in-
depth studies of cell response to the various types of substrate curva-
tures. For example, they could allow for the investigation of cell re-
sponse to developable surfaces other than cylinders (e.g., cones or
tangent developables), which also have zero Gaussian and non-zero
mean curvature. Given the observed behavior on cylinders, it is ex-
pected that cells align in the zero-curvature direction on all types of
developable surfaces. In addition to those specific types of substrates,
curvature guidance studies could in general benefit from a broader
spectrum of curved substrates, such as symmetric and non-symmetric
saddles, ellipsoidal shapes, and other curvature landscapes with varia-
tions in mean and Gaussian curvatures. The same rationale at a larger
scale applies to the tissue level, where additively manufactured scaf-
folds with precise curvature fields would be useful tools for in-
vestigating the curvature-guided tissue growth. In this regard, sheet-
based scaffolds with controllable curvature profiles (e.g., structures
based on triply periodic constant mean curvature surfaces [210]), hold
the most promise.

7. Conclusions

In conclusion, we reviewed the recent evidence that demonstrates
the role of mesoscale substrate curvature on cell and tissue responses.
By invoking the formal curvature descriptions provided by differential
geometry (i.e., mean and Gaussian surface curvatures), we hope to
equip the reader with a more univocal framework to describe cell and
tissue-level curvature guidance. We highlighted that much of the
emergent organization and dynamics in response to substrate curvature
could be explained from a mechanics perspective, involving actomyosin
contractility on the cell level and surface tension on the tissue level.
Moreover, experimental observations of tissue growth on 3D scaffolds
can be replicated surprisingly well using phenomenological growth
models that are reminiscent of the mathematical concept of curvature
flow. While the underlying mechanisms are not yet fully uncovered and
experimental evidence involving a broader curvature spectrum is ne-
cessary, the experimental and computational insights that we have re-
viewed show that substrate curvature should, indeed, be considered as
an important cue in regulating cell response and guiding tissue growth.
These curvature guidance principles could have far-reaching implica-
tions not only in understanding morphogenesis, defect healing, and
bone remodeling, but also in the design of tissue engineering scaffolds
and regenerative medicine therapies.
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