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Abstract  

Natural gas vehicles (NGV) face significant adoption barriers in Jakarta. Therefore, a 

successful transition requires measures from the government. Owing to the high cost of 

transition policies, the efficacy of these policies must be analyzed to identify the most 

effective policy. The implementation of transition policies, however, could dynamically 

influence people’s perception and behavior, which then changes the landscape of adoption 

barriers. Furthermore, even a seemingly successful policy may fail when a certain pathway of 

uncertainties emerges in the future. To address these concerns, we integrated agent-based 

modeling, exploratory modeling, and diffusion of innovation theory into the exploratory 

model-based diffusion analysis approach. This approach evaluates the policy’s performance, 

explores changes in the relative importance of different adoption barriers, and identifies 

policy vulnerabilities, i.e., scenarios leading to policy failures. We tested this approach on 

four NGV transition policies targeting three adoption barriers. We found that the importance 

of adoption barriers and the critical uncertainties upon the implemented policies. The social–

behavioral barrier predominates under current conditions, whereas the economic factor 

becomes more relevant when all policies are executed. Understanding the changes in adoption 

barriers and policy vulnerabilities will help decision-makers to prepare additional measures 

that ensure a successful transition. 

 

Keywords: Adoption Barriers, Technology Diffusion, Exploratory Modelling, Policy 

Vulnerabilities, Natural Gas Vehicles  
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1 Introduction 

Concerns related to energy security have encouraged the Indonesian government to promote 

energy diversification (Erahman et al., 2016). Since the late 1980s, the Indonesian 

government has introduced natural gas vehicles (NGV) as a clean alternative to gasoline and 

diesel vehicles (Hartanto et al., 2012). The aim was primarily to reduce the consumption of 

fossil fuels and CO2 emissions in the transportation sector. Several policies were implemented 

by the Indonesian government to support the uptake of NGV, including enforcing regulations 

on securing gas supply, controlling gas prices, and accelerating the development of gas 

refueling stations (Hartanto et al., 2012; Sopha et al., 2017). Despite extensive efforts, the 

increase in the usage of NGV in Indonesia has been quite slow, which can be confirmed by 

the minimal increase in the number of NGV (Sopha et al., 2017). At present, there are ~5690 

NGVs in Indonesia, which is significantly lower in comparison to other Asian countries, such 

as India (~1,800,000), Pakistan (~2,790,000), and Iran (~3,500,000) (NGVJournal, 2014). 

Barriers such as social, economic, and technological factors have been the primary reasons 

behind this discouraging outcome (Hartanto et al., 2012).  

 

NGV adoption in Indonesia reflects a complex dynamic process. It also represents a socio-

technical transition of technology diffusion, encompassing the embeddedness of technology 

within its broader systems of practices (Jacobsson & Bergek, 2011). Technology diffusion 

involves multisector interdependencies carrying related uncertainties and risks (Raven & 

Verbong, 2007). Hence, despite the implementation of specific policies and strategy 

development, barriers may expand, new problems may arise, and undesirable social, 

economic, and environmental consequences may emerge during the diffusion process. The 

diffusion of innovation (DOI) theory captures the socio-technical transition phenomena by 

specifying several factors contributing to technology adoption: the adopters’ characteristics, 

technology attributes, communication channels, and decision-making processes (Rogers, 

2010). Potential adopters can be typically classified into five categories, depending on their 

willingness to purchase new technology: innovators, early adopters, early majority, late 

majority, and laggards (Robertson, 1967). These categories show that adopters play different 

roles in triggering the diffusion in a given market; therefore, their attitudes are crucial to the 

diffusion process (Im et al., 2003). For this reason, adopters’ decision-making behavior has 
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received considerable attention in socio-technical transitions studies (Farmer & Foley, 2009; 

Im et al., 2003).  

 

Socio-technical transitions have been studied using different approaches. Within transitions 

research, socio-technical transformations have been extensively formulated or modeled using 

various transition modeling approaches (Bergman et al., 2008; Köhler et al., 2018a). Agent-

based modeling is among of the most widely used approaches (Bergman et al., 2008; Holtz et 

al., 2015; Köhler et al., 2018a; Rahmandad & Sterman, 2008). Agent-based modeling 

captures the heterogeneity of adopters and models the dynamics of micro-level decision-

making and the interactions between actors (Bonabeau, 2002; Farmer & Foley, 2009). Among 

the different socio-technical transition studies, this approach has been extensively applied to 

diffusion of new energy technologies (Hansen et al., 2019) such as electric cars (Noori & 

Tatari, 2016; Wolf et al., 2015), solar PV and battery systems (Palmer et al., 2015; Rai & 

Robinson, 2015), and micro-cogeneration (Faber et al., 2010). Additionally, transitions in the 

mobility sector have been investigated using agent-based modeling as well (Köhler et al., 

2018b; Köhler et al., 2009; Moallemi & Köhler, 2019). Most of these studies were intended to 

elucidate adoption barriers and to explore the effectiveness of alternative transition policies. 

 

To date, very few studies on NGV adoption in Indonesia have examined both the barriers and 

potential supporting policies for adoption. Hartanto et al. (2012) discussed the development 

and barriers of NGV adoption in Indonesia. Using the agent-based modeling approach, Sopha 

et al. (2017) explored policy options that support NGV adoption by examining the decision-

making processes of adopters. These studies, however, neglected two policy-relevant 

concerns. First, these studies do not systematically explore nor explain which adoption 

barriers are to be targeted and affected by alternative transition policies Thorough insights 

into the existing adoption barriers and their interactions with the heterogeneity of potential 

adopters are keys to successful adoption of a new technology, including NGV (Tran et al., 

2012). A more detailed understanding would empower policymakers to target specific stages 

in the adoption process, and hence improve the adoption rate.  

 

The second concern is neglecting the uncertainties in the transition dynamics and in the 

simulation models supporting those transitions, which are often subject to deep uncertainties 

(Ascough et al., 2008; van Asselt & Rotmans, 2002). Deep uncertainties depict conditions 

under which policymakers and analysts cannot agree on the relative importance of the 
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outcomes to be considered, do not know or cannot characterize the probability distributions of 

some variables, and/or cannot concede the underlying relationships among the system 

variables (Lempert et al., 2003; Walker et al., 2013a). By accounting for deep uncertainties in 

the analysis, one can identify the vulnerabilities of alternative policies, i.e., the future states of 

the world in which the policies fail to meet their intended goals (Bryant & Lempert, 2010; 

Walker et al., 2001). One can also evaluate the policy robustness, i.e., to what extent the 

policies remain successful in the face of deep uncertainties (Lempert et al., 2006; Maier et al., 

2016; McPhail et al., 2018). When deep uncertainties are ignored and simplified in model-

based analyses, the resulting policy recommendations will most certainly fail if the future 

uncertainties materialize differently from those of the model assumptions (Haasnoot et al., 

2013; Lempert, 2002; Schweizer, 2018; Walker et al., 2013b). 

 

Deep uncertainties inherently exist in models that analyze transitions to and adoption of new 

technologies (Moallemi et al., 2017; Moallemi & Köhler, 2019; Noori & Tatari, 2016). For 

example, the survey data of consumer behavior fed to a model do not always extensively 

capture the consumers’ heterogeneity (McCoy & Lyons, 2014). Moreover, these models are 

developed by competing agent-level decision-making theories, such as planned behavior 

theory (Ajzen, 1991; Kowalska-Pyzalska et al., 2014; Rai & Robinson, 2015), utility 

functions (Palmer et al., 2015; Sopha et al., 2017), and the consumat approach (Jager et al., 

2001; Janssen & Jager, 1999). The model structure may conceivably depend on the selected 

decision-making framework. To account for deep uncertainties in model-based analysis, 

researchers have proposed the Exploratory Modeling and Analysis (EMA) approach (Bankes, 

1993; Bankes, 2002; Kwakkel, 2017; Kwakkel & Pruyt, 2013; Moallemi & Malekpour, 2018; 

van Asselt & Rotmans, 2002). The EMA proposes that a model be used for exploratory 

purposes rather than for prediction. Specifically, a user of this approach conducts large-scale 

computational experiments of the model by sampling and searching over the plausible 

uncertainty space, and then systematically explores the space of model outcomes. Sampling 

techniques and machine learning algorithms are the primary components of this approach. 

 

To address the abovementioned concerns, we aim to examine the effectiveness and 

vulnerabilities of alternative policies by considering the case of NGV diffusion in Jakarta, 

Indonesia, as a case study. For this purpose, we introduce the exploratory model-based 

diffusion analysis (EMBDA) approach, which integrates agent-based modeling, DOI theory, 

and exploratory modeling to identify dominant adoption barriers and policy vulnerabilities 
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under deep uncertainties. Generally, agent-based modeling is employed to evaluate the 

performance of alternative policies, explore changes in the adoption barriers resulting from 

policy implementation, and assess the vulnerability of each policy alternative to deep 

uncertainties. In this study, the agent-based model is built on the DOI theory. Furthermore, 

the exploratory modeling approach is used to generate computational experiments on top of 

the model to embrace deep uncertainties.  

 

The remainder of this paper is structured as follows. In Section 2, we explain the methodology 

used to examine the case study and how it is applied. In Section 3, we present and discuss the 

results of the study. In Section 4, we discuss the conclusion and policy implications of the 

study.  

2 Methodology 

To evaluate the consequences and vulnerabilities of alternative transition policies, we apply 

the exploratory modeling and analysis (EMA) approach to an agent-based model of 

technology diffusion. The model is built on the DOI theory, in which agents proceed through 

certain stages of adoption (Rogers, 2010). EMA is applied to generate computational 

experiments for this model and to evaluate the results (Kwakkel, 2017; Kwakkel & Pruyt, 

2013). This approach allows for embracing deep uncertainties, which are ubiquitous in 

technology diffusion problems (Lempert, 2002). We integrate agent-based modeling, DOI 

theory, and EMA into the EMBDA approach, as shown in Figure 1. We follow this approach 

to evaluate alternative transition policies for NGV adoption in Jakarta. 

 

[Figure 1 here] 

 

2.1 Agent-based model description 

In Jakarta, most NGVs are private cars that have been converted from gasoline or diesel. 

Accordingly, the agent-based model accounts for the heterogeneity of the socio-economic 

background and the geographical location of car owners. It comprises the agents’ properties, 

their actions, and alternative transition policies by the government. The agents’ properties are 

categorized into states (i.e., their stage of adoption) and attributes (e.g., their socio-economic 

background) (Van Dam et al., 2012). Of core importance in an agent-based adoption model is 

the conceptualization of adoption barriers. By evaluating numerous agent-based adoption 

studies, Hesselink and Chappin (2019) reported that the barriers considered in such studies 
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could be categorized into structural, economic, social, and behavioral factors. Accordingly, 

we consider the same categories of adoption barriers in the model.  

 

New vehicle technology often requires different types of fuel. Accordingly, in agent-based 

modeling studies on the adoption of new vehicle technology, the structural barrier that is most 

considered is the availability of the fuel supply infrastructure (Huétink et al., 2010; Sweda & 

Klabjan, 2011). The lack of infrastructure would cause inconvenience to potential adopters, 

preventing them from adopting the new technology. The economic barrier comprises an 

upfront purchasing cost and the expected relative savings from the operational cost 

(Sierzchula et al., 2014). The latter depicts the difference in the maintenance cost and the fuel 

price between the new and the old technology. Both social and behavioral barriers are closely 

interlinked. The social barrier is primarily concerned with the agents’ interactions with their 

social network (e.g., homophily and conformity as considered by Eppstein et al. (2011). The 

behavioral barrier is concerned with the agents’ ignorance because of information 

unavailability, which was also affected by their social network.  

 

To simplify the complex phenomenon of NGV transition in Jakarta, we make three major 

assumptions. First, we assume that car owners adopt NGV by upgrading their gasoline car 

using converter kits rather than buying a new car; hence, the investment cost is the purchasing 

price of the converter kit. In Jakarta, this technology is preferred because it allows car owners 

to revert to gasoline-powered vehicles. Second, we assume that the gas and oil fuel prices are 

constant throughout the simulation. In reality, these prices tend to be constant over three to 

five years unless there is a major shock in the global market. We ignore such shock scenarios 

and instead treat the spiked prices as part of the uncertainties. Third, we limit the considered 

adoption barriers to one or two specific barriers in each of the four barrier categories, i.e., the 

structural, economic, social, and behavioral factors (Hesselink & Chappin, 2019). The chosen 

assumptions primarily depend on which details are irrelevant to the policy.  

 

2.1.1 Agent attributes  

Car owners are considered as agents in our model. As approximately 3.5 million cars were 

registered in Jakarta in 2016 (Pardosi et al., 2017), we represent 1000 car owners as a single 

agent, thus providing a total of 3480 agents in the model. Each agent is characterized by its 

attributes, i.e., its spatial, socioeconomic, and behavioral properties. To account for the 

heterogeneity of agents, the values of each attribute assigned to the agents are based on 
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certain probability distributions. Most of these distributions were derived from official and 

local statistics reports and from previous large-scale transport and commuting surveys 

(JUTPI, 2012; Pardosi et al., 2017; SITRAMP, 2004). The details of these attributes and the 

model in general are provided in Appendix A. The description follows the ODD+D protocol 

(Müller et al., 2013). 

 

The model is spatially explicit to accommodate the structural barrier of NGV adoption. 

During weekdays, the agents travel to and from their assigned home and work locations. The 

home location of the agents is spatially distributed across the 42 districts in Jakarta. The 

spatial distribution is linearly related to the population of the districts, as shown in Figure 2. 

The agents use the closest NGV refueling station to either their home or work location. The 

closest NGV refueling station of each agent is annually updated to reflect the building of new 

refueling stations. Figure 2 shows the locations of the existing NGV and oil refueling stations. 

As seen in the figure, the NGV refueling stations are dominated by oil refueling stations.  

 

[Figure 2 here] 

 

An important economic attribute of the agents is their monthly income. Because of the lack of 

detailed information on provincial-level income statistics, this attribute is estimated based on 

the education background and the age of the agents along with the minimum wage level in 

Jakarta. Accordingly, the income is annually updated, along with the agents’ age. 

Furthermore, the social–behavioral attributes of the agents include their social network, i.e., 

with whom they interact, their degree of innovativeness, and the frequency of their 

interaction.  

 

2.1.2 Agent states and decision-making  

Figure 3 shows the five stages an agent undergoes prior to finally adopting an NGV. Among 

these states, various adoption barriers exist along with the transition phases; some barriers 

strictly prevent the transition between states (Transition 1 and 3 in Figure 3), while others 

only delay the transition (Transition 2 and 4). Transition 1 requires agents in the Potential 

state to be triggered by a “message” from agents in the Adopter state. Adopter agents 

randomly send the “message” to two of their social networks. This message-triggered 

transition logic is based on behavioral problems of ignorance and availability bias, which are 

prevalent in agent-based energy-efficient adoption studies (Moglia et al., 2017).  
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[Figure 3 here] 

 

Two economic barriers, i.e., Transition 2 and Transition 4, can delay the adoption process. 

Agents in the Aware state are assumed to know the potential of NGV technology; however, 

they have not evaluated benefits in detail. Hence, the time required for an agent to move to the 

Evaluating state is dependent on the perceived economic benefits of adopting the NGV, which 

is approximated by the ratio of the gas fuel price and the oil fuel price. Once the agent enters 

the Deciding state, they have a better understanding of the economic benefits of adopting 

NGV. Thus, the delay time of Transition 4 is dependent on the expected break-even point of 

purchasing the converter kit (see Table 1 for further explanation). 

 

Transition 3 includes social-behavioral, economic, and structural barriers. Figure 4 shows the 

decision-making logic within this transition. Agents regularly evaluate these conditions about 

three times a year. The social–behavioral barrier demands a significant portion of an agent’s 

social network to have already adopted NGV before that particular agent decides to follow the 

trend. This barrier symbolizes social network adoption and DOI theories. The former reveals 

that the tendency of an agent to change their behavior increases with the increase in social 

reinforcement from their network (Centola, 2010). The latter reveals that the social network 

impact on a person’s adoption behavior is dependent on their degree of innovativeness 

(Rogers, 2010).  

 

[Figure 4 here] 

 

The economic barrier constrains agents from adopting NGV based on their financial capacity 

to purchase converter kits. The agents’ annual income and their willingness to sacrifice their 

income to purchase converter kits (i.e., their affordability threshold) are important factors of 

this barrier. Most households in Jakarta spend less than 20% of their income on transportation 

(Sugiarto et al., 2014); therefore, we assume that the affordability threshold follows a 

triangular distribution from 7.5% to 12.5%. In addition to the economic barrier, the 

availability of refueling stations close to the agents’ home or work locations epitomizes the 

structural barrier. Previous surveys have reported that citizens in Jakarta are willing to travel 

for a maximum of approximately 3.33 to 6.67 kilometers to refuel their cars (JUTPI, 2012; 

SITRAMP, 2004). If the distance to the nearest refueling station is above this threshold, the 
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agent will be hesitant to adopt NGV, even when the social–behavioral and economic barriers 

are overcome.  

 

2.1.3 Policy interventions and performance indicators 

We evaluate three alternative policy interventions that have been publicly debated for a long 

time and will likely improve the adoption of NGV in Jakarta. Each policy focuses on different 

adoption barriers. The alternative policies include distribution of free converter kits, reduction 

in converter kit purchasing price through subsidies, and construction of new NGV refueling 

stations. In addition to these policies, this study considers a baseline policy with the following 

assumptions: (i) at the start of the simulation, seven agents that represent around 7000 NGV 

in Jakarta are placed directly in the Adopter state, while the rest of the agents are in the 

Potential state; (ii) the converter kit price starts at IDR 17 million (~$1200) and decreases by 

2% each year because of technological advancement; and (iii) there are 13 fully operating 

refueling stations (Hartanto, 2017), and, according to the central government plan, two 

additional refueling stations will become operational every two simulation years.  

 

In addition to each individual policy, the combination of all policies is tested, which results in 

five policy setups: 

1. Baseline policy: No additional interventions. 

2. Kit subsidy policy: Reducing the converter kits' price by 10%. This policy attempts to 

offset the economic barrier by making the converter kits more affordable. 

3. Free kit policy: Distributing 20,000 free converter kits. In the model, this corresponds to 

20 additional agents that enter the Adopter state at the beginning of the simulation. This 

policy attempts to offset the social–behavioral barrier as there are more adopters. 

4. Infrastructure enhancement policy: Substantially accelerating the development of the 

refueling stations by constructing 70 new refueling stations within ten simulation years. 

This policy attempts to offset the structural barrier by strengthening the fuel supply 

infrastructure. 

5. Integrated policy: Combination of subsidy policy for kits, free kit policy, and 

infrastructure enhancement policy. 

 

The model is implemented in AnyLogic simulation package. The simulation is run for 14 

years from 2017 to 2030. At the end of the run, two groups of performance indicators are 

observed. The first one is the number of agents in each adoption state. Of particular interest is 
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the number of agents in the Adopter state and those in the Potential and Evaluating states. A 

high number of agents in the Potential state indicates a low degree of citizen awareness for 

NGV; while a high number of agents in the Evaluating state indicates that many car owners 

failed to overcome the strict adoption barriers. This leads to the second group of indicators, 

called “the adoption lags.” This group of indicators attempts to unravel the most critical 

barriers that prevent diffusion. In particular, we record the number of agents in the Evaluating 

state who fail to meet either the social–behavioral, the economic, or the structural barrier, and 

we label them as social lags, economic lags, and structural lags, respectively.  

 

2.2 Exploratory model-based diffusion analysis 

Embracing deep uncertainties in new technology diffusion problems requires a different 

approach in the simulation models. One popular approach to support decision-making under 

deep uncertainties is the EMA approach (Bankes, 1993; Bankes, 2002; Kwakkel, 2017; 

Kwakkel & Pruyt, 2013), which requires systematic exploration of different uncertainties in 

model inputs and assumptions in the model structure by generating an ensemble of simulation 

runs. EMA is a generic approach that is applicable to various modeling paradigms such as 

integrated assessment models (e.g., Lamontagne et al., 2018; Rozenberg et al., 2014), system 

dynamics (e.g., Eker & van Daalen, 2015; Hamarat et al., 2014; Moallemi et al., 2017; Pruyt 

& Kwakkel, 2014), and agent-based models (e.g., Gerst et al., 2013; Greeven et al., 2016; 

Jaxa-Rozen et al., 2019; Moallemi & Köhler, 2019). While this universal approach can be 

applied to several cases, a tailored EMA approach specific to model-based diffusion studies 

has not been reported to date. To address this gap, we combined EMA with the DOI theory 

and developed the Exploratory Model-based Diffusion Analysis (EMBDA) approach.  

 

2.2.1 Exploratory Modeling and Analysis (EMA)  

EMA is the systematic exploration of the impacts of various parametric, structural, and 

methodological uncertainties on the performance indicators of a simulation model (Bankes et 

al., 2013). EMA aims at using simulation models not for “prediction,” but rather for 

“exploration” purposes. EMA comprises three main steps: generation of an ensemble of 

scenarios, execution of simulation runs on these scenarios and inductive reasoning on the 

simulation results. Accordingly, the first step in EMA concerns the experimental design of 

scenarios that span the entire plausible range of model parameters and competing alternative 

model structures (Islam & Pruyt, 2016; Moallemi et al., 2018). This step uses statistical 
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sampling techniques such as the Monte Carlo or the Latin hypercube sampling (Herman et al., 

2015; Kwakkel, 2017).  

 

The next step in EMA entails conducting a backward induction from the simulation results to 

model parameters and structures using scenario discovery techniques (Bryant & Lempert, 

2010; Groves & Lempert, 2007; Lempert et al., 2008; Lempert et al., 2006). These techniques 

are probability neutral, and they attempt to map the scenarios (input space) to performance 

indicators (output space) without applying the probabilistic aggregation approaches from the 

simulation results. Scenario discovery can help in identify policy vulnerabilities, i.e., the 

condition under which a policy fails to meet its objective (Walker et al., 2001). By analyzing 

policy vulnerabilities, one can increase the robustness of the policy by formulating further 

hedging and shaping actions that can safeguard the success of the policy (Dewar, 2002).  

 

Two steps exist in scenario discovery techniques (Bryant & Lempert, 2010). First, the 

threshold value for the outcomes of interest must be determined. The simulation runs, and 

their associated scenarios are classified into those whose performance indicators fall below 

(or above) the threshold and those that do not. In the case of new technology adoption, for 

instance, a low number of adopters is undesirable. A threshold is thus set at the minimum 

acceptable number of consumers who adopt the technology. Subsequently, in the second step, 

the scenario discovery algorithm identifies the combinations of uncertain parameters leading 

to these undesired outcomes. The Patient Rule Induction Method (PRIM), a bump-hunting 

algorithm, is most often used for this purpose (Friedman & Fisher, 1999; Lempert et al., 

2008). This algorithm maps the simulation results to their corresponding input parameters and 

then searches for regions within the input space with a high density of undesired simulation 

results.  

 

Experiments were conducted on the EMA workbench in the Python library (Kwakkel, 2017). 

The library provides a flexible and user-friendly interface for connecting simulation models to 

the entire exploratory modeling and analysis steps. The library adopts the XLRM framework 

(Lempert et al., 2003; Tran & Daim, 2008), wherein users must define the exogenous 

uncertain variables and their corresponding range of values (‘X’), the policy levers (‘L’), the 

system relationships encapsulated in the simulation model (‘R’), and the performance 

measures to be observed (‘M’). The library then supports the design, generation, and 
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execution of computational experiments in the simulation model and provides interfaces for 

visualizing and analyzing the results.  

 

2.2.2 Stages within the EMBDA approach 

We combined concepts from the DOI theory and steps within the EMA approach and 

formulated the EMBDA approach. The DOI theory focused on the importance of 

understanding both the impact of uncertainties in the system and the dominant adoption 

barriers and how policy interventions are related to those barriers (Foxon & Pearson, 2008; 

Hesselink & Chappin, 2019; Raven & Walrave, 2018; Reddy & Painuly, 2004). The EMA 

approach suggests the use of computational experiments to systematically map the outcomes 

of interest to the underlying assumptions and uncertainties. Therefore, combining these two 

concepts results in a three-stage approach, as depicted in Figure 1. 

 

The approach begins with a problem formulation. Besides developing the simulation model, 

we must clarify three further aspects. First, we must understand the prominent adoption 

barriers in the context of the study. To identify the most influential barriers, each barrier must 

be explicitly represented in the model. Next, each specific adoption barrier is attempted to be 

overcome through the development of policy interventions. Finally, we must identify the 

uncertainties that are influential to the adoption barriers and the decision-making processes. 

These uncertainties may originate from agent attributes (such as willingness to pay for new 

technology), external variables (such as crude oil price), or model structures (such as 

interaction patterns among the agents).  

 

Table 1 lists the uncertainties considered in the case study. This list encompasses the variables 

that directly influence the decision-making processes of the agents (see Figures 3 and 4). The 

value bandwidths of these uncertainties were inferred in two ways. To derive the uncertainties 

related to economic variables, we used the historical statistics of the variable complemented 

by a small additional margin. The uncertainties related to the states and behaviors of agents 

were inferred from transport surveys (JUTPI, 2012; SITRAMP, 2004; Sugiarto et al., 2014), 

and were also complemented by a small additional margin.  

 

[Table 1 here] 
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The activities in the problem formulation stage were intertwined in multiple ways, represented 

using bidirectional arrows in Figure 1. First, one must ensure that the relevant uncertainties, 

adoption barriers of potential adopters, and policy instruments are explicitly present in the 

model. If they cannot be explicitly represented, they must be replaced by proxy variables that 

can epitomize the uncertainties, adoption barriers, and policy interventions. Second, the 

identification of policy interventions should be based on the adoption barriers, i.e., the 

adoption barriers targeted by each policy intervention should be clearly delineated. Third, the 

possibility of uncertainties in (i) the heterogeneity of adoption barriers among the potential 

adopters, (ii) the effectiveness of policy interventions, and (iii) the structural uncertainties of 

the simulation models, must be considered. The interrelationships among the activities at this 

stage imply that the activities should be handled in an iterative way. 

 

The second stage operates the computational experiments. Here, future scenarios are 

generated based on the identified uncertainties. Specifically, in this study, 2,000 scenarios 

were created by uniformly sampling across the uncertainty space presented in Table 1. The 

performance indicators, namely, the number of agents in each adoption state and the number 

of agents facing different adoption barriers resulting from each policy, are evaluated in each 

scenario. A total of 10,000 simulation runs were executed in this experimental setup.  

 

The third stage, the vulnerability analysis, gains insights from the results of the computational 

experiments. The first step in this stage identifies the dominant adoption barrier that emerges 

when the policies are applied. In agent-based models, the dominant barrier is the barrier that 

prevents the most significant number of agents from adopting the new technology. 

Subsequently, the undesired scenarios could be classified based on the identified dominant 

adoption barrier. For example, if the results of a particular policy indicate that many agents 

face economic barriers, then the economic barrier for that particular policy would be used as 

an indicator for undesired scenarios. In our case study, we apply the 75
th

 percentile value of 

this indicator as a threshold. Note that simulation runs in which the performance indicator 

score falls above this threshold are characterized as undesirable. Finally, the scenario 

discovery algorithm is executed to identify the uncertainty space that causes undesired 

scenarios.  

 

The policy-relevant insight obtained from the third stage supports the design of additional 

policy packages to further improve the success of the adoption. Policymakers can consider 
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additional measures to increase the adoption rate of the new technology after examining the 

identified adoption barriers. Moreover, they may use the identified uncertainty space from the 

scenario discovery algorithm for this purpose. These measures can then be implemented in the 

model, and the same EMBDA steps can be followed. Finally, the information obtained 

regarding changes in the landscape of the adoption barriers can guide future studies that 

explore specific adoption barriers in further detail.  

3 Results and Discussion 

We generated 2000 scenarios and tested the impact of alternative policies in each scenario. As 

a result, we conducted a total of 10,000 simulation runs. We evaluated the results in terms of 

the number of agents in each adoption state at the end of the simulation. Figure 5a–c shows 

the number of agents in different adoption states resulting from the implementation of each 

policy alternative, while Figure 5d shows the percentage of agents in each adoption state. In 

Figure 5a–c, we focused on the Potential, Evaluating, and Adopter states as the transition in 

the other two states (Aware and Deciding) are only hindered by time delays. Logically, the 

number of agents in the Aware and Deciding states is substantially lesser than the number of 

agents in the Potential and Evaluating states (Figure 5d). 

 

 

[Figure 5 here] 

 

As expected, the integrated policy resulted in the highest number of adopter agents (Figure 

5c) with a median value of 901.5 agents (901,500 cars). However, the distribution of the 

number of adopter agents from this policy has the widest dispersion compared to those 

resulting from other policies. This indicates that uncertainties have a more profound influence 

on the success of this policy than on the success of other policies. Within this policy, for 25% 

of the entire scenario ensemble, there are more than 1,400 adopter agents. Hence, these results 

show that the integrated policy has the potential to substantially increase the adoption of NGV 

or even make it reach a tipping point for complete NGV adoption. However, a concerted 

effort from multiple agencies is necessary to realize this. The presence of different companies 

within the energy supply chain network makes it difficult to coordinate the locations of new 

gas refueling stations. Furthermore, the energy price is still heavily regulated, and setting the 

price would require cooperation with other government agencies outside the energy sector.  
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The free kit policy had the highest adoption rate among individual policies. The number of 

adopter agents resulting from this policy has a median value of 234.5 (234,500 cars), which is 

substantially higher than the baseline policy. Furthermore, more than 100 agents became 

adopters in 75% of the entire scenario ensemble. Note that the free kit policy stimulates the 

adoption in two ways. First, at the start of the simulation, there may be some agents who have 

already overcome multiple barriers (i.e., barriers presented in Figure 4) in the Evaluating 

state. These agents were grounded in the Potential state because they had not received the 

“message” from the adopter agents (see Transition 1 in Figure 3). The free kit policy 

increased the presence of adopter agents at the start of the simulation; hence, more 

“messages” were sent to agents in the Potential state. This helped other agents escape the 

Potential state and accelerated the entire adoption process. Second, this policy immediately 

relaxed the aggregated social–behavioral barrier within the complex barriers. Because this 

policy is the most successful individual policy, the social–behavioral barrier is the most 

dominant barrier in the current condition.  

 

Individual policies targeting the structural and economic barriers were found to be less 

effective for improving the adoption rate. The implementation of the infrastructure 

enhancement policy would have incurred a total cost of approximately IDR 900 billion 

(~USD 63 million) to develop 60 additional NGV refueling stations (DetikFinance, 2012). 

Surprisingly, despite having the highest cost, this policy only delivered marginal improvement 

in the number of adopter agents with a median value of 76.5 (76,500 cars). These results show 

that, although the low availability of refueling stations is often blamed for hindering the 

adoption of NGV in Jakarta (Sulistyono & Sopha, 2013), infrastructure enhancement alone is 

insufficient for improving the situation. The kit subsidy policy performed even worse with 

only a marginal improvement from the baseline policy. Apparently, financial incentives are 

the least attractive measures. This result is supported by the fact that the converter kit price 

(IDR 17 million) is far lower than the purchasing price of cars in Jakarta (>IDR 150 million). 

Consequently, a minor reduction in the converter kit price would not significantly stimulate 

the car owners’ willingness to adopt NGV. These results cumulatively strengthen the 

hypothesis that the social–behavioral barrier is the dominant one in the current situation 

(baseline policy).  

 

Two additional observations can be made from the simulation results. First, to some extent, 

the number of agents in the Potential and Evaluating states are correlated with the number of 
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agents in the Adopter state. The baseline, kit subsidy, and infrastructure enhancement policies 

yield similar median values for the number of agents in the Potential state. The distribution of 

these median values, however, is more spread out in the infrastructure enhancement policy, 

which indicates that in a larger number of scenarios, the infrastructure enhancement policy 

results in a smaller number of agents in the Potential state. This leads to the second 

observation which is related to the robustness of the policy. A narrower spread of distribution 

results indicates a more robust policy. Whether robustness is preferred depends on the 

context. For instance, the relatively narrow spread of results from the baseline and kit subsidy 

policy in Figure 5a is less desirable because the general preference of the problem is to have a 

low number of agents in the Potential state. Conversely, with respect to the total number of 

adopter agents in Figure 5c, a robust policy is preferred if the median value is high.  

 

3.1 Identification of dominant barriers  

Identification of the dominant adoption barrier in each policy alternative marks the 

vulnerability analysis phase of the EMBDA approach. Figure 6 shows the classification of the 

number of agents in the Evaluating state based on the adoption barriers they faced at the end 

of the simulation run. The nodes in the graph indicate the median value over 2000 scenarios, 

while the whiskers indicate the 25
th

 and 75
th

 percentile of the distribution. An agent might 

face more than one adoption barrier at a time. Such combinations of multiple adoption 

barriers are not presented because the focus of this phase is to identify individual dominant 

barriers rather than their combinations. Accordingly, for each policy in Figure 6, the total 

percentage might exceed 100%.  

 

 

[Figure 6 here] 

 

Figure 6 shows how the landscape of adoption barriers changes according to different actions 

taken. In the current situation (baseline policy), more than 80% of the agents face the social–

behavioral barrier, followed by the economic and structural barriers with median values of 

42% and 35% respectively. This result explains the success of the free kit policy in 

comparison to other individual policies. As the number of agents facing the social–behavioral 

barrier is twice the number of agents facing the other two barriers, confronting this barrier 

significantly increases the adoption rate. The kit subsidy policy marginally reduces the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17 

 

economic lag, although the overall landscape of adoption barriers remains similar to the 

baseline policy.  

 

A substantial shift in the landscape of adoption barriers can be observed upon the 

implementation of the free kits, infrastructure enhancement, and integrated policies. The 

individual policies manage to reduce their targeted barriers. The free kit policy significantly 

reduces the number of agents facing the social–behavioral barrier, making this barrier the 

least important. Subsequent to implementing the infrastructure enhancement policy, only 

approximately 10% of agents still face the structural barrier. The integrated policy suppresses 

both the structural and social-behavioral barriers (with median values of 10% and 2%, 

respectively), while surprisingly the economic barrier prevails (with a median value of 67%). 

This result is counterintuitive because the converter kit price (IDR 17 million) is far lower 

than the prices of cars in Indonesia (> IDR 150 million). Thus, the economic barrier is not 

expected to strongly dominate other barriers. 

 

3.2 Policy vulnerabilities  

The final phase of the EMBDA approach attempts to identify policy vulnerabilities, i.e., 

scenarios in which a policy fails to meet its objective. In this study, we defined the objective 

of each policy as not falling above the 75
th

 percentile of the dominant adoption barrier of that 

policy; consequently, there will be 500 undesired scenarios in each policy (25% of the total 

2000 scenarios). The PRIM algorithm was applied to identify the high-density region within 

the uncertainty space that results in undesired scenarios.  

 

Figure 7 presents the algorithm results. Lists of uncertain variables that define undesired 

scenarios in each policy are presented, along with the bandwidth of the variables. The left- 

and right-most values in each subfigure are the entire plausible range of the variables, as 

defined in Table 1. The blue lines depict the bandwidths of the uncertain variables where the 

policy tends to fail, while the numbers in blue depict the exact threshold values of the 

bandwidths. These bandwidths define the narrative of the undesired scenarios. For instance, 

based on the results in Figure 7b, the free kit policy fails under the following conditions: the 

converter kit price exceeds IDR 14 million, the price reduction of the annual converter kit is 

below 2.1% per year, and the oil fuel price exceeds IDR 6500 per liter. 
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[Figure 7 here] 

 

Figure 7a shows that the kits subsidy tends to fail under the following condition: the gas fuel 

price is higher than IDR 3100 per liter, the oil fuel price is less than IDR 8100 per liter, the 

converter kit price is more than IDR 14 million per liter, and the contact rate of the adopter to 

the other agents is higher than 39 days. This result is in agreement with conventional logic 

because a higher gas price and lower oil price would reduce the potential relative savings 

accumulated by using NGV, thus making it less attractive. Furthermore, a higher converter kit 

price would make adoption less affordable and longer durations in between messages from 

adopter agents would make fewer potential agents move to the Aware state.  

 

The undesired scenarios for the infrastructure enhancement policy presented in Figure 7c also 

have a trend similar to the kit subsidy policy. A noticeable difference is the threshold of the 

oil price, which is far lower than the threshold in the undesired scenarios of the kit subsidy 

policy. This indicates that the oil price influences the success of the infrastructure 

enhancement policy to a greater extent than the kit subsidy policy. Conversely, identified 

bandwidths for undesired scenarios in the free kit policy and the integrated policy are more 

counterintuitive (Figure 7b and Figure 7d). Here, a higher oil price tends to result in policy 

failure.  

4 Conclusion and Policy Implications  

The results of this study demonstrate that the importance of NGV adoption barriers changes 

upon implementation of different policies. The most critical uncertainty was found to change 

depending on the policy implemented. The identification of the dominant adoption barrier a 

posteriori the implementation of the policy can be useful for policy analysis in two ways. 

First, the results can provide contextual insight on formulating additional measures, additional 

to each individual policy, which would be most useful for advancing the adoption. For 

example, as the economic barrier dominates after implementation of either the integrated or 

the free kit policy, policymakers can focus on additional policies that target this particular 

barrier. Policies that aim to reduce the converter kit price or target the affordability threshold 

of car owners are particularly useful in this case.  

 

Second, the results can help policymakers in prioritizing their budget to increase their 

understanding of the identified dominant barrier, e.g., by conducting further studies. For 
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example, Figure 6 shows that, under the current situation (the baseline policy), the structural 

barrier is the weakest one. Hence, funneling budgets to identify the appropriate locations for 

constructing new NGV refueling stations or coordinating between different institutions to 

realize their construction is not an effective approach to increase the NGV transition. 

Moreover, studies that investigate the specific social-behavioral barriers that are prevalent 

among potential NGV adopters would be more valuable. With respect to the other policies 

(policy 2 to policy 5), a better understanding of the dominant barrier would help in developing 

additional measures discussed in the previous paragraph.  

 

Our results further suggest that uncertainties identified by the vulnerability analysis should be 

monitored by the policymakers. In the future, if uncertain variables unfold to the bandwidths 

identified in this study (see Figure 7), additional measures should be taken to safeguard the 

potential success of the policy. The vulnerability analysis identifies different uncertain 

variables as the primary cause of policy failures. As different uncertain variables are affected 

by different institutions, to safeguard the success of the policy, a concerted collaboration 

between multiple institutions is a prerequisite.  

 

The collaboration between institutions depends on the identified uncertain and influential 

variables. To this end, the oil fuel price appears as a critical uncertainty in all policies. The oil 

price is subject to government regulation, prompted by the Ministry of Energy and Mineral 

Resources (MERM). However, to determine the appropriate oil price, the MERM has to also 

coordinate with the Ministry of Finance and the state-owned oil and gas companies (i.e., 

PERTAMINA and PGN). The oil fuel price is not the only uncertain factor that is highly 

influential. In Figure 7a to 7c, the scenario discovery results from the individual policy show 

that the converter price is likewise a decisive uncertain variable. To drive this variable to the 

intended direction, the MERM has to cooperate with the Ministry of Industry (MoI). The MoI 

could encourage automotive industries to supply the converter kit as part of their built-in 

feature offer to the consumer. Further, for policies wherein contact rate is part of the 

discovered vulnerabilities, a medium to long-term campaign to increase public awareness 

should be implemented. This could be realized through a public campaign in social media or 

at all vehicle refueling stations. The NGV community can likewise help by supporting such 

campaigns. 
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In summary, this study has identified the dominant adoption barriers and the vulnerabilities of 

alternative policies of NGV adoption in Jakarta. The economic barrier appears as the most 

prevalent barrier when executing all policies, dominating over the structural and social-

behavioral barriers. Meanwhile, the social-behavioral barrier appears as the most dominant 

factor under the current condition. Among the four alternative policies (kit subsidy, free kit, 

infrastructure enhancement, and integrated policy), two have similar trends concerning their 

vulnerabilities, namely the kit subsidy policy, and the infrastructure enhancement policy. Both 

of these policies tend to fail if the oil fuel price is not too high, and the prices of gas fuel and 

converter kits are not too low. On the contrary, the free kit policy and the integrated policy 

tend to fail if the oil fuel price is low. The kit subsidy policy and the infrastructure 

enhancement policy require a constant stream of government expenditure throughout a period 

of time, while the cost of the free kit policy is only incurred once at the beginning of the 

execution.  

 

Furthermore, the proposed approach could be useful for future agent-based adoption policy 

analysis studies. The EMBDA approach demonstrated in this study tailors the generic EMA 

framework for a model-based adoption study by including the adoption barrier component. 

The approach proves to enable the evaluation of the consequences and vulnerabilities of 

alternative policies under deep uncertainties through a computational experiment of a large 

number of simulations. The approach enhances the explanatory power of agent-based 

modeling by exploring not only the performance alternative policies but also their 

vulnerabilities.  

 

In future research, we recommend addressing the following issues that pose limitations in this 

study. This study did not take into account the behavioral or nudge effect of the infrastructure 

enhancement policy. Whereas this study only considers the total number of adopter agents, a 

cost-benefit analysis of policies could also be conducted to provide a more detailed result. The 

cost structure of the policy is of central concern. For instance, the kit subsidy policy and the 

infrastructure enhancement policy require a constant stream of government expenditure 

throughout a period of time. In contrast, the cost of implementing the free kit subsidy is 

incurred only once at the beginning of the policy execution. Moreover, the timing of different 

policies was not evaluated in this study. Although this is not within the scope of this study, 

this issue should likewise be addressed, e.g., by borrowing the concept from the adaptation 

pathways. 
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Table 1 Uncertain variables and their parameter range 

Variable Base value 
Minimum 

value 

Maximum 

value 

Gas fuel price IDR 3100 / 

liter 

IDR 2500 / 

liter 

IDR 5000 / 

liter 

Oil fuel price IDR 7000 / 

liter 

IDR 5000 / 

liter 

IDR 9000 / 

liter 

Converter kit price IDR 17 million IDR 12 million IDR 25 million 

Contact rate 60 days 30 days 90 days 

Annual kits price reduction 2% 0.5% 2.5% 

Minimum affordability 

threshold 
7.5% 5% 10% 

Maximum affordability 

threshold 
12.5% 12% 15% 

Minimum distance threshold 4.5 km 3 km 6 km 

Maximum distance threshold 9 km 7 km 12 km 

 

 

Table A.1. ODD+D description of the agent-based model based on the template provided in 

Müller et al. (2013). 

Outline  Guiding questions Description 

I)
 

O
v

er
v

ie
w

 

I.i Purpose I.i.a What is the 

purpose of the study? 

This study evaluates the policy performance of 

pushing the adoption of Natural Gas Vehicles in 

Indonesia. The study proceeds by exploring the 

changes in the relative importance of different 

adoption barriers, and by identifying the 

vulnerability of policies, i.e., the scenarios leading 

to policy failures. The developed model will assist 

policy makers in systems understanding and 

quantitative prediction, thereby improving their 

NGV-adoption policies. 

I.ii.b for whom is the 

model designed? 

Scientists, students, teachers, modelers, NGV 

policy makers 

Table(s)



I.ii Entities, 

state 

variables, 

and scales 

I.ii.a What kinds of 

entities are in the 

model? 

Agent-based model layer 

- Vehicle owners in Jakarta 

 

Infrastructure layer 

- NGV refueling stations 

I.ii.b By what 

attributes (i.e. state 

variables and 

parameters) are these 

entities 

characterized? 

Vehicle owners 

- Stages of NGV adoption: Potential, Aware, 

Evaluating, Deciding, and Adopter 

 

- Attributes related to structural barriers of 

adoption 

o Home location 

o Work location 

o Closest NGV refueling station 

o Distance threshold 

 

- Attributes related to economic barriers of 

adoption 

o Income 

o Expected break-even point 

o Affordability threshold 

 

- Attributes related to social–behavioral barriers of 

adoption 

o Social network: (i) agents within the same 

home location, (ii) agents within the same 

work location, and (iii) several other random 

agents in the model (small-world network) 

o Innovativeness of adopting the new 

technology 

o Contact rate with social network 

o Social threshold 

 

NGV refueling stations 

- Location 

I.ii.c What are the 

exogenous 

factors/drivers of the 

model? 

- Gas fuel price 

- Oil fuel price 

- Converter kit price 

- Annual kits price reduction 

I.ii.d If applicable, 

how is space 

included in the 

model? 

- Vehicle owners are spatially distributed among 

the 42 districts in Jakarta 

- NGV refueling stations are spatially distributed 

based on the existing infrastructure 

- The closest refueling station to a vehicle owner 

agent is calculated using the Euclidean distance 

 



I.ii.e What are the 

temporal and spatial 

resolutions and 

extents of the model? 

- The simulation time horizon ranges from 2017 

to 2030 

- The spatial extent is the entire Jakarta province. 

Distance is the Euclidean distance (not 

considering the real road network) 

 

I.iii Process 

overview 

and 

scheduling 

I.iii.a What entity 

does what, and in 

what order? 

The simulation environment of the model enables a 

continuous time step. In the model, agents perform 

actions on a daily basis, depending on their current 

adoption state. 

- Vehicle owners in the ‘Potential’ state 

o Behavioral barrier: wait for “message” 

triggers from the ‘Adopter’ agents in their 

social network 

o Move to the ‘Aware’ state after receiving a 

“message” 

 

- Vehicle owners in the ‘Aware’ state 

o Economic barrier: wait for certain months 

before moving to the ‘Evaluating’ state. The 

waiting time depends on the ratio between 

the oil fuel price and the gas fuel price 

 

- Vehicle owners in the ‘Evaluating’ state 

o Agents evaluate the following three barriers 

every four months: 

 Social–behavioral barrier: To overcome 

this barrier, the percentage of ‘Adopters’ 

in an agent’s social network should 

exceed the social threshold of the agent. 

 Economic barrier: To overcome this 

barrier, the ratio of the converter kit price 

to the agent’s annual income should be 

lower than the affordability threshold of 

the agent. 

 Structural barrier: To overcome this 

barrier, the distance between the agent’s 

home/work location and the closest 

refueling station should be lower than the 

distance threshold of the agent. 

o If agents manage to overcome those barriers, 

they move to the ‘Deciding’ state 

 

- Vehicle owners in the ‘Deciding’ state 

o Economic barrier: The agent waits for 

several months before moving to the 

‘Adopter’ state. The waiting time depends on 

the expected break-even point of investing in 

the NGV converter kit 

 



- Vehicle owners in the ‘Adopter’ state 

o Agent sends a “message” randomly to one 

agent within its social network. The rate of 

this message-sending activity depends on the 

agent’s contact rate 

 

Aside from the above state-dependent activities, the 

price of the converter kit yearly decreases, at the 

annual kit- price reduction rate. 
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II.i 

Theoretical 

and 

Empirical 

Backgroun

d 

II.i.a Which general 

concepts, theories or 

hypotheses are 

underlying the 

model’s design at the 

system level or at the 

level(s) of the 

submodel(s) (apart 

from the decision 

model)? What is the 

link to complexity 

and the purpose of 

the model? 

The heterogeneity of vehicle owners is based on the 

diffusion of innovation theory (Robertson, 1967; 

Rogers, 2010). The overall emerging behavior of 

the transition and diffusion phenomenon follows 

the literature of the bass diffusion model (Bass, 

1969; Rahmandad & Sterman, 2008), which should 

yield an S-shaped adoption curve. 

II.i.b On what 

assumptions is/are 

the agents’ decision 

model(s) based? 

The agents’ decision model is grounded on two 

theories. First, is the five-stage adoption process in 

the diffusion of innovation theory (Rogers, 2010). 

Second is the barriers along these adoption stages, 

which are based on a review paper on the adoption 

of energy-efficient technologies (Hesselink & 

Chappin, 2019). The paper finds three categories of 

barriers: economic, structural, and social–

behavioral.  

II.i.c Why is a/are 

certain decision 

model(s) chosen? 

- Previous studies on NGV transition in Jakarta 

focused on adoption using a single-stage utility-

based approach (Sopha et al., 2017; Sulistyono 

& Sopha, 2013). We want to extend the 

previous studies to multi-stage adoption logic. 

- There is no clear demarcation of the adoption 

barriers in previous studies. 

- The relationships among the adoption barriers, 

the agents’ attributes, and the policies 

implemented by the government need to be 

clarified. This clarification is central to the 

Exploratory Model-based Diffusion Analysis 

(EMBDA) approach. 

II.i.d If the model / a 

submodel (e.g. the 

decision model) is 

- Socioeconomic statistics were primarily derived 

from the official statistics of Jakarta (Pardosi et 

al., 2017). 



based on empirical 

data, where does the 

data come from? 

- Travel behavior data were derived from large-

scale transport surveys in Jakarta (JUTPI, 2012; 

SITRAMP, 2004; Sugiarto et al., 2014) 

II.i.e At which level 

of aggregation were 

the data available? 

Mainly at the district and provincial levels. The 

parameterization of the agents’ attributes were 

randomly sampled from these aggregated data. 

 

II.ii 

Individual 

Decision 

Making 

II.ii.a What are the 

subjects and objects 

of decision-making? 

On which level of 

aggregation is 

decision-making 

modeled? Are 

multiple levels of 

decision making 

included? 

Decision-making activities are performed at the 

agents’ (in this case, vehicle owners) level. 

Depending on its current adoption state, each agent 

performs different activities as explained in I.iii.a 

II.ii.b What is the 

basic rationality 

behind agents’ 

decision-making in 

the model? Do 

agents pursue an 

explicit objective or 

have other success 

criteria? 

From a social planner’s point of view, the agents 

are expected to arrive at the ‘Adopter’ state of 

adoption. The agents, however, must first undergo 

the four states of adoption: Potential, Aware, 

Evaluating, and Deciding. When transitioning from 

one state of adoption to the next, the agent must 

overcome different adoption barriers. 

II.ii.c How do agents 

make their decisions? 

- Decision tree (from ‘Potential’ to ‘Aware’, and 

from ‘Evaluating’ to ‘Deciding’) 

- Delay function (from ‘Aware’ to ‘Evaluating’, 

and from ‘Deciding’ to ‘Adopter’) 

II.ii.d Do the agents 

adapt their behavior 

to changing 

endogenous and 

exogenous state 

variables? And if 

yes, how? 

There are no dynamics within the decision-making 

logic of the agents. However, agents in the 

‘Evaluating’ state regularly observe their 

environment and move to the ‘Deciding’ state when 

all barriers are overcome. The annual reduction of 

the converter kit price may remove the economic 

barrier.  

II.ii.e Do social 

norms or cultural 

values play a role in 

the decision-making 

process? 

Not directly, however certain attributes of the 

agents—contact rate, social threshold, and 

innovativeness—reflect the local social norms. 

II.ii.f Do spatial 

aspects play a role in 

the decision process? 

Yes, the structural barrier of the adoption process 

requires agents to evaluate the distance of the 

closest refueling station to their home and work 

locations. 



II.ii.g Do temporal 

aspects play a role in 

the decision process? 

N/A 

II.ii.h To which 

extent and how is 

uncertainty included 

in the agents’ 

decision rules? 

Uncertainty is not explicitly considered in the 

decision-making process. 

II.iii 

Learning  

II.iii.a Is individual 

learning included in 

the decision process? 

How do individuals 

change their decision 

rules over time as 

consequence of their 

experience? 

N/A 

II.iii.b Is collective 

learning 

implemented in the 

model? 

N/A 

II.iv 

Individual 

Sensing 

II.iv.a What 

endogenous and 

exogenous state 

variables are 

individuals assumed 

to sense and consider 

in their decisions? Is 

the sensing process 

erroneous? 

From the social–behavioral barrier viewpoint, 

vehicle owners judge the social acceptability of 

NGV from the adoption behavior of their social 

network. From the economic barrier viewpoint, 

vehicle owners consider the expected profitability 

of purchasing converter kits based on the potential 

saving of their annual fuel expenditure and the 

converter kit price.  

II.iv.b What state 

variables of which 

other individuals can 

an individual 

perceive? Is the 

sensing process 

erroneous? 

Agents observe the adoption state of other agents in 

their social network. A high percentage of 

‘adopters’ in an agent’s social network is important 

for overcoming the social–behavioral barrier. 

II.iv.c What is the 

spatial scale of 

sensing? 

The social network of the agents. 

II.iv.d Are the 

mechanisms by 

which agents obtain 

information modeled 

explicitly, or are 

individuals simply 

assumed to know 

these variables? 

Agents are assumed to know these variables. 



II.iv.e Are costs for 

cognition and costs 

for gathering 

information included 

in the model? 

N/A 

II.v 

Individual 

Prediction 

  

II.v.a Which data 

uses the agent to 

predict future 

conditions? 

N/A 

II.v.b What internal 

models are agents 

assumed to use to 

estimate future 

conditions or 

consequences of their 

decisions? 

Vehicle owners calculate the expected break-even 

point of purchasing a converter kit. The revenue in 

their calculation is the expected annual savings 

from reducing their fuel expenditure. However, 

agents do not consider the future changes in fuel 

price nor the discounts conferred by benefits. 

II.v.c Might agents 

be erroneous in the 

prediction process, 

and how is it  

implemented? 

Technically no, however, realistically yes as oil and 

gas prices will change 

II.vi 

Interaction 

II.vi.a Are 

interactions among 

agents and entities 

assumed as direct or 

indirect? 

Direct interactions: agents in the ‘Adopter’ state 

periodically send a “message” to another agent in 

their social network 

II.vi.b On what do 

the interactions 

depend? 

Social network of the agents 

II.vi.c If the 

interactions involve 

communication, how 

are such 

communications 

represented? 

Agents in the ‘Adopter’ state periodically send a 

“message” to another agent in their social network 

II.vi.d If a 

coordination network 

exists, how does it 

affect the agent 

behaviour? Is the 

structure of the 

network imposed or 

emergent? 

N/A 

II.vii 

Collectives 

II.vii.a Do the 

individuals form or 

belong to 

aggregations that 

Agents form their own social networks randomly at 

the beginning of the simulation. The social network 

of each agent is assumed static during the entire 

simulation period. 



affect, and are 

affected by, the 

individuals? Are 

these aggregations 

imposed by the 

modeller or do they 

emerge during the 

simulation? 

 

As previously mentioned, the number of agents in 

the ‘Adopter’ state in a social network is related to 

the social–behavioral barrier of the agents within 

that network. 

II.vii.b How are 

collectives 

represented? 

N/A 

II.viii 

Heterogene

ity 

II.viii.a Are the 

agents 

heterogeneous? If 

yes, which state 

variables and/or 

processes differ 

between the agents? 

The heterogeneity of the agents’ attributes is 

explained in I.ii.b.  

II.viii.b Are the 

agents heterogeneous 

in their decision-

making? If yes, 

which decision 

models or decision 

objects differ 

between the agents? 

The heterogeneity of the agents’ activities based on 

their adoption states is explained in I.iii.a. 

II.ix 

Stochasticit

y 

 

II.ix.a What 

processes (including 

initialization) are 

modeled by 

assuming they are 

random or partly 

random? 

- Transition from the ‘Aware’ to the ‘Evaluating’ 

state is hindered by an economic barrier that 

stochastically delays the transition process. 

- Transition from the ‘Deciding’ to the ‘Adopter’ 

state is also hindered by an economic barrier 

that stochastically delays the transition process. 

- The rate at which ‘Adopter’ agents send 

“messages” to their social network is internally 

stochastic and depends on the contact rate 

attribute of the agent.  

- The agent who receives the “message” is also 

randomly chosen from the social network. 

II.x 

Observatio

n 

II.x.a What data are 

collected from the 

ABM for testing, 

understanding, and 

analyzing it, and how 

and when are they 

collected? 

The ABM collects the following data: 

- Number of agents within each adoption state 

(Potential, Aware, Evaluating, Deciding, 

Adopter) at the end of the simulation run 

- Percentages of agents in the ‘Evaluating’ state 

facing each adaption barrier (Economic, 

Structural, Social-behavioral, see I.iii.a) 



II.x.b What key 

results, outputs or 

characteristics of the 

model are emerging 

from the individuals? 

(Emergence) 

The key results include the numbers of adopters at 

different stages of adoption. The rates of different 

stages of technology adoption are assumed as 

responses to policy changes that push the adoption 

of NGVs in Indonesia.  

II
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II.i 

Implementa

tion Details 

III.i.a How has the 

model been 

implemented? 

The model is implemented in the Licensed 

Anylogic 7.0.2 Professional simulation suite owned 

by Systems Engineering, Modeling, and Simulation 

(SEMS) Laboratory, Universitas Indonesia 

III.i.b Is the model 

accessible and if so 

where? 

N/A 

 

III.ii 

Initializatio

n 

III.ii.a What is the 

initial state of the 

model world, i.e. at 

time t=0 of a 

simulation run? 

An agent represents 1000 vehicle owners in Jakarta. 

Thus, at the initial state, we generated 3480 agents. 

The agents were spatially distributed across the 42 

districts. The percentage of agents in each district 

corresponded to the population of that district 

relative to the populations in all other districts. 

 

Other socioeconomic and behavioral attributes of 

the agents were randomly sampled from the official 

statistics and the travel surveys. 

 

We assume that all agents begin in the ‘Potential’ 

state. However, as there are around 7000 existing 

NGVs, seven random agents start in the ‘Adopter’ 

state. 

III.ii.b Is 

initialization always 

the same, or is it 

allowed to vary 

among simulations? 

The initialization is the same in all computational 

experiments. 



III.ii.c Are the initial 

values chosen 

arbitrarily or based 

on data? 

- Home location: allocated statistically based on 

the population data (Pardosi et al., 2017) 

- Work location: allocated randomly across the 16 

business and industrial districts in the Greater 

Jakarta Region (JUTPI, 2012; SITRAMP, 2004) 

- Distance threshold: based on surveys by JUTPI 

(2012) and SITRAMP (2004) 

- Income: allocated statistically based on 

socioeconomic statistics (Pardosi et al., 2017) 

- Affordability threshold: statistically inferred by 

interpolating between the median annual 

household income and expenditure statistics 

(Pardosi et al., 2017) 

- Social network: randomly formed 

- Innovativeness: follows the standard distribution 

proposed by Robertson (1967): Innovators 

(2.5%), Early adopters (13.5%), Early majority 

(34%), Late majority (34%), Laggards (16%) 

- Contact rate: assumed as 30 days 

- Converter kit price, gas fuel price, oil fuel price: 

based on actual prices. 

- Social threshold: dependent on the 

Innovativeness attribute.  

o Innovators: triangular (0, 1%, 3%) 

o Early adopters: triangular (0, 3%, 7.5%) 

o Early majority: triangular (3%, 7.5%, 15%) 

o Late majority: triangular (7.5%, 15%, 25%) 

o Laggards: triangular (10%, 25%, 40%) 

- Converter kit price, gas fuel price, oil fuel price: 

based on actual prices 

- Annual kit price reduction: assumed as 2%. 

 

III.iii Input 

Data 

III.iii.a Does the 

model use input from 

external sources such 

as data files or other 

models to represent 

processes that change 

over time? 

N/A 

III.iv 

Submodels 

 

III.iv.a What, in 

detail, are the 

submodels that 

represent the 

processes listed in 

‘Process overview 

and scheduling’? 

N/A 

III.iv.b What are the 

model parameters, 

their dimensions and 

reference values? 

See Table 1 of the main text 



III.iv.c How were 

submodels designed 

or chosen, and how 

were they 

parameterized and 

then tested? 

N/A 

 
 



 

Fig. 1 Stages of the EMBDA approach 

 

 

 

Fig. 2 Population of districts and locations of refueling stations in Jakarta 

 

Figure(s)



 

Fig. 3 Chart of agent states and transitions 

 

 

 

 

Fig. 4 Decision-making logic of Transition 3 

 



 

Fig. 5 Numbers of agents (a) in the Potential state, (b) the Evaluating state, (c) the Adopter 

state, (d) in each adoption state calculated as a percentage, obtained by simulation. 

 

 

 

 

Fig.6 Percentage of agents in the Evaluating state facing each adoption barrier 

 



 

Fig. 7 PRIM algorithm results for (a) kit subsidy policy, (b) free kit policy, (c) infrastructure 

enhancement policy, and (d) integrated policy 

 


