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a b s t r a c t 

The spatiotemporal monitoring of droughts is a complex task. In the past decades, drought monitoring has been 

increasingly developed, while the consideration of its spatio-temporal dynamics is still a challenge. This study 

proposes a method to build the spatial tracks and paths of drought, which can enhance its monitoring. The steps 

for the drought tracks calculation are (1) identification of spatial units (areas), (2) centroids localisation, and (3) 

centroids linkage. The spatio-temporal analysis performed here to extract the areas and centroids builds upon the 

Contiguous Drought Area (CDA) analysis. The potential of the proposed methodology is illustrated using grid data 

from the Standardized Precipitation Evaporation Index (SPEI) Global Drought Monitor over India (1901-2013), 

as an example. The method to calculate the drought tracks allows for identification of drought paths delineated 

by an onset and an end in space and time. Tracks, severity and duration of the drought are identified, as well as 

localisation (onset and end position), and rotation. The response of the drought tracking method to different com- 

binations of parameters is also analysed. Further research is in progress to set up a model to predict the drought 

tracks for particular regions across the world, including India ( https://www.researchgate.net/project/STAND- 

Spatio-Temporal-ANalysis-of-Drought ). 
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. Introduction 

Drought is a regional phenomenon that often covers large territorial

xtensions ( World Meteorological Organization WMO, 2006 ). It can oc-

ur anywhere in the world with severe consequences (impacts) in water

esources and socioeconomic activities ( Below et al., 2007 ; Sheffield and

ood, 2011 ; Tallaksen and Van Lanen, 2004 ; Wilhite, 2000 ). WMO

tresses that to improve drought impacts mitigation, it is necessary to de-

elop and implement national policies based on the best description and

haracterisation of drought ( World Meteorological Organization WMO,

006 ). 

There is no unique definition of drought. However, there is an agree-

ent that it is an anomaly in precipitation and temperature that when

xtended over a region causes a lack of soil moisture, runoff and ground-

ater ( Mishra and Singh, 2010 ; Van Loon, 2015 ). This lack of wa-

er is expressed by a drought indicator, which transforms the hydro-

eteorological variable into a value that is related to such a water

nomaly ( Mishra and Singh, 2011 ; Wanders et al., 2010 ). In drought

onitoring, the drought indicators are generally used to identify the

ack of water. 
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Regarding drought monitoring, Hao et al. (2017) provide an

verview of its status for regional and global applications. They re-

ort as an essential advance the integration of more data resources

o feed drought indicators, allowing for a better description of hydro-

eteorological and vegetation condition. This integration includes the

se of hydrological simulations, as well as remote sensing, and forecast-

ng data. For instance, the European Drought Observatory ( Sepulcre-

antó et al., 2012 ) provides the condition of drought evolution (devel-

pment) in Europe based on satellite observations and modelled soil

oisture. On the one hand, current drought monitoring allows for fol-

owing drought development for a specific location or a given region,

ainly through the visualisation and analysis of time series of drought

ndicators. On the other hand, the spatial condition of drought, including

ts extent, is monitored with the help of time snapshots, which provide

ualitative information on the spatial behaviour of the phenomenon. 

In terms of the spatial development of the drought, nowadays, the

vailable drought monitors deliver information about the spatial extent

f droughts (i.e. snapshots). However, consistent procedures for track-

ng of drought areas are lacking, not allowing for assessing temporal

ariations that form its spatio-temporal dynamics ( Hao et al., 2017 ). In
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Fig. 1. Schematic overview of S-TRACK method for spatial drought tracking 

which involves: ( step 1 ) spatial drought units (clusters) computation, ( step 2 ) 

centroids localisation, and ( step 3 ) centroids linkage (see Sect. 2.1). An example 

is presented for the case of three times steps: from t 1 to t 3 . Columns in the dia- 

gram show the sequence of the steps. Coloured cells in the first column indicate 

all cells in drought. Colours in the second column point out different clusters 

identified. In the third column, the largest contiguous area in drought is pre- 

sented with a different colour. Only the largest cluster is shown in the fourth 

column and its centroid ( p ) is indicated by a point. Subscripts indicate time 

steps. 
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ddition, the spatial distribution of drought at a specific time does not

ive information about the spatial pathway of the droughts. Implement-

ng the data analysis and hydroinformatics technologies to trace drought

n space and in time on drought monitors can enhance its spatial track-

ng and prediction. 

The necessity to increase our understanding of the spatio-temporal

evelopment of drought has motivated the studies where drought is con-

idered as a phenomenon that has at least the following main char-

cteristics: duration, intensity (magnitude), and spatial extent (area)

 Andreadis et al., 2005 ; Corzo Perez et al., 2011 ; Diaz et al., 2018 ;

errera-Estrada et al., 2017 ; Lloyd-Hughes, 2012 ; Sheffield et al., 2009 ;

allaksen et al., 2009 ; Van Huijgevoort et al., 2013 ; Vernieuwe et al.,

019 ). A general framework for carrying out spatio-temporal analysis of

rought can be formulated based on these studies, and it can be briefly

escribed as follows. First, a given drought indicator is used to transform

he hydro-meteorological variable into water anomalies. The drought

ndicator is computed in a spatial context, where the study region is

mbedded in a grid. Then, by establishing a threshold on the drought

ndicator, the condition of non-drought/drought is identified in each of

he cells of the grid. This condition can be expressed in a binary way, i.e.

sing 0 s and 1 s. Finally, neighbouring cells showing the same drought

ondition are aggregated into regions (clusters) by applying a clustering

echnique. In this way, drought is defined in space and in time, with a

patial extent and duration. 

The spatio-temporal analysis of drought that would also include

he spatial drought tracking explicitly is however limited to a few

tudies such as Diaz et al. (2018) , Herrera-Estrada et al. (2017) , and

hou et al. (2019) . The first two address the analysis for large-scale stud-

es and the latter presents a basin-scale application. Although there are

ther publications that consider the study of drought extent locations,

hey miss the explicit calculation of spatial drought tracks. Following the

ramework mentioned in the previous paragraph, after the extraction of

rought extents (areas), it is possible to identify their location and fur-

her construction of the spatial tracks (defined by the linkage between

onsecutive centroids in time). The calculation and further analysis of

hese tracks, along with outcome on drought areas, may help to answer

he following questions regarding drought dynamics. What are the main

laces where drought remains? Are there predominant routes followed

y drought? How fast does drought change (its extent and location)

long its spatial path? Literature review shows that the development of

ethodologies to describe drought dynamics is still in progress, there-

ore more research is needed in this regard (e.g. Herrera-Estrada et al.,

017 ; Vernieuwe et al., 2019 ; Zhou et al., 2019 ). 

This study aims to explain the main principles of a new method that

omplement current drought monitoring by tracking the spatial extent

f drought (referred to in this document as area, or cluster). In this

tudy, the description and the application of the methodology to cal-

ulate drought tracks are presented in detail. The proposed method is

ccompanied by an algorithm to calculate the drought characteristics.

oth methods are described after this introduction section. The spatio-

emporal Contiguous Drought Area (CDA) analysis ( Corzo Perez et al.,

011 ) is used as the basis for the development of the tracking method.

he CDA is applied to identify the neighbouring cells that form the

rought clusters. A drought is defined by an onset location, pathway

ver time, and an end location based on the built tracks. A new drought

haracteristic is introduced in this study, namely rotation (Sect. 2.2), a

eature often used when tracking objects in space (details in Sect. 2.2).

he application of drought tracking method is performed over the coun-

ry of India for the period 1901-2013. 

. Methods 

.1. S-TRACK: spatial tracking of drought 

The spatial identification of drought tracks is firstly introduced by

iaz et al. (2018) and further developed in this research. S-TRACK con-
ists of the three main steps: (1) calculation of the spatial drought units

referred to here also as areas or clusters); (2) localisation of centroids;

nd (3) linkage of centroids ( Fig. 1 ). 

tep 1. Spatial drought units computation 

In the spatial context, drought units are identified by means of the

ontiguous Drought Area (CDA) analysis ( Corzo Perez et al., 2011 ).

 CDA is composed of neighbouring cells in drought. These cells in

rought are identified in each time step. When the drought indicator

s below or equal to the selected threshold, the value of 1 is used to

ndicate that the cell is in drought, otherwise, the value of 0 is used,

ndicating non-drought. Drought indicators (DIs) are mathematical rep-

esentations of a water anomaly (see Sect. 2.3.1). In general, CDA can be

pplied over any DI that is in a grid form. Following the CDA method-

logy, in each time step, the CDAs are computed. 

CDA analysis follows a connected-component labelling approach to

luster the cells in drought ( Haralick and Shapiro, 1992 ). In this ap-

roach, a two-scan algorithm is applied. Firstly, each cell is numbered

or location issues. Then, the first run is performed where the binary

rid is explored and connected (contiguous) components (cells) are as-

igned with provisional labels. These labels point out the connection of

very cell with its 8 nearest neighbours. Within the grid, in a section of

 × 3 cells, 9 cells in total, the central cell has 8 surroundings. In this

rst run, the cell’s label does not refer to the number of cluster yet but to

he cells with which the given cell is connected. Finally, a second scan is

arried out to find similar cell connections, i.e. clusters, which are given

 unique label. Examination of the grid can be performed by columns

r by rows. CDA analysis is conducted in each time step over the whole

rid. For more details on CDA analysis refer to Corzo Perez et al. (2011) .

The use of CDA relies on the assumption that the binary description

f drought condition (0 s and 1 s) is homogeneous over the whole grid.

hus, if two or more cells denote drought conditions (value of 1), and are

ontiguous in space, it is assumed that all of them are part of the same

rought unit. In this respect, it is recommended to choose a drought

ndicator that considers the normalisation of the values in the spatial

omain. In this study, a standardised drought indicator is applied as

entioned afterwards, which allows the clustering of neighbouring cells

n drought (cells with 1 s). 

After clusters (areas in drought) are identified, the major (largest)

ne is identified in each time step t ( Fig. 1 ). As the tracking algorithm
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Fig. 2. Flowchart showing the rules for linking drought areas (clusters) in time. 

Numbers in the boxes indicate the sequence of rules 1 to 4. The output of 1 is 

used to point out that the drought area A at time t joins its predecessor at time 

t –1, otherwise 0 is retrieved. The distance between the centroids at times t and 

t –1 is represented by Δl . The linking algorithm has the following parameters: 

a, b, c and d . The first two used to control drought area A , and the last two, to 

check distance Δl . 
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ocuses on the calculation of the major spatial drought extent in each

ime step, small or one-cell units are discriminated with the selection

f the largest one, allowing the elimination of possible artefact drought

reas. 

tep 2. Centroids localisation 

After identification of the major (largest) drought cluster, its centroid

 p ) is calculated in each time step. This feature is used as the location

f the cluster in a similar way as Corzo Perez et al. (2011) and Lloyd-

ughes (2012) present. The way in which the clusters are joined in time

s explained in the following step. Step 2 and 3 presented in this docu-

ent, are an extension of the CDA analysis of Corzo Perez et al. (2011) .

nother possibility to indicate the location of a given cluster is, for

nstance, to use the point with the lowest drought indicator value

 Andreadis et al., 2005 ; Herrera-Estrada et al., 2017 ). In this research,

e chose the centroid since we already reduce the spatial representa-

ion of drought indicator by using only 1 s and 0 s, i.e. drought and

on-drought condition, respectively. 

tep 3. Centroids linkage 

The algorithm to link centroids of consecutive clusters in time is a

et of rules to separate or join the sequence in time ( Fig. 2 ). The rules

onsider two types of threshold parameters: (1) two that control the

agnitude (size) of the cluster ( A , with dimensions L 2 ), and (2) two

hat constrain the Euclidean distance between consecutive clusters ( Δl ,

ith dimensions L) ( Fig. 2 ). The parameters are denoted as follows: a,

, c and d . The first two are used to the drought area A , and the last two

o the distance Δl . The output in this step is the time series of 0 s and 1

, denoted by S( t ). Here, the value of 1 indicates the linkage of clusters

n time. If the cluster at time t is not connected with the cluster at time

 –1, the value of 0 is used instead. Consecutive values of 1 s in the time

eries S show the occurrence of what is defined as a drought track. The

owchart of the rules for linking the centroids is presented in Fig. 2 , and

elow these rules are explained. 

Centroids linkage starts by identifying if the cluster area A is higher

han a ( Fig. 2 , rule 1). This first comparison helps to discriminate small

lusters. If A is below a , there is no connection between consecutive

lusters and this procedure finalises, retrieving 0. Before comparing the

istance between areas ( Δl ), the second comparison of A is applied to

dentify if it is a “very large ” area ( Fig. 2 , rule 2). Parameter b is pro-

osed to consider these large areas. When A is below b , the parameter c

s used to compare distances between clusters ( Fig. 2 , rule 3). Otherwise,
hen A is above b ("very large" area), to restrict the distances, param-

ter d is considered instead ( Fig. 2 , rule 4). The reason of the second

omparison of cluster areas and the use of parameter d is because cen-

roids of clusters with a considerable size may be located farther away

rom each other and then the distance Δl could fall outside of the limit

ndicated by parameter c ( Fig. 3 ). 

Another parameter that could be included in this linkage algorithm

s the degree of overlap between consecutive clusters in time. This way

f intersection is not considered directly in our linkage algorithm as a

arameter (e.g. percentage of overlapping). The overlap is contemplated

n the use of the parameters that control the distance between clusters.

n intersection may occur when the distance between centroids is short

 Fig. 3 ). 

.2. Calculation of drought characteristics 

The methodology to build drought tracks allows for the identification

f paths with an onset and an end location. The information calculated

long the paths can help to describe the occurrence of drought. Particu-

arly, it is possible to extract information regarding the duration, sever-

ty, as well as rotation. In the following analysis of the spatio-temporal

rought dynamics, severity has a different meaning compared to on-site

nalysis or CDA studies. In the latter, it expresses a certain degree of wa-

er missing, an anomaly compared to normal conditions. Herein, sever-

ty has a spatial meaning, it is connected to the temporal evolution of the

ize of the area in drought, irrespective of the strength of the drought. In

he following paragraphs, the procedure to calculate drought character-

stics is presented. The proposed approach is called DDRASTIC-spatial

Drought DuRAtion, SeveriTy and Intensity Computing-spatial events).

DRASTIC-spatial is applied after drought tracks are identified by the

-TRACK algorithm. This approach has as a predecessor ( Diaz et al.,

019 ), which however does not consider the elements related to the

patial domain, such as clusters, locations and paths. 

For the calculation of the drought duration, firstly the onset and the

nd are obtained: the time series S( t ) of 1 s and 0 s calculated with

-TRACK method is analysed to do so. As mentioned, the consecutive

equence of 1 s in the time series S, indicates the occurrence of a drought

rack. One isolated value of 1 shows the linking of two clusters in time.

wo consecutive values of 1 show the linkage of three clusters in time,

nd so on. In a sequence of 1 s, the time of the first value of 1 ( t first ) is

he time step at which the second and first cluster are connected. The

ime step of the last value of 1 ( t last ) is the one when the last and the

enultimate clusters are linked. The onset ti is defined as ti = t first − 1,

hile the end tf as tf = t last . The duration ( dd ) is calculated with Eq. (1 ).

𝑑 = 

𝑡𝑓 ∑
𝑡 = 𝑡𝑖 

S ( 𝑡 ) (1) 

The magnitudes of areas of the largest clusters calculated in each

ime step with S-TRACK method are saved in the time series DA (drought

rea). The drought area is used as the measure of the drought severity

 ds ), which is computed as the sum of drought areas of the period de-

ned by the onset ( ti ) and the end ( tf ) ( Eq. (2 )). Drought intensity ( di ) is

efined as the ratio between drought severity and duration ( Eq. (3 )). 

𝑠 = 

𝑡𝑓 ∑
𝑡 = 𝑡𝑖 

DA ( 𝑡 ) (2) 

𝑖 = 𝑑𝑠 ∕ 𝑑𝑑 (3) 

Identification of locations where a drought path starts and ends can

rovide its main direction. The initial and final locations are identified

sing the centroids of the first and last cluster, respectively. The location

s a relative position in the spatial domain of the study region. It refers

o a point in the axes south-north (S-N) and west-east (W-E) ( Fig. 4 ). The

rigin of the axes is assigned arbitrarily, here it is proposed to place this

rigin in the centroid of the study region. The centroid of a particular
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Fig. 3. Schematic overview of the four cases of linking 

clusters (drought areas) in time . Area at time t is indicated 

by A t (bold circle) and its predecessor at time t –1 by A t –1 

(dashed circle). Centroids of areas A t and A t –1 are denoted 

by p t and p t –1 (points), respectively. Distance between cen- 

troids is represented by Δl (arrow). An example of the size 

of parameters a and b is represented by the circles shown 

on the right. Centroids in both (i) and (ii) have the same 

location, in the same way, the centroids in both (iii) and 

(iv). Areas A t in (i) and (iii) are of similar size and between 

the parameters a and b . On the other hand, in (ii) and (iv), 

areas A t are also equal but above those parameters (case 

of a “very large ” area). Only the parameters of drought 

area are represented in this figure. Schemes (i) to (iv) help 

to illustrate the relevance of using parameters that con- 

sider not only the magnitude of areas but also the distance 

between them within the linking algorithm. As a distance 

limit that helps in linking large areas may not be adequate 

in connecting smaller ones, as shown in (iv) and (iii), the 

two distances parameters are proposed in the linking algo- 

rithm (see Sect. 2.1 for details). 

Fig. 4. Schematic overview of the procedure to define centroid’s location of a 

cluster. A centroid can be located in one of nine positions: centre (C), east (E), 

northeast (NE), north (N), northwest (NW), west (W), southwest (SW), south (S) 

and southeast (SE). The symbol r stands for the distance between the cluster’s 

centroid and the one of the region. The angle between the W-E axis and the line 

defined by centroid’s cluster is indicated by 𝜃. The radius to define if a cluster 

is located in the centre (C) of the region is pointed out by r min . 
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o  
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t  

Table 1 

Rules to define the location of a centroid’s cluster. Nine positions are pro- 

posed: centre (C), east (E), northeast (NE), north (N), northwest (NW), west 

(W), southwest (SW), south (S) and southeast (SE). 

Id Rule Location 

0 r ≤ r min C 

1 r > r min and 0° ≤ 𝜃< 22.5° or 337.5° ≤ 𝜃< 360° E 

2 r > r min and 22.5° ≤ 𝜃< 67.5° NE 

3 r > r min and 67.5° ≤ 𝜃< 112.5° N 

4 r > r min and 112.5° ≤ 𝜃< 157.5° NW 

5 r > r min and 157.5° ≤ 𝜃< 202.5° W 

6 r > r min and 202.5° ≤ 𝜃< 247.5° SW 

7 r > r min and 247.5° ≤ 𝜃< 292.5° S 

8 r > r min and 292.5° ≤ 𝜃< 337.5° SE 

r = distance between centroid’s cluster and the one of the region; 

𝜃 = angle between W-E axis and the line defined by centroid’s cluster; 

r min = limit distance to consider the location in the centre (C) of the region. 
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fi  
luster can be located in one of the nine proposed positions: centre (C),

ast (E), northeast (NE), north (N), northwest (NW), west (W), southwest

SW), south (S), and southeast (SE) ( Fig. 4 ). Centre (C) is situated in the

entroid of the study region ( Fig. 4 ). A point (centroid) is in the centre

f the distance ( r ) between such point and the origin is within the r min 

adius ( Fig. 4 ). If distance r is out of the r min radius, the location is

ssigned based on the angle 𝜃. This angle is calculated between the W-E

xis and the line defined between the centroid and origin ( Fig. 4 ). All

he rules to identify the centroid’s location are presented in Table 1 .

ithin the algorithm, instead of letters, locations are denoted by means

f numerical identifiers (Ids) as presented in the first column of Table 1 .

Drought tracks provide the visual overview of how drought moves

n the spatial domain. Initial and end location (initial and end point of

he track) help to identify the direction followed by a given drought
luster. Yet another characteristic that complements the description of

he drought dynamics is its rotation. This characteristic is defined as the

ircular orientation followed by the spatial extent of drought. Rotation

s a feature commonly attributed to objects that experience changes in

pace. It is an essential characteristic analysed in other weather-related

henomena such as cyclones (e.g. Chavas et al., 2017 ; Rahman et al.,

018 ) but that has not been used and explored much in droughts so

ar. This characteristic is included because it is foreseen that it can help

o analyse the impact of the drought drivers, such as the climate and

and surface control factors, on the spatial development of droughts.

he drought rotation patterns are expected to be different for each com-

ination of the aforementioned factors. We see this study as an initial

tep towards developing a technological framework for identifying and

nterpreting the drought rotation. 

As the drought track can switch between clockwise and counter-

lockwise along the pathway, we propose to classify the rotation in a

ore general way as (1) mostly clockwise (cw), or (2) mostly counter-

lockwise (ccw) ( Fig. 5 ). To determine the rotation, a procedure is sug-

ested which makes use of the centroids’ coordinates. The algorithm is

ased on computing a polygon‘s area ( A ) from the vector with the co-

rdinates x and y representing the vertices ( Eq. (4 )). In this algorithm,

rstly the sum of products between the coordinates x and y , denoted
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Fig. 5. Example of rotation calculation. Two types are 

considered: (1) mostly counter-clockwise when 𝜌< 0 (left); 

and (2) mostly clockwise when 𝜌> 0 (right). The number in 

each centroid (point) indicates the tracking sequence. Ar- 

rows show the track direction and the rotation. Rotation of 

each line segment is also pointed out by cw and ccw that 

stand for clockwise and counter-clockwise, respectively. 
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y 𝜌 ( Eq. (5 )), is calculated. Then, 𝜌 is applied to define the rotation

irection ( Eq. (6 )). The coordinates x and y are taken from the ones of

entroids’ clusters. When there are only two points (two clusters), or

hen the track is horizontal or vertical, the rotation is not defined, be-

ause 𝜌 takes the value of zero. In Fig. 5 , two examples of the calculation

f rotation are shown by way of illustration. One example is presented

or mostly counter-clockwise ( Fig. 5 (left)) and one for mostly clockwise

 Fig. 5 (right)). We chose this approach to compute rotation because it

istinguishes between “big ” and “small ” turns in the calculation ( Eq.

5 )). The fourth column in both tables presented in Fig. 5 provides ex-

mples of how the magnitude of each turn is considered differently in

he rotation algorithm. 

 = 

1 
2 
|𝜌| (4)

= 

(
𝑥 1 − 𝑥 𝑛 

)(
𝑦 1 + 𝑦 𝑛 

)
+ 

𝑛 −1 ∑
𝑖 =1 

(
𝑥 𝑖 +1 − 𝑥 𝑖 

)(
𝑦 𝑖 +1 + 𝑦 𝑖 

)
(5)

 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

cw ( mostly clockwise ) if 𝜌 > 0 

ccw ( mostly couter − clockwise ) if 𝜌 < 0 

nan ( not def ined ) if 𝜌 = 0 

(6) 

.3. Experimental setup 

.3.1. Drought indicator data 

Drought tracks were calculated with S-TRACK algorithm for the pe-

iod 1901 to 2013 (113 years). The analysis was conducted for India,

n a monthly basis. Data from the Standardized Precipitation Evapora-

ion Index (SPEI) Global Drought Monitor ( http://spei.csic.es/ ) was used

 Beguería et al., 2014 ) to test the proposed methodology for drought

racking and characterisation. The procedure to calculate SPEI ( Vicente-

errano et al., 2010 ) is similar to the one used to compute the Standard-

zed Precipitation Index (SPI) ( Mckee et al., 1993 ), but taking into ac-

ount precipitation ( P ) minus potential evaporation ( E ) instead of only

 . SPEI data from the drought monitor are in a grid form for differ-

nt temporal aggregation periods. In this study, we used SPEI-6, which

orresponds to anomalies of the six-month accumulation of P – E . This

ggregation usually refers to extended periods of lack of water availabil-

ty, therefore consequences of what is commonly called meteorological

rought are closer to that caused by the so-called hydrological drought

 World Meteorological Organization WMO, 2012 ). 

.3.2. Drought areas and centroids 

Before the application of the drought tracking algorithm, the size of

he largest clusters and the distances between the centroids of consecu-

ive clusters in time were calculated. This calculation was performed, on

he one hand, to understand the order of their magnitude and frequency,
nd on the other hand, to set the values of the tracking algorithm pa-

ameters. 

For the definition of drought areas, usually, the threshold of -1 is

sed to indicate drought condition in the drought indicators that follow

 similar methodology than SPI, also referred to as standardised ones.

n this research, the same threshold (SPEI = -1) was selected to define

rought condition in each cell of the grid in each time step. When SPEI

as below -1, with 1 s the drought condition was indicated, in another

ase, with 0 s the non-drought status was pointed out. This binary rep-

esentation allowed the identification of spatial drought units (clusters)

hrough the application of the spatio-temporal analysis of Contiguous

rought Area (CDA) (Sect. 2.1). 

The largest clusters in each time step were then identified. The area

f the largest cluster was compared with the total one to identify the

imilarity in size between them. It is assumed that the more similar the

arger area to the total one, the better the identification of the drought

racks will be. This stands because the tracking algorithm focuses on

nly one area per time step. For the comparison, the area of all clusters

DA_total) and the area of the largest one (DA_largest) were calculated.

oth areas were expressed as percentages calculated as the ratio be-

ween the number of cells in drought and the total number of cells. The

otal number of cells considered for India was 1,173. 

Once the centroids were identified, the distances between consec-

tive centroids were calculated over time (Sect 2.1). Both the clusters

nd the distances were calculated for the entire period of analysis on a

onthly basis. 

.3.3. Tracking algorithm calibration and evaluation 

S-TRACK uses four parameters and they have to be user-defined,

r, better, calibrated. The problem of calibrating this algorithm is that

here is no ground-truth data on the drought tracks, hence, some aliases

hould be used. A full-fledged calibration procedure can be applied (e.g.

ne of the randomised search algorithms, like an evolutionary algo-

ithm). The optimal parameters should be selected based on information

f reported drought. In the absence of drought tracks, it is necessary to

ave data at least on the onset and end month of the reported droughts.

he near-optimal parameters are those that provide the best match be-

ween the observed and calculated onsets/ends. 

However, in this paper, we applied a simplified procedure. Consid-

ring that there is no available information to compare the calculated

rought paths in the study area, we limited the procedure to a quali-

ative analysis of the paths of the most severe droughts reported in the

nalysis period. The droughts of 1905, 1942, 1965, 1972, 1987, 2000,

nd 2002 were considered because their severe impacts were referenced

 Guha-Sapir, 2018 ). The qualitative evaluation was focused on the anal-

sis of the extreme incidences using a combination of parameters. From

he whole set of combinations, we have chosen three: the one that pro-

uces the smallest number of droughts paths (combination_1), the one

hat yields the largest number of droughts paths (combination_3), as

http://spei.csic.es/
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Fig. 6. Percentage of drought area considering all clusters (DA_total, left), and considering only the largest one (DA_largest, centre). Right panel shows the difference 

between DA_total and DA_largest. 
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Fig. 7. Centroids of the largest clusters (DA_largest) identified on a monthly 

basis. Spatial drought extent is schematized by four symbols pointing out the 

drought area. The origin of the axes is placed in the centre of the country. 

 

t  

f  

t  

I  

f  

w

 

a  

l  

c  

i  

t  

Δ  

t  
ell as the one that produces the number of drought paths similar to

he number of years of the analysis period (combination_2). 

Yet another important part of the algorithm evaluation is its sen-

itivity analysis. It allows for assessing the robustness of the method

hrough the analysis of the outputs under the variation of parameters

 Pannell, 1997 ). Sensitivity analysis generally allows answering the fol-

owing questions when evaluating an algorithm. How parameters and

utput are related? What level of accuracy in the parameters is required?

hich parameters are more sensitive, and what drought characteristics

o they influence most? What are the consequences of varying the pa-

ameters? 

In principle, calibration and sensitivity analysis steps have to be co-

rdinated, e.g. allowing for removal of less sensitive parameters from

he set of the parameters to be calibrated (e.g. to speed up calibration).

n this work, as the algorithm is not computationally complex, this ap-

roach was not followed. The sensitivity analysis was performed to as-

ess the effect of parameters over the identification of droughts tracks

nd characteristics. The questions mentioned in the previous paragraph

ere used as a guideline to perform such an analysis. 

. Results 

.1. Drought areas and centroids 

Drought areas and centroids were computed for the period 1901 to

013. With respect to the areas, firstly the comparison between the area

f all clusters (DA_total) and area of the largest one (DA_largest) was per-

ormed. Fig. 6 shows the monthly values of both DA_total and DA_largest

rranged in matrices. Columns indicate months from January (J) to De-

ember (D), while rows point out the year from 1901 to 2013. Drought

rea magnitude is indicated with a colour scale, where the darker the

olour, the higher the drought area is. The white colour denotes months

ith small drought areas (less than 10%). It is observed that for almost

ll months DA_total and DA_largest have similar values, and this agree-

ent is especially high for the largest values. The drought area aver-

ge for the period was 17.4% for DA_total, and 11.5% for DA_largest.

ig. 6 (right) presents the difference between DA_total and DA_largest.

cross the whole period, the average of the differences was 5.9%. As

A_largest and DA_total were very similar, it can be considered that the

argest cluster is a good proxy to analyse how drought changes in the

egion without considering the occurrence of two consecutive drought

racks. 
The centroids of the largest clusters are presented in Fig. 7 . The spa-

ial drought extent is shown schematically with symbols that indicate

our intervals of the percentage of drought area with respect to the coun-

ry extent. The origin of the axes is placed in the centre of the country.

t is observed that the spatial distribution of the centroids is almost uni-

ormly distributed over India. However, a higher density of the areas

ith a considerable extent can be seen in the central region. 

The distances between consecutive clusters in time were calculated

lso for the whole period. Fig. A1 (Appendix A) presents the area of the

argest cluster (DA_largest) and the distance ( Δl ) between consecutive

lusters in time. It can be observed that the occurrence of DA_largest

s greater than 25% during all decades of the analysis period. A pat-

ern is observed between DA_largest and Δl : when DA_largest increases,

l usually decreases. This behaviour was expected, because the more

he area increases, the smaller the distance between centroids becomes.
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Fig. 8. Relative frequency of the largest cluster area (DA_largest) and distances 

( Δl ) between consecutive clusters in time. 
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his means that the location of the consecutive clusters is becoming the

ame. When Δl does not follow this behaviour, it might be because the

onsecutive areas in time are very far each other, i.e. they are part of

ifferent drought paths. 

Fig. 8 shows the frequency of both the largest cluster area

DA_largest) and the distance ( Δl ) between consecutive clusters in time.

or both variables, results are displayed in four intervals. It was ob-

erved that as the area increases, the frequency of long distances be-

ween these areas decreases, while the frequency of small distances in-

reases. For the DA_largest the intervals of 25-50% and ≥ 50%, the fre-

uency of the small distances ( Δl < 250 km) was slightly greater than

alf of all the distances. This results of DA_largest and the distances Δl

onfirm quantitatively what is observed in Fig. A1 : in general when the

rea grows, the distances between the centroids tend to decrease. On the

ther hand, the small value of the frequency of large distances in large

reas (intervals 25-50% and ≥ 50%) indicates that there are large con-

ecutive areas in time that are not necessarily connected to each other. 

.2. Sensitivity of S-TRACK results to the choice of parameters 

S-TRACK algorithm has a number of parameters. For the reasons

entioned above (Sect. 2.3.3), it is useful to study the sensitivity of its

utputs to these parameters. Based on the results of areas and distances

etween clusters (Sect. 3.1), the S-TRACK algorithm was set to take pa-

ameters values within the following ranges: a ≤ 50, b ≥ 50, c ≥ 50, and

 ≥ 50th percentile (median). As mentioned, a and b are parameters that

ontrol the size of clusters (areas), and c and d are parameters that con-

train the distances between consecutive clusters in time. The average

uration, average severity, onset location, as well as end location, were

alculated for the different combinations of parameters. Results for a

30, 40, and 50), b (50, 70, and 90), c (50, 60, 70, 80, and 90), and d

50, 60, 70, 80, and 90) are presented in Figs. 9 and A2 to A6 (Appendix

). The a and b parameters are expressed as percentage of drought area

nd c and d as km. At the end of this section, a summary of the results

s presented. 

Fig. 9 shows the number of drought paths (combination of tracks

inked in time). It is observed that the number of drought paths, in gen-

ral, increased when a decreased. This is expected since parameter a is

he one that determines if a cluster joins the consecutive clusters in each

ime step. When a is small, more clusters are expected to be connected in

ach time step and therefore more drought paths can be identified. The

alue of b (used for “very large ” areas) influenced the number of paths
ess than a , e.g. so that when b increased, there was a small proportional

ncrease in the number of paths for all combinations of parameters. The

ombined variation of b and c influenced more the number of paths for

mall values of d . It was observed that in general, the number of paths

rops when a increases and both b, c , and d decrease. In general, the

umber of drought paths was more sensitive to the changes in parame-

er a . 

In Fig. A2 the average duration of drought paths is presented. Al-

hough the variation of average duration was small to the changes of

arameters, a slight increase was observed, as a decreased and both b, c

nd d increased. The average duration was more sensitive to the increase

n c and d that are the parameters that control the distance between con-

ecutive clusters in time. 

Regarding the severity, it was smaller when a increased and both b,

 , and d decreased ( Fig. A3 ). Severity is calculated as the ratio between

he total sum of drought areas and duration (number of months), so it is

etting lower as duration increases (see Eqs. (1 ), (2) , and –( 3 )). Similarly

o the number of drought paths, the average severity was also sensitive

o changes in parameter a . It was observed that when the number of

aths decreased, the average severity increased ( Figs. A2 and A3 ). This

ehaviour in severity is the effect of the selection of a that controls the

ize of the areas that are joined in each instant of time. If a is small,

ore areas can be joined and severity may decrease due to the effect it

roduces the pooling of more areas of small sizes divided by a longer

uration (see Eqs. (1 ), (2) , and –(3) ). 

Figs. A4 and A5 show the mode of onset and end location of drought

aths, respectively. In Fig. A4 , not many changes were observed in

he onset location. East was the most common onset location in most

ombinations of parameters, followed by South. On the other hand,

ig. A5 shows the end locations that in most combinations the South,

ollowed by East were the most common. When both a decrease and b

ncreased, the South was the most common end location. 

Fig. A6 shows the mode of rotation. It was observed in most cases

hat mostly clockwise (cw) was the common rotation in the drought

aths. When a decreased and b increased, the mostly clockwise rotation

as the most common rotation. This was the case when more drought

aths were obtained. It was observed that rotation was most sensitive

o the variations of c and d that are the parameters which control the

istance between consecutive clusters in time. 

ummary of results 

Table 2 shows a summary of how the tracking algorithm responds

o different combinations of parameters. In particular, the behaviour

f the number of paths, duration, severity, onset and end location, as

ell as rotation, is indicated. The combinations where it was observed

hat the values of these characteristics tend to increase or decrease is

resented. In general, the most sensitive parameter (important) is the

ne that controls the minimum area (parameter a ). Changes in this pa-

ameter have more influence on the result of the number of drought

aths and duration. Regarding duration and severity, it is observed that

s the paths last longer the severity decreases. This may apply because

he severity is calculated as the sum of the areas of clusters that belong

o the drought duration. Thus, while the duration increases, the areas

hat are added tend to be smaller and then the sum does not increase

ignificantly. 

The combination 11 ( Table 2 ) refers to the identification of paths of

very large ” areas. In this combination, it is expected that the initial and

nal locations will be in the centre. Centroids of these cluster areas tend

o be identical to that of the region. For these paths, it is also observed

hat the rotation tends to be clockwise. 

In combinations 6, 7 and 14 ( Table 2 ), by decreasing the parameter

hat controls the minimum area (parameter a ), more drought paths are

dentified, with the characteristic of being long and with a small severity

formed by a number of smaller areas). In these combinations, drought

aths usually start in the East and end in the South, with a clockwise

otation. 
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Fig. 9. Number of drought paths obtained with different combinations of parameters. 

Table 2 

Summary of drought characteristics obtained with different combinations of parameters. Numbers in parentheses indicate the location as presented in Figs. A4 

and A5 . Abbreviations ccw and cw stand for counter-clockwise and clockwise, respectively. 

# Parameters Number of paths Drought characteristics 

a b c d Duration Severity 

Onset 

location End location Rotation 

1 ↑ ↓ ↓ ↓ decreases tends to 

decrease 

decreases tends to 

decrease 

increases 

2 ↑ ↓ ↑ ↑ decreases decreases increases 

3 ↑ ↑ ↑ ↑ decreases decreases increases 

4 ↑ ↑ ↓ ↓ decreases decreases increases 

5 ↓ ↓ ↓ ↓ increases increases decreases 

6 ↓ ↓ ↑ ↑ increases increases decreases tends to 

the south 

(7) 

tends to cw 

7 ↓ ↑ ↑ ↑ increases increases tends to 

increase 

decreases tends to 

the east (1) 

tends to cw 

8 ↓ ↑ ↓ ↓ increases increases decreases 

9 ↑ ↓ ↓ ↑ decreases decreases increases 

10 ↑ ↓ ↑ ↓ decreases decreases increases 

11 ↑ ↑ ↓ ↑ decreases decreases increases tends to 

increase 

tends to 

the centre 

(0) 

tends to 

the centre 

(0) 

tends to cw 

12 ↑ ↑ ↑ ↓ decreases decreases increases 

13 ↓ ↓ ↓ ↑ increases increases decreases 

14 ↓ ↓ ↑ ↓ increases increases decreases tends to 

the south 

(7) 

tends to 

the east (1) 

tends to ccw 

15 ↓ ↑ ↓ ↑ increases increases decreases 

16 ↓ ↑ ↑ ↓ increases tends to 

increase 

increases decreases tends to 

decrease 
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Fig. 10. Occurrence of drought paths calculated with three combination of parameters: (left) combination_1 ( a = 50, b = 50, c = 50, d = 50), (centre) combination_2 

( a = 40, b = 50, c = 70, d = 80), and (right) combination_3 ( a = 30, b = 70, c = 90, d = 50). Consecutive cells in colour indicate the occurrence of a drought path 

(top). Frequency is calculated per column from January (J) to December (D) (bottom). 
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If the drought path starts in the South, it usually ends in the East, and

n this case, the rotation is counter-clockwise, i.e. the rotation follows

he minor turn ( Table 2 (combination 14)). In other words, if the path

tarts in the South and ends in the East, it is more likely to be directed

owards the East showing a counter-clockwise rotation, instead of going

rstly to the West, then North and finally East, showing a clockwise

otation in this case. 

.3. Qualitative evaluation of drought paths 

Seven of the most extreme droughts reported during the analysis

eriod were selected for testing S-TRACK. These droughts, as it was

entioned earlier, correspond to the following years: 1905, 1942, 1965,

972, 1987, 2000, and 2002. In the absence of information regarding

he dynamics of the droughts, such as trajectories, our validation fo-

used on the analysis of the calculated tracks in the period when the

roughts occurred. 

From the set of parameter combinations shown in the previous sec-

ion, three were selected to analyse the calculated drought tracks. For

he first combination (combination_1, a = 50, b = 50, c = 50, d = 50),

he number of drought paths obtained was the lowest. For the second

ombination (combination_2, a = 40, b = 50, c = 70, d = 80), the num-

er of drought paths was similar to the number of years of the analysis

eriod, i.e. there was approximately one drought path per year. Finally,

n the third combination (combination_3, a = 30, b = 70, c = 90, d = 50),

he highest number of drought paths was identified. 

Fig. 10 presents the occurrence of drought paths calculated for the

hree combinations of parameters. Columns indicate the months from

anuary (J) to December (D) and the rows show the years. Consecutive

ells in colour indicate the occurrence of a drought path ( Fig. 10 (top)).

he frequency per month was calculated to analyse the distribution of

he tracks over the months ( Fig. 10 (bottom)). In general, the month

ith the less frequency of drought tracks was March. From January to

uly, the first part of the year, the frequency was fewer than from August
o December. It was observed that when the number of drought paths

ncreased ( Fig. 10 (top, from left to right)), the frequency of drought

racks in each month increased as well ( Fig. 10 (bottom)). 

Fig. 11 shows the results from the calculation of clusters and dis-

ances between centroids to the construction of drought paths for the

rought of 1987-1988. In Appendix A, one can see the other six droughts

 Figs. A7 , A8 , A9 , A10 , A11 , and A12 ). In Fig. 11 (top) clusters and cen-

roids are presented. Areas of largest cluster (DA_largest) and distances

etween consecutive areas in time ( Δl ) are shown for the period from

987/1 to 1988/6 ( Fig. 11 (centre)). Duration of the drought paths is in-

icated in a schematic way with a horizontal line for each combination

f parameters. Drought tracks calculated with the three combinations of

arameters are also presented ( Fig. 11 (bottom)). In most of the seven

roughts, the maximum areas of the largest clusters were in the second

alf of the year and the first half of the following one (e.g. Fig. 11 (cen-

re)). It was observed that, in general, when DA_largest increased, Δl

sually tended to decrease (e.g. Fig. 11 (centre)). This relationship can

e explored in further research to define quantitatively the onset and

nd of the droughts. 

Table 3 presents a summary of the duration of the selected droughts.

t was observed that although the number of drought paths increases

rom the combination_1 ( Fig. 10 (left)) to the combination_3 ( Fig. 10

right)), in terms of the most severe droughts, the durations remain al-

ost similar ( Table 3 (column 2 and 4) and Fig. 11 (bottom)). More

rought tracks were identified in the first part of the year in combina-

ion_3. If the parameters c and d that control the distance between cen-

roids are more flexible, i.e. consider longer distances, drought tracks of

he second part of the year are more likely to join those of the first part

f the next year, as occurs in combination_2. In the combination_2, the

rought paths showed the longest durations ( Table 3 (column 3) and

ig. 11 (bottom, centre)). 

In all the selected droughts ( Figs. 11 and A7 to A12 ), it was observed

hat consecutive clusters in time overlap considerably, which suggests

hat the spatial extent after reaching a considerable size, it remains in
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Fig. 11. Results for the drought of 1987. Largest clusters and centroids are indicated from 1987/3 to 1988/6 (top). Area of largest cluster (DA_largest) and distance 

between consecutive clusters in time ( Δl ) are displayed from 1987/1 to 1988/6 (centre). The drought duration is pointed out schematically with a horizontal line 

for each combination of parameters. Drought tracks calculated with the three combinations of parameters are also presented (bottom). Spatial drought extent is 

schematised by four symbols pointing out the size of area. The origin of the axes is placed in the centre of the country. Arrows point out the direction of each track 

segment. Insets show zoomed-in views. 

Table 3 

Duration of selected droughts calculated with three combinations of parameters. In parentheses, the 

period is indicated. 

Drought Duration [months] 

Combination_1 Combination_2 Combination_3 

a = 50, b = 50, c = 50, d = 50 a = 40, b = 50, c = 70, d = 80 a = 30, b = 70, c = 90, d = 50 

1 6 (1905/7 to 1905/12) 12 (1905/6 to 1906/5) 6 (1905/7 to 1905/12) 

2 5 (1942/10 to 1943/2) 6 (1942/10 to 1943/3) 5 (1942/10 to 1943/2) 

3 6 (1965/7 to 1965/12) 22 (1965/5 to 1967/2) 6 (1965/7 to 1965/12) 

4 3 (1972/8 to 1972/10) 16 (1972/4 to 1973/7) 3 (1972/8 to 1972/10) 

5 6 (1987/9 to 1988/2) 8 (1987/7 to 1988/2) 6 (1987/9 to 1988/2) 

6 5 (2000/8 to 2000/12) 11 (2000/8 to 2001/6) 6 (2000/7 to 2000/12) 

7 5 (2002/8 to 2002/12) 12 (2002/4 to 2003/3) 6 (2002/8 to 2003/1) 
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he same region. This presence of large drought areas in the same region

ver time may explain the severity of drought events in those droughts.

here was no predominant pathway followed by droughts in those years.

n terms of spatial extent, 2000 and 2002 events were the largest as

hown in Figs. A11 and A12 , respectively. The drought with the longest

uration was that of 1965 ( Table 3 ), which is consistent with the re-

orted in ( Guha-Sapir, 2018 ). 

. Discussion 

.1. Drought indicator and areas 

In the presented version of the tracking method, we used a unique

hreshold over the drought indicator to indicate drought and non-

rought conditions in each grid cell (1 s and 0 s). This threshold is one

f the most common used in drought studies when considering stan-
ardised drought indicators. SPEI was applied in this research, but it is

ossible to use any other, including threshold approach ( Wanders et al.,

010 ), with the condition of being spatially distributed. The effects of

ther drought indicator thresholds over the cluster size were not as-

essed because the scope of this study was limited to testing the drought

racking algorithm. 

On the other hand, the clustering algorithm used in this study as-

umes that all cell values in the space domain are homogeneous. To

nsure that this assumption is correct, it is recommended the selection

f a drought indicator that uses a normalization procedure into its cal-

ulation. In addition, our clustering approach is based only on drought

ndicator values and does not consider others aspects that can influence

he delimitation of the spatial extent of drought, such as topography,

and use, and climate regions. In further studies, it is recommended to

ncorporate other elements to make the clustering method more gen-

ral. Another way of considering the factors mentioned above, without
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odifying/changing the clustering algorithm, is the use of a drought in-

icator that takes into account variables such as soil moisture or runoff.

.2. Drought tracking method 

S-TRACK algorithm is an extension of the Contiguous Drought Area

CDA) analysis of Corzo Perez et al. (2011) . This drought tracking algo-

ithm was firstly introduced in Diaz et al. (2018) and further developed

n this research. The current version of S-TRACK focuses on the largest

rought areas. In this way, areas with a considerable territorial extent

re identified. We are aware that smaller, intense droughts would not

e captured by this tracking algorithm. Also, that mild droughts over

arge areas obtained by the algorithm would overshadow smaller, in-

ense droughts. 

Although S-TRACK makes use of CDA analysis for the extrac-

ion of drought clusters, other algorithms used for the same pur-

ose can also be considered. These algorithms include the recursion-

ased approach ( Andreadis et al., 2005 ; Herrera-Estrada et al., 2017 ;

loyd-Hughes, 2012 ; Sheffield et al., 2009 ), and variations of the

onnected-component labelling approach ( Van Huijgevoort et al., 2013 ;

ernieuwe et al., 2019 ). The composition of drought clusters extracted

ith any of these algorithms should be similar. The main difference be-

ween the algorithms is in the computational efficiency and processing

ime, which is an important element to consider when processing a large

mount of data. In this sense, algorithms based on connected-component

abelling are considered to be more efficient ( He et al., 2009 ). 

To connect two consecutive clusters in time and ensure that they are

ot far in space, the length between centroids of the clusters is taken into

ccount, similar to Herrera-Estrada et al. (2017) and Zhou et al. (2019) .

he degree of the overlap between these two clusters can be another

ay to handle the connection between them. Yet another, and more

omprehensive way of joining clusters in time, is through the use of

he CDA approach but extended to the time domain, i.e. to connect

6 nearest neighbour cells, a forming a cube in space-time domain, as

hown in Corzo Perez et al. (2011) , Lloyd-Hughes (2012) , and Herrera-

strada et al. (2017) . 

In cases when more than one drought track occurs at the same time,

he algorithm will aim to identify the one that is composed of the largest

reas. In its current version, the algorithm neither detects simultaneous

rought tracks nor merges the areas of the same time step into a single

ne. 

In this research, we compared the area of all clusters and the area

f the largest one in each time step, to see if the presence of more than

ne large area is predominant or not. We found that difference between

A_total − DA_largest was, in most of the cases, close to zero ( Fig. 6 ).

his difference between DA_total and DA_largest indicates that the size

f the area of the largest cluster is very similar to the total one. Based on

he latter, it is assumed that the presence of more than one large cluster

t the same time step, is not dominant. Then the research was focused

n testing the tracking algorithm, without considering the effect of the

resence of more than one simultaneous drought track. 

If the presence of more than one consecutive drought track is sus-

ected, an option to perform this algorithm is to carry our tracking for

ifferent sub-regions of the study area (analyse it by parts) and then su-

erimpose the drought tracks. In this way, one would expect to identify

ore than one track, if any. In future versions of the tracking algorithm,

t is recommended to include the identification of more than one simul-

aneous drought tracks. 

The use of CDA approach can retrieve areas with “islands ” of non-

rought cells (0 s). In this research, we do not consider the possible

ffects of these holes over the drought tracks construction (the centroid

ould be located in one of these holes). We assume that centroid is a

ood spot to locate the contiguous drought area. 

In largest clusters, the centroid approaches the centroid of the anal-

sis region. This is an expected outcome because if the cluster covers

he entire region of analysis, the centroid will be similar to that one
f the region. In our case, the maximum DA_largest was 70.7%, there-

ore in the period of analysis, no cluster covered the entire territory. In

ddition, two simultaneous large clusters are not expected. 

Although the drought tracks that occurred near the boundaries of

he domain could not be considered appropriately, i.e. the tracks could

e miscalculated, it is assumed that these boundary tracks do not signif-

cantly impact the region. To improve the calculation in such cases, it is

ecommended to increase the size of the analysed region. 

. Summary and conclusions 

In this study, a method that allows the construction of drought tracks

n space is introduced. The onset and end of drought paths (combination

f linked drought tracks) are used to compute the drought duration. The

nformation obtained during the path calculation is employed to com-

ute the severity, as well as the onset and end location, direction, and

otation. All these features have been identified as drought character-

stics and are framed within the DDRASTIC-spatial methodology, also

resented in this paper. Outputs of the tracking algorithm S-TRACK and

he method for drought characterisation DDRASTIC-spatial help to de-

cribe the dynamics of droughts. 

S-TRACK has four parameters. Parameters a and b control the size of

he cluster (area) to be included in the drought tracks. Parameters c and

 limit the distances between consecutive clusters in time (Sect. 2.1). In

his paper, S-TRACK is used to construct the drought tracks in space. 

From the application of S-TRACK, some key findings are presented: 

• The number of drought paths, duration, and severity are more sensi-

tive to the change of the parameter that limits the minimum drought

area (parameter a ) (Sect. 2.1). 
• If the duration of the drought paths increases, severity does not nec-

essarily do so, because the longer the duration, the areas that make

up the path tend to be smaller (Sect. 3.2). 
• To obtain drought paths with longer durations, it is important to be

flexible with the parameters that control the distance between areas

(parameters c and d ), i.e. to consider larger distances. 

The outcome of the approach presented in this paper is relevant

or (i) drought forecasting, i.e. drought tracks can help to predict how

rought moves over a particular region, and (ii) for improving knowl-

dge on drought-generating processes. The first item is more for opera-

ional purposes (short term) and the second item for scientific research

long term). 

Regarding the improvement of knowledge on drought-generating

rocesses, i.e. the interaction between climate and land surface charac-

eristics, a new drought characteristic is introduced in this research, the

otation (Sect. 2.2). This feature is used in the study of other weather-

elated phenomena such as cyclones because it helps in the descrip-

ion/identification of forcing mechanisms behind their spatial develop-

ent (e.g. Chavas et al., 2017 ; Rahman et al., 2018 ). We are of the

pinion that this drought characteristic can also help in the identifi-

ation and description of climate and land surface control factors that

rive the spatial behaviour of droughts. 

For the considered case study in India, we found that consecutive

lusters in time overlap considerably in the droughts selected (1905,

942, 1965, 1972, 1987, 2000, and 2002), which suggests that the spa-

ial extent of drought, after reaching a considerable size, remains in the

ame region. This presence of large drought areas in the same region

ver time may explain the severity of droughts in those years. There is

o predominant pathway followed by droughts in those years. In terms

f spatial extent, 2000 and 2002 events are the largest. The drought

ith the longest duration is that of 1965. A paper was prepared where

he parameters of the tracking algorithm were calibrated based on the

nformation of droughts reported. In that document, a description of

roughts is presented based on the drought paths and characteristics

 Diaz et al., 2019 ). 
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Further research is aimed at trying to develop an approach to pre-

ict the subsequent development of tracks identified by S-TRACK. These

rogress of these developments and other aspects of the study can

e found at www.researchgate.net/project/STAND-Spatio-Temporal-

Nalysis-of-Drought. 
Fig. A1. Area of the largest cluster (DA_largest) and distances betwee
uthor contribution statement 
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entation of the research, to the analysis of the results and to the writing

f the manuscript. 

ppendix A 
n consecutive centroids in time ( Δl ) for the period 1901-2013. 
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Fig. A2. Average duration (months) of drought paths obtained with different combinations of parameters. 
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Fig. A3. Average severity of drought paths obtained with different combinations of parameters. Severity is expressed as the ratio between the total sum of areas (in 

percentage) and duration (months). 
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Fig. A4. Mode of onset location of drought paths obtained with different combinations of parameters. Locations: centre (0), east (1), northwest (4), and south (7). 
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Fig. A5. Mode of end location of drought paths obtained with different combinations of parameters. Locations: centre (0), east (1), north (3), and south (7). 
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Fig. A6. Mode of rotation of drought paths obtained with different combinations of parameters. Rotation is indicated by ccw and cw that sand for mostly counter- 

clockwise, and mostly clockwise, respectively. 
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Fig. A7. Results of the drought of 1905. Largest clusters 

and centroids are indicated from 1905/3 to 1906/6 (top). 

Area of largest cluster (DA_largest) and distance between 

consecutive clusters in time ( Δl ) are displayed from 1905/1 

to 1906/6 (centre). The drought duration is pointed out 

schematically with a horizontal line for each combina- 

tion of parameters. Drought tracks calculated with the 

three combinations of parameters are also presented (bot- 

tom). Spatial drought extent is schematised by four symbols 

pointing out the size of area. The origin of the axes is placed 

in the centre of the country. Arrows point out the direction 

of each track segment. Insets show zoomed-in views. 

Fig. A8. Same as Fig. A7 but for the drought of 1942. 
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Fig. A9. Same as Fig. A7 but for the drought of 1965. ∗ In 

the figure only it is shown the tracks until 1966/6 but they 

end in 1967/2. 

Fig. A10. Same as Fig. A7 but for the drought of 1972. 
∗ In the figure only it is shown the tracks until 1973/6 but 

they end in 1973/7. 
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Fig. A11. Same as Fig. A7 but for the drought of 2000. 

Fig. A12. Same as Fig. A7 but for the drought of 2002. 
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