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Optimization of heat source distribution in two dimensional heat conduction for electronic cooling prob-
lem is considered. Convex optimization is applied to this problem for the first time by reformulating the
objective function and the non-convex constraints. Mathematical analysis is performed to describe the
heat source equation and the combinatorial optimization problem. A sparsity based convex optimization
technique is used to solve the problem approximately. The performance of the algorithm is tested by sev-
eral cases with various boundary conditions and the results are compared with a uniformly distributed
layout. These results indicate that through proper selection of the number of grid cells for placing the
heat sources and a minimum inter-source spacing, the maximum temperature and temperature non-
uniformity in the domain can be significantly reduced. To further assess the capabilities of the method,
comparisons to the results available in the literature are also performed. Compared to the existing heat
source layout optimization methods, the proposed algorithm can be implemented more easily using
available convex programming tools and reduces the number of input control parameters and thus com-
putation time and resources while achieving a similar or better cooling performance.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

During operation of all electronic devices and circuits, certain
amount of excess heat is generated. The maximum temperature
of the electronics and the temperature uniformity of the domain
are important criteria that affect the operation consistency and life
of the devices. In order to improve reliability of device operation,
unify electronic circuit aging processes and reduce electronics fail-
ure probability, thermal management of the overall system is
required to be studied. Thermal management deals with dissipat-
ing the generated heat efficiently and reducing the maximum tem-
perature of the electronics while approaching a uniform
temperature distribution in the domain. The need for thermal
management is even more crucial with the fast development of
today’s electronic production and component integration technol-
ogy in which the size of the electronics has become smaller and the
power density has increased noticeably.

One effective way to enhance the heat conduction performance
of the system and reduce the maximum temperature of the domain
is to insert highly thermal conductive materials such as diamond
or carbon fiber [1,2] that are able to reduce the local thermal resis-
tance. In this case, the distribution of such materials is to be opti-
mized with the aim of minimizing the maximum temperature. A
variety of approaches have been discussed in the literature includ-
ing the constructal theory [3–5], entransy theory [6–8], bionic opti-
mization [9,10] and combinatorial algorithms [11,12]. The results
of these algorithms have shown that the optimized conduction
path formed by the inserted materials has a shape similar to a tree
with several branches varying in number and size.

Although conduction cooling employing high thermal conduc-
tivity materials has been shown to be an effective method, the
optimal distribution of such materials are difficult to realize in
practice and the design costs may increase. An alternative
approach is to provide passive cooling via surface heat emission
or convection and by optimizing only the positions of the electron-
ics (or the heat sources).

For layout optimization problems with large numbers of
degrees of freedom, combinatorial algorithms such as genetic algo-
rithm with artificial neural network [13–16] and particle swarm
optimization [17] have been used in the literature. In their recent
studies, Chen et al. applied bionic optimization [18,19] and simu-
lated annealing [20] methods to find out the optimal source distri-
bution for varying number (up to several tens) of heat sources,
which provided significant reduction in the maximum tempera-
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Nomenclature

D thickness of the domain and the heat sources in the 3D
model, m

d domain extension length for the heat sink realization in
the 3D model, m

� parameter for the algorithm stability, 1
C area of a single heat source, m2

/ heat source distribution function, W/m2

U0 volume heat density of a single heat source in the 3D
model, W/(m3�K)

/0 intensity of a single heat source, W/m2

/b background heat source distribution before adding the
heat sources, W/m2

r standard deviation of the temperature field in the do-
main, 1

rm normalized standard deviation of the temperature field
in the domain, 1

w vector (Ng � 1) of selection weights (within [0,1]) of
grid cells, 1

e surface emissivity coefficient, 1
dg guaranteed minimum inter-source spacing defined at

the algorithm input, m
dmin resulting minimum inter-source spacing at the algo-

rithm output, m
h convective heat transfer coefficient, W/(m2�K)
k thermal conductivity, W/(m�K)
L side length of the square domain, m

l side length of a square-shaped heat source, m
Ng number of grid cells for placing the heat sources, 1
Ns number of heat sources placed in the domain, 1
NT number of temperature field samples in the domain, 1
Rm normalized maximum temperature rise, 1
S separation matrix (Ng � Ng) defining the minimum

inter-source spacing, 1
T temperature field, K
T0 environmental temperature, K
Tb background temperature field before adding the heat

sources, K
Ti temperature rise due to adding the ith source, K
tT computation time for the resulting temperature field

after the optimization, s
Tavg average temperature of the domain, K
Tmax maximum temperature of the domain, K
topt total computation time for the optimization with the

minimum required number of iterations, s
Tref reference temperature field with uniform heat genera-

tion in the domain, K
tref computation time for the reference temperature field

calculation, s
wj selection weight of the source on the jth grid cell, 1
x; y horizontal and vertical coordinates of the domain, m
ZðjÞ diagonal weighting matrix (Ng � Ng) in the jth iteration

of the optimization
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ture of the domain when compared to the randomly or uniformly
distributed heat sources.

In this paper, the layout optimization is addressed using a new
method that has not been investigated in the literature. The solu-
tion algorithm is based on the sequential reweighted l1-norm min-
imization technique. This technique was first introduced by Candes
et al. [21] with the aim of minimizing a convex measure of the l0-
norm which is equal to the cardinality of the sources. Recently, the
sequential convex optimization method has been effectively used
in the domain of sparse antenna array synthesis [22–24] in order
to optimize the positions and excitations of the antenna elements.
Considering the amplifiers powering the antennas as heat sources,
a direct analogy can be made with the heat conduction problem.

Motivated by this analogy, the mathematical modeling of the
two-dimensional heat conduction problem is performed and the
positions of the heat sources are optimized using the convex opti-
mization algorithm iteratively. The performance is tested using
three typical cases with various boundary conditions that were pre-
viously applied by Chen et al. [18–20] and an additional case which
takes into account the heat emission from the domain surface by
convection or radiation while solving the conduction problem.

The remaining parts of the paper are organized as follows. Sec-
tion 2 presents the mathematical modeling of the two-dimensional
heat conduction problem. Section 3 explains the formulation of the
layout optimization problem via sequential convex optimizations.
Section 4 shows and discusses the results of the four test cases.
Section 5 presents the conclusions.
2. Mathematical modeling of the problem

In this section, the mathematical model for the heat conduction
optimization problem in a two-dimensional rectangular domain is
revised. As previously stated by Chen et al. [18–20], the tempera-
ture field (T) satisfies the following equation at steady state
@

@x
k
@T
@x

� �
þ @

@y
k
@T
@y

� �
þ /ðx; yÞ ¼ 0

Boundary : T ¼ T0 or k
@T
@n

¼ 0 or k
@T
@n

¼ hðT � T0Þ
ð1Þ

where k is the thermal conductivity of the domain, / is the heat
source distribution function and T0 is the temperature value at
the isothermal boundary or the fluid temperature at the convective
boundary. h represents the convective heat transfer coefficient. In
fact, Eq. (1) represents a Poisson problem with Dirichlet (isother-
mal), Neumann (adiabatic) or Robin (convective) boundary condi-
tions that can be solved with a MATLAB-based finite-difference
solver [25].

The heat sources in this study are modeled similar to [18] as
follows

/ðx; yÞ ¼ /0; ðx; yÞ 2 C

0; ðx; yÞ R C

�
ð2Þ

where /0 is the (constant) intensity of a single heat source and C
represents the area of that heat source.

If a background temperature Tb and a source distribution /b are
assumed, Eq. (1) can be expressed as
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When the ith source is added into the domain, the temperature rise
Ti is given by
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Eq. (4) shows that the temperature rise field (Ti) for the source i is
independent of Tb; /b and T0. Thus, the combinatorial optimization
problem of the heat source distribution can be expressed as follows

minimize ðmaxðTÞÞ s:t:

T ¼ Tb þ
XNg

j¼1

wjTj

wj ¼ 0 or 1; j ¼ 1; . . . ;Ng

ð5Þ

where wj is the (binary) selection weight of the source at the jth
grid cell, Tj is the respective temperature rise and Ng is the number
of grid cells suitable for the heat sources.

Normalization of the variables was also performed by Chen
et al. [18] in order to investigate the effect of /0 and k on the opti-
mized layout. For a square computational domain with side
lengths L, the normalized variables are given by

R ¼ T � T0

/0L
2=k

; x ¼ x
L
; y ¼ y

L
; / ¼ /

/0
ð6Þ

Using Eq. (6), Eqs. (1) and (2) are represented as
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Boundary : R ¼ 0 or k
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The performance is evaluated considering two normalized metrics:
normalized maximum temperature rise (Rm) and normalized stan-
dard deviation (rm) which are defined as

Rm ¼ Tmax � T0

/0L
2=k

; rm ¼ 1
/0L

2=k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NT

XNT

i¼1

ðTi � TavgÞ2
vuut ð8Þ

where NT is the total number of temperature field samples in the
domain and Tavg is the average temperature value.

3. Problem solution via sequential convex optimizations

The combinatorial problem in Eq. (5) is an NP-hard problem.
The main challenge here is the nonconvexity of the objective func-
tion resulting from the binary selection weights (i.e. wj 2 f0;1g).
Motivated by this challenge, an alternative method is proposed
in this study which is based on convex relaxation of the binary
selection weights (i.e. wj 2 ½0;1�) and an approximation of the
objective function in Eq. (5) through sequential convex minimiza-
tion of the weighted l1-norm of a function given by

f ¼ Tref :w ð9Þ
where Tref is a vector (of length Ng) showing the temperature distri-
bution obtained from a uniform heat generation in the whole
domain, or when the domain is densely filled with equal-intensity
heat sources. As previously stated, the vectorw contains the relaxed
selection weights that could be equal to any value between 0 and 1.
The dot product (‘‘.”) is obtained via element-wise multiplication of
the two vectors, which is simply multiplying the temperature value
at any grid point by its selection weight.

The logic behind the selection of such an objective function can
be demonstrated through solving Eq. (4), which basically shows
that the maximum temperature rise takes place at the area of
the added heat source. Therefore, Tref in Eq. (9) shows which
regions inside the domain are ‘easy-to-cool’ and which are poten-
tially inefficient in terms of heat conduction. The idea is to select
the sources in ‘easy-to-cool’ regions with larger weights while
assigning smaller weights for the areas with high reference
temperature.

Having selected the objective function, the challenge now is to
decide on the constraints. Note that in the convex optimization
algorithm, the domain is discretized with Ng cells and there is a
heat source placed at each cell on the grid. The difference is in
the selection weights of the sources. For the ideal case in which
the number of sources (Ns) is identified, Ns sources are selected
with weight 1 and the remaining (Ng � Ns) sources are selected
with weight 0. Therefore, the convex algorithm should yield a
sparse solution in terms of the selection weights (w) to remove
Ng � Ns heat sources. Besides, the heat sources should not overlap
in the final layout, which requires a certain minimum spacing
between two selected grid cells depending on the source
dimensions.

In this study, in order to obtain a sparse solution, reweighted
l1-norm minimization technique [21] is applied with a defined car-
dinality (Ns ¼

P
wi) of w 2 RNg that represents the desired number

of sources in the final layout. A constraint on the inter-element
spacing is also defined as proposed by D’Urso et al. [23] to prevent
overlapping. Thus, considering the objective function defined in Eq.
(9), the algorithm objective at iteration-j becomes

minimizejZðjÞ � ðTref :wÞj1 s:t:
0 6 w 6 1

XNg

i¼1

wi ¼ Ns

S �w 6 1

ZðjÞ
i ¼ 1

wðj�1Þ
i þ �

; i ¼ 1;2; . . . ;Ng

ð10Þ

where ‘‘.” represents the dot product of two vectors and ‘‘⁄” repre-
sents the matrix product. Z is a diagonal weighting matrix whose
nonzero elements are given by the reciprocal of the sum of the cor-
responding weights from the previous iteration and �. To have good
convergence and stability, � should be set slightly smaller than the
expected non-zero values of the entries of w [21]. It also ensures
that a zero value in w j does not prevent a nonzero estimate in
the next iteration. S is an Ng x Ng matrix defined as the ‘‘separation”
matrix. For square-shaped heat sources, S centers a square of side
lengths equal to the guaranteed minimum inter-source spacing
(dg) whose inside is filled with ones and outside with zeros. The
minimum spacing of the sources in the final layout (dmin) may be
larger than the guaranteed spacing that is given as an input
parameter.

The optimization problem in Eq. (10) is a nonlinear convex
problem, namely a second-order cone programming (SOCP) prob-
lem [26]. Thus, it can be efficiently solved by many commercially
available solvers (such as CVX [27]) using interior point methods.
The solution time of such a process is approximately the same with
a linear problem of equivalent size.
4. Results and discussion

4.1. Parameters of the cases

In this section, the parameters for the layout optimization prob-
lem are provided. Since the convex optimization algorithm is pro-
posed as an alternative to the existing methods, the scenarios and
design parameters applied by Chen et al. [18–20] are taken as a ref-
erence in the first three cases. In the last case, a Volume-to-Volume
(VV) problem is introduced, which has not been investigated
before in the existing layout optimization techniques.



Table 1
Optimized results in Case 1 for a coarse (Ng = 372) and a fine (Ng = 912) grid for the
heat source placement.

Spacing of the square grid (m) 0.0025 0.001
Number of grid cells, Ng 37 � 37 91 � 91

Guaranteed min. spacing, dg (m) 0.01 0.01
Number of iterations 1 3

Normalized max. temperature rise, Rm 0.2983 0.3081
Max. temperature, Tmax (K) 327.83 328.81
Normalized std., rm (�10�2) 1.4263 1.5585

Min. distance between the sources, dmin (m) 0.01 0.012
Optimization time, topt (s) 1.82 537.31
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Throughout the study of the first three cases, optimization of 20
heat sources (Ns ¼ 20) in a square domain with the side length (L)
of 0.1 m is aimed. The side length of a single square-shaped heat
source (l) is chosen as 0.01 m with an intensity (/0) of 10,000 W/
m2. The thermal conductivity (k) equals 1 W/(m�K) for both the
domain and the heat source. The first three cases studied in this
paper are explained as follows.

� Case 1: Volume-to-Point (VP) problem. The cooling is via a
0.001 m wide heat sink located in the middle of the south
boundary with uniform temperature at 298 K (Dirichlet BC).
The other boundaries are adiabatic (Neumann BC).

� Case 2: Volume-to-Boundary (VB) problem. The cooling is from
all the boundaries that are isothermal with uniform tempera-
ture at 298 K (Dirichlet BC).

� Case 3: Volume-to-Boundary (VB) problem. The cooling is from
the south and west boundaries. The south boundary is isother-
mal and uniform at 298 K (Dirichlet BC) while the west is con-
vective with heat transfer coefficient 5 W/(m2�K) and the fluid
temperature is 298 K (Robin BC). The other boundaries are adi-
abatic (Neumann BC).
Table 2
Optimized results in Case 1 for Ng = 912 with varying guaranteed min. spacing.

Guaranteed min. spacing, dg (m) 0.012
Number of iterations 2

Normalized max. temperature rise, Rm 0.3114
Max. temperature, Tmax (K) 329.14
Normalized std., rm (�10�2) 1.7034

Min. distance between the sources, dmin (m) 0.014
Optimization time, topt (s) 302.71

Table 3
Optimized results in Case 2 for Ng = 372 with varying guaranteed min. spacing.

Guaranteed min. spacing, dg (m) 0.01
Number of iterations 1

Normalized max. temperature rise, Rm 0.0037
Max. temperature, Tmax (K) 298.37
Normalized std., rm (�10�2) 0.0790

Min. distance between the sources, dmin (m) 0.01
Optimization time, topt (s) 1.58

Table 4
Optimized results in Case 2 for Ng = 912 with varying guaranteed min. spacing.

Guaranteed min. spacing, dg (m) 0.015
Number of iterations 1

Normalized max. temperature rise, Rm 0.0030
Max. temperature, Tmax (K) 298.30
Normalized std., rm (�10�2) 0.0720

Min. distance between the sources, dmin (m) 0.018
Optimization time, topt (s) 204.39
The fourth case is described as follows.

� Case 4: Volume-to-Volume (VV) problem. Similar to Case 1, the
cooling is via a 0.001 m wide heat sink located in the middle of
the south boundary with uniform temperature at 298 K. East,
west and north boundaries are adiabatic. The difference now
is that the domain surface has an emissivity coefficient equal
to 0.1.

In the fourth case, a 3D model is constructed and simulated in
CST Mphysics Studio (CST MPS) using the thermal stationary sol-
ver. The idea is to obtain the reference temperature distribution
(Tref ) from CST and use it at the input of the convex optimization
algorithm. With the resulting source locations, the optimized tem-
perature field is computed again in CST. The values of Ns; L; l and k
are selected the same as the ones in the first three cases. To create
the 3D model, a thickness of D = 0.001 m is applied for the domain
and the heat sources. Since it is not possible to define mixed
boundary conditions in CST, the heat sink is realized by extending
the length of the middle piece of the south boundary (which has
0.001 m width for the heat sink) by d = 10�6 m. All the other
boundaries are set as adiabatic. The volume density of each source
(U0) is set to 14,400 W/m3 in order to match the temperature dis-
tribution result obtained in MATLAB in the case of no surface heat
emission (Case 1). The background is vacuum and the ambient
temperature is equal to 298 K. The emissivity coefficient is defined
at the upper surface of the domain.

In all the cases, the parameter � in Eq. (10) is set slightly smaller
than 1 although the algorithm is seen to be robust in terms of the
final layout results for different choices of �. Ng and dg are varied
for a coarse and a fine grid structure for the heat source placement.
After several iterations of Eq. (10), a stable solution is reached
where the first 20 elements with the strongest selection weights
form the final layout.
0.011 0.009 0.008 0.007
2 2 1 2

0.3050 0.3005 – –
328.50 328.05 – –
1.5753 1.3891 – –
0.013 0.011 – –
329.50 211.41 – –

0.0125 0.015 0.0175
1 1 2

0.0031 0.0030 0.0067
298.31 298.30 298.67
0.0702 0.0709 0.1582
0.015 0.0175 0.02
1.88 2.29 5.32

0.014 0.013
1 1

0.0030 0.0030
298.30 298.31
0.0694 0.0695
0.016 0.016
158.31 150.26



Table 5
Optimized results in Case 3 for Ng = 912 with varying guaranteed min. spacing.

Guaranteed min. spacing, dg (m) 0.011 0.01 0.009 0.008
Number of iterations 2 4 1 2

Normalized max. temperature rise, Rm 0.0328 0.0306 0.0272 –
Max. temperature, Tmax (K) 301.28 301.06 300.72 –
Normalized std., rm (�10�2) 0.6478 0.6976 0.4300 –

Min. distance between the sources, dmin (m) 0.012 0.012 0.011 –
Optimization time, topt (s) 279.70 685.39 99.93 –

Fig. 1. Uniform (UD) and convex-optimized (CO) distribution of 20 heat sources in the first three cases.
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All simulations are carried out on an Intel(R) Core(TM) i7-
4710HQ 2.5 GHz CPU, 16 GB RAM computer using CVX and
MATLAB. In Case 4, CST MPS is also used for 3D simulations.

To have sufficient resolution within a reasonable time, the num-
ber of samples for the temperature field calculations is taken as
1000 � 1000 (NT ¼ 106). Note that for the convex optimization
algorithm, the temperature field is calculated only once using a
uniform heat generation in order to obtain the reference tempera-
ture distribution (Tref ) at the algorithm input. For the selected NT ,
the reference temperature field calculation time (tref ) is about 9–
10 s for all the three cases. After the optimization of 20 heat
sources, the resulting temperature field is computed in tT , which



Table 6
Comparison of performance for the uniform and optimized heat source layouts in the first three cases.

UD CO

Rm Tmax rm (�10�2) Rm Tmax rm (�10�2)

Case 1: 0.3694 334.94 3.3365 0.3005 328.05 1.3891
Case 2: 0.0115 299.15 0.3185 0.0030 298.30 0.0694
Case 3: 0.0939 307.39 2.5421 0.0272 300.72 0.4300

Fig. 2. Temperature field results from CST MPS for uniform distribution (UD) of 20 heat sources in Case 1 and Case 4.

Table 7
Optimized results in Case 4 for Ng = 912 with varying guaranteed min. spacing.

Guaranteed min. spacing, dg (m) 0.018 0.016 0.014 0.012
Number of iterations 3 5 2 2

Max. temperature, Tmax (K) 302.58 302.83 302.89 302.89
Std., r 0.2768 0.3202 0.8318 0.9886

Min. distance between the sources, dmin (m) 0.021 0.019 0.016 0.014
Optimization time, topt (s) 1822.40 2133.38 543.91 410.91
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is about 160–180 s for Case 1 and Case 3 and 60–80 s for Case 2. In
Case 4, each temperature field computation in CST MPS takes about
25 s.
4.2. Discussion of the results

Table 1 shows the input parameters (Ng and dg) and convex
optimization results (Rm; Tmax; rm; dmin and topt) in Case 1 for a
coarse and a fine grid for the heat source placement. The guaran-
teed minimum inter-spacing, dg is equal to the side length of a sin-
gle heat source.

It is seen that Tmax and rm are both lower in the coarse grid (Ng

= 372 = 1369) compared to the fine grid (Ng = 912 = 8281). This
implies that the result for the coarse grid is more favorable. How-
ever, it is also observed that the resulting minimum inter-source
spacing, dmin is larger than 0.01 m (i.e. the smallest value allow-
able) for the fine grid. This shows the input parameter dg can be
varied in the fine grid to seek for a better result. Table 2 provides
the results of this analysis. Note that ‘‘–” sign in Table 2 indicates
that there is no feasible solution due to the overlapping heat
sources in the final layout.

When the results in Tables 1 and 2 are compared, it can be
inferred that the best layout among them is obtained when the fine
grid is used with dg ¼ 0:009 m. Although Tmax is lower for the
coarse grid, this selection lowers the standard deviation signifi-
cantly while yielding a comparable maximum temperature value.
Next, a similar study is performed for Case 2 applying the same
coarse and fine source placement grids as in Case 1 and using sev-
eral different dg values as inputs. The results are summarized in
Tables 3 and 4 for the coarse and fine grid, respectively.

According to Table 3, taking dg ¼ 0:015 m yields the best solu-
tion for the coarse grid. However, using a finer grid gives the
opportunity to define a finer step for dg (through the solution of
the inter-element spacing constraint in Eq. (10)), which could pro-
vide a better solution. This is indeed the case since an improved
optimization result is observed in Table 4 for the fine grid with
dg ¼ 0:014 m.

Having seen the usefulness of applying a fine grid for the heat
source placement in Case 1 and Case 2, only the fine grid results
with varying dg values are given for Case 3 in Table 5. As previously
stated, the ‘‘–” sign means overlapping in the final layout, which is
not allowed.

According to Table 5, the best solution among the tested scenar-
ios in Case 3 is obtained when dg is equal to 0.009 m.

The optimized heat source layouts for the first three cases with
20 sources and their respective temperature field distributions are
provided in Fig. 1 together with the results of uniformly distributed
heat sources. The uniform distribution is described as in [18]
where the domain is covered by 5 equi-spaced source repetitions
in the horizontal and 4 equi-spaced source repetitions in the verti-
cal direction.

The comparison of the convex optimization and uniform distri-
bution results is given in Table 6 for completeness. It is seen that



(a) UD, Case 4

(b) CO, Case 4

(c) GA, Case 4

Fig. 3. The layouts of 20 heat sources and temperature distributions for uniform
distribution (UD), convex optimization (CO) and genetic algorithm (GA) in Case 4.

Table 8
Comparison of the optimized layouts and the uniform layout in Case 4 for different methods (Ns ¼ 20).

UD CO GA

Tmax (K) r Tmax (K) r Tmax (K) r

303.02 0.4754 302.58 0.2768 302.25 0.3496

(a) BO, Case 1 (Chen et al. [18])

(b) SA, Case 1 (Chen et al. [20])

(c) CO, Case 1

Fig. 4. Optimized layouts of 20 heat sources for bionic optimization (BO), simulated
annealing (SA) and convex optimization (CO) in Case 1.
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Fig. 5. Optimized layouts of 20 heat sources for bionic optimization (BO), simulated
annealing (SA) and convex optimization (CO) in Case 2.

Fig. 6. Optimized layouts of 20 heat sources for bionic optimization (BO), simulated
annealing (SA) and convex optimization (CO) in Case 3.
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via convex optimization, the normalized maximum temperature
rises (Rm) in Case 1, Case 2 and Case 3 are reduced by 18.65%,
73.91% and 71.03%, respectively, when compared to the uniform
distribution. Besides, the values of the normalized standard devia-
tions (rm) are reduced by 58.37%, 78.21% and 83.08% in Case 1,
Case 2 and Case 3, respectively.

Fig. 2 shows the results of CST MPS simulations for the ‘imi-
tated’ version of Case 1 with a heat sink in the middle of the south
boundary for the uniform source layout and the effect of consider-
ing the surface emission in such a scenario, which represents Case
4. If the heat emission is absent (Fig. 2a), the CST simulation results
in the same temperature distribution as shown in Fig. 1a, and thus
verifies the CST simulation model. After defining the surface emis-
sivity e ¼ 0:1, the maximum temperature of the domain is reduced
to 303.02 K (see Fig. 2b). Using the temperature distribution in
Fig. 2b as Tref , the source positions are optimized using the pro-
posed convex optimization (CO) algorithm. The results are pro-



Table 9
Comparison of the optimization results in the first three cases for different methods (Ns ¼ 20).

BO SA CO

Rm rm (�10�2) Rm rm (�10�2) Rm rm (�10�2)

Case 1: 0.2820 1.2753 0.2866 1.3730 0.3005 1.3891
Case 2: 0.0030 0.0694 0.0033 0.0745 0.0030 0.0694
Case 3: 0.0312 0.4976 0.0249 0.4605 0.0272 0.4300

Fig. 7. Convergence analysis of the convex optimization algorithm in Case 3 with dg = 0.01 m.
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vided in Table 7 which show that the lowest maximum tempera-
ture and standard deviation in Case 4 is obtained when dg is equal
to 0.018 m.

In order to have a comparative study, the built-in genetic algo-
rithm (GA) of CST is also used for the layout optimization in Case 4
with the aim of minimizing the maximum temperature. In GA, 120
iterations are used to obtain the final result where each iteration
takes about 25 s. Fig. 3 gives the source locations and temperature
distributions for the uniform distribution (UD), convex optimiza-
tion (CO) and genetic algorithm (GA). The comparison results of
these three approaches are summarized in Table 8. It is seen that
CO and GA can provide a slight reduction in the maximum temper-
ature, but the change is not noticeable for the selected parameters.
On the other hand, optimized solutions possess much more uni-
form temperature distributions (with temperature standard devia-
tion reduction by 41.78% and 26.46% for CO and GA, respectively).

Next, the results of the first three cases are compared with the
results of the existing layout optimization methods, namely bionic
optimization (BO) [18] and simulated annealing (SA) [20]. In
Figs. 4–6, the source location and temperature field distribution
comparisons between these methods and the convex optimization
(CO) are provided for Case 1, Case 2 and Case 3, respectively. The
comparison results of these three methods are summarized in
Table 9.

In Case 1, the performance of CO is worse than BO and SA. In CO,
Rm is increased by 6.56% and 4.85% and rm is increased by 8.92%
and 1.17% when compared to BO and SA, respectively. In Case 2,
CO achieves the same results with BO and it performs better than
SA. Compared to SA, Rm and rm are reduced by 9.09% and 6.85%,
respectively. In Case 3, CO outperforms BO by decreasing Rm and
rm by 12.82% and 13.59%, respectively. When compared to SA,
although Rm increases by 9.24%, rm is reduced by 6.62% leading
to a more uniform temperature distribution.

The computational costs for BO and SA are given in [20] in
terms of the total number of temperature field calculations. It is
stated that for 20 heat sources, the total number of temperature
field calculations, which is proportional to the number of sources,
is 420 and 1760 for BO and SA, respectively. On the other hand, in
CO, the temperature field is calculated only once in order to obtain
the reference temperature field with uniform heat generation in
the domain. Besides, the optimization time does not depend on
the number of sources. In fact, in CO, the main factors affecting
the optimization time are the number of grid cells for placing the
heat sources (Ng) and the required number of iterations.

Lastly, the convergence of the convex optimization algorithm is
shown in Fig. 7 for the case that requires the most number of iter-
ations among all the cases studied in the paper (Case 3 for Ng = 912

and dg = 0.01 m with 4 iterations, as seen in Table 5). In Fig. 7a, the
histogram plot of the heat source selection weights (that are larger
than 0.1) is given up to the fourth iteration. Assuming that a source
with a selection weight larger than 0.1 is ‘active’ (or ‘selected’), the
number of selected sources at each iteration is plotted in Fig. 7b. It
is seen that as iteration number increases, less sources are selected.
Besides, larger weights are assigned to satisfy the cardinality con-
straint, which provides the increased sparsity. At the fourth itera-
tion, the number of active sources converges to 20 when 20
sources are selected with weight 1 and the result does not change
afterwards.
5. Conclusions

In this paper, cooling enhancement via heat source distribution
optimization for two dimensional heat conduction problem was
studied. Using the convex algorithm, a new approach to decrease
the maximum temperature and temperature non-uniformity was
proposed. This solution is based on obtaining a sparse solution
from a fully-populated heat source array while keeping the pre-
defined number of sources at potentially easy-to-cool regions of
the domain.



Y. Aslan et al. / International Journal of Heat and Mass Transfer 122 (2018) 432–441 441
On top of being easy to implement, the proposed convex opti-
mization algorithm was seen to provide comparable or better
results than the existing methods in terms of the maximum tem-
perature and temperature uniformity. Moreover, convex optimiza-
tion requires only a single temperature field calculation to be used
as a reference, while for the existing methods, the number of tem-
perature field calculations are proportional to the number of
sources.

Three test cases with different boundary conditions were
revised to evaluate the performance of the proposed layout opti-
mization algorithm, and the results were compared with the uni-
form distribution of 20 heat sources. In all cases, it was seen that
using iterative reweighted l1-norm convex minimization, the max-
imum temperature of the domain can be effectively reduced.

The fourth case, representing a more realistic 3D situation, took
the heat emission from the domain surface into account. Convex
optimization (CO) and genetic algorithm (GA) were used to opti-
mize the positions of the heat sources and the results were com-
pared with the uniformly distributed (UD) layout. The results
indicated that for the selected surface emissivity coefficient, heat
emission from the surface becomes the dominant cooling mecha-
nism which is further enhanced by the conduction cooling. That
is why the highest temperature value is almost the same (slightly
improved) for CO and GA when compared to UD, but much better
temperature uniformity can be achieved via layout optimization.

The sequential reweighted l1-norm convex minimization tech-
nique can be applied in a straightforward way to deal with larger
number of heat sources or with different boundary conditions. In
general, it is an efficient and effective method to optimize the heat
source layout and enhance the cooling performance in two dimen-
sional heat conduction problems.
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