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ABSTRACT
A main weakness of the Massive Open Online Learning move-
ment is retention: a small minority of learners (on average
5-10%, in extreme cases <1%) that start a MOOC complete
it successfully. There are many reasons why learners are
unsuccessful, among the most important ones is the lack of
self-regulation: learners are often not able to self-regulate their
learning behavior. Designing tools that provide learners with a
greater awareness of their learning is vital to the future success
of MOOC environments. Detecting learners’ loss of focus
during learning is particularly important, as this can allow us
to intervene and return the learners’ attention to the learning
materials. One technological affordance to detect such loss
of focus are webcams—ubiquitous pieces of hardware avail-
able in almost all laptops today. Recently, researchers have
begun to make use of webcams as part of complex machine
learning-based solutions to detect inattention or loss of focus
based on eye tracking and eye gaze data. However, those ap-
proaches tend to have a high detection lag, are inaccurate, and
are complex to design and maintain. In contrast, in this paper,
we explore the possibility to make use of simple metrics such
as gaze presence or face presence to detect a loss of focus
in the online learning setting. To this end, we evaluate the
performance of three consumer and professional eye-tracking
frameworks using a benchmark suite we designed specifically
for this purpose: it contains a set of common xMOOC user
activities and behaviours. The results of our study show that
already those simple metrics pose a significant challenge to
current hard- and software-based eye-tracking solutions.
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INTRODUCTION
Massive Open Online Courses (MOOCs) have gained a lot of
popularity over the past years and are now being offered to
millions of learners on various platforms such as Coursera,
Udacity and edX, among others. One major motivation be-
hind MOOCs is the provision of ubiquitous learning to learners
across the world and thus making knowledge available for a
large and diverse population, increasing their levels of exper-
tise in a wide variety of subjects. Yet, despite their popularity,
MOOCs suffer from low levels of learner engagement and
learner retention, as only a very small percentage of learn-
ers who start a course actually complete it successfully (on
average 5-10%, in extreme cases <1%) [8].

One reason why learners fail to complete MOOCs can be
found in the design of the platforms. They tend to be rather
basic (as a large amount of effort goes towards maintenance)
which makes the delivery of the courses not always overly
engaging. This contributes to the lack of self-regulation (in
planning, motivation, goal setting) learners tend to exhibit,
especially those without a higher education background [4].
Here, loss of focus (during video watching, quiz submissions,
etc.) is a core challenge, as it can have disastrous effects on
learning efficiency [21]. Therefore, interventions which de-
tect this and can guide the learner’s focus back to the course
content could be of great value. However, detecting the loss
of a learner’s attention in real-time is difficult. Especially in
the MOOC environment, there is little measurable feedback
from the learner which could be leveraged. As a potential solu-
tion, the most promising recent approaches employ ubiquitous
consumer-grade webcams to “observe" a learner during their
activities in the MOOC platform. In a brief prelimary study in
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one of our MOOCs, we found that around 1/3 of the learners
would indeed be willing to use such camera-based technol-
ogy. As approaches that continuously record a learner’s face
and environment in their entirety are too complex, invasive,
and questionable from a privacy-perspective, client-side gaze-
tracking (i.e. only the gaze—instead of the face—is recorded
and all data is directly processed on the learner’s machine)
seems to be a more most suitable technique. Here, the eye-
mind-link [17] is exploited as the eye gaze usually correlates
well with a person’s focus. However, previous approaches [1,
2, 14, 27] are hampered by two problems: the extremely high
delay between a loss-of-focus event and its detection (usually
30-60 seconds), and low levels of detection accuracy [27].

In this paper, we explore a significantly simpler alternative
approach towards detecting a loss of focus whilst learning in a
MOOC environment: detecting the departure of a user’s face
from the webcam’s viewport as a proxy for her stopping to
pay attention to MOOC (video) content—a user whose face
is not in front of the screen is unlikely to pay attention to a
video playing on it. However, even this deceptively simple
detection task is challenging in a MOOC environment using
only consumer-grade hard- and software. Therefore, in this
paper we conduct an extensive study involving two popular
browser-based software frameworks for gaze and eye detec-
tion, tracking.js and WebGazer.js. Those frameworks
can both be potentially integrated into current MOOC environ-
ments, and perform all their processing on the user’s computer
without the need for backend server infrastructure or addi-
tional software installations. We benchmark the ability of
those frameworks to reliably detect a user’s face (in the follow-
ing, called face-hit and face-miss for detecting or not detecting
a face) in a variety of common MOOC user activities (e.g.,
watching a MOOC video while leaning on one hand, checking
something on a smartphone, drinking coffee, etc.), and under
different environmental conditions (e.g., wearing glasses or
not, different lighting conditions, different backgrounds).

The following research questions are in the focus of our study:

RQ1 Which activities are relevant to a MOOC learner’s
behavior which might affect their face positioning in
front of the screen? To this end, we compile a list of
typical activities, with their expected duration’s and
expected influence on face detection.

RQ2 How reliable can current software frameworks detect
face-hit and face-miss events under typical MOOC
conditions? Here, we conduct an extensive lab study
involving two open-source consumer webcam frame-
works and a professional eye tracker as a baseline, with
20 study participants performing the aforementioned
tasks in a controlled environment. Unfortunately, we
will show that current software and hardware technol-
ogy still struggles to provide consistent high detection
quality for these tasks.

RELATED WORK EYE TRACKING FRAMEWORKS

Attention Loss in Learning
Different data collection methods have been used to study
the loss of attention or focus of students in traditional class-

rooms since the 1960s, such as the observation of inattention
behaviors [7], the retention of course content [13], using di-
rect probes in class [22, 10] and relying on self-reports from
students [3]. A common belief was that learners’ attention
may decrease considerably after 10-15 minutes of the lecture,
which was supported by [22]. However, Wilson and Korn [26]
later challenged this claim and argued that more research is
needed. In a recent study, Bunce et al. [3] asked learners
to report their attention loss voluntarily during 9-12 minute
course segments. Three buttons were placed in front of each
learner, representing attention lapses of 1 minute or less, of
2-3 minutes and of 5 minutes or more. During the lectures,
the learners were asked to report their loss of attention by
pressing one of three buttons once they noticed their attention
loss. This setup led Bunce et al. [3] to conclude that learners
start losing their attention early on in the lecture and may cycle
through several attention states within the 9-12 minute course
segments.

In online learning environments, losing attention may be
even more frequent. Risko et al. [18] used three one hour
video-recorded lectures with different topics (psychology, eco-
nomics, and classics) in their experiments. While watching the
videos, participants were probed four times throughout each
video. The attention-loss frequency among the participants
was found to be 43%. Additionally, Risko et al. [18] found a
significant negative correlation between test performance and
loss of attention. Szpunar et al. [23] investigated the impact
of interpolated tests on learners’ loss of attention within on-
line lectures. The study participants were asked to watch a
21-minute video lecture (4 segments with 5.5 minutes per seg-
ment) and report their loss of attention in response to random
probes (one probe per segment). In their experiments, the loss
of attention frequency was about 40%. Loh et al. [11] also
employed probes to measure learners’ loss of attention and
found a positive correlation between media multitasking activ-
ity and learners’ loss of attention (average frequency of 32%)
whilst watching video lectures. Based on these considerably
high loss of attention frequencies we conclude that reducing
loss of attention in online learning is an important approach to
improve learning outcomes.

Inspired by the eye-mind link effect [17], a number of pre-
vious studies [1, 2, 14] focused on the automatic detection
of learners’ loss of attention by means of gaze data. In [1,
2], Bixler and D’Mello investigated the detection of learners’
loss of attention during computerized reading. To generate the
ground truth, the study participants were asked to manually
report their loss of attention when an auditory probe (i.e. a
beep) was triggered. Based on those reports, the loss of at-
tention frequency ranged from 24.3% to 30.1%. During the
experiment, gaze data was collected using a dedicated eye
tracker. In [14], Mills et al. asked the study participants to
watch a 32 minute, non-educational movie and self-report their
loss of attention throughout. In order to detect loss of attention
automatically, statistical features and the relationship between
gaze and video content were considered. In contrast to [1,
2], the authors mainly focused on the relationship between a
participant’s gaze and areas of interest (AOIs), specific areas
in the video a participant should be interested (like the speaker



or slides). In [27], Zhao et al. present a method for detecting
inattention similar to the studies in [14], but adapted and
optimized it for a MOOC setting.

All mentioned approaches relying on the eye-mind link share
two common flaws: they are usually unable to provide real-
time feedback as they are trained on eye-gaze recordings with
sparse manually provided labels (e.g., most approaches have
a label frequency of 30-60 seconds, which directly translates
into a detection delay of similar length), and the reported ac-
curacy is too low for practical application (e.g., [27] reports
detection accuracy of 14%-35% depending on training and
video). As a result, we choose a different approach as dis-
cussed in the following sections.

Eye Tracker Frameworks
In this paper, we rely on eye tracking systems to detect if a
MOOC learner is indeed looking at the screen or not. We in-
clude two types of systems: a hardware-based eye tracker and
software-based eye trackers. As a hardware-based system, we
use the professional high-end eye tracker Tobii X2-30 Com-
pact1, which has for example been used in academic works
to evaluate marketing stimuli [9], but also for understanding
learning processes [20]. This eye tracker costs around 6000
Euro and is thus unsuitable for scalable MOOC deployment.
However, we use it as a high-quality baseline. Tobii uses its
own proprietary analytic software Tobii Studio.

As hardware for the software-based solutions, we use the built-
in camera of our experimentation laptop, a Dell Inspiron 5759
with a 17-inch screen and a 1920×1080 resolution. To esti-
mate the gaze points based on a live webcam feed, we relied
on WebGazer.js [16]2, an open source eye tracking library
written in JavaScript. webgazer can be configured with differ-
ent components for tracking gaze, pupils, or faces. We used
two such components: the first is clmtrackr3, a face fitting
library (referred to as CLM in the following), which has been
used in academic works for selfie analysis [25], camera-based
emotion detection [19], or intelligent public displays in city
environments [15]. CLM tracks a face the coordinate positions
of a face model, as for example shown Figure 1. Using this
face model, Webgazer can extrapolate the user’s gaze (i.e.,
the point of the screen on which a user’s gaze focuses) by
estimating the face’s distance and orientation from the screen.
Unfortunately, the CLM API of Webgazer only allows access to
the extrapolated gaza data, and not the face model itself, which
restricts our experimental design (see below). An additional,
much more severe weaknesses of CLM is that the face-fitting
algorithm can be very aggressive, even when no face is present.
This leads to many potential problems where random back-
ground elements (like posters, plants, furniture) are mistaken
for faces, and sometimes even preferred over a real user’s face
clearly visible in the camera’s viewport. This problem is also
reflected in the low performance in our studies in the result
section.

1https://www.tobiipro.com/product-listing/
tobii-pro-x2-30/
2https://webgazer.cs.brown.edu
3https://github.com/auduno/clmtrackr

Figure 1. Face fitting model used by Clmtrackr; also shows a common
fitting error due to hand positioning

As a simpler alternative, we also use the tracking.js [12]4 face
recognition library (TJS in the following), which has been
employed for example in security systems [6] or for general
object recognition tasks [24]. With respect to eye and face
tracking, this library offers a significantly less powerful feature
set than both Tobii and CLM, as it can only detect the presence
and location of the boundary box of faces in a video stream
(see Figure 2). While it can also be used to track the location
of eyes (but not the gaze), we did not use that feature in this
study. We hypothesize that the simplicity of TJS leads to more
reliable and stable face-miss event detection.

Figure 2. Face Boundary Boxes in tracking.js

The differences in nature of the three used frameworks leads
to different heuristics for detecting a face-miss event, i.e.,
detecting when a user’s face turns or moves away from the
computer screen.

• Tobii: A face-miss event is detected if the proprietary
Tobii Studio software cannot determine gaze point coordi-
nates. This usually represents a problem with detecting the
users’ eyes by the tracker hardware (e.g., they are not within
the camera viewport, they are closed, or obstructed by an
object). Sometimes, while the eyes can be found by the To-
bii eye tracker, still no gaze coordinates can be determined
as the gaze direction is unclear. We cannot distinguish this

4https://trackingjs.com
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case from a case where there is no face at all. In our expe-
rience, the presence of gaze coordinates is a very reliable
proxy for the presence of a face (low false positive rate),
while the lack of coordinates does not necessarily imply the
absence of a face.

• CLM: Similar to Tobii, we define a face-miss event as
the software’s inability to fix exact gaze coordinates. In
contrast to Tobii, due to the aggressiveness of the face
fitting algorithm, CLM is is quite prone to detect faces where
in reality, there are none (high false positive rate).

• TJS: We define a face-miss event as the library’s inability
to fix a face boundary box in the webcam’s video stream.
Here, we do not try to track eyes or gaze.

The video or eye tracker stream is continuously processed
while it is recorded. The Tobii system relies on dedicated
hardware support for this task (which partially contributes to
its high retail price), and is thus able to guarantee a sampling
rate of 30 samples per second mostly independent of the user
computer hardware. For the webcam-based solutions, image
processing of the video stream needs to be handled by the sys-
tem’s CPU in the browser’s environment. As a result, only low
sampling rates are possible without overwhelming low-end
computer systems, and we decided on a fixed sampling rate of
4 samples per second. However, due to the unreliability of the
JavaScript timer events under high system loads, the standard
deviation of the targeted sampling time of 250ms is 48ms in
our experiments (described further in Section User Study).
Furthermore, we have extreme cases where the sampling times
increased up to 1157ms, i.e., less than one sample per second.
Therefore, Tobii should be able to react with significantly
lower delays than the webcam-based frameworks.

USER STUDY
In order to evaluate the suitability of the chosen webcam toolk-
its for face and gaze tracking, we developed a benchmark
set of tasks, which we argue represent common behaviours
of online learners in front of their laptops. For each of the
tasks we define the desired behaviour: the eyetracking devices
should either report the loss of the face/gaze (in the case of
face-miss tasks) or keep detecting the face/gaze (in the case
of face-hit tasks). We exclude mobile learners from these
tasks as desktop learners are still the vast majority of learners
in today’s MOOC environment. More concretely, among the
more than twenty MOOCs our institution offers on the edX
platform less than 20% of learners access the course content
via mobile devices.

We designed a total of fifty tasks together with a small sample
of regular MOOC learners (graduate students in our research
lab) that are—to some extent—abstract versions of the be-
haviour MOOC learners exhibit when watching lecture videos,
one of the most common activity in so-called xMOOCs (i.e.
MOOCs that are heavily relying on video lectures to convey
knowledge, in contrast to cMOOCs which rely on learners’
self-formed communities and peer teaching). The task descrip-
toins are shown in Table 3.2 in the appendix. They fall under
three broad categories:

• face-miss tasks contain those user behaviours that should
result in the eyetracker’s loss of face/gaze detection.
Twenty-one tasks belong to this category; examples include
Take a sip from the cup [next to you] while turning away
from the camera or Look straight up to the ceiling for 8
seconds.

• likely-face-miss tasks should result in eyetrackers re-
porting a mix of face hit and face miss samples. Two ex-
amples among the fourteen tasks in this category are Lean
back and put your hands behind your neck for 5 seconds
and Draw a square on the paper.

• Lastly, face-hit tasks describe user behaviours that should
not influence the eyetrackers’ ability to detect the face, but
may influence gaze detection. Fourteen tasks belong to this
category, for example Reposition yourself in the chair and
Stare at the camera for 3 seconds

We developed a Web application that included both webcam-
based eyetrackers and presented the twenty tasks as cue cards
to the study participants in the browser5. We conducted the
user study on a Intel i7, Windows 10 laptop which has a builtin
webcam situated in the center of the top screen bezel. Next to
the two software eyetrackers we also equipped the laptop with
the Tobii X2-30 eyetracker, a professional hardware eyetracker
which was placed on the lower screen bezel.

Figure 3. Opening screen of the user study

The opening screen of the application is shown in Figure 3.
For each study participants the fifty tasks were shown in a
randomized order (an example task cue card is shown in Fig-
ure 4). The procedure for each task Qi is the same: the task
description is shown and five seconds later a bell sound indi-
cates the start of the task at time tQi

start : at the sound of the bell
the participant is expected to perform the task. Another bell
sound (different to the one indicating the start) indicates to the
participant when the task has been finished at time tQi

end , and
this is followed by the next task description. Task durations
differ, depending on the specific task, e.g. Q31 requires a

5We designed the application in a modular manner; additional eye-
tracking frameworks can easily be evaluated as well. We have open-
sourced our application at our companion webpage [5].



Figure 4. Example task “cue card” of the user study.

participant to look at a certain angle for 5 seconds while Q39
asks a participant to check his or her phone for 10 seconds.

As this is a controlled study, in order to facilitate the proper
execution of the tasks, the participants were provided with the
necessary tools to perform all tasks, including a sheet of paper
and a pen (required for Q22, Q24 & Q25), a cup (Q41 & Q42)
and a phone (Q39).

The Tobii requires a calibration step which participants con-
cluded at the start of the study. The CLM eyetracker can also be
calibrated (light-weight: five red dots are shown on the screen
that have to be clicked one after the other). To test the effect of
the calibration we randomly switched on the calibration step
for eight of the twenty learners.

To prepare the participants for the tasks, each participant was
trained on two tasks before the start of the actual study. The
participants were reminded repeatedly to only start executing
a task after the sound of the bell and to keep executing them
until the ending sound occurred.

Study participants
The study was conducted across a one week period: twenty
participants were recruited among the graduate students and
staff members of a large European university via email lists.
The participants did not receive any compensation and spent
less than an hour on this study. Among the twenty participants,
nine wore glasses and two had contact lenses. In ten of the
sessions the background behind the test subject had a uniform
(light) color, in another 10 cases a poster or photographic
background was observed. We recorded these settings in our
study as we had conducted preliminary experiments which
indicated that eye-trackers (especially the software-based ones)
can be mislead by noisy backgrounds.

Detection accuracy
For every task and participant, we determine the eyetrackers’
face-hit/face-miss predictions from the collected logs inbe-
tween the tQi

start and tQi
end timestamps. As the eyetrackers vary

in their sampling rate (cf. Section 2.2) they all produce a dif-
fering amount of labels (face-hit,face-miss) for each sample
interval. We evaluate the accuracy of the produced labels by

computing the percentage of correct predictions (as defined
by the type of task) in the task interval. As an example, in
a five second task slot the webcam-based sample once every
250m (on averag), and thus we collect approximately 20 pre-
dictions. For a face-miss task, if 14 out of the 20 predictions
predicted a miss, the detection accuracy will be 70%. Lastly,
we average the accuracies for each task across all participants.

Table 1. Tobii’s delay between the start of a face-miss/likely-face-miss
task and the first face-miss event. The data is averaged across all partic-
ipants of a single task.

Delay % of tasks
1 sec 53%
2 sec 28%
3 sec 6%
4 sec 3%
5+ sec 9%

Table 2. Overview of the impact of the participants’ background on
TJS’s and Tobii’s accuracy.

Accuracy in %
Background # TJS Tobii

Solid light 10 61.5 68.6
Poster/photo 10 55.7 67.8

RESULTS
Performance
The first question we consider is the accuracy of the three eye-
trackers under investigation across our fifty tasks. Table 3.2
shows detection accuracy for each task, aggregated across
our twenty study participants. As expected, Tobii achieves
the highest accuracy, with an average of 68.2% across all
tasks. Among the two Webcam-based eye-trackers TJS clearly
outperforms CLM, achieving an average accuracy of 58.6%
compared to CLM’s 35.4%. If we were only to focus on the
tasks where face misses and likely face misses form the ground
truth, CLM’s accuracy would drop to 9.6%. The reason for
this poor performance is CLM’s approach to face and gaze
detection: it will try to match anything in the video frame to
a potential face area, a separate face detection phase is not
performed. This also explains its high accuracies in the face
hits tasks. Note that the calibration step performed by some
of our participants for CLM also did not result in a different
outcome.

The comparison between Tobii and TJS shows a relatively
small performance gap between the Webcam-based eye-
tracker and the high-end device. While Tobii outperforms
TJS in 39 of the 50 tasks, in many instances the difference in
accuracies is rather small. Using Tobii as a reference point,
TJS is able to conform with 77.8% of Tobii’s detected labels.

Due to the clear performance differences between TJS and
CLM, in the further analyses we focus exclusively on TJS and
its performance compared to Tobii.

Reaction Times
As one of the potential reasons for TJS’s lag in performance
compared to Tobii we investigated the reaction times of both



users and frameworks. More specifically, we measured the
delay between the instructed start time of the task (i.e., the
timestamp tQi

start) and the first time a library detects a face-
miss. This time delta of course consists of both the user delay
(i.e., the time it take for the user to finally start performing
the task, which for some tasks—e.g. Q23 & Q46—showed
a considerable delay) and the actual detection delay imposed
by the framework. We averaged the delays of all participants
for a particular task and report the percentage of tasks whose
average delay is up to 1 second, up to 2 seconds, etc. in Table 1.
For the majority of tasks, the high-end device is able to detect
the first face-miss within a second of the start of the task.

The Tobii eye tracker runs with a very high fixed sampling
rate of 30 samples per second, and is mostly unaffected by
the current CPU load of the host machine. It is guaranteed
to react without noticeable delays from the manufacturers
side. Therefore, we make the assumption that the delays in
Table 1 represent the user delay. In contrast, TJS and CLM can
have very low sampling rates depending on the current system
load (we aim at 4 samples per second, but we have reports of
significantly lower rates). By comparing the times of detecting
the first face-miss of both TJS and CLM with Tobii, we can
obtain an intuition of the delays imposed by those frameworks.
For TJS, this resulted in a delay of 0.6±1.1 seconds, and for
CLM in 1.3±1.0 seconds. While these detection delays are
not instantaneous, the delays are short enough for practical
applications and far from the delays of 30-60 seconds reported
in e.g. [27], where a machine learning pipeline was trained to
detect learners’ loss of focus during video watching.

Background as an Influencing Factor
As we conducted the user study in different rooms on different
times of the day, we also recorded our participants with vari-
ous backgrounds. In Table 2 we partitioned our participants
according to the background they sat in front of during the
study. All participants reported their background to be either
of a solid light color (as present in many offices) or contain a
poster and/or photo. This factor had an impact on the eyetrack-
ers’ accuracy: while Tobii’s accuracy remained unaffected
by the background, the TJS eye tracker considerably degraded
when a noisy background was introduced.

SUMMARY AND DISCUSSION
In this paper, we have examined the challenge of detecting the
presence of a user’s face in front of a computer screen while
performing typical MOOC-related activities. This can serve as
an approximation for a future real-time attention and inatten-
tion detection mechanism for MOOC environments, stimulat-
ing and supporting self-regulated learning. We compared three
popular potential technical solutions for this task: using the
high-quality and high-price professional Tobii hardware eye
tracker, and using two software-based solutions relying on an-
alyzing the video stream of a consumer-grade Webcam. Two
open-source libraries where used for this task, the gaze track-
ing library Clmtrackr and the face tracking library tracking.js.
We conducted an extensive user study with 20 participants,
who had to perform a controlled benchmark suite of 50 real-
istic tasks where their face was either in front of the tracking

device or not, introducing several challenging influence fac-
tors like body movement, partially covering the face, noisy
backgrounds, or crooked body postures. This benchmark suite
allows for a standardized and fair comparison of even vastly
different approaches for face-hit and face-miss detection,
and we provide it under an open-source license for fostering
future research in this area on our companion Web page [5].

Our experiments showed that the professional dedicated hard-
ware solution outperforms the open-source software-based
solutions both with respect to detection performance and pro-
cessing speed, but is of course unsuitable for a large-scale de-
ployment outside of a controlled lab setting. For the software-
based solutions which can indeed run on typical hardware
used by MOOC learners, the unnecessarily complicated gaze
tracking as employed by CLM introduces many complications,
resulting in poor detection performance both for the presence
and absence of a user’s face. In contrast, the more simplistic
face tracking library TJS shows significantly higher perfor-
mance for nearly all benchmark tasks. Additionally, both
software libraries incur an additional time delay of around 1-2
seconds over the nearly instantaneous detection response of
the hardware solution. With careful design, this delay should
be easily manageable in a future MOOC learner attention
detection component.

As future steps, we indeed plan an implementation of such an
attention detector suitable for a large-scale MOOC deployment
on the basis of the TJS framework. Beyond purely technical
or methodical challenges, this allows approaching many addi-
tional interesting research questions: Would MOOC learners
be willing to accept and use such an attention detection tool?
What are the reasons why they would like/or refuse to use such
technology? And of course finally, if learners accept the use
of such tools, does this indeed positively impact their learning
performance?
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Table 3. Overview of all fifty benchmark tasks, and the accuracy (in %) of CLM, TJS and Tobii averaged across the 20 participants in our user study.

Accuracy in %
QID Task CLM TJS Tobii

FACE MISS Tasks
Q1 Cover the camera for 2 seconds 12 45 7
Q2 Cover the camera for 5 seconds 28 73 17
Q3 Cover your face with both hands for 5 seconds 17 67 75
Q4 Look what is under your table (3 sec) 3 64 81
Q5 Stand up for 5 seconds 10 68 71

Q20 Tilt your head to the right for 3 seconds 15 59 38
Q21 Check if there is a HDMI port on the laptop 12 56 77
Q26 Look straight up to the ceiling for 8 seconds 12 72 92
Q27 Tilt your head back for 5 seconds (face ceiling) 10 68 84
Q28 Tilt your head back for 2 seconds (face ceiling) 5 51 66
Q29 Look down for 3 seconds 4 35 78
Q32 Look left for 2 seconds 7 50 72
Q33 Look left for 8 seconds 14 69 88
Q35 Look over your right shoulder 13 50 72
Q36 Look right for 10 seconds 13 77 90
Q37 Look right for 3 seconds 14 64 79
Q38 Look right for 5 seconds 7 63 83
Q39 Check your phone for 10 seconds 7 42 89
Q40 Check your phone, return after the ding 13 37 87
Q42 Take a sip from the cup while turning away from the camera, return it after the ding 5 40 51
Q47 Look up and return immediately 8 49 68

LIKELY FACE MISS Tasks
Q6 Lean back and put your hands behind your neck for 5 seconds 2 67 63
Q7 Lean closer to the screen and immediately back 3 17 27

Q13 Rapidly lean back and forth until the ding sounds 6 37 57
Q18 Tilt your body to the left and stay for 3 seconds 13 50 57
Q19 Tilt your body to the right and return immediately 6 41 55
Q22 Draw a square on the paper 9 45 67
Q23 Write down 5 keys left from letter A, focus back to the screen only after the ding 4 19 61
Q24 Write down a sentence about weather 15 47 73
Q25 Write down I love Intellieye! 10 45 78
Q30 Look half-left and return 7 36 64
Q31 Look half-right and stay for about 5 seconds 7 42 77
Q41 Face the camera and take a sip from the cup until you hear the ding 8 30 35
Q46 Cover the left side of your face with left hand over cheek and eye 8 38 43
Q48 Look around in the room to every direction 10 63 82

FACE HIT Tasks
Q8 Open browser and navigate to www.weather.com. Return after the ding. (15sec) 94 97 80
Q9 Open new browser tab and return to this after the ding 95 89 87

Q10 Open some program window (e.g. My computer) on top of study window and return
after the ding

99 87 94

Q11 Feeling sleepy? Yawn and cover your mouth with a hand. (3 sec) 94 66 64
Q12 Grab the tip of your nose for 3 seconds 100 64 71
Q14 Reposition yourself in the chair 98 77 61
Q15 Scratch the top of your head (or nape) for 3 seconds 94 69 85
Q16 Scratch the lower part of your left leg for 2 seconds 93 79 64
Q17 Slowly lean back and stay for about 2 seconds 96 32 38
Q34 Look on the top right corner of your screen for 5 seconds 95 86 96
Q43 Rest your eyes for 5 seconds (close them) 95 84 14
Q44 Scratch your left cheek for 3 seconds 95 74 89
Q45 Sit still and face the camera for 5 seconds 94 87 90
Q49 Grab your ears with both of your hands for 3 seconds 95 76 85
Q50 Stare at the camera for 3 seconds 95 89 88
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