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Wavenumber-Domain Multiband Signal
Fusion With Matrix-Pencil Approach

for High-Resolution Imaging
Jianping Wang , Pascal Aubry, and Alexander Yarovoy, Fellow, IEEE

Abstract— In this paper, a wavenumber-domain matrix-pencil-
based multiband signal fusion approach was proposed for multi-
band microwave imaging. The approach proposed is based on the
Born approximation of the field scattered from a target resulting
in the fact that in a given scattering direction, the scattered field
can be represented over the whole frequency band as a sum
of the same number of contributions. Exploiting the measured
multiband data and taking advantage of the parametric modeling
for the signals in a radial direction, a unified signal model can
be estimated for a large bandwidth in the wavenumber domain.
It can be used to fuse the signals at different subbands by
extrapolating the missing data in the frequency gaps between
them or coherently integrating the overlaps between the adja-
cent subbands, thus synthesizing an equivalent wideband signal
spectrum. Taking an inverse Fourier transform, the synthesized
spectrum results in a focused image with improved resolution.
Compared with the space–time domain fusion methods, the pro-
posed approach is applicable for radar imaging with the signals
collected by either collocated or noncollocated arrays in different
frequency bands. Its effectiveness and accuracy are demonstrated
through both numerical simulations and experimental imaging
results.

Index Terms— Matrix-pencil approach (MPA), microwave
imaging, multiband signal, signal fusion, wavenumber domain.

I. INTRODUCTION

M ICROWAVE imaging has been widely used for non-
destructive testing, security check, medical imaging,

remote sensing, and so on. In these applications, imaging
radar systems generally exploit wideband signals and antenna
arrays to achieve high resolution in both downrange and
cross-range directions. As downrange resolution is inversely
proportional to the operational signal bandwidth of the imag-
ing system, signals with several gigahertz or even larger
bandwidth are required to achieve cm/sub-cm level resolutions,
especially for short-range applications. To emit and receive
such wideband signals, ultrawideband (UWB) antennas and
front ends are needed. Vector network analyzers (VNAs)
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and double-ridged horns often can do the job but do not
satisfy end-user demands (such as size, costs, measurement
speed, and so on) in numerous applications. Designing and
manufacturing a UWB front ends, including antennas for
a particular application, is a challenging task, especially
for subsurface imaging systems such as ground-penetrating
radar. To circumvent this problem, one typical solution is to
split the desired operational ultrawide bandwidth into sev-
eral subbands, and then relatively narrowband antennas can
operate at different frequency subbands so as to cover the
whole desired bandwidth. Besides the technical difficulties in
UWB front ends, sometimes there might be no continuous
wide/UWB spectrum available for high-resolution imaging due
to the constraints of some spectrum regulations, for example,
the Federal Communications Commission’s radio spectrum
allocation. In such circumstances, only some separate spectral
bands can be used. This problem is encountered by the users
of commercial UWB radar systems. Therefore, to get high-
resolution UWB images, in both situations, it becomes essen-
tial to coherently process or fuse the subband signals/images
acquired in different spectra.

Multiband signal fusion for improved microwave imaging
has been discussed by many researchers [1]–[11]. Generally,
the approaches presented in these studies can be classified into
two categories: 1) signal-level fusion and 2) data-level fusion.
Signal-level fusion methods directly tackle the multiband sig-
nals acquired with monostatic/collocated radar, which are typ-
ically implemented in the frequency domain with model-based
estimation methods. For example, by exploring the f α-type
(α is the sinusoid-damping factor of the reflectivity) scattering
behaviors of canonical scatterer centers over a wide bandwidth,
the scattered frequency data were modeled with an autore-
gressive (AR) model [1] or an AR moving average (ARMA)
signal model [2]. Compared with the AR model, the ARMA
considers not only the poles but also the zeros of the transfer
function that describes the radar returns and thus gets a more
accurate estimation for the frequency-dependent scattering
property (i.e., α). For the AR model, the signal poles can be
estimated with a root MUltiple SIgnal Classification (MUSIC)
algorithm [1], [3] and a matrix-pencil approach (MPA) [4],
while for ARMA models they are obtained via singular-value
decomposition (SVD) [2]. Compared with the root MUSIC and
SVD-based fusion methods, the matrix-pencil-based approach
achieves a better fusion performance at low signal-to-noise
ratio. Moreover, recently, sparse Bayesian learning algorithms
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over a constructed overcomplete dictionary [5] and the support
vector regression [6] are also used to compute signal poles of
the AR model. In addition, a fusion method that combines the
all-phase fast Fourier transform (FT) and the iterative adaptive
approach [8] was proposed to fuse the dechirped multiband
signals, which is more dedicated to the linear frequency
modulated signals.

On the other hand, the data-level fusion methods require
a prefocusing operation for the data acquired at different
positions [9], [11]. More precisely, the fusion operations
are carried out on the prefocused data in the frequency–
wavenumber/wavenumber domain. Therefore, it is possible to
use these methods to fuse multiband signals acquired with
different spatial sampling intervals in the cross-range direction,
which is very attractive for many practical cases with multi-
band fusion imaging. For instance, in [9], AR model-based
multiband coherent signal fusion processing was proposed
for inverse synthetic aperture radar (ISAR) imaging. The
fusion operations are performed in the frequency–wavenumber
domain after the cross-range focusing operation, which alle-
viates the effects of the possible error caused by the band-
width interpolation/extrapolation in the fusion processing on
the cross-range response. Moreover, a matrix Fourier trans-
form (MFT) was proposed to integrate multiple separated
wavenumber domain data to implement multilook ISAR
images fusion in [11]. This algorithm can also be used to inte-
grate the multiband signals collected by different radar systems
to generate a composite image. However, the frequency gaps
between the different subbands are usually neglected, which
could cause increased sidelobes/artifacts in the composite
images.

Exploiting the advantage of the data-level fusion and also
inspired by the idea for signal poles estimation in [4], we
propose a wavenumber-domain (i.e., k-space [12]) multiband
signal fusion algorithm with the MPA (named k-MPA) for
enhanced microwave imaging. This fusion method is based
on the Born approximation of the scattered field from a
target resulting in the fact that in a given scattering direc-
tion, the scattered field can be represented over the whole
frequency band as a sum of the same number of contribu-
tions [13]–[15]. By modeling the wavenumber-domain signals
in a radial direction at different subbands as a superposition
of damped/undamped exponential functions, the multiband
fusion problem is converted to parameter estimation of the
exponential components. Finally, taking advantage of the
estimated signal models, the incoherence phase difference
between the subbands can be recovered and the missing data
in the frequency gap between different frequency subbands
can be extrapolated to get an equivalent wide bandwidth,
thus resulting in enhanced microwave images. Here, we want
to specify that the proposed fusion approach uses either
constant or weakly frequency-dependent scattering properties
of objects over the full bandwidth for the analysis and also
assumes constant velocity of wave propagation. The per-
formance of the proposed approach for strongly frequency-
dependent scatterers can be improved by using a more
sophisticated model for the reflectivity functions as indicated
later.

Fig. 1. Geometrical configuration of 3-D imaging. The two aspect angles θ
and φ are defined as the angle between the line of sight and the z-axis, and
the angle between the projection of the line of sight onto the xoy plane and
the x-axis, respectively.

This paper is organized as follows. In Section II, the signal
model in k-space is formulated and analyzed for microwave
imaging. Following that, the k-space signal fusion is discussed
in detail based on the MPA in Section III, which includes both
signal incoherence correction and multiband signal fusion.
To demonstrate the effectiveness and accuracy of the proposed
approach, some numerical simulations are performed for both
point targets and extended object in Section IV. Section V
presents some experimental results to further validate the per-
formance of the proposed approach. Finally, some conclusions
are drawn in Section VI.

II. k-SPACE SIGNALS FOR ARRAY-BASED IMAGING

Let us consider the geometrical configuration shown
in Fig. 1. A rectilinear planar antenna array is placed on the
xoy plane and the object is located in the near field of the array.
The transceiver position is denoted as (xa, ya, 0). The radiated
signals by each element of the antenna array can be continuous
wave, pulse signal, or step-frequency signal denoted as p(t)
in the time domain.

Assuming the Born approximation can be applied to
describe the scattered field, the signal s(xa, ya, t) received by
an antenna at (xa, ya) is given as

s(xa, ya, t) =
∫∫∫

o(x,y,z)

f (x, y, z)

4π R
· p(t − 2R/c)dxdydz

(1)

where f (x, y, z) is the reflectivity coefficient of a scatterer
at (x, y, z), o(x, y, z) is the space formed by all the scat-
terers, and R = ((x − xa)

2 + (y − ya)
2 + z2)1/2 is the dis-

tance between a scatterer and the antenna. Taking FT for
s(xa, ya, t) with respect to the time and two cross-range direc-
tions, the frequency–wavenumber (i.e., f -k) domain signals
S f k(kxa , kya , k) are obtained

S f k(kxa , kya , k)

=
∫∫∫

o(x,y,z)
f (x, y, z)P(ω)dxdydz

×
∫∫

exp[− jk R]
4π R

exp[− j (kxa xa + kya ya)]dxadya

= P(ω)

∫∫∫
o(x,y,z)

f (x, y, z) exp[− j (kxa x + kya y + kzz)]

× j

2kz
dxdydz (2)
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where k = 2ω/c is the wavenumber with respect to the
angular frequency ω = 2π f , kxa and kya are the wavenumber
counterparts of xa and ya , and kz = (k2 − k2

xa
−k2

ya
)1/2. P(ω)

is the spectrum of p(t). In the derivation of (2), the method
of stationary phase is used [16].

After correcting the spectrum weighting of the radi-
ated wavelet and compensating the wave propagation effect
(i.e., propagation spreading loss) and the wavefront curva-
ture [17], the resultant signal spectrum in the k-space can be
represented as

S(kxa , kya , kz) =
∫∫∫

o(x,y,z)
f (x, y, z) exp[− jkxa x− jkya y]

× exp[− jkzz]dxdydz. (3)

In the spherical coordinate system, the wavenumbers kxa , kya ,
and kz are expressed as⎧⎪⎨

⎪⎩
kxa = k cos θ sin φ

kya = k sin θ sin φ

kz = k cos φ

(4)

where θ and φ are the observation angles of the antenna
with respect to a scatterer in the spherical coordinates and
are defined as ⎧⎪⎨

⎪⎩
φ = arccos

( z

R

)
θ = arctan

(
y − ya

x − xa

)
.

(5)

From (4) and (5), one can see that the point (kxa , kya , kz)
is located on a sphere of the radius k (also known as Ewald
sphere [18]), and for a specific frequency, the signal spectra of
a point target lie on an arc spanned by the observation angles
of the antennas with respect to the target. Meanwhile, from (4),
one can see that the signal spectrum of a point target with the
increase of the radar signal frequency expands along a radius
of the spherical coordinate system at a specific observation
angle. By setting the elevation angle φ to be π/2 (the target is
placed in front of the antenna array), the support area of the
target 2-D spectrum is a sector of a circular ring. For example,
Fig. 2 shows the 2-D signal spectra of two point targets in
the k-space with different frequency subbands. In addition,
the combined spectrum of these two point targets is presented
in Fig. 3.

Substituting (4) for kxa , kya , and kz , (3) can be rewritten as

S(kxa , kya , kz) =
∫∫∫

o(x,y,z)
f (x, y, z) exp [− jkx sin φ cos θ ]

× exp [− jk(y sin φ sin θ + z cos φ)] dxdydz

= S(k, θ, φ). (6)

In a discrete form, the target signal spectrum along a par-
ticular radial direction from the origin in the k-space can be
represented as

S(k, θ, φ) =
N∑

n=1

f (xn, yn, zn) exp[− jk · xn sin φ cos θ ]
× exp[− jk(yn sin φ sin θ + zn cos φ)]

=
N∑

n=1

f (xn, yn, zn) exp[− jk · dn(θ, φ)] (7)

Fig. 2. Spectra of point targets in the k-space. k-space spectra of a point
target opposite to the center of linear array at (a) low-frequency subband
(1–2 GHz), (c) high-frequency subband (3–4 GHz), and (e) their superposition.
(b), (d), and (f) Corresponding k-space spectra of a point target which is offset
with respect to the center.

Fig. 3. k-space spectrum superposition of two point targets with both
low-frequency (1–2 GHz) and high-frequency (3–4 GHz) subbands.

where

dn(θ, φ) = xn sin φ cos θ + yn sin φ sin θ + zn cos φ (8)

and f (xn, yn, zn) is the reflectivity function of a pointlike
scatterer at (xn, yn, zn), N is the number of pointlike scatterers
that contribute to the signal spectrum at (k, θ, φ) in the
k-space. Note that the summation cell �V = �x · �y ·
�z has been omitted in (7) for simplification. According
to (5), the observation angles are just determined by the
relative geometry between the antennas and the scatterers,
which are independent of the signal frequency. Therefore,
assuming the antenna beamwidth at all frequencies is wide
enough compared to the imaging volume, at a specific aspect
angle (θ, φ), the number of scatterers N is constant over all
the frequencies. Therefore, the signals at different frequency
bands share the same signal model as in (7), where the
signal is expressed as a superposition of exponential compo-
nents. Therefore, the multiband signal fusion can be converted
to parameters estimation of exponential damped/undamped
sinusoids. By estimating the number of scatterers and the
reflectivity function f (xn, yn, zn), the signal model in (7)
is obtained for a specific aspect (θ, φ). Then, the signal
can be extrapolated based on the estimated signal model.
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Fig. 4. Illustration of the signal spectrum in the k-space related to two point
targets P1 and P2. Red-shadowed area: spectrum of P1. Blue-shadowed area:
spectrum of P2.

Fig. 5. Illustration of the signal spectrum in the k-space for two point targets
(P1 and P2) with two subband signals. The outer angular sector is attributed
to the high-frequency subband and the inner angular sector is associated with
the low-frequency subband.

Such model considers the interference of the fields scattered by
different voxels of the scatterer but ignores multiple scattering
between different voxels. Note that the complex reflectivity
function f (xn, yn, zn) can be modeled using different tools
(for example, geometrical theory of diffraction models and
exponential models) according to different scenarios. Also,
frequency dependence of the material parameters of the target
can be considered by the reflectivity function.

III. k-SPACE SIGNAL FUSION

For simplicity, we illustrate the principle of the k-space
signal fusion in Figs. 4 and 5 for a 2-D imaging case.
In Fig. 4, the effective regions of the signal spectra of two
point targets, i.e., P1 and P2, are sketched. One can see that
the signal spectrum of a point target in the k-space occupies
an angular segment of a ring defined by the minimum and
maximum radiated frequencies. The angular range of this
segment is determined by the observation angles of the target
with respect to the antenna array. For different point targets,
different observation angles are formed and then the signal
spectrum in the k-space slides along the ring according to
the corresponding observation angles. Combining the signal
spectra of all the individual scatterers in the k-space, we get
the signal spectra for the whole imaging scene. As extended
targets can be roughly considered as a composition of a group
of point scatterers (voxels), a similar way is also applicable to
synthesize their signal spectra in the k-space.

In terms of different radiated frequencies, the resultant
signal spectrum of a point target extends along the radius
within a conic sector. Fig. 5 shows the signal spectra of two
point targets at two different frequency bands. Although the

signal spectra of different targets occupy different regions in
the k-space (see both Figs. 4 and 5), as mentioned earlier,
the signal spectra along a radial direction are attributed to the
same group of scatterers for all the radiated frequencies. This
lays the foundation for the k-space signal fusion to improve
the image resolution.

A. Signal Incoherence Compensation

In this section, the signal model for multiband fusion is
formulated. Without loss of generality, two subband signals
are considered in the following. According to (7), the k-space
signals in a spherical (polar) coordinate system at the low- and
high-frequency subbands can be written as

S1(k1 + m�k, θ, φ)

=
N∑

n=1

f (xn, yn, zn) × exp[− j (k1 + m�k)dn(θ, φ)] + n1(m)

m = 0, 1, . . . , M1 − 1 (9)

S2(k2 + m′�k, θ, φ)

=
N∑

n=1

f (xn, yn, zn) exp[ j (α + βm′)]

× exp
[− j (k2 + m′�k)dn(θ, φ)

] + n2(m
′)

m′ = 0, 1, . . . , M2 − 1 (10)

where �k = 4π� f/c is the wavenumber counterpart of the
frequency sampling interval � f , M1 and M2 are the numbers
of frequency samples in the two subbands, k1 = 4π f1/c
and k2 = 4π f2/c are the wavenumbers associated with
the starting frequencies f1 and f2 of the low- and high-
frequency subbands, respectively, and k2 > k1 + M1�k.
n1 and n2 are with zero-mean Gaussian distribution and
represent measurement errors and noise. In (10), the first
exponential term exp[ j (α+βm′)] accounts for the phase inco-
herence between the two subbands. To simplify the notation,
we use S1(m) and S2(m′) to denote S1(k1 + m�k, θ, φ) and
S2(k2 + m′�k, θ, φ) in the following. Taking some simple
algebraic operations, the signals in both subbands can be
rewritten as

S1(m) =
N∑

n=1

f (1)
n Zm

n + n1(m), m = 0, 1, . . . , M1 − 1 (11)

S2(m
′) =

N∑
n=1

f (2)
n Z ′m′

n + n2(m
′), m′ = 0, 1, . . . , M2 − 1

(12)

where

f (1)
n = f (xn, yn, zn) exp [− jk1 · dn(θ, φ)] (13)

Zn = exp[− j�k · dn(θ, φ)] (14)

f (2)
n = f (xn, yn, zn) exp[ jα] · exp[− jk2 · dn(θ, φ)] (15)

Z ′
n = exp[− j�k · dn(θ, φ) + jβ]. (16)

From (13) to (16), one can see that the phase differences
between the two subbands affect both the signal poles and their
coefficients in (11) and (12). More specifically, the constant
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phase difference influences the coefficients, while the linear
phase difference term causes the rotation of signal poles over
the unit circle in the complex plane. Therefore, to compensate
the phase differences between the two subbands, both signal
poles and their coefficients have to be estimated.

To get the signal poles and their coefficients in (11)
and (12), the signal model order should be estimated first.
In practice, it can be estimated by using the Akaike infor-
mation criterion or Bayesian information criterion [19]. After
obtaining the signal model order estimation N̂ , the signal
poles can be estimated via root-MUSIC [1], estimation of
signal parameters via rotational invariance techniques [20],
MPA [21], and so on, while their coefficients are solved by
least squares estimation. Considering the estimation accuracy
and computational efficiency, we take advantage of MPA for
signal pole estimation in this paper. To implement the MPA,
two Hankel matrices are formed in each subband, where the
measurement data, for example, S1 are organized as

P1 = [D0, D1, . . . , DL−1] (17)

P2 = [D1, D2, . . . , DL ] (18)

where Di = [S1(i), S1(i+1), . . . , S1(M1−L−1+i)]T , and the
superscript T represents the matrix transpose. L is the matrix
pencil parameter, which satisfies N̂ < L < M1 − L. Following
the suggestion in [21], we choose L = round(M1/3) here.
Taking the SVD of P1 and P2 [4], we get

P1 = [
U1 U′

1

] [
�1,N̂ 0

0 �1,L−N̂

] [
V1 V′

1

]H (19)

P2 = [
U2 U′

2

][
�2,N̂ 0

0 �2,L−N̂

] [
V2 V′

2

]H
(20)

where the superscript H denotes Hermitian transpose, and
�1,N̂ and �2,N̂ are the diagonal matrices of the N̂ dominant
singular values in the two subbands. U1, U2, V1, and V2 are
the matrices with the columns as the left and right singular
vectors related to the dominant singular values. On the other
hand, �1,L−N̂ and �2,L−N̂ are the diagonal matrices of the
near-zero singular values, which represent the noise informa-
tion. U′

1, V′
1, U′

2, and V′
2 are the matrices with the columns

as the noise-associated left- and right-singular vectors. Taking
the "prefiltering" operation, P1 and P2 can be approximated
by their truncated SVDs denoted as P1T and P2T , which are
given as

P1 ≈ P1T = U1�1,N̂ VH
1 (21)

P2 ≈ P2T = U2�2,N̂ VH
2 . (22)

Then, we can estimate the signal poles {Zn}N̂
n=1 of S1 by

solving the generalized eigenvalue problem P2T −γP1T , which
is also equivalent to

P2T −γP1T ⇔ �−1
1,N̂

UH
1 U2�2,N̂ VH

2 V1 − γI (23)

where I is the N̂ × N̂ identity matrix. The coefficients
{ f (1)

n }N̂
n=1 can be obtained via the least squares estimation by

solving the following linear system:
S1 = A1f1 (24)

where

S1 = [S1(0), S1(1), . . . , S1(M1 − 1)]T

A1 = [a1, a2, . . . , aN̂ ]
an = [

1, Zn, . . . , Z ML−1
n

]T

f1 = [
f (1)
1 , f (1)

2 , . . . , f (1)

N̂

]T
.

Therefore, the coefficients can be explicitly written as
f1 = (AH

1 A1)
−1AH

1 S1.
Repeating the same operations with the signal S2, its

signal poles {Z ′
n}N̂

n=1 and { f (2)
n }N̂

n=1 can also be estimated.
Then according to (14) and (16), the linear phase difference
parameter β can be obtained as

β =
∑N̂

n=1

[
angle

(
Z ′

n

)−angle(Zn)
]

N̂
. (25)

According to (13) and (15), the constant phase difference
parameter α is obtained through

α = 1

N̂

N̂∑
n=1

[
angle

(
f (2)
n

) − angle
(

f (1)
n

)]

+ k2−k1

N̂

N̂∑
n=1

dn(θ, φ) (26)

where

N̂∑
n=1

dn(θ, φ) = − 1

�k

N̂∑
n=1

angle(Zn). (27)

Then combining (25) and (26), the incoherence phase differ-
ences of the high-frequency subband from the low subband
can be compensated by

S′
2(k2 + m · �k, θ, φ) = S2(k2 + m · �k, θ, φ)

× exp[− j (α + mβ)]. (28)

Thus, the signal S′
2(k2 + m · �k, θ, φ) in the high-frequency

subband is coherence-aligned with S1 in the low-frequency
subband. Note we explicitly write S2(m) as S2(k2 + m ·
�k, θ, φ) to emphasize that S′

2 is also a function of θ and φ.

B. Subband Signal Fusion

This section presents the method to fuse the multiband
signals in each radial direction [i.e., (θ, φ)] in the k-space.
Generally, the coherence-aligned subband signals can be inte-
grated by estimating a unified signal model which then is used
to extrapolate the missing data in the frequency gap between
the low and high subbands. Many approaches used to fill the
gap of time sequences can also be adapted to extrapolate
the k-space signals. Here, we take the MPA-based iterative
method [4] to fuse the k-space multiband signals. To be clear,
we briefly introduce the fusion processing as follows.

After incoherence correction, the k-space coherent multi-
band signals, i.e., S1 and S′

2, are obtained. For the convenience
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of notation, S′
2 will be replaced by S2 in the following. The

common signal model of S1 and S2 can be expressed as

S̃(k1 + m�k, θ, φ) =
N∑

n=1

f̃n Z̃m
n + b(m) (29)

where { f̃n}N
n=1 and {Z̃n}N

n=1 are the coefficients and the signal
poles, respectively, and b is the Gaussian noise. The signal
poles and their coefficients in (29) can be estimated with the
MPA based on S1 and S2. However, as a frequency gap exists
between the two subbands, the two data matrices should be
constructed by vertically cascading two corresponding Hankel
matrices formed by the data at two subbands, which is given as

Y1 =
[

P(1)
1

P(2)
1

]
Y2 =

[
P(1)

2

P(2)
2

]
(30)

where

P(p)
1 = [

D(p)
0 , D(p)

1 , . . . , D(p)
L−1

]
(31)

P(p)
2 = [

D(p)
1 , D(p)

2 , . . . , D(p)
L

]
(32)

where D(p)
q = [Sp(q), Sp(q + 1), . . . , Sp(Mp−L − 1 + q)]T ,

p = 1, 2 and q = 0, 1, . . . , L. Taking advantage of the MPA
as presented earlier, the signal poles {Z̃n}N

n=1 and their coeffi-
cients { f̃n}N

n=1 can be obtained. Then utilizing the acquired
full-band signal model in (29), the full-band signal S̃(m),
m = 0, 1, . . . , M−1, can be estimated, where M is the number
of the samples in the full band with sampling intervals of �k.
To refine the estimation of the full-band signals, the similar
iterative scheme as in [4] can be used. For the conciseness of
this paper, the iterative scheme is omitted here.

Repeating the fusion processing in all the radial directions,
coherent wideband signals are obtained in the k-space. Finally,
the image reconstruction operations can be performed to get
a focused image with improved resolutions.

C. More Remarks on the Implementation

The complete processing flowchart for multiband fusion
imaging is shown in Fig. 6. In principle, the processing
operations are divided into three major parts: 1) preprocess-
ing for the k-space data preparation; 2) k-space signal
fusion; and 3) image reconstruction, which are indicated
on the left-hand side of the flowchart. The main opera-
tions for the k-space signal fusion part have been discussed
in Sections III-A and III-B. The operations for the other two
parts as well as some key points for the k-space fusion part
are given in the following.

In the preprocessing part, as mentioned earlier, spectrum
weighting effects, propagation spreading loss, and the wave-
front curvature are corrected. First, spectrum weighting effects
P(ω) should be compensated in the frequency domain, which
is caused by the wavelet itself and the antenna transfer
functions. The spectrum weighting effect introduced by the
wavelet itself can be removed by multiplying the inverse of
the corresponding weighting factors. The amplitude weighting
effect and phase shift resulting from the antenna transfer func-
tion can be obtained by measuring the S-parameters in the cali-
bration process and then compensated through inverse filtering.

Fig. 6. Flowchart of the k-space subband fusion for imaging.

For multiband signals acquired with different antenna arrays,
the possible different phase centers of antennas could affect
the accuracy of the distance measurements of objects from the
arrays, thus leading to misalignment of the focused images at
different subbands. To avoid these possible effects, the phase
centers of different antennas should be determined [22], [23]
and calibrated. Next, the cross-range processing is performed
to correct the wavefront curvature and propagation spreading
loss. The operations are as follows. Applying the FT with
respect to the cross range, the weighting-corrected signals
are transformed into the frequency–wavenumber (i.e., f -k)
domain. Then, the propagation spreading loss is compensated
through a high-pass filter − j2kz and the wavefront curvature
is corrected by Stolt-interpolation [17]. Hence, the k-space
signals S(kxa , kya , kz) for one subband are obtained. Repeat-
ing the preprocessing operations for all the subband signals,
we get all their k-space counterparts. Putting all the k-space
spectra in a unified coordinate system, the spectra resulting
from all the subbands are obtained.

The next step is to convert the spectral data at each
subband from rectilinear grid to an aligned polar grid via an
interpolation, and the polar grid is given as

I =

⎧⎪⎨
⎪⎩(kx , ky, kz)

∣∣∣∣∣∣∣
kx = k cos θ sin φ

ky = k sin θ sin φ

kz = k cos φ

⎫⎪⎬
⎪⎭ (33)

where k = k1 + m�k and m = 0, 1, . . . , M1 − 1 for the low
subband, while k = k2 + m′�k and m′ = 0, 1, . . . , M2 − 1 for
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the high subband. Meanwhile, k2 = k1+(M1+h)�k and h > 0
is an integer. The observation angles θ and φ take uniform
discrete samples, i.e., θ = {θ0, θ0 + �θ, . . . , θ1} and φ =
{φ0, φ0 + �φ, . . . , φ1}, where θ0 and θ1 and φ0 and φ1 are
the minimum and maximum values of the observation angles
θ and φ, respectively; �θ and �φ are their corresponding
sampling intervals. To avoid aliasing of the focused image in
the space domain, the sampling intervals �k, �θ , and �φ
should satisfy ⎧⎪⎨

⎪⎩
�k ≤ 2π/dmax

�θ ≤ γmin/(4 · r)

�φ ≤ γmin/(4 · r)

(34)

where dmax is the largest dimension of the imaging scene in the
range direction. γmin is the wavelength corresponding to the
highest frequency, and r is the maximum cross-range radius
of the imaging scene (i.e., the minimum radius of a cylinder
with its axis along the downrange that encloses the imaging
scene).

In addition, we have to mention that the cross-range focus-
ing can also be implemented in the time–space domain via
Kirchhoff migration [24], which actually leads to focused
images. Then applying IFT to the focused images, the k-space
spectra associated with each subband are obtained. The rest
of the operations keep the same.

After getting the k-space spectra on an aligned polar grid
(as shown in Fig. 3 or 5), the k-space signal fusion is carried
out along each radial direction with the matrix pencil-based
approach presented in Sections III-A and III-B. After obtaining
the fused signals in the k-space, a 2-D/3-D interpolation is
needed to convert the data from the polar grid to a rectilinear
grid. Then, an inverse FT is applied to the k-space data to
reconstruct an image in space. Furthermore, to improve the
computational efficiency, the interpolation operation and the
inverse FT can be replaced by a 2-D/3-D nonuniform fast FT
operation [25], [26], which was actually used for the image
formation in this paper.

IV. NUMERICAL SIMULATION

Without loss of generality, in the following, we use two-
band signal fusion to demonstrate the proposed approach
to short-range imaging via both numerical simulations and
experimental measurements.

A. Point Targets

First, a numerical simulation was performed for point targets
with two-band signals. The simulation parameters are listed
in Table I. Assume the antenna array was placed on the
x-axis with its center at the origin and the y-axis pointing
toward the illuminated scene. The antenna array was 2 m
in length and operated in two separate bandwidths, namely,
2–4 and 6–8 GHz. Four point targets (i.e., small spheres of
radius 1 cm) were placed in front of the antenna array at
the positions (−0.5, 1), (0, 0.95), (0, 1.05), and (0.4, 1.2) m,
respectively. The Hertz dipole was used as the radiator in
the antenna array, and the interelement spacings of antennas

TABLE I

SIMULATION PARAMETERS FOR POINT TARGETS

Fig. 7. Image fusion of point targets. (a) and (b) Images of point targets
with the bandwidths of 2–4 and 6–8 GHz, respectively. (c) Fused image with
the bandwidth of 2–8 GHz. (d) Reference image obtained with the bandwidth
of 2–8 GHz.

were 1 cm at both bandwidths (see Case 1 in Table I).
The electromagnetic (EM) data at the two bandwidths were
synthesized by the commercial EM software FEKO with the
full-wave solver method of moments in the frequency domain
with the frequency steps of 20 MHz.

Taking advantage of the range migration algorithm [17]
for image formation with the EM data at the two fre-
quency subbands, the focused images were obtained, as shown
in Fig. 7(a)–(c). The two focused images with the bandwidth
of 2–4 and 6–8 GHz are presented in Fig. 7(a) and (b). As the
same antenna aperture was used for both low- and high-
frequency band signals, high-frequency band signal results
in finer cross-range resolution of the focused image com-
pared with the low-frequency band signal. In the downrange
direction, the similar resolutions are achieved for both high-
and low-frequency signals as their bandwidths were equal.
Fig. 7(c) shows the focused image by fusing the EM signals
of the bandwidth 2–4 and 6–8 GHz with the proposed fusion
method. As an equivalent bandwidth of 2–8 GHz is achieved
in the fused image, we can see that in Fig. 7(c), the two point
targets on the y-axis are more clearly resolved than those in the
two subband images [see Fig. 7(a) and (b)]. For comparison,
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Fig. 8. Signal fusion of point target with noncollocated antennas in low-
and high-frequency subbands. (a) Low-frequency images acquired with a
downsampled linear array. (b) Fusion image with the signals collected by
downsampled low-frequency array and the same high-frequency array as
in Fig. 7.

Fig. 9. Geometrical configuration for extended target simulation.
(a) 3-D geometry. (b) Top view against the z-axis.

the focused image with the EM data of the full bandwidth
2–8 GHz is shown in Fig. 7(d). One can see that the fused
image is comparable to the real image reconstructed with
wideband signals in terms of the spatial resolution.

In practical imaging systems, the element spacing of
low-frequency array is generally larger than that of high-
frequency array. To emulate this, we kept the element spacing
of high-frequency array but doubled the sampling intervals
(i.e., downsampled the spatial samples by a factor of two)
of the low-frequency array for a second experiment (Case 2
in Table I). After the image formation, the EM signals
collected with the downsampled low-frequency array were
focused and the image is shown in Fig. 8(a), which is compa-
rable to Fig. 7(a). As in Case 2, the EM signals synthesized
with the high-frequency antenna array were the same as that
in Case 1, and the same image was obtained as Fig. 7(b) that
we omit here for the conciseness of this paper. Applying the
proposed fusion approach to the signals in low- and high-
frequency subbands, a fused wideband image was obtained
again, as shown in Fig. 8(b). One can see that the image
in Fig. 8(b) is nearly the same as that in Fig. 7(b) and the two
point targets on the y-axis are well resolved again compared
to those in the two subband images.

B. Extended Object

An extended target was also used for a numerical experi-
ment to further validate the proposed approach. The extended
target was a “V”-shaped perfect electric conductor object
(see Fig. 9). The two bars of the object are 20.16 cm in

Fig. 10. Image fusion for extended target. (a) and (b) Focused images of the
cornerlike scatterer with the bandwidth of 2–5.5 and 8.5–12 GHz, respectively.
(c) Fused image of the cornerlike scatterer with the bandwidth of 2–12 GHz.
(d) Reference image obtained with the bandwidth of 2–12 GHz.

Fig. 11. k-space spectra from the dual-band data. The spectrum at the bottom
of the figure results from the low-subband data, while the top from high
subband.

length and 5 mm in both width and thickness, and they form
an obtuse angle of 120.5°. A linear antenna array formed
by Hertz dipoles was used as the radiator for 2-D image
formation. The linear antenna array was set along the x-axis
with its center at the origin and the “V”-shaped object was
placed on the xoy plane at a distance of 0.4 m from the array,
as shown in Fig. 9. The linear array was 1 m in length with
the element spacings of 1 cm. The operational bandwidths,
i.e., 2–5.5 and 8.5–12 GHz, were utilized as the low- and
high-frequency signal bands. The EM synthetic data for the
two operational bandwidths were also generated by the EM
software FEKO in the frequency domain with the frequency
steps of 100 MHz.

The EM synthetic data in the two operational bands were
focused with range migration algorithm [17] and the recon-
structed images are shown in Fig. 10(a) and (b). As for point
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Fig. 12. Real and imaginary parts of the original k-space signal and the
fused signal at the aspect angle θ = 94°. Here the “i th iter” refers to the
estimated signal after the i th iteration. Shaded parts: data at the low- and
high-frequency subbands.

targets, the downrange resolutions of the two reconstructed
subband images are relatively coarse and strong artifacts
around the target are also observed in the images. Exploiting
the two-band signals and taking advantage of the proposed
fusion approach, a higher downrange resolution is achieved
in the fused image [see Fig. 10(c)] where the strong artifacts
appeared in the subband images are significantly suppressed.
To examine the quality of the fused UWB image, the focused
image with the entire bandwidth of 2–12 GHz is shown as
a reference in Fig. 10(d). Comparing Fig. 10(c) and (d),
the fused image achieves the similar downrange resolution
as that of the reference one. However, slight differences
are noticed in the sidelobe levels in the two images. This
may be caused by the estimation errors of the fused signals
with respect to the real full-band signals in the k-space.
Nevertheless, these differences in the sidelobe levels have little
influence on the target detection and recognition. Therefore,
a satisfactory image was obtained by fusing the data of the
two frequency subbands.

To explicitly show the accuracy of the fusion method,
we compared the fused signals and the original ones.
The k-space spectra of the “V”-shaped object from the dual-
band data are displayed in Fig. 11. Fig. 12 shows the fused
signal and the original one at an aspect angle of θ = 94°,
where the original full-band signal is obtained after some
preprocessing for the full-band synthetic EM data. Although
slight differences may be noticed at some points, it can be
seen that the fused signal agrees with the original one very
well. Moreover, some estimated signals during the iterations
are also shown in Fig. 12 to demonstrate the convergence of
the iterative scheme. At the beginning of the iterations, one can
see that the estimated signal (i.e., the first iter) oscillates with
the similar frequencies as the original full-band signal, but its
amplitude is significantly different from that of the original
one. After 10 iterations, the amplitude of the oscillated signal
converges to the original one (see both the real and imaginary

Fig. 13. Fusing signals acquired by noncollocated low- and high-frequency
antennas for extended target. (a) Focused low-frequency image with the
antenna element spacing of 2 cm at 2–5.5 GHz. (b) Fused image with the
bandwidth of 2–12 GHz.

parts of the signals). By minimizing the difference between the
estimated and the measured signals, the finally fused signal at
this aspect angle was obtained after 21 iterations. One can see
that the signal converges very fast to a relatively accurate esti-
mation after the first several iterations, but it takes more itera-
tions to reach the minimum difference between the estimated
signals and the measured ones at the two frequency subbands.

Similar to the point targets’ simulation, we took every
other spatial sample of the linear array (i.e., element spacing
of 2 cm) for the low-frequency subband to emulate the differ-
ent element spacings of the low- and high-frequency antenna
arrays in practical imaging systems. The focused image for the
signals acquired with the downsampled low-frequency linear
array is shown in Fig. 13(a), which is nearly identical to the
low-subband image in Fig. 10(a). Again, the same image as
that in Fig. 10(b) was obtained with high-frequency subband
signals and we omit it here. Taking the fusion operation for
the two subband signals in the k-space, a focused image with
the enhanced resolution was acquired. Fig. 13(b) presents the
fused image with the bandwidth of 2–12 GHz. It is visually
equivalent to that in Fig. 10(c) fused with the signals acquired
by collocated low- and high-frequency antenna arrays. More-
over, this fused image [see Fig. 13(b)] is comparable to the
full-band image in Fig. 10(d), especially in terms of the spatial
resolutions. Therefore, one can see that the proposed k-space
fusion method works effectively for the signals acquired with
noncollocated antenna arrays as well.

In addition, it should be mentioned that the Born approx-
imation used for the formulation is not precisely met in
this circumstance (where the Kirchhoff approximation is the-
oretically more appropriate for metallic objects or strong
scatterers [27]); however, a relatively well-reconstructed pro-
file of the “V”-shaped target is still obtained with the pro-
posed approach. Therefore, this numerical simulation also
shows the robustness of the proposed approach for the shape
reconstruction of a broad range of scatterers.

V. EXPERIMENTAL RESULTS

Experimental measurements were carried out in the ane-
choic chamber for further demonstration. The experimental
setup is shown in Fig. 14(a). A Vivaldi antenna [28] with the
operational frequency band from 2.7 to 35 GHz was used as
a transceiver, as shown in Fig. 14(c). It was fixed on a planar
scanner with polyethylene foam and connected to a VNA.
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Fig. 14. (a) Experimental setup. (b) Metallic sphere targets. (c) Antipodal
Vivaldi antenna used for the measurement.

With the translation of the planar scanner, the transceiver
antenna took samples over the xoz plane to synthesize a
rectilinear aperture of the dimensions of 0.5 m × 0.5 m. The
spatial sampling intervals of the antennas in both the x- and
z-directions are 1 cm. Three metal spheres of diameter 2 cm
were placed on the xoy plane in front of the array center.
The two nearer spheres were separated with an interval of
10 cm and placed at a distance of 54.3 cm away from the
antenna aperture. The third sphere was set 7 cm further away
than the center of gravity of the other two. Two subband
signals with the operational frequencies ranging from 4 to 7
and 11 to 14 GHz, respectively, were used. The signals were
measured in the frequency domain with the steps of 20 MHz
by the VNA. In addition, calibration was done before taking
the measurement to eliminate the reflections between the VNA
and the antenna.

Then, the acquired EM data were focused with range
migration algorithm for the two subband signals. The formed
3-D images as well as their projection views are shown
in Fig. 15(a)–(h). In both low- and high-frequency sub-
bands, the images of spheres are relatively well reconstructed.
Thanks to the short wavelengths of the high-frequency sig-
nals, a finer cross-range resolution is achieved in the high-
frequency image [see Fig. 15(f) and (h)]. On the other hand,
the equal coarse downrange resolutions are obtained in the
images of both subbands due to the equal signal bandwidths
(i.e., 3 GHz).

To improve the downrange resolution, the signals acquired
in both low- and high-frequency subbands are processed and
fused in the k-space by using the proposed approach. The
fused images are shown in Fig. 15(i)–(l). One can see that

the images of objects are well focused in the fused image
and the downrange resolution along the y-axis is noticeably
improved compared to that of the images reconstructed with
each individual subband (i.e., 4–7 and 11–14 GHz). For
comparison, the two subband signals are also fused with the
MFT approach proposed in [11] and the fused images are
shown in Fig. 15(m)–(p). One can see that the fused image is
focused very well in the cross-range direction [see Fig. 15(n)]
and the downrange resolution is improved [see Fig. 15(o)–(p)].
However, split main lobes are observed along the downrange
direction. This results from the fact that in the MFT approach,
the k-space data from different subbands are only registered
in an aligned coordinate system without any operation to deal
with the missing data in the frequency gap. Hence, split main
lobes are obtained. In contrast, the MPA-based method not
only coherently registers the k-space data but also extrapolates
the missing data to fill the frequency gap, which leads to
the sharply focused main lobe and enhances the downrange
resolution.

As a benchmark, the images focused with the fully mea-
sured data within the bandwidth 4–14 GHz (i.e., full-band
images) are also shown in Fig. 15(q)–(t). Compared with
the benchmark images in Fig. 15(q)–(t), the fused images
achieve comparable image qualities, especially in terms of the
downrange resolution [see Fig. 15(i)–(l)]. However, relatively
high sidelobes are observed in the fused image and the
sphere at the further position exhibits weaker intensity in
the fused image than that in the full-band images. This is
mainly caused by the differences between the estimated data
and the real data in the frequency gap. As in the fusion
process, the reflectivity functions were assumed to be constant
over the entire signal bandwidth, i.e., frequency-independent.
Based on this assumption, a signal model was estimated with
the measured data in the low- and high-frequency subbands.
Using the estimated signal model, the missing data in the
frequency gap between the low- and high-frequency bands
were extrapolated. Consequently, an equivalent full-band data
were obtained by combining low-frequency, high-frequency,
and extrapolated data for high-resolution imaging. Neverthe-
less, the reflectivity functions of practical targets can never
be absolutely frequency-independent. Therefore, extrapolated
data in the frequency gap may have some differences from
the real one, thus resulting in the slight difference in the
focused image. To be more accurate in capturing the features
of the reflectivity functions of targets, a more advanced
model should be used to characterize the targets’ scattering
signatures over a wide bandwidth, e.g., the state-space-based
modeling [2], [29].

Although the background reflections and clutters were
almost perfectly eliminated by taking the experimental mea-
surement in the anechoic chamber, which suppresses their
impact on the fusion of the scattered signals from the tar-
gets, the suggested fusion method should work as well with
their presence. This is because the background reflections
also follow the same fact that the k-space signals along a
radial direction from the origin are attributed to a set of
scatterer (including the background scatterers) in the imaging
scene. With the presence of background reflections, the only
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Fig. 15. Focused images with two subband signals and the whole bandwidth. (a)–(d) 3-D image and its projection views on the xoz, yoz, and xoy planes
for the low-frequency signal (4–7 GHz). (e)–(h) 3-D image and its projection views on the three planes for high-frequency signal (11–14 GHz). (i)–(l) Fused
3-D image with the proposed method and its projection views on the three planes for the full-band signal (4–14 GHz). (m)–(p) Fused 3-D image with the
MFT method and its projection views on the three planes for the full-band signal (4–14 GHz). (q)–(t) 3-D image and its projection views on the three planes
for the real full-band signal (4–14 GHz). All 3-D images show the isosurfaces of −10 dB in the focused volume.

consequence is that the signals from background scatterers are
also fused. Thus, the corresponding background scatterers also
appear in the fused images at appropriate places (outside the
target area) and with improved resolution.

VI. CONCLUSION

In this paper, we propose a matrix-pencil-based approach
to fuse multiband signals in the wavenumber domain (i.e.,
k-space) for high-resolution microwave imaging. The proposed
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approach fuses the multiband data along each radial direction
in a spherical (or polar) coordinate system in the k-space for
3-D (or 2-D) imaging after some preprocessing (i.e., wavelet
spectrum weighting compensation and wavefront curvature
correction). Through the fusion operation, the k-space spec-
trum corresponding to an equivalent (ultra-)wideband signal
is formed, which leads to resolution-enhanced images after
focusing. Thanks to its operations in the k-space, the pro-
posed fusion method works for the data collected by either
collocated or noncollocated antennas in different frequency
bands. As the proposed approach is based on the Born
approximation, its applicability is limited by the Born approx-
imation applicability, which is widely discussed in the open
literature. Although the method was formulated based on
the wave propagation in a lossless homogeneous medium,
the proposed approach could also be readily extended to,
for instance, through-wall imaging applications by exploiting
proper Green’s functions [30]. However, when the medium
has strong attenuation or/and dispersion effects, the proposed
approach would fail as distortions of the amplitudes or/and
phases of signals introduced during the wave propagation were
neglected. To address the multiband signal fusion problem in
such circumstances, both attenuation and dispersion effects
of the medium should be considered to develop a modified
version of the proposed approach in the future.
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