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Abstract In this paper, a model will be derived
to describe the rain–wind-induced oscillations of an
inclined cable. Water rivulets running along the cable
and aerodynamics forces acting on the cable are taken
into account to describe these oscillations. A bound-
ary damper is assumed to be present near the lower
endpoint of the cable. For a linearly formulated initial-
boundary value problem for a tensioned beam equation
describing the in-plane transversal oscillations of the
cable, the effectiveness of this damper is determined
by using a two-timescales perturbation method. It is
shown how mode interactions play an important role
in the dynamic behaviour of the cable system. Some
resonant and non-resonant cases have been studied in
detail.
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1 Introduction

The study on how to damp vibrations in stay cables,
which are attached to a pylon at one end and to a
bridge deck at the other end, is of great importance
not only in structural engineering but also in applied
mathematics. The combined effect of rain and of wind
can change the aerodynamic properties of the cable-
stayed bridge and can lead to relatively large ampli-
tude vibrations of the cables. For example, one can
refer to the Erasmus bridge in Rotterdam, which started
to vibrate heavily under mild wind–rain conditions
shortly after its opening in 1996. This bridge was tem-
porarily closed to the traffic as a safety precaution.
As a temporarily measure, polypropylene ropes were
installed between the cables and the bridge desk. Later,
these ropes were replaced by hydraulic dampers as a
permanent measure and by conforming to the aesthetic
of the bridge designed by the architects. Much research
on this problem has been done both numerically and
experimentally to understand the mechanisms of rain–
wind-induced vibration of inclined stay cables [10,11].
For more recent experiments and numerical computa-
tions, the reader is referred to the following articles
[5,8,13,18].

As has been observed from wind-tunnel experi-
ments, raindrops hitting the inclined stay cable cause
the generation of one or more rivulets on the surface of
the cable. The presence of flowing water on the cable
changes the mass and the aerodynamic properties of
the bridge system that can lead to instabilities. These
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784 T. Akkaya, W. T. van Horssen

Fig. 1 The inclined stretched cable in a static state

water rivulets on the cable surface can be considered as
a time-varyingmass in the system [1,3]. In order to sup-
press undesirable vibrations in bridge structures, differ-
ent kinds of dampers such as tuned mass dampers and
oil dampers can be installed between the cables and the
bridge deck. Numerous work has been done from the
theoretical and the experimental point of view to pre-
dict the optimal damper location and type. Jacquot [15]
calculated the optimal value and location of the viscous
damper which is located in a randomly forced horizon-
tal cantilever beam.

Thesephysical problemsof rain–wind-inducedvibra-
tion of inclined cables can be modelled mathemati-
cally by initial-boundary value problems for string-like
or beam-like problems. For string-like problems, the
static state due to gravity and the dynamic state due to
a parametrical and a transversal excitation at one of the
ends of the inclined string were studied in [7]. For the
inclined cable subjected to wind with a moving rivulet
on its surface, the nonlinear dynamic model is inves-
tigated by considering the equilibrium position of the
rivulet [19]. The effect of the static condensation of
the longitudinal displacement due to the cable inclina-

tion and the cable total tension is investigated by using
numerical and analytical techniques in [25]. In addi-
tion, the interaction among the three excitation sources:
self excitation, which is caused by a mean wind flow,
and external and parametric excitations due to vertical
motion of the ground support, on the nonlinear dynam-
ics of the inclined cable related to a cable-stayed bridge
were studied in [20]. In many papers, the rain–wind-
induced vibrations of inclined taut cables have been
studied, but much less work has been done on the rain–
wind-induced vibrations of an inclined cable subjected
to wind with time-varying rivulets on its surface.

From the practical point of view, the viscoelastic
materials are modelled with a combination of spring-
like and dashpot-like elements at the boundary in order
to represent restorative force component and damping
component, respectively. In this paper, we consider the
linear (and nonlinear) dynamic response due to only
a damper near one of the support ends of the inclined
cable.On the cable, a time-varying (rain)mass rivulet is
assumed to be present (see also Fig. 1). The stationary
windflowwill lead to the phenomenonof self excitation
of the cable. The damper location in the cable-stayed
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On boundary damping to reduce the rain–wind 785

bridge is quite close to the anchorage of the cable. For
more information on the effect of the bending stiffness
of a tensioned cable for varying damper locations, the
reader is referred to [14,21,22].

The aim of this paper is to provide an understand-
ing of how effective boundary damping is for inclined
stretched beams with a small bending rigidity. These
problems for strings or beams are considered to be
basic models for oscillations of cables from a prac-
tical viewpoint. The outline of this paper is as follows.
In Sect. 2, we apply a variational method in order to
derive the governing equations of motion of the ten-
sioned Euler–Bernoulli beam, and obtain a system of
three coupled PDEs. By using Kirchhoff’s approach,
the number of PDEs in the system is reduced to two
PDEs (one for the in-plane motion, and one for out-of-
plane motion) or to a single PDE (only for the in-plane
motion). Themain aim of this section is to give amodel
to describe the dynamics of rain–wind-induced vibra-
tions of an inclined beam, where the gravity effect is
schematically shown in Fig. 1. In Sect. 3, we only con-
sider the in-planemotion of the inclined beamwith only
one rivulet on the cable. In Sect. 4, the two-timescales
perturbation method is used to solve the problem and
some (non)resonance frequencies are determined. In
this paper, we will consider the pure resonance case
and the non-resonance case. All other resonance cases
can be investigated similarly. Finally, the conclusions
are presented in Sect. 5.

2 Equations of motion

Weconsider an inclined, perfectlyflexible, elastic beam
with a small bending rigidity on a finite interval x ∈
[0, L], which is attached to a dashpot λ at x = L , and
assumed to be simply supported at x = 0 (see Fig. 1).
u, w and v are the displacements in x-direction, y-
direction and z-direction, respectively. From Newton’s
second law, the equations of motion can be stated as
follows: the time derivative of the linear momentum of
the system is equal to the sum of external forces which
are elastic forces, gravity, drag and lift forces due to the
uniform wind flow v0, blowing under a yaw angle β as
can be seen in Fig. 1. It is assumed that the water rivulet
is not blown off the cable. Furthermore, we assume
that the tension due to stretching in the beam is large
enough, such that the small sag of the beam, that is, the
displacements in x and z-directions due to gravity, can

be neglected. Similarly, due to this tension, we neglect
the wind force along the cable in x-direction. Hence,
the total tension in the beam at x = x0 can be written
by:

T (x0, t) = T0 +
∫ L

x̄=x0
M(x̄, t)gAsin(α)dx̄, (1)

where T0 is the pretension in the beam, g is the accel-
eration due to gravity, A is the cross-sectional area of
the beam, α is the angle between the beam and the hor-
izontal plane, and M(x̄, t)) is the mass density of the
beam including the time-varying water rivulet.

Let the coordinates (x, y, z)of amaterial point of the
unstretched beam be (x, 0, 0) with x ∈ [0, L], where
the x-axis, y-axis and z-axis are defined in Fig. 1. The
dynamic displacement of this material point is denoted
by u(x, t)i, v(x, t)k and w(x, t)j, where i, k and j are
the unit vectors along the x-axis, y-axis and z-axis [7].
The vector position R(x, t) of this material point in the
dynamic state is obtained by:

R(x, t) =
[
x + 1

AE

∫ x

0
[T0 +

∫ L

x̄=s
M(x̄, t)gAsin(α)dx̄]ds

+u(x, t)] i + v(x, t)j + w(x, t)k, (2)

where E is Young’s modulus. The relative strain per
unit length of the stretched beam is written by:

εxo(x, t) =
∣∣∣∣ ∂

∂x
R(x, t)

∣∣∣∣ − 1, (3)

=
√[

1+ T0
AE

+ 1

AE

∫ L

x̄=x
M(x̄, t)gAsin(α)dx̄ + ux

]2
+ v2x + w2

x − 1,

where ux , vx ,and wx represent the derivative with
respect to x of u(x, t), v(x, t) ,and w(x, t), respec-
tively. By assuming that u2x is small with respect to ux
and v2x + w2

x , and by expanding the square-root in a
Taylor series, we have approximately

εxo ≈ T0
AE

+ 1

AE

∫ L

x̄=x
M(x̄, t)gAsin(α)dx̄

+ ux + v2x

2
+ w2

x

2
. (4)

For the curvature of the beam in the (x, y, z)-space
(out of plane) or for the curvature of the beam in the
(x, y)-plane (in plane), the reader is referred to [6,23].
The axial strain of a generic point of the beam located
at distances y and z (in the y and z directions) from the
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786 T. Akkaya, W. T. van Horssen

centre line of the beam is defined by:

εxx ≈ −yvxx − zwxx . (5)

Hence, the total strain of a line-element of the beam
is approximately given by:

εx = εx0 + εxx ,

≈ T0
AE

+ 1

AE

∫ L

x̄=x
M(x̄, t)gAsin(α)dx̄

+ ux + v2x

2
+ w2

x

2
− yvxx − zwxx . (6)

The equations ofmotion describing the vibrations of
the beamwill be obtainedbyusingHamilton’s principle
[12]. In order to apply this principle, the kinetic energy
and potential energy for the beam should be defined
and calculated. The potential energy of the beam is
given approximately by (using Hooke’s Law [16]) and
defined as:

EP = E A

2

∫ L

0

[
T0
AE

+ 1

AE

∫ L

x̄=x
M(x̄, t)gAsin(α)dx̄

+ ux + v2x

2
+ w2

x

2

]2
dx

+ E

2

∫ L

0
(Iyv

2
xx + Izw

2
xx )dx

− Ag
∫ L

0
M(x, t)[usin(α) + vcos(α)]dx . (7)

where Iy and Iz represent the axial moments of area
about the y- and z-axes, respectively. In addition, the
kinetic energy of the beam is given by:

EK = A

2

∫ L

0
M(x, t)[u2t + v2t + w2

t ]dx . (8)

The Hamiltonian integral is F = F(t2) − F(t1) =∫ t2
t=t1

(EK − EP )dt . If we denote the integrand with
f (u, ux , ut , v, vx , vxx , vt , wx , wxx , wt ), then the three
Euler-Lagrange equations of the variational problem
δF = 0 , which we have to solve according to the
Hamiltonian principle, are as follows:

∂

∂x

( ∂ f

∂ux

)
+ ∂

∂t

( ∂ f

∂ut

)
− ∂ f

∂u
= 0,

∂

∂x

( ∂ f

∂vx

)
− ∂2

∂x2

( ∂ f

∂vxx

)
+ ∂

∂t

( ∂ f

∂vt

)
− ∂ f

∂v
= Fy,

∂

∂x

( ∂ f

∂wx

)
− ∂2

∂x2

( ∂ f

∂wxx

)
+ ∂

∂t

( ∂ f

∂wt

)
= Fz,

or equivalently, the equations of motion are given by

∂

∂t

[
M(x, t)ut

]
− E

∂

∂x

[
T0
AE

+ 1

E

∫ L

x̄=x
M(x̄, t)gsin(α)dx̄ + ux + v2x

2
+ w2

x

2

]

− M(x, t)gsin(α) = 0, (9)

∂

∂t

[
M(x, t)vt

]
− E

∂

∂x

[
vx

(
T0
AE

+ 1

E

∫ L

x̄=x
M(x̄, t)gsin(α)dx̄ + ux + v2x

2
+ w2

x

2

)]

+ ∂2

∂x2

(
E Iy
A

vxx

)
− M(x, t)g cos(α) = Fy

A
, (10)

∂

∂t

[
M(x, t)wt

]
− E

∂

∂x

[
wx

(
T0
AE

+ 1

E

∫ L

x̄=x
M(x̄, t)gsin(α)dx̄ + ux + v2x

2
+ w2

x

2

)]

+ ∂2

∂x2

(
E Iz
A

wxx

)
= Fz

A
, (11)

where Fy and Fz are the aerodynamic forces in the
in-plane and in the out-of-plane, respectively, and are
defined by

Fy = −[D sin(φ) + L cos(φ)], (12)

Fz = [D cos(φ) + L sin(φ)]. (13)

Here D and L are the magnitudes of the drag and
lift forces, respectively, which may be given by:

D = 1

2
ρadLcD(x, t;φ∗

i )v
2
s , (14)

L = 1

2
ρadLcL(x, t;φ∗

i )v
2
s , (15)

where ρa is the air density, d is the diameter of the cross
section of the circular part of the beam cable, L is the
length of beam, vs is the virtual wind velocity which is
given by

v2s = (v∞cos(γ ) − wt )
2 + (v∞sin(γ ) + vt )

2. (16)
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On boundary damping to reduce the rain–wind 787

Fig. 2 The model of the cross section of cable with rivulets

Figure 2 shows the centre of a cross section of the
cable with rivulets.ψ1 andψ2 are the displacements of
the upper and the lower rivulet, respectively, and φ∗

i is
thewind attack angle, which is defined byφ∗

i = φ−ψi ,
i = 1, 2. The angle between the virtual wind velocity
vs and the horizontal axis is defined by φ, which can
be expressed as:

φ(t) = arctan
( v∞sin(γ ) + vt

v∞cos(γ ) − wt

)
,

≈ arctan(tan(γ )) + vt

v∞
cos(γ ) + wt

v∞
sin(γ )

− v2t

v2∞
sin(γ )cos(γ ) + vtwt

v2∞

(
2cos2(γ ) − 1

)

+ w2
t

v2∞
sin(γ )cos(γ ) + v3t

v3∞

(
cos(γ ) − 4

3
cos3(γ )

)

+ v2t wt

v3∞

(
sin(γ ) − 4cos2(γ )sin(γ )

)

+ vtw
2
t

v3∞

(
4cos3(γ ) − 3cos(γ )

)

+ w3
t

v3∞

(4
3
cos2(γ )sin(γ ) − 1

3
sin(γ )

)
+ · · · ,

(17)

where v∞ = v0
√
cos2(β) + sin2(α)sin2(β) is the

effective wind flow, and γ is the angle of attack, which
depends on the inclination angle α and the yaw angle
β defined by Geurts and van Staalduinen [11]

γ (α, β) = arcsin
( sin(α)sin(β)√

cos2(β) + sin2(α)sin2(β)

)
.

(18)

As can be seen in Fig. 2, the position of the upper and
lower rivulet is determined by ψ1 and ψ2, respectively.
From experimental data [4], we may assume that the
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788 T. Akkaya, W. T. van Horssen

total time-varying mass due to these rivulets on the
cable changes periodically and may be defined to have
the form [1,2]

m1(x, t) = M1μ1(x, t)

= M1 (1 + A1 sin(γ1x − Ω1t)), (19)

m2(x, t) = M2μ2(x, t)

= M2 (1 + A2 sin(γ2x − Ω2t)), (20)

where M1 > 0 and M2 > 0 are the constant mass of
the upper and lower rivulets, respectively. A1 > 0 and
A2 > 0 are small parameters, and γ1 > 0, γ2 > 0,
Ω1 > 0, Ω2 > 0. If M0 > 0 is the constant mass of
the beam cable, the total mass can be given by:

M(x, t) = Mμ(x, t) = M(1 + Ā1 sin(γ1x − Ω1t)

+ Ā2 sin(γ2x − Ω2t)), (21)

where M = M0 + M1 + M2 > 0, Ā1 = M1A1/M ,
and Ā2 = M2A2/M .

The quasi-steady drag cD(x, t;φ∗
i ) and lift cL(x, t;

φ∗
i ) coefficients may be obtained from wind-tunnel

measurements. A quasi-steady assumption can be used
due to the low-frequency oscillations of the cable.Yam-
aguchi shows the experimental results for the drag,
lift and moment coefficients at various angles of wind
attack with the ratio of diameters of rivulet and cable in
[27]. These results show that the drag, lift and moment
coefficients for different ratios of diameters of rivulet
and cable are similar to each other. Due to these results,
we define that the drag and lift coefficients may bewrit-
ten in periodic form in a small α0, β0 and γ0 neighbour-
hood of fixed “rivulet′′ profiles as follows:

cD(x, t;φ∗
i ) = cD

[
κ1μ1(x, t) + κ2μ2(x, t)

]
, (22)

cL(x, t;φ∗
i ) = cL1

[
(φ∗

1 (t) − α1)κ̄1μ1(x, t)

+ (φ∗
2 (t) − α2)κ̄2μ2(x, t)

]

+ cL3

[
(φ∗

1 (t) − α1)
3 ¯̄κ1μ1(x, t)

+ (φ∗
2 (t) − α2)

3 ¯̄κ2μ2(x, t)
]
. (23)

Here κi , κ̄i and ¯̄κi are constants for i = 1, 2 indicat-
ing the effect of the mass change of the rivulets on the
drag and lift coefficients [17], and

cD = ˆcD(1 + α0 sin(γ0x − Ω0t)), (24)

cL1 = ˆcL1(1 + β0 sin(γ0x − Ω0t)), (25)

cL3 = ˆcL3(1 + σ0 sin(γ0x − Ω0t)), (26)

where α0, β0 and σ0 are small parameters, and γ0 > 0,
Ω0 > 0. By neglecting terms of degree four and higher
terms, we obtain the in-plane wind force as follows:

Fy ≈ −ρa

2
dLv2∞

{
A00 + vt

v∞
A10 + wt

v∞
A01

+ v2t

v2∞
A20 + vtwt

v2∞
A11

+ w2
t

v2∞
A02 + v3t

v3∞
A30 + v2t wt

v3∞
A21

+ vtw
2
t

v3∞
A12 + w3

t

v3∞
A03

}
, (27)

and similarly, we compute the out-of-plane wind force
as follows:

Fz ≈ ρa

2
dLv2∞

{
B00 + vt

v∞
B10 + wt

v∞
B01

+ v2t

v2∞
B20 + vtwt

v2∞
B11

+ w2
t

v2∞
B02 + v3t

v3∞
B30 + v2t wt

v3∞
B21

+ vtw
2
t

v3∞
B12 + w3

t

v3∞
B03

}
, (28)

where Ai j and Bi j for i, j = 0, 1, 2, 3 as follows:

Ai j = cD
[
κ1μ1(x, t) + κ2μ2(x, t)

]
ai j0

+ cL1

[
κ̄1μ1(x, t)ai j1 + κ̄2μ2(x, t)ai j2

]

+ cL3

[ ¯̄κ1μ1(x, t)ai j3 + ¯̄κ2μ2(x, t)ai j4
]
, (29)

and

Bi j = cD
[
κ1μ1(x, t) + κ2μ2(x, t)

]
bi j0

+ cL1

[
κ̄1μ1(x, t)bi j1 + κ̄2μ2(x, t)bi j2

]

+ cL3

[ ¯̄κ1μ1(x, t)bi j3 + ¯̄κ2μ2(x, t)bi j4
]
. (30)

The detailed expressions of the ai jk- and bi jk-
coefficients for k = 1, 2, 3, 4 can be found in
“AppendixA”.Whenwe assumeonly in-plane horizon-
tal cablemotionwith only the upper rivulet present, that
is, γ (α, β) = 0, μ2(x, t) = 0, and κ1 = κ̄1 = ¯̄κ1 =

123



On boundary damping to reduce the rain–wind 789

μ1(x, t) = 1, the same coefficients of cD, cL1 and cL3

are obtained as in [26].

3 Further simplifications

For further calculations, we only consider in-plane
motion (w = 0) of the inclined beam, and we assume
that there is only one rivulet on the cable, that is,
γ1 ≈ γ2, ω1 ≈ ω2. Thus, we define M(x, t) =
M(1+ Ãsin(γ1x−Ω1t)), where Ã is a small parameter.
We substitute Eqs. (27) and (28), into Eqs. (10)–(11)
and rewrite in order to obtain the equations of motion
for the beam with a time-varying mass, yielding

utt − E

M

∂

∂x

(
ux + v2x

2

)
=

[
Ã Ω1 cos(γ1x − Ω1t)

]
ut

−
[
Ãsin(γ1x − Ω1t)

]
utt

(31)

E Iy
AM

vxxxx − T0
AM

vxx + vt t − E

M

∂

∂x

[
vx

(
ux + v2x

2

)]

=
[
Ã Ω1 cos(γ1x − Ω1t)

]
vt

−
[
Ã sin(γ1x − Ω1t)

]
vt t

−
[
1 + Ã sin(γ1x − Ω1t)

]
g sin(α)vx

+
[
(L − x) + Ã

γ1
cos(γ1x − Ω1t)

− Ã

γ1
cos(γ1L − Ω1t)

]
g sin(α)vxx

+
[
1 + Ã sin(γ1x − Ω1t)

]
g cos(α)

− ρa

2AM
dLv2∞

{
A00+ vt

v∞
A10+ v2t

v2∞
A20+ v3t

v3∞
A30

}
,

(32)

where Ai j for i, j = 0, 1, 2, 3 are defined in Eq. (29).
As can be seen in Fig. 1, the inclined cable is attached
to a sliding damper at x = L and to a pylon at x = 0.
The boundary conditions are given by:

u(0, t) = E Iyvxx (0, t) = v(0, t) = u(L , t)

= E Iyvx (L , t) = 0, (33)

and

E Iyvxxx (L , t) = T0vx (L , t) + λvt (L , t), (34)

and the initial conditions are

u(x, 0) = u0(x), ut (x, 0) = u1(x), (35)

v(x, 0) = v0(x), vt (x, 0) = v1(x). (36)

Equations (31)–(32) represent the in-plane motion
of the inclined beam cable system in the longitudinal
and transversal direction, that is, in x-, and y-direction.
We introduce the new variables ū(x, t) and v̄(x, t) as
defined by:

u(x, t) = ū(x, t) + û(x), (37)

v(x, t) = v̄(x, t) + v̂(x), (38)

where û(x) and v̂(x) are the “stationary′′ solutions
by neglecting small-time perturbation (see “Appendix
B”). When we substitute the new variables Eqs. (37)–
(38) into the Eqs. (31)–(32), we obtain

ūt t − E

M

∂

∂x

(
ūx + v̄x v̂x + v̄2x

2

)

=
[
ÃΩ1cos(γ1x − Ω1t)

]
ūt

−
[
Ãsin(γ1x − Ω1t)

]
ūt t (39)

E Iy
AM

v̄xxxx − T0
AM

v̄xx + v̄t t

− E

M

∂

∂x

[
(v̄x + v̂x )

(
ūx + v̄x v̂x + v̄2x

2

)

+ v̄x

(
ûx + v̂2x

2

)]

=
[
Ã Ω1cos(γ1x − Ω1t)

]
v̄t

−
[
Ã sin(γ1x − Ω1t)

]
v̄t t

−
[
Ã sin(γ1x−Ω1t)

]
g sin(α)(v̄x+v̂x )−g sin(α)v̄x

+
[ Ã

γ1
cos(γ1x − Ω1t)

− Ã

γ1
cos(γ1L − Ω1t)

]
g sin(α)(v̄xx + v̂xx )

+ (L−x)g sin(α)v̄xx +
[
Ã sin(γ1x−Ω1t)

]
g cos(α)

− ρa

2AM
dLv2∞

{ v̄t

v∞
A10 + v̄2t

v2∞
A20 + v̄3t

v3∞
A30

}
.

(40)

These coupled partial differential equations can be
reduced to a single partial differential equation by
applyingKirchhoff’s approximation. Itwill be assumed
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that û and ū are O(ε2), v̂ and v̄ are O(ε), Ã is O(ε),
gsin(α) = P∗

0 isO(1), and E
M = P∗

1 isO(1/ε), where
ε is a small parameter with 0 < ε � 1. Then, by using
these assumptions, Eq. (39) up to order ε becomes

−P∗
1

∂

∂x

(
ūx + v̄x v̂x + v̄2x

2

)
= 0 (41)

First, we integrate Eq. (41) with respect to x from 0
to x , yielding

−P∗
1

(
ūx + v̄x v̂x + v̄2x

2

)
= −h(t) (42)

and then from 0 to L , obtaining

P∗
1

[
ū(L , t) − ū(0, t) +

∫ L

0

(
v̄x v̂x + v̄2x

2

)
dx

]

=
∫ L

0
h(t)dx (43)

Hence,

h(t) = P∗
1

L

[
ū(L , t) − ū(0, t) +

∫ L

0

(
v̄x v̂x + v̄2x

2

)
dx

]

(44)

Whenwe substitute Eq. (44) into Eq. (42), we obtain

(
ūx + v̄x v̂x + v̄2x

2

)
= 1

L

[
ū(L , t) − ū(0, t)

+
∫ L

0

(
v̄x v̂x + v̄2x

2

)
dx

]
(45)

Similarly, the equation for v in Eq. (40) can be
rewritten in

P∗
2 v̄xxxx − P∗

3 v̄xx + v̄t t

− P∗
1

∂

∂x

[
(v̄x + v̂x )

(
ūx + v̄x v̂x + v̄2x

2

)

+ v̄x

(
ûx + v̂2x

2

)]

=
[
Ã Ω1cos(γ1x − Ω1t)

]
v̄t

−
[
Ã sin(γ1x − Ω1t)

]
v̄t t

−
[
Ã sin(γ1x − Ω1t)

]
P∗
0 (v̄x + v̂x ) − P∗

0 v̄x

+
[ Ã

γ1
cos(γ1x − Ω1t)

− Ã

γ1
cos(γ1L − Ω1t)

]
P∗
0 (v̄xx + v̂xx )

+ (L − x)P∗
0 v̄xx +

[
Ã sin(γ1x − Ω1t)

]
P∗
4

− ρa

2AM
dLv2∞

{ v̄t

v∞
A10 + v̄2t

v2∞
A20 + v̄3t

v3∞
A30

}
.

(46)

where P∗
2 = E Iy

AM isO(1/ε), P∗
3 = T0

AM isO(1/ε), and

P∗
4 = gcos(α) isO(1) . Substituting

(
ūx + v̄x v̂x + v̄2x

2

)

from Eq. (45) and
(
ûx + v̂2x

2

)
from Eq. (241) as given

in “Appendix B” into Eq. (46) we obtain

P∗
2 v̄xxxx + v̄t t − P∗

3 v̄xx

= P∗
1

L
(v̄xx + v̂xx )

[
ū(L , t) − ū(0, t)

+
∫ L

0

(
v̄x v̂x + v̄2x

2
dx

)]
[
Ã Ω1cos(γ1x − Ω1t)

]
v̄t −

[
Ã sin(γ1x − Ω1t)

]
v̄t t

−
[
Ã sin(γ1x − Ω1t)

]
P∗
0 (v̄x + v̂x ) − P∗

0 v̄x

+
[ Ã

γ1
cos(γ1x − Ω1t) − Ã

γ1
cos(γ1L

− Ω1t)
]
P∗
0 (v̄xx + v̂xx )

+
[
P∗
0 (L − x) + P∗

1

2L

∫ L

0
v̂2xdx

]
v̄xx

+
[
Ã sin(γ1x − Ω1t)

]
P∗
4

− ρa

2AM
dLv2∞

{ v̄t

v∞
A10 + v̄2t

v2∞
A20 + v̄3t

v3∞
A30

}
.

(47)

In order to put the equations in a non-dimensional
form, the following dimensionless quantities are used:

x∗ = x

L
, t∗ = t

L

√
T0
AM

,

v̄∗(x∗, t∗) = v̄(x, t)

L
, v̂∗(x∗) = v̂(x)

L
,

v∗
0(x

∗) = v0(x)

L
,
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γ ∗
1 = γ1L , v∗

1(x
∗) =

√
AM

T0
v1(x),

Ω∗
1 = Ω1L

√
AM

T0
.

Then, Eq. (47) in a non-dimensional form becomes

μv̄xxxx + v̄t t − v̄xx

= η̄1(v̄xx + v̂xx )
[ ∫ 1

0

(
v̄x v̂x + v̄2x

2
dx

)]

+
[
Ã Ω1 cos(γ1x − Ω1t)

]
v̄t + η̄10v̄t

−
[
Ã sin(γ1x − Ω1t)

]
v̄t t + η̄20v̄

2
t + η̄30v̄

3
t

−
[
Ã sin(γ1x − Ω1t)

]
η2(v̄x + v̂x ) − η̄2v̄x

+
[
Ã cos(γ1x − Ω1t) − Ã cos(γ1

− Ω1t)
] η̄2

γ1
(v̄xx + v̂xx )

+
[
η̄2(1 − x) + η̄1

2

∫ 1

0
v̂2xdx

]
v̄xx

+
[
Ã sin(γ1x − Ω1t)

]
η̄3, (48)

with the boundary conditions

v̄(0, t) = v̄xx (0, t) = v̄x (1, t) = 0, (49)

μv̄xxx (1, t) = v̄x (1, t) + ελ̃v̄t (1, t), (50)

and the initial conditions

v̄(x, 0) = v0(x), v̄t (x, 0) = v1(x), (51)

where μ = E Iy
T0L2 , λ∗ = λ√

AMT0
, η̄1 = E A

T0
is O(1),

η̄10 = − 1
2
√
AMT0

ρadL2v∞A10 > 0 is O(ε), η̄20 =
− 1

2AM ρadL2A20 is O(ε), η̄30 = − 1
2AMv∞

√
T0
AM ρad

L2A30 is O(ε), η̄2 = AML
T0

gsin(α) is O(ε), and

η̄3 = AML
T0

gcos(α) is O(ε). The damping coefficient

λ is assumed to be of O(ε), that is, λ = ελ̃. We also
assume that v̄(x, t) = εv(x, t), η̄10 = εη10, η̄2 = εη2,
η̄3 = εη3, and Ã = εσ . The asterisks indicating the
dimensional quantities are omitted in Eqs. (48) through
(51), and henceforth for convenience. Then, by using

these assumptions, Eq. (48) up to order ε2 becomes

μvxxxx + vt t − vxx

= ε
{[

η10 + σ Ω1 cos(γ1x − Ω1t)
]
vt

− σ sin(γ1x − Ω1t)vt t

+ η2(1 − x)vxx − η2vx

+ σ sin(γ1x − Ω1t)η3
}
, t > 0, 0 < x < 1,

(52)

with the boundary conditions

v(0, t; ε) = vxx (0, t; ε) = vx (1, t; ε) = 0, (53)

μvxxx (1, t; ε) = vx (1, t; ε) + ελ̃vt (1, t; ε), (54)

and the initial conditions

v(x, 0; ε) = v0(x), vt (x, 0; ε) = v1(x). (55)

In the following section, the initial-boundary value
problem Eqs. (52)–(55) will be studied further.

4 Application of the two-timescales perturbation
method

In this section, the initial-boundary value problem
Eqs. (52)–(55) will be studied and an approximation of
the solution of the initial-boundary value problem up to
order ε will be constructed by using a two-timescales
perturbation method. We assume that v(x, t) can be
expanded in a formal power series in ε, that is,

v(x, t; ε) = v0(x, t) + εv1(x, t) + ε2v2(x, t) + · · · ,

(56)

where all vi (x, t) and their derivatives for i =
0, 1, 2, · · · are O(1) on a time scale of order ε−1. The
approximation of the solution may have secular terms
which are unbounded terms in time. In order to avoid
these secular terms, we will apply the two-timescales
perturbation method by introducing a slow time scale
τ = εt , and

v(x, t; ε) = y(x, t, τ ; ε). (57)
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The following transformations are needed for the
time derivatives

vt = yt + εyτ , (58)

vt t = ytt + 2εytτ + ε2yττ . (59)

Substitution of Eqs. (57)–(59) into Eq. (52) yields:

μyxxxx + ytt − yxx = ε
{

− 2ytτ

+
[
η10 + σ Ω1 cos(γ1x − Ω1t)

]
yt

− σ sin(γ1x − Ω1t)ytt

+ η2(1 − x)yxx − η2yx

+ σ sin(γ1x − Ω1t)η3
}

+ O(ε2), (60)

with the boundary conditions

y(0, t, τ ; ε) = yxx (0, t, τ ; ε) = yx (1, t, τ ; ε) = 0,
(61)

μyxxx (1, t, τ ; ε) = yx (1, t, τ ; ε) + ε[λ̃(yt (1, t, τ ; ε)

+ εyτ (1, t, τ ; ε))], (62)

and the initial conditions

y(x, 0, 0; ε) = v0(x), yt (x, 0, 0; ε)

+ εyτ (x, 0, 0; ε) = v1(x). (63)

Assuming that

y(x, t, τ ; ε) = y0(x, t, τ ; ε) + εy1(x, t, τ ; ε)

+ ε2y2(x, t, τ ; ε) + · · · , (64)

then by collecting terms of equal powers in ε, it fol-
lows from the problem for y(x, t, τ ; ε) that the O(1)-
problem is

μy0xxxx + y0t t − y0xx =0, (65)

y0(0, t, τ ) = y0xx (0, t, τ ) =0, (66)

y0x (1, t, τ ) =0, (67)

μy0xxx (1, t, τ ) − y0x (1, t, τ ) =0, (68)

y0(x, 0, 0) = v0(x), and y0t (x, 0, 0) =v1(x), (69)

and that the O(ε)-problem is

μy1xxxx + y1t t − y1xx = −2y0tτ

+
[
η10 + σ Ω1 cos(γ1x − Ω1t)

]
y0t

− σ sin(γ1x − Ω1t)y0t t + η2(1 − x)y0xx

− η2y0x + σ sin(γ1x − Ω1t)η3, (70)

y1(0, t, τ ) = y1xx (0, t, τ ) = 0, (71)

y1x (1, t, τ ) = 0, (72)

μy1xxx (1, t, τ ) − y1x (1, t, τ ) = λ̃y0t (1, t, τ ), (73)

y1(x, 0, 0) = 0, and y1t (x, 0, 0) + y0τ (x, 0, 0) = 0.
(74)

Themethodof separationof variableswill be applied
to solve the problemEqs. (65)–(69). The solution of the
O(1)-problem may be given in a special form

y0(x, t, τ ) = T (t, τ )φ(x). (75)

By substitution of Eq. (75) into Eq. (65) and
by dividing the so-obtained equation by T (t, τ )φ(x)
yields:

Ttt (t, τ )

T (t, τ )
= φxx (x)

φ(x)
− μ

φ(iv)(x)

φ(x)
= −ω. (76)

A separation constant is defined−ω so that the time-
dependent part of the product solution oscillates for
real and positive eigenvalues (for the proof, we refer
the reader to [24]). We obtain a time-dependent part

Ttt (t, τ ) + ωT (t, τ ) = 0, (77)

and the general solution of the time-dependent part is
a linear combination of sines and cosines in t ,

T (t, τ ) = σ1(τ )cos(
√

ωt) + σ2(τ )sin(
√

ωt), (78)

where σ1 and σ2 are arbitrary function in τ . In addition,
we obtain a space-dependent part

φxxxx (x) − 1

μ
φxx (x) − ω

μ
φ(x) = 0, (79)

and the boundary conditions Eqs. (66)–(68) yield

φ(0) = φxx (0) = φx (1) = μφxxx (1) − φx (1) = 0.

(80)

The characteristic equation for Eq. (79) is given by

m4 − m2

μ
− ω

μ
= 0, (81)
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and the solutions of Eq. (79) are given by

φ(x) = c1sinh(ax) + c2cosh(ax) + c3sin(bx)

+ c4cos(bx), (82)

where ci for i = 1, 2, 3, 4 are constants, and a =√
1+√

1+4μω
2μ and b =

√
−1+√

1+4μω
2μ . The non-trivial

solutions are found by using the boundary conditions
Eq. (80), leading to the characteristic equation

fμ(ω) = −μabcos(b)cosh(a)(a2 + b2)

− acosh(a)sin(b)

+ bcos(b)sinh(a) = 0. (83)

It follows from Eq. (83) that the eigenvalues ωn =
μb4n+b2n can be numerically computed for given values
of μ. The first ten eigenvalues ωn are listed in Table 1.
The eigenfunctions belonging to different eigenvalues
are orthogonal with respect to the inner product; for
details, the reader is referred to [24],

< φm(x), φn(x) >=
∫ 1

0
φm(x)φn(x)dx, (84)

and the eigenfunctions of the problem Eqs. (79)–(80)
can be determined and are given by

φn(x) = θnsinh(anx) + sin(bnx), (85)

where θn = − bncos(bn)
ancosh(an)

, an =
√

1+√
1+4μωn
2μ , and bn =√

−1+√
1+4μωn
2μ .

Hence, infinitely many non-trivial solutions of the
initial-boundary problem Eqs. (65)–(69) have been
determined. By using the superposition principle, the
solution is obtained

y0(x, t, τ ) =
∞∑
n=1

[
An(τ )cos(

√
ωnt)

+Bn(τ )sin(
√

ωnt)
]
φn(x). (86)

where φn(x) is given by Eq. (85), and where An and Bn

are arbitrary functions in τ which can be used to avoid
secular terms in y1(x, t, τ ). By using the initial con-
ditions Eq. (69), we can determine An(0) and Bn(0),
which are given by:

An(0) = 1

ζn

∫ 1

0
v0(x)φn(x)dx, (87)

and

√
ωn Bn(0) = 1

ζn

∫ 1

0
v1(x)φn(x)dx, (88)

where

ζn =
∫ 1

0
φ2
n(x)dx . (89)

Now, we solve the O(ε)-problem Eqs. (70)–(74).
Due to having an inhomogeneous boundary condition
Eq. (73), we use the following transformation to con-
vert the problem into a problem with homogeneous
boundary conditions

y1(x, t, τ ) = V (x, t, τ ) +
( x4 − 2x3

12μ + 2

)
h(t, τ ), (90)

where

h(t, τ ) = λ̃y0t (1, t, τ ). (91)

Substituting Eq. (90) into Eqs. (70)–(74), we obtain

μVxxxx + Vtt − Vxx = −2y0tτ

+
[
η10 + σ Ω1 cos(γ1x − Ω1t)

]
y0t − η2y0x

− σ sin(γ1x − Ω1t)y0t t + η2(1 − x)y0xx
+ σ sin(γ1x − Ω1t)η3

+
(12x2 − 12x − 24μ

12μ + 2

)
h(t, τ )

−
( x4 − 2x3

12μ + 2

)
htt (t, τ ), (92)

V (0, t, τ ) = Vxx (0, t, τ ) = Vx (1, t, τ )

−
( 2

12μ + 2

)
h(t, τ ) = 0, (93)

μVxxx (1, t, τ ) − Vx (1, t, τ ) = 0, (94)

V (x, 0, 0) = −
( x4 − 2x3

12μ + 2

)
h(0, 0), (95)

Vt (x, 0, 0) = −y0τ (x, 0, 0) −
( x4 − 2x3

12μ + 2

)
ht (0, 0),

(96)

where h(t, τ ) is given by Eq. (91), and where h(0, 0),
and ht (0, 0) are given by

h(0, 0) = λ̃v1(1), (97)
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Table 1 Some eigenvalues ωi which are roots of Eq. (83) with ωi the i-th root

ω μ = 0.001 μ = 0.01 μ = 0.1 μ = 1

ω1 4.16497 4.30777 5.00501 10.54607

ω2 24.68972 29.20039 73.56205 517.34633

ω3 67.51921 101.78930 444.20353 3868.72929

ω4 137.55593 269.11062 1584.65381 14, 740.35501

ω5 241.83773 601.31819 4196.24404 40, 145.67525

ω6 389.72154 1191.92269 9214.09788 89, 435.96197

ω7 592.89840 2157.81266 17, 807.12342 174, 300.30645

ω8 865.39593 3639.25581 31, 378.01114 308, 765.61727

ω9 1223.57912 5799.89869 51, 563.23375 509, 196.62255

ω10 1686.15056 8826.76635 80, 233.04556 794, 295.86667

ht (0, 0) = λ̃[v0xx (1) − μv0xxxx (1)]. (98)

In order to solve Eqs. (92)–(96), V (x, t, τ ) is written
in the following eigenfunction expansion

V (x, t, τ ) =
∞∑

m=1

Vm(t, τ )φm(x), (99)

and by substituting Eq. (99) into the partial differential
equation Eq. (92), we obtain

∞∑
m=1

[Vmtt (t, τ ) + ωmVm(t, τ )]φm(x) = −2y0tτ

+
[
η10 + σ Ω1 cos(γ1x − Ω1t)

]
y0t − η2y0x

− σ sin(γ1x − Ω1t)y0t t + η2(1 − x)y0xx
+ σ sin(γ1x − Ω1t)η3

+
(12x2 − 12x − 24μ

12μ + 2

)
h(t, τ )

−
( x4 − 2x3

12μ + 2

)
htt (t, τ ). (100)

We expand
(
x4−2x3
12μ+2

)
and

(
12x2−12x−24μ

12μ+2

)
into a

series of eigenfunctions φm(x), and we obtain

( x4 − 2x3

12μ + 2

)
=

∞∑
m=1

cmφm(x), (101)

(12x2 − 12x − 24μ

12μ + 2

)
=

∞∑
m=1

dmφm(x), (102)

where

cm = 1

ζm

∫ 1

0

( x4 − 2x3

12μ + 2

)
φm(x)dx, (103)

dm = 1

ζm

∫ 1

0

(12x2 − 12x − 24μ

12μ + 2

)
φm(x)dx, (104)

and where ζm is given by Eq. (89). By multiplying both
sides of Eq. (100) by φn(x), and then by integrating
from x = 0 to x = 1, and by using the orthogonality
properties of the eigenfunctions, we obtain

[
Vntt (t, τ ) + ωnVn(t, τ )

]
= −cnhtt (t, τ ) + dnh(t, τ )

− 2Tntτ (t, τ )

+ η2

ζn
Tn(t, τ )(Φ̂nn − Φnn)

+ η2

ζn

∞∑
m=1
m 	=n

Tm(t, τ )(Φ̂mn − Φmn)

+ σ η3

ζn

(
cos(Ω1t)Υ̂n − sin(Ω1t)Υn

)
+ η10Tnt (t, τ )

+ σ Ω1

ζn
Tnt (t, τ )

(
cos(Ω1t)Ψnn + sin(Ω1t)Ψ̂nn

)

+ σ

ζn
Tntt (t, τ )

(
sin(Ω1t)Ψnn − cos(Ω1t)Ψ̂nn

)

+ σ

ζn

∞∑
m=1
m 	=n

[
Ω1Tmt (t, τ )

(
cos(Ω1t)Ψmn

+ sin(Ω1t)Ψ̂mn

)

+ Tmtt (t, τ )
(
sin(Ω1t)Ψmn − cos(Ω1t)Ψ̂mn

)]
,

(105)
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where

Tm(t, τ ) = Am(τ )cos(
√

ωmt) + Bm(τ )sin(
√

ωmt),

(106)

and

Φmn =
∫ 1

0

dφm(x)

dx
φn(x)dx, (107)

Φ̂mn =
∫ 1

0
(1 − x)

d2φm(x)

dx2
φn(x)dx, (108)

Ψmn =
∫ 1

0
cos(γ1x)φm(x)φn(x)dx, (109)

Ψ̂mn =
∫ 1

0
sin(γ1x)φm(x)φn(x)dx, (110)

Υm =
∫ 1

0
cos(γ1x)φm(x)dx, (111)

Υ̂m =
∫ 1

0
sin(γ1x)φm(x)dx . (112)

It follows from Eqs. (91) and (86) that h(t, τ ) and
htt (t, τ ) can be written as

h(t, τ ) = λ̃

∞∑
m=1

Tmt (t, τ )φm(1), (113)

htt (t, τ ) = λ̃

∞∑
m=1

Tmttt (t, τ )φm(1), (114)

Hence, by using Eqs. (113) and (114) it follows that
Eq. (105) can be rewritten as

[
Vntt (t, τ ) + ωnVn(t, τ )

]

=
∞∑

m=1
m 	=n

{
(cnωm + dn)λ̃φm(1)

√
ωm×

[
− Am(τ )sin(

√
ωmt)

+ Bm(τ )cos(
√

ωmt)
]}

+ η2

ζn

∞∑
m=1
m 	=n

(Φ̂mn − Φmn)
[
Am(τ )cos(

√
ωmt)

+ Bm(τ )sin(
√

ωmt)
]

+ sin(
√

ωnt)
{
2
√

ωn
dAn(τ )

dτ

− An(τ )
[
η10

√
ωn + λ̃φn(1)

√
ωn(cnωn + dn)

]

+ Bn(τ )
[η2

ζn
(Φ̂nn − Φnn)

]}

+ cos(
√

ωnt)
{

− 2
√

ωn
dBn(τ )

dτ

+ Bn(τ )
[
η10

√
ωn + λ̃φn(1)

√
ωn(cnωn + dn)

]

+ An(τ )
[η2

ζn
(Φ̂nn − Φnn)

]}

+ σ η3

ζn

(
cos(Ω1t)Υ̂n − sin(Ω1t)Υn

)

+ sin(Ω1t + √
ωnt)

σ

2ζn
(Ω1

√
ωn + ωn)×

[
− An(τ )Ψnn + Bn(τ )Ψ̂nn

]

+ sin(Ω1t − √
ωnt)

σ

2ζn
(Ω1

√
ωn − ωn)×

[
An(τ )Ψnn + Bn(τ )Ψ̂nn

]

+ cos(Ω1t + √
ωnt)

σ

2ζn
(Ω1

√
ωn + ωn)×

[
An(τ )Ψ̂nn + Bn(τ )Ψnn

]

+ cos(Ω1t − √
ωnt)

σ

2ζn
(Ω1

√
ωn − ωn)×

[
− An(τ )Ψ̂nn + Bn(τ )Ψnn

]

+ σ

2ζn

∞∑
m=1
m 	=n

{
sin(Ω1t + √

ωmt)(Ω1
√

ωm + ωm)×

[
− Am(τ )Ψmn + Bm(τ )Ψ̂mn

]

+ sin(Ω1t − √
ωmt)(Ω1

√
ωm − ωm)×[

Am(τ )Ψmn + Bm(τ )Ψ̂mn

]

+ cos(Ω1t + √
ωmt)(Ω1

√
ωm + ωm)×[

Am(τ )Ψ̂mn + Bm(τ )Ψmn

]

+ cos(Ω1t − √
ωmt)(Ω1

√
ωm − ωm)×[

− Am(τ )Ψ̂mn + Bm(τ )Ψmn

]}
. (115)

It can be easily seen from Eq. (115) that there are
infinitely many values of Ω1, which can cause internal
resonances. The possible resonance cases are as fol-
lows:

(i) The non-resonant case: if Ω1 is not within an
order ε-neighbourhood of the frequencies

√
ωn±√

ωm

for all m and n.
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(ii) The near resonance case (Resonance detuning):
if Ω1 is within an order ε-neighbourhood of

√
ωn ±√

ωm for certain fixed m and n.
(iii) The pure resonance case: if Ω1 = √

ωn +√
ωm

for certain fixed m and n. This is the sum-type reso-
nance case. If Ω1 = √

ωn − √
ωm for certain fixed m

and n, it is the difference-type resonance case.
In the following subsections, we will study the

non-resonant case, the sum-type resonance case, the
difference-type resonance case and by considering only
some of the first few modes and omitting the higher-
order modes.

For simplicity, we will now assume that Ω1 =√
ω1 + √

ω2 (or Ω1 = √
ω2 − √

ω1). Resonance can
occur when Ω1 = ±√

ωn ± √
ωm for some n and m.

We have to consider the following three cases:

(i) Ω1 = −√
ωn − √

ωm , which has no solution since
the right-hand side is negative, while the left-hand
side is positive.

(ii) Ω1 = √
ωn + √

ωm , which has only the trivial
solution m = 2, n = 1 or m = 1, n = 2.

(iii) Ω1 = √
ωn −√

ωm (or equivalently Ω1 = √
ωm −√

ωn), which has only solutions by looking at Table
4.1 for certain values of μ. There are possibili-
ties that three modes are interacting. For example,√

ω1 + √
ω2 ∼= √

ω4 − √
ω2 for μ = 0.001.

4.1 The non-resonant case

When Ω1 	= √
ωn ±√

ωm +O(ε) for all m and n only
resonances occur due to the fourth and fifth term in the
right-hand side of Eq. (115), that is, Eq. (115) can be
rewritten as:

[
Vntt (t, τ ) + ωnVn(t, τ )

]
= sin(

√
ωnt)

{
2
√

ωn
dAn(τ )

dτ

− An(τ )
[
η10

√
ωn + λ̃φn(1)

√
ωn(cnωn + dn)

]

+ Bn(τ )
[η2

ζn
(Φ̂nn − Φnn)

]}

+ cos(
√

ωnt)
{

− 2
√

ωn
dBn(τ )

dτ

+ Bn(τ )
[
η10

√
ωn + λ̃φn(1)

√
ωn(cnωn + dn)

]

+ An(τ )
[η2

ζn
(Φ̂nn − Φnn)

]}

+ “NST”, (116)

where “NST” stands for terms that lead to nonsecular
terms in Vn . In order to remove secular terms, it follows
from Eq. (116) that An(τ ) and Bn(τ ) have to satisfy

dAn(τ )

dτ
− An(τ )Xn + Bn(τ )Yn = 0, (117)

dBn(τ )

dτ
− Bn(τ )Xn − An(τ )Yn = 0, (118)

where Xn and Yn are defined by

Xn =
[η10

2
+ λ̃

2
φn(1)(cnωn + dn)

]
, (119)

Yn = η2

2ζn
√

ωn
(Φ̂nn − Φnn). (120)

The solution of Eqs. (117) and (118) is given by

An(τ ) =
[
An(0)cos(Ynτ) − Bn(0)sin(Ynτ)

]
eXnτ ,

(121)

Bn(τ ) =
[
An(0)sin(Ynτ) + Bn(0)cos(Ynτ)

]
eXnτ ,

(122)

where An(0) and Bn(0) are given by Eqs. (87) and
(88), respectively. By using Eqs. (103) and (104) with
Eqs. (79) and (80) it can easily be shown that 12 (cnωn +
dn) = μ

ζn(12μ+2)
d2φn(1)
dx2

− 1
2ζn

φn(1). Hence, Eq. (106)
with Eq. (119) and Eq. (122) can be rewritten as:

Tm(t, τ ) = eXmτ
[
Am(0)cos(

√
ωmt − Ymτ)

+Bm(0)sin(
√

ωmt − Ymτ)
]
. (123)

Now, from Eq. (116) with Eqs. (117)–(123), we can
obtain Vn(t, τ ) straightforwardly. Obviously, Vn(t, τ )

will be bounded on a time scale of order 1/ε, and so
will be Vn(x, t, τ ).

In Table 2, numerical approximations of ωn and the
damping parameter p̃n are given for different values of
μ. For different bending stiffness, we can choose the
damping parameter in such a way that all modes are
damped by taking λ̃ appropriately compared to the η10
coefficient. It is also clear to see from Table 2 that for
smaller values of μ, we should take larger λ̃ to have
damping for all modes. In Table 3, it can be seen as
expected that the bending stiffness μ and the damping
parameter λ̃ influence the stability.

For μ = 0.001, Figs. 3 and 4 demonstrate the vibra-
tion response at themiddle x = 0.5 and at the end x = 1
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factor λ̃, Fig. 3 is plotted for λ̃ = 0.5 and Fig. 4 is
plotted for λ̃ = 2; the initial conditions are specified
as v0(x) = 0.1sin(πx) and v1(x) = 0.05sin(πx). For
μ = 1, Figs. 5 and 6 illustrate similar behaviour. These
figures show that the amplitudes of the transverse vibra-
tions decrease faster for increasing of μ and λ̃. Similar
results for the string-like problem have been observed
in [9].

4.2 The sum-type resonance case: Ω1 = √
ω2 + √

ω1

We will consider now only the first two modes and
omit the higher-order modes. That is, we will assume
that for the given μ values only these two modes might
occur in a resonance interaction. Equation (115) can be
rewritten as

[
V1t t (t, τ ) + ω1V1(t, τ )

]
= sin(

√
ω1t)

{
2
√

ω1
dA1(τ )

dτ

+ B1(τ )
[η2

ζ1
(Φ̂11 − Φ11)

]

− A1(τ )
[
η10

√
ω1 + λ̃φ1(1)

√
ω1(c1ω1 + d1)

]}

+ cos(
√

ω1t)
{

− 2
√

ω1
dB1(τ )

dτ

+ A1(τ )
[η2

ζ1
(Φ̂11 − Φ11)

]

+ B1(τ )
[
η10

√
ω1 + λ̃φ1(1)

√
ω1(c1ω1 + d1)

]}

+ sin(Ω1t − √
ω2t)

σ

2ζ1
(Ω1

√
ω2 − ω2)×

[
A2(τ )Ψ21 + B2(τ )Ψ̂21

]

+ cos(Ω1t − √
ω2t)

σ

2ζ1
(Ω1

√
ω2 − ω2)×

[
− A2(τ )Ψ̂21 + B2(τ )Ψ21

]

+ “NST′′, (124)

and a similar equation for V2(t, τ ) can be obtained from
Eq. (124). In order to avoid secular terms, it follows
from the equations for V1(t, τ ) and V2(t, τ ) that A1(τ ),
B1(τ ), A2(τ ) and B2(τ ) have to satisfy

dA1(τ )

dτ
= A1(τ )X1 − B1(τ )Y1 − A2(τ )Z2

−B2(τ )C2, (125)
dB1(τ )

dτ
= A1(τ )Y1 + B1(τ )X1 − A2(τ )C2
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Table 3 Numerical approximations of ω̃n in the non-resonance case for η10 = η2 = γ1 = 0.1, σ = 2.8, and different values of μ

ωn ω̃ j λ̃ = 0 λ̃ = 0.05 λ̃ = 0.1 λ̃ = 0.5

μ = 0.001

ω1 ω̃1 0.05000−0.05043i 0.01553+0.05043i −0.01893−0.05043i −0.29467+0.05043i

ω̃2 0.05000+0.05043i 0.01553−0.05043i −0.01893+0.05043i −0.29467−0.05043i

ω2 ω̃1 0.05000+0.12096i 0.00138+0.12096i −0.04724−0.12096i −0.43620+0.12096i

ω̃2 0.05000−0.12096i 0.00138−0.12096i −0.04724+0.12096i −0.43620−0.12096i

ω3 ω̃1 0.05000+0.19285i −0.00293+0.19285i −0.05586+0.19285i −0.47929+0.19285i

ω̃2 0.05000−0.19285i −0.00293−0.19285i −0.05586−0.19285i −0.47929−0.19285i

ω4 ω̃1 0.05000−0.26094i −0.00648+0.26094i −0.06295−0.26094i −0.51477−0.26094i

ω̃2 0.05000+0.26094i −0.00648−0.26094i −0.06295+0.26094i −0.51477+0.26094i

μ = 0.01

ω1 ω̃1 0.05000−0.04832i 0.01277+0.04832i −0.02445−0.04832i −0.32227−0.04832i

ω̃2 0.05000+0.04832i 0.01277−0.04832i −0.02445+0.04832i −0.32227+0.04832i

ω2 ω̃1 0.05000−0.10884i −0.01009+0.10884i −0.07018−0.10884i −0.55092−0.10884i

ω̃2 0.05000+0.10884i −0.01009−0.10884i −0.07018+0.10884i −0.55092+0.10884i

ω3 ω̃1 0.05000+0.15541i −0.02986+0.15541i −0.10972−0.15541i −0.74859−0.15541i

ω̃2 0.05000−0.15541i −0.02986−0.15541i −0.10972+0.15541i −0.74859+0.15541i

ω4 ω̃1 0.05000+0.18567i −0.05762+0.18567i −0.16524+0.18567i −1.02618+0.18567i

ω̃2 0.05000−0.18567i −0.05762−0.18567i −0.16524−0.18567i −1.02618−0.18567i

μ = 0.1

ω1 ω̃1 0.05000+0.04081i 0.00075+0.04081i −0.04851+0.04081i −0.44254+0.04081i

ω̃2 0.05000−0.04081i 0.00075−0.04081i −0.04851−0.04081i −0.44254−0.04081i

ω2 ω̃1 0.05000+0.06758i −0.06988+0.06758i −0.18975−0.06758i −1.14876+0.06758i

ω̃2 0.05000−0.06758i −0.06988−0.06758i −0.18975+0.06758i −1.14876−0.06758i

ω3 ω̃1 0.05000+0.07432i −0.19296+0.07432i −0.43592−0.07432i −2.37961+0.07432i

ω̃2 0.05000−0.07432i −0.19296−0.07432i −0.43592+0.07432i −2.37961−0.07432i

ω4 ω̃1 0.05000−0.07654i −0.37789+0.07654i −0.80578−0.07654i −4.22886+0.07654i

ω̃2 0.05000+0.07654i −0.37789−0.07654i −0.80578+0.07654i −4.22886−0.07654i

μ = 1

ω1 ω̃1 0.05000+0.02687i −0.01575+0.02687i −0.08150+0.02687i −0.60751+0.02687i

ω̃2 0.05000−0.02687i −0.01575−0.02687i −0.08150−0.02687i −0.60751−0.02687i

ω2 ω̃1 0.05000+0.02550i −0.15874+0.02550i −0.36747+0.02550i −2.03737+0.02550i

ω̃2 0.05000−0.02550i −0.15874+0.02550i −0.36747−0.02550i −2.03737−0.02550i

ω3 ω̃1 0.05000+0.02519i −0.44062+0.02519i −0.93125+0.02519i −4.85625+0.02519i

ω̃2 0.05000−0.02519i −0.44062+0.02519i −0.93125−0.02519i −4.85625−0.02519i

ω4 ω̃1 0.05000+0.02510i −0.86360+0.02510i −1.77718+0.02510i −9.08590+0.02510i

ω̃2 0.05000−0.02510i −0.86360+0.02510i −1.77718−0.02510i −9.08590−0.02510i

+B2(τ )Z2, (126)
dA2(τ )

dτ
= −A1(τ )Z1 − B1(τ )C1 + A2(τ )X2

−B2(τ )Y2, (127)
dB2(τ )

dτ
= −A1(τ )C1 + B1(τ )Z1 + A2(τ )Y2

+B2(τ )X2, (128)

where X1, X2, Y1, Y2, Z1, Z2, C1 and C2 are defined
by

X1 =
[η10

2
+ λ̃

2
φ1(1)(c1ω1 + d1)

]
,
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Fig. 3 Transverse displacements y0 at a x = 0.5 and at b x = 1 against time t with the initial displacement v0(x) = 0.1sin(πx) and
the initial velocity v1(x) = 0.05sin(πx) for μ = 0.001, η10 = η2 = ε = 0.1, λ = 0.5, and N = 10

Fig. 4 Transverse displacements y0 at a x = 0.5 and at b x = 1 against time t with the initial displacement v0(x) = 0.1sin(πx) and
the initial velocity v1(x) = 0.05sin(πx) for μ = 0.001, η10 = η2 = ε = 0.1, λ = 0.05, and N = 10

X2 =
[η10

2
+ λ̃

2
φ2(1)(c2ω2 + d2)

]
,

Y1 =
[ η2

2ζ1
√

ω1
(Φ̂11 − Φ11)

]
,

Y2 =
[ η2

2ζ2
√

ω2
(Φ̂22 − Φ22)

]
,
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Fig. 5 Transverse displacements y0 at a x = 0.5 and at b x = 1 against time t with the initial displacement v0(x) = 0.1sin(πx) and
the initial velocity v1(x) = 0.05sin(πx) for μ = 1, η10 = η2 = ε = 0.1, λ = 0.5, and N = 10

Fig. 6 Transverse displacements y0 at a x = 0.5 and at b x = 1 against time t with the initial displacement v0(x) = 0.1sin(πx) and
the initial velocity v1(x) = 0.05sin(πx) for μ = 1, η10 = η2 = ε = 0.1, λ = 0.05, and N = 10

Z1 = σΨ12

4ζ2
√

ω2
(Ω1

√
ω1 − ω1),

Z2 = σΨ21

4ζ1
√

ω1
(Ω1

√
ω2 − ω2),

C1 = σΨ̂12

4ζ2
√

ω2
(Ω1

√
ω1 − ω1),
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Table 4 Numerical approximations of ω̃n in the sum-type resonance case for η10 = η2 = γ1 = 0.1, σ = 2.8, and different values of μ

ω̃ λ̃ = 0 λ̃ = 0.05 λ̃ = 0.1 λ̃ = 0.5

μ = 0.001

ω̃1 0.04845+0.11079i 0.01800+0.04043i −0.05054+0.11145i −0.44189+0.11611i

ω̃2 0.04845−0.11079i 0.01800−0.04043i −0.01564+0.04085i −0.44189−0.11611i

ω̃3 0.05155+0.04017i −0.00109+0.11104i −0.01564−0.04085i −0.28898+0.04557i

ω̃4 0.05155−0.04017i −0.00109−0.11104i −0.05054−0.11145i −0.28898−0.04557i

μ = 0.01

ω̃1 0.04786+0.09626i 0.01689+0.03638i −0.07576+0.09834i −0.31627+0.04557i

ω̃2 0.04786−0.09626i 0.01689−0.03638i −0.07576−0.09834i −0.31627−0.04557i

ω̃3 0.05214+0.03554i −0.01421+0.09705i −0.01887+0.03772i −0.55691+0.10610i

ω̃4 0.05214−0.03554i −0.01421−0.09705i −0.01887−0.03772i −0.55691−0.10610i

μ = 0.1

ω̃1 0.03514+0.02827i 0.01955+0.02646i −0.03344+0.03425i −0.43828+0.04090i

ω̃2 0.03514−0.02827i 0.01955−0.02646i −0.03344−0.03425i −0.43828−0.04090i

ω̃3 0.07761+0i −0.08868+0.05346i −0.20482+0.06108i −1.15302+0.06767i

ω̃4 0.05210−0i −0.08868−0.05346i −0.20482−0.06108i −1.15302−0.06767i

μ = 1

ω̃1 0.15268+0.00330i 0.03971+0.02213i −0.04650+0.02694i −0.59965+0.02800i

ω̃2 0.15268−0.00330i 0.03971−0.02213i −0.04650−0.02694i −0.59965−0.02800i

ω̃3 −0.04855−0i −0.21419+0.02066i −0.40248+0.02553i −2.04522+0.02662i

ω̃4 −0.05682−0i −0.21419−0.02066i −0.40248−0.02553i −2.04522−0.02662i

C2 = σΨ̂21

4ζ1
√

ω1
(Ω1

√
ω2 − ω2).

We obtain from the system Eqs. (125)–(128),

Ẋ = AX

where

X =

⎛
⎜⎜⎝
A1(τ )

B1(τ )

A2(τ )

B2(τ )

⎞
⎟⎟⎠ , and A =

⎛
⎜⎜⎝

X1 −Y1 −Z2 −C2

Y1 X1 −C2 Z2

−Z1 −C1 X2 −Y2
−C1 Z1 Y2 X2

⎞
⎟⎟⎠ .

andwhere Ẋ represents the derivative of X with respect
to τ . The matrix A for a given configuration is only
depending on the damping parameter λ̃. The other
parameters are determined by the physics, which are
taken from [1,3] in Table 4. In order to stabilise the
system, we should determine the damping parameter λ̃

in such a way that all the real parts of the eigenvalues
of the matrix A are negative. As can be seen in Table 4,
if we assume λ̃ = 0, there is an instability in the sys-

tem due to the wind force η10. While for increasing
values of λ̃, we observe that the cable system becomes
stable, which also depends on the value of the bending
stiffness μ.

4.3 The difference-type resonance case:
Ω1 = √

ω2 − √
ω1

A similar analysis, as given for the sum-type resonance
case, can also be applied in the difference-type res-
onance case. We will consider Ω1 = √

ω2 − √
ω1,

which is assumed to have only solution m = 2, n = 1
(or m = 1, n = 2). Then, Eq. (115) can be rewritten as

[
V1t t (t, τ ) + ω1V1(t, τ )

]
= sin(

√
ω1t)

{
2
√

ω1
dA1(τ )

dτ

+ B1(τ )
[η2

ζ1
(Φ̂11 − Φ11)

]

− A1(τ )
[
η10

√
ω1 + λ̃φ1(1)

√
ω1(c1ω1 + d1)

]}

+ cos(
√

ω1t)
{

− 2
√

ω1
dB1(τ )

dτ

123
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Table 5 Numerical approximations of ω̃n in the difference-type resonance case for η10 = η2 = γ1 = 0.1, σ = 2.8, and different
values of μ

ω̃ λ̃ = 0 λ̃ = 0.05 λ̃ = 0.1 λ̃ = 0.5

μ = 0.001

ω̃1 0.02801+0.09637i 0.03561+0.06786i −0.06584+0.10811i −0.44619+0.11951i

ω̃2 0.02801−0.09637i 0.03561−0.06786i −0.06584−0.10811i −0.44619−0.11951i

ω̃3 0.07199+0.07502i −0.01870+0.10353i −0.00034+0.06328i −0.28469+0.05188i

ω̃4 0.07199−0.07502i −0.01870−0.10353i −0.00034−0.06328i −0.28469−0.05188i

μ = 0.01

ω̃1 0.01910+0.08773i 0.03746+0.06118i −0.09085+0.10097i −0.31460+0.04791i

ω̃2 0.01910−0.08773i 0.03746−0.06118i −0.09085−0.10097i −0.31460−0.04791i

ω̃3 0.08090+0.06943i −0.03478+0.09599i −0.00378+0.05619i −0.55859+0.10926i

ω̃4 0.08090−0.06943i −0.03478−0.09599i −0.00378−0.05619i −0.55859−0.10926i

μ = 0.1

ω̃1 0.10334+0.04419i 0.03048+0.03872i −0.02966+0.03766i −0.43837+0.03947i

ω̃2 0.10334−0.04419i 0.03048−0.03872i −0.02966−0.03766i −0.43837−0.03947i

ω̃3 −0.00334+0.06420i −0.09961+0.06966i −0.20860+0.07072i −1.15293+0.06891i

ω̃4 −0.00334−0.06420i −0.09961−0.06966i −0.20860−0.07072i −1.15293−0.06891i

μ = 1

ω̃1 0.15598+0.00647i 0.04008+0.01016i −0.04724+0.01495i −0.59996−0.02397i

ω̃2 0.15598−0.00647i 0.04008−0.01016i −0.04724−0.01495i −0.59996+0.02397i

ω̃3 −0.05598+0.04590i −0.21457+0.04221i −0.40173+0.03742i −2.04492−0.02840i

ω̃4 −0.05598−0.04590i −0.21457−0.04221i −0.40173−0.03742i −2.04492+0.02840i

+ A1(τ )
[η2

ζ1
(Φ̂11 − Φ11)

]

+ B1(τ )
[
η10

√
ω1 + λ̃φ1(1)

√
ω1(c1ω1 + d1)

]}

+ sin(Ω1t + √
ω2t)

σ

2ζ1
(Ω1

√
ω2 + ω2)×

[
− A2(τ )Ψ21 + B2(τ )Ψ̂21

]

+ cos(Ω1t + √
ω2t)

σ

2ζ1
(Ω1

√
ω2 + ω2)×

[
A2(τ )Ψ̂21 + B2(τ )Ψ21

]

+ “NST′′, (129)

and a similar equation for V2(t, τ ) can be obtained from
Eq. (129). In order to avoid secular terms, it follows
from the equations for V1(t, τ ) and V2(t, τ ) that A1(τ ),
B1(τ ), A2(τ ) and B2(τ ) have to satisfy

dA1(τ )

dτ
= A1(τ )X1 − B1(τ )Y1 + A2(τ )Z̃2

−B2(τ )C̃2, (130)
dB1(τ )

dτ
= A1(τ )Y1 + B1(τ )X1 + A2(τ )C̃2

+B2(τ )Z̃2, (131)
dA2(τ )

dτ
= A1(τ )Z̃1 − B1(τ )C̃1

+A2(τ )X2 − B2(τ )Y2, (132)
dB2(τ )

dτ
= A1(τ )C̃1 + B1(τ )Z̃1

+A2(τ )Y2 + B2(τ )X2, (133)

where X1, X2, Y1, Y2, Z̃1, Z̃2, C̃1 and C̃2 are defined
by:

X1 =
[η10

2
+ λ̃

2
φ1(1)(c1ω1 + d1)

]
,

X2 =
[η10

2
+ λ̃

2
φ2(1)(c2ω2 + d2)

]
,

Y1 =
[ η2

2ζ1
√

ω1
(Φ̂11 − Φ11)

]
,

Y2 =
[ η2

2ζ2
√

ω2
(Φ̂22 − Φ22)

]
,

Z̃1 = σΨ12

4ζ2
√

ω2
(Ω1

√
ω1 + ω1),

Z̃2 = σΨ21

4ζ1
√

ω1
(Ω1

√
ω2 + ω2),
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C̃1 = σΨ̂12

4ζ2
√

ω2
(Ω1

√
ω1 + ω1),

C̃2 = σΨ̂21

4ζ1
√

ω1
(Ω1

√
ω2 + ω2).

We obtain from the system Eqs. (130)–(133),

Ẋ = AX

where

X =

⎛
⎜⎜⎝
A1(τ )

B1(τ )

A2(τ )

B2(τ )

⎞
⎟⎟⎠ , and A =

⎛
⎜⎜⎝
X1 −Y1 Z̃2 −C̃2

Y1 X1 C̃2 Z̃2

Z̃1 −C̃1 X2 −Y2
C̃1 Z̃1 Y2 X2

⎞
⎟⎟⎠ .

andwhere Ẋ represents the derivative of X with respect
to τ . As in the sum-type resonance case, this matrix
A for a given configuration is only depending on the
damping parameter λ̃. In Table 5, it can easily be seen
that there is a change from instability to stability, which
is around λ̃ = 0.05.

5 Conclusions

In this paper, initial-boundary value problems for a ten-
sioned beam equation are studied. Themodel is derived
to describe the rain–wind-induced oscillations of an
inclined cable. We applied a multiple-timescales per-
turbation method in order to observe whether or not
mode interactions between vibration modes occur for
certain values of the bending stiffness and the damp-
ing parameter. The results show that the system in both
the pure resonance case and the non-resonance case
can be stabilised by a boundary damper. Some of these
cases are studied in Sect. 4. Mode interactions between
two and more modes depending on the bending stiff-
nessμ are possible. More complicated resonance cases
can be Ω1 = √

ωn ± √
ωm or Ω1 = 2

√
ωn , when

Ω1 = √
ωN + √

ωM ( or Ω1 = √
ωN − √

ωM ) for
some fixed N and M . These cases still have to be stud-
ied, and canbe studiedbyusing the techniques as shown
in Sect. 4 of this paper.

This paper provides an understanding of how effec-
tive boundary damping can be for the in-plane transver-
sal oscillations of the cable. The same approach can be
used for in-plane and out-of-plane transversal oscilla-
tions of elastic structures.
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Appendix A: Aerodynamic parameters

b := [−(ψ1 + α1) + arctan(tan(γ ))], (134)
c := [−(ψ2 + α2) + arctan(tan(γ ))], (135)

a000 := sin(γ ), (136)
a001 := b cos(γ ), (137)
a002 := c cos(γ ), (138)

a003 := b3cos(γ ), (139)

a004 := c3cos(γ ), (140)

a100 := 2 − cos2(γ ), (141)
a101 := cos(γ )[cos(γ ) − b sin(γ )], (142)
a102 := cos(γ )[cos(γ ) − c sin(γ )], (143)

a103 := b2cos(γ )[3cos(γ ) − b sin(γ )], (144)

a104 := c2cos(γ )[3cos(γ ) − c sin(γ )], (145)
a010 := −sin(γ )cos(γ ), (146)
a011 := sin(γ )[cos(γ ) − b sin(γ )], (147)
a012 := sin(γ )[cos(γ ) − c sin(γ )], (148)

a013 := b2sin(γ )[3cos(γ ) − b sin(γ )], (149)

a014 := c2sin(γ )[3cos(γ ) − c sin(γ )], (150)

a200 := sin(γ )

2
[2 + cos2(γ )], (151)

a201 := cos(γ )

2
[2b − 3b cos2(γ ) − 2 sin(2γ )], (152)

a202 := cos(γ )

2
[2c − 3c cos2(γ ) − 2 sin(2γ )], (153)

a203 := b cos(γ )

2
[2b2 + cos2(γ )(6 − 3b2)

− 6b sin(2γ )], (154)

a204 := c cos(γ )

2
[2c2 + cos2(γ )(6 − 3c2)

− 6c sin(2γ )], (155)

a110 := cos3(γ ), (156)
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a111 := 4cos3(γ ) − 3cos(γ ) + b[sin(γ )

− 3sin(γ )cos2(γ )], (157)

a112 := 4cos3(γ ) − 3cos(γ ) + c[sin(γ )

− 3sin(γ )cos2(γ )], (158)

a113 := 6bsin(γ )cos2(γ ) + b2[12cos3(γ ) − 9cos(γ )]
+ b3[−3sin(γ )cos2(γ ) + sin(γ )], (159)

a114 := 6csin(γ )cos2(γ ) + c2[12cos3(γ ) − 9cos(γ )]
+ c3[−3sin(γ )cos2(γ ) + sin(γ )], (160)

a020 := − sin(γ )

2
[3 + cos2(γ )], (161)

a021 := 2sin(γ )cos2(γ ) − sin(γ ) − 3b

2
sin2(γ )cos(γ ),

(162)

a022 := 2sin(γ )cos2(γ ) − sin(γ ) − 3c

2
sin2(γ )cos(γ ),

(163)

a023 := 3b sin2(γ )cos(γ ) + b2[6 sin(γ )cos2(γ )

− 3 sin(γ )] − 3b3

2
sin2(γ )cos(γ ), (164)

a024 := 3c sin2(γ )cos(γ ) + c2[6 sin(γ )cos2(γ )

− 3 sin(γ )] − 3c3

2
sin2(γ )cos(γ ), (165)

a300 := cos2(γ )

2
[5 cos2(γ ) − 4], (166)

a301 := − cos(γ )

6
[−15b sin(γ )cos2(γ ) + 23 cos3(γ )

+ 6b sin(γ ) − 18 cos(γ )], (167)

a302 := − cos(γ )

6
[−15c sin(γ )cos2(γ ) + 23 cos3(γ )

+ 6c sin(γ ) − 18 cos(γ )], (168)

a303 :=
(
1 − 23b2

2

)
cos4(γ ) +

(5b3
2

− 9b
)
sin(γ )cos3(γ )

+ 9b2 cos2(γ ) − b3 sin(γ )cos(γ ), (169)

a304 :=
(
1 − 23c2

2

)
cos4(γ ) +

(5c3
2

− 9c
)
sin(γ )cos3(γ )

+ 9c2 cos2(γ ) − c3 sin(γ )cos(γ ), (170)

a210 := 3

2
sin(γ )cos3(γ ), (171)

a211 := b [15
2
cos2(γ ) − 15

2
cos4(γ ) − 1]

+ 5sin(γ )cos(γ ) − 23

2
sin(γ )cos3(γ ), (172)

a212 := c [15
2
cos2(γ ) − 15

2
cos4(γ ) − 1]

+ 5sin(γ )cos(γ ) − 23

2
sin(γ )cos3(γ ), (173)

a213 :=
(
27b − 15b3

2

)
cos4(γ )

+
(
3 − 69b2

2

)
sin(γ )cos3(γ )

+
(15b3

2
− 21b

)
cos2(γ )

+ 15b2sin(γ )cos(γ ) − b3, (174)

a214 :=
(
27c − 15c3

2

)
cos4(γ )

+
(
3 − 69c2

2

)
sin(γ )cos3(γ )

+
(15c3

2
− 21c

)
cos2(γ )

+ 15c2sin(γ )cos(γ ) − c3, (175)

a120 := 3

2
sin2(γ )cos2(γ ), (176)

a121 := b
(

− 15

2
sin(γ )cos3(γ ) + 9

2
sin(γ )cos(γ )

)

+ 17

2
cos4(γ ) − 19

2
cos2(γ ) + 2, (177)

a122 := c
(

− 15

2
sin(γ )cos3(γ ) + 9

2
sin(γ )cos(γ )

)

+ 17

2
cos4(γ ) − 19

2
cos2(γ ) + 2, (178)

a123 :=
(51b2

2
− 3

)
cos4(γ )

+
(
27b − 15b3

2

)
sin(γ )cos3(γ )

+
(
3 − 57b2

2

)
cos2(γ )

+
(9b3

2
− 15b

)
sin(γ )cos(γ ) + 6b2, (179)

a124 :=
(51c2

2
− 3

)
cos4(γ )

+
(
27c − 15c3

2

)
sin(γ )cos3(γ )

+
(
3 − 57c2

2

)
cos2(γ )

+
(9c3

2
− 15c

)
sin(γ )cos(γ ) + 6c2, (180)

a030 := 1

2
sin3(γ )cos(γ ), (181)

a031 := sin(γ )

6
[23 cos3(γ ) − 17 cos(γ )]

+ b sin2(γ )

2
[1 − 5 cos2(γ )], (182)

a032 := sin(γ )

6
[23 cos3(γ ) − 17 cos(γ )]

+ c sin2(γ )

2
[1 − 5 cos2(γ )], (183)

a033 :=
(23b2

2
− 1

)
cos3(γ )sin(γ )

−
(5b3

2
− 9b

)
sin2(γ )cos2(γ )

+
(
1 − 17b2

2

)
sin(γ )cos(γ )
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+
(b3
2

− 3b
)
sin2(γ ), (184)

a034 :=
(23c2

2
− 1

)
cos3(γ )sin(γ )

−
(5c3

2
− 9c

)
sin2(γ )cos2(γ )

+
(
1 − 17c2

2

)
sin(γ )cos(γ )

+
( c3
2

− 3c
)
sin2(γ ), (185)

b000 := cos(γ ), (186)
b001 := b sin(γ ), (187)
b002 := c sin(γ ), (188)

b003 := b3sin(γ ), (189)

b004 := c3sin(γ ), (190)
b100 := sin(γ )cos(γ ), (191)
b101 := cos(γ )[b cos(γ ) + sin(γ )], (192)
b102 := cos(γ )[c cos(γ ) + sin(γ )], (193)

b103 := b2cos(γ )[3sin(γ ) + b cos(γ )], (194)

b104 := c2cos(γ )[3sin(γ ) + c cos(γ )], (195)

b010 := −1 − cos2(γ ), (196)
b011 := sin(γ )[b cos(γ ) + sin(γ )], (197)
b012 := sin(γ )[c cos(γ ) + sin(γ )], (198)

b013 := b2sin(γ )[3sin(γ ) + b cos(γ )], (199)

b014 := c2sin(γ )[3sin(γ ) + c cos(γ )], (200)

b200 := cos3(γ )

2
, (201)

b201 := − cos(γ )

2
[2 − 4 cos2(γ ) + 3b sin(γ )cos(γ )],

(202)

b202 := − cos(γ )

2
[2 − 4 cos2(γ ) + 3c sin(γ )cos(γ )],

(203)

b203 := −3b

2
cos(γ )[b2 sin(γ )cos(γ ) − 4b cos2(γ )

− 2sin(γ )cos(γ ) + 2b], (204)

b204 := −3c

2
cos(γ )[c2 sin(γ )cos(γ ) − 4c cos2(γ )

− 2sin(γ )cos(γ ) + 2c], (205)

b110 := −sin3(γ ), (206)

b111 := b [3cos3(γ ) − 2cos(γ )]
+ 4sin(γ )cos2(γ ) − sin(γ ), (207)

b112 := c [3cos3(γ ) − 2cos(γ )]
+ 4sin(γ )cos2(γ ) − sin(γ ), (208)

b113 := b3 [3cos3(γ ) − 2cos(γ )]
+ 3b2 [4cos2(γ )sin(γ ) − sin(γ )]
− 6b[cos3(γ ) − cos(γ )], (209)

b114 := c3 [3cos3(γ ) − 2cos(γ )]
+ 3c2 [4cos2(γ )sin(γ ) − sin(γ )]
− 6c[cos3(γ ) − cos(γ )], (210)

b020 := − cos(γ )

2
[cos2(γ ) − 3], (211)

b021 := sin(γ )

2
[3b cos2(γ ) + 4sin(γ )cos(γ ) − b], (212)

b022 := sin(γ )

2
[3c cos2(γ ) + 4sin(γ )cos(γ ) − c], (213)

b023 := b

2
sin(γ )[3b2 cos2(γ ) + 12b sin(γ )cos(γ )

− 6cos2(γ ) − b2 + 6], (214)

b024 := c

2
sin(γ )[3c2 cos2(γ ) + 12c sin(γ )cos(γ )

− 6cos2(γ ) − c2 + 6], (215)

b300 := −1

2
sin(γ )cos3(γ ), (216)

b301 := − cos(γ )

6
[3b cos3(γ ) + 23 sin(γ )cos2(γ )

− 6sin(γ )], (217)

b302 := − cos(γ )

6
[3c cos3(γ ) + 23 sin(γ )cos2(γ )

− 6sin(γ )], (218)

b303 :=
(
9b − b3

2

)
cos4(γ )

+
(
1 − 23b2

2

)
sin(γ )cos3(γ )

− 6b cos2(γ ) + 3b2 sin(γ )cos(γ ), (219)

b304 :=
(
9c − c3

2

)
cos4(γ )

+
(
1 − 23c2

2

)
sin(γ )cos3(γ )

− 6c cos2(γ ) + 3c2 sin(γ )cos(γ ), (220)

b210 := −3

2
sin2(γ )cos2(γ ), (221)

b211 := b[−15

2
cos3(γ )sin(γ ) + 3sin(γ )cos(γ )]

+ 19

2
cos4(γ ) − 17

2
cos2(γ ) + 1, (222)

b212 :=c[−15

2
cos3(γ )sin(γ ) + 3sin(γ )cos(γ )]

+ 19

2
cos4(γ ) − 17

2
cos2(γ ) + 1, (223)

b213 :=
(69b2

2
− 3

)
cos4(γ )

+
(
27b − 15b3

2

)
cos3(γ )sin(γ )

+
(
3 − 63b2

2

)
cos2(γ )

+
(
3b3 − 12b

)
cos(γ )sin(γ ) + 3b2, (224)
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b214 :=
(69c2

2
− 3

)
cos4(γ )

+
(
27c − 15c3

2

)
cos3(γ )sin(γ )

+
(
3 − 63c2

2

)
cos2(γ )

+
(
3c3 − 12c

)
cos(γ )sin(γ ) + 3c2, (225)

b120 := −3

2
cos(γ )sin3(γ ), (226)

b121 := b[15
2
cos4(γ ) − 15

2
cos2(γ ) + 1]

+ 23

2
cos3(γ )sin(γ ) − 13

2
cos(γ )sin(γ ), (227)

b122 := c[15
2
cos4(γ ) − 15

2
cos2(γ ) + 1]

+ 23

2
cos3(γ )sin(γ )

− 13

2
cos(γ )sin(γ ), (228)

b123 :=
(15b3

2
− 27b

)
cos4(γ )

+
(69b2

2
− 3

)
cos3(γ )sin(γ )

+
(
33b − 15b3

2

)
cos2(γ )

+
(
3 − 39b2

2

)
cos(γ )sin(γ ) + b3 − 6b, (229)

b124 :=
(15c3

2
− 27c

)
cos4(γ )

+
(69c2

2
− 3

)
cos3(γ )sin(γ )

+
(
33c − 15c3

2

)
cos2(γ )

+
(
3 − 39c2

2

)
cos(γ )sin(γ ) + c3 − 6c, (230)

b030 := − sin2(γ )

2
[cos2(γ ) − 2cos(γ ) + 1], (231)

b031 := sin(γ )

6
[15b cos3(γ ) + 23 cos2(γ )sin(γ )

− 9b cos(γ ) − 5sin(γ )], (232)

b032 := sin(γ )

6
[15c cos3(γ ) + 23 cos2(γ )sin(γ )

− 9c cos(γ ) − 5sin(γ )], (233)

b033 :=
(5b3

2
− 9b

)
cos3(γ )sin(γ )

+
(23b2

2
− 1

)
cos2(γ )sin2(γ )

+
(
9b − 3b3

2

)
sin(γ )cos(γ )

+
(
1 − 5b2

2

)
sin2(γ ), (234)

b034 :=
(5c3

2
− 9c

)
cos3(γ )sin(γ )

+
(23c2

2
− 1

)
cos2(γ )sin2(γ )

+
(
9c − 3c3

2

)
sin(γ )cos(γ )

+
(
1 − 5c2

2

)
sin2(γ ). (235)

Appendix B: Stationary solution ûx and v̂x

The stationary solution follows fromEqs. (31) and (32)
by considering no time dependence, yielding

− E

M

∂

∂x

(
ûx + v̂2x

2

)
= 0 (236)

E Iy
AM

v̂xxxx − T0
AM

v̂xx − E

M

∂

∂x

[
v̂x

(
ûx + v̂2x

2

)]

= (L − x) g sin(α)v̂xx − g sin(α)v̂x

+ g cos(α) − ρa

2AM
dLv2∞A00. (237)

It will be assumed that û is O(ε2), v̂ is O(ε), Ã is
O(ε), gsin(α) = P∗

0 is O(1), E
M = P∗

1 is O(1/ε),
E Iy
AM = P∗

2 isO(1/ε), and T0
AM = P∗

3 isO(1/ε), where
ε is a small parameter with 0 < ε � 1. Then, by using
these assumptions, Eqs. (236) and (237) become

−P∗
1

∂

∂x

(
ûx + v̂2x

2

)
= 0, (238)

P∗
2 v̂xxxx − P∗

3 v̂xx − P∗
1

∂

∂x

[
v̂x

(
ûx + v̂2x

2

)]

= ∂

∂x

[
P∗
0 (L − x)gsin(α)v̂x

]

+P∗
4 − ρa

2AM
dLv2∞A00 + O(ε). (239)

with the boundary conditions

û(L) = û(0) = 0,

v̂(0) = v̂xx (0) = v̂x (L) = 0,

E Iy v̂xxx (L) = T0v̂x (L). (240)

When Eqs. (238) and (239) are integrated with
respect to x , we may rewrite

Y
(
ûx + v̂2x

2

)
= k1, (241)

v̂xxx − P∗
3

P∗
2

v̂x − P∗
1

P∗
2

∂

∂x

[
v̂x

(
ûx + v̂2x

2

)]

123



On boundary damping to reduce the rain–wind 807

= P∗
0

P∗
2

(L − x)gsin(α)v̂x

+ P∗
4 x

P∗
2

− ρa

2AMP∗
2
dLv2∞A00x + k2, (242)

where k1 and k2 are constants of integration. Substitute
Eq. (241) into Eq. (242), we obtain

v̂xxxx − v̂x (k3 − xk4) = k2 + xk5, (243)

where k4 = P∗
0

P∗
2
gsin(α), k3 = (P∗

3 +P∗
1 k1)

P∗
2

+ Lk4, and

k5 = P∗
4

P∗
2

− ρa
2AMP∗

2
dLv2∞A00. In order to solve the

non-homogeneous PDE Eq. (243), we will apply the
method of variation of parameters and obtain

v̂(x) =
∫ x

0
C1Ai

( k3 − x̄k4

k2/34

)
dx̄

+
∫ x

0
C2Bi

( k3 − x̄k4

k2/34

)
dx̄

−
∫ x

0
Ai

( k3 − x̄k4

k2/34

){∫ x̄

0

( k2 + sk5
Wr(s)

)
Bi

( k3 − sk4

k2/34

)
ds

}
dx̄

+
∫ x

0
Bi

( k3 − x̄k4

k2/34

){∫ x̄

0

( k2 + sk5
Wr(s)

)
Ai

( k3 − sk4

k2/34

)
ds

}
dx̄ + C3.

(244)

Here Ai and Bi are Airy functions, and C1,C2 and
C3 are constants of integration, and

Wr(x) = Ai

(k3 − xk4

k2/34

) d

dx

[
Bi

(k3 − xk4

k2/34

)]

−Bi
(k3 − xk4

k2/34

) d

dx

[
Ai

(k3 − xk4

k2/34

)]
. (245)

Substituting Eq. (244) into Eq. (241) and integrated
with respect to x , we obtain

û(x) = k1x − 1

2

∫ x

0

{
C1Ai

( k3 − x̄k4

k2/34

)

+ C2Bi
( k3 − x̄k4

k2/34

)

− Ai

( k3 − x̄k4

k2/34

)[ ∫ x̄

0

( k2 + sk5
Wr(s)

)
Bi

( k3 − sk4

k2/34

)
ds

]

+ Bi
( k3 − x̄k4

k2/34

)[ ∫ x̄

0

( k2 + sk5
Wr(s)

)
Ai

( k3 − sk4

k2/34

)
ds

]}2

dx̄

+ C4. (246)

where C4 is a constant of integration. By satisfying
boundary conditions of Eq. (240) for stationary solu-

tion, we obtain

k1 := 1

2L

∫ L

0
v̂2x̄dx̄, (247)

k2 := N3F1 − F3N1

N1F2 + F1N2
, (248)

C1 := −C2

Bi
(
1, k3

k2/34

)

Ai

(
1, k3

k2/34

) , (249)

C2 := N3F2 + F3N2

N1F2 + F1N2
, (250)

C3 := C4 = 0, (251)

where

N1 :=
{

− Ai

( k3 − Lk4

k2/34

) Bi
(
1, k3

k2/34

)

Ai

(
1, k3

k2/34

)

+ Bi
( k3 − Lk4

k2/34

)}
, (252)

N2 :=
{

− Ai

( k3 − Lk4

k2/34

) ∫ L

0

1

Wr(x̄)
Bi

( k3 − x̄k4

k2/34

)
dx̄

+ Bi
( k3 − Lk4

k2/34

) ∫ L

0

1

Wr(x̄)
Ai

( k3 − x̄k4

k2/34

)
dx̄

}
, (253)

N3 :=
{
Ai

( k3 − Lk4

k2/34

) ∫ L

0

x̄k5
Wr(x̄)

Bi
( k3 − x̄k4

k2/34

)
dx̄

− Bi
( k3 − Lk4

k2/34

) ∫ L

0

x̄k5
Wr(x̄)

Ai

( k3 − x̄k4

k2/34

)
dx̄

}
, (254)

F1 := E Iy
T0

(k3 − Lk4)

{
Bi

( k3 − Lk4

k2/34

)

− Ai

( k3 − Lk4

k2/34

) Bi
(
1, k3

k2/34

)

Ai

(
1, k3

k2/34

)
}
, (255)

F2 := E Iy
T0

(k3 − Lk4)

{
Ai

( k3 − Lk4

k2/34

) ∫ L

0

1

Wr(x̄)
Bi

( k3 − x̄k4

k2/34

)
dx̄

− Bi
( k3 − Lk4

k2/34

) ∫ L

0

1

Wr(x̄)
Ai

( k3 − x̄k4

k2/34

)
dx̄

}

+ E Iy
T0

k1/34

{
Ai

(
1,

k3 − Lk4

k2/34

) 1

Wr(L)
Bi

( k3 − Lk4

k2/34

)

− Bi
(
1,

k3 − Lk4

k2/34

) 1

Wr(L)
Ai

( k3 − Lk4

k2/34

)}
, (256)

F3 := E Iy
T0

(k3 − Lk4)

{
Ai

( k3 − Lk4

k2/34

) ∫ L

0

x̄k5
Wr(x̄)

Bi
( k3 − x̄k4

k2/34

)
dx̄

− Bi
( k3 − Lk4

k2/34

) ∫ L

0

x̄k5
Wr(x̄)

Ai

( k3 − x̄k4

k2/34

)
dx̄

}
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+ E Iy
T0

k1/34

{
− Ai

(
1,

k3 − Lk4

k2/34

) Lk5
Wr(L)

Bi
( k3 − Lk4

k2/34

)

+ Bi
(
1,

k3 − Lk4

k2/34

) Lk5
Wr(L)

Ai

( k3 − Lk4

k2/34

)}
. (257)
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