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Abstract— A frequency-modulated continuous-wave (FMCW)
radar interference mitigation technique using the interpolation
of beat frequencies in the short-time Fourier transform (STFT)
domain, phase matching, and reconfigurable linear prediction
coefficients estimation for Coherent Processing Interval process-
ing is proposed. The technique is noniterative and does not
rely on algorithm convergence. It allows the usage of the fast
Fourier transform (FFT) as the radar’s beat-frequency estima-
tion tool, for reasons such as real-time implementation, noise
linearity after the FFT, and compatibility with legacy receiver
architectures. Verification is done in range and in range-Doppler
using radar experimental data in two ways: first by removing
interferences from interference-contaminated data and second by
using interference-free data as the reference data, and processing
it—as if it had interferences—using the proposed technique,
inverse cosine windowing and zeroing for comparison. We found
that processing with the proposed technique closely matches the
reference-data and outperforms the inverse cosine windowing and
zeroing techniques in 2-D cross correlation, amplitude, and phase
average errors and phase root-mean-square error. It is expected
that the proposed technique will be operationally deployed on
the TU Delft simultaneous-polarimetric PARSAX radar.

Index Terms— Frequency-modulated continuous wave
(FMCW), linear prediction (LP), multiple-input and multiple-
output radars, polarimetric radars, radar interference mitigation
techniques.

I. INTRODUCTION

FREQUENCY-modulated continuous-wave (FMCW)
radars might suffer from interferences from other radars

operating within their vicinity, as in multiple-input and
multiple-output radar networks and in automotive scenarios,
or from themselves as in the case of fully polarimetric radars
with dual-orthogonal signals [1], where there is a leakage
between two mutually orthogonal channels (cross-channel
interference).

In deramp FMCW radars (stretch-processing), targets’
range is deduced from beat-frequency estimation. Processing
interference-contaminated beat frequencies with fast Fourier
transforms (FFTs) yields poorer radar detection, due to unde-
sired artifacts such as a noise-floor level increase in range

Manuscript received August 18, 2018; revised October 5, 2018; accepted
October 16, 2018. Date of publication November 28, 2018; date of current
version March 5, 2019. The work of S. Neemat was supported by the KACST
Scientific Institution. (Corresponding author: Sharef Neemat.)

The authors are with the Group of Microwave Sensing, Signals,
and Systems, TU Delft, 2628CD Delft, The Netherlands (e-mail:
s.a.m.neemat@tudelft.nl; o.a.krasnov@tudelft.nl; a.yarovoy@tudelft.nl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2018.2881154

profiles, which is significantly higher than the system noise-
floor, masking weak targets; and spurious vertical lines in
range-Doppler. The nature and effects of these interferences on
range profiles have been widely studied in the past 10 years as
in [2] and [3]. The FMCW interference dwell time derivations
and interference shapes in an FMCW receiver due to different
waveforms can be found in [4]. Analytical formulas for
calculating the probability of the occurrence of ghost targets
and the interference power per range bin was presented in [5].
Comprehensive studies of interferences for full polarimetric
FMCW radars can be found in [6], and for FMCW radars,
in general, in [7], where interference appearance in range-
Doppler maps are illustrated. Interference detection was stud-
ied in [8] where the image processing techniques were used
to detect the interference in the short-time Fourier trans-
form (STFT) domain. In [9], the interference is detected by
virtue of using a single-sideband (SSB) I/Q receiver. In an
SSB, there usually is only noise in the image band of the
radar, and therefore, any interference will be clearly visible in
the image band and simple to detect using a threshold. Once
the interference slope is known, its extension into the desired
signal band can be deduced from the slope. To solve the
interference problem, several approaches have been proposed.
Among them:

1) zeroing or inverse windowing the interference-
contaminated parts of the signal in the time domain
as in [10] and [11]. Inverse windowing the detected
interference regions was proposed in [8];

2) using waveform-diversity and receiver-architecture-
diversity techniques to avoid the interference (e.g., fre-
quency ramp modulation [12], frequency hopping [13],
and [14], digital beam forming for interference suppres-
sion [15];

3) interference reconstruction and cancelation techni-
ques [16];

4) sparse sampling techniques in [17] (where interfer-
ence detection is done by monitoring target peak-
power threshold levels against the interference-induced
noise, then mitigation is done by reconstructing the
interference-free signal using a sparse-signal recovery
algorithm); and—most recently— in [18].

While zeroing a part of the beat-frequency signal is the
simplest interference suppression method, it causes signal
phase discontinuity, which results in—after performing the
range-compression FFT—target-response broadening in range
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and high-residual sidelobes. This, in turn, causes worse range
resolution and the masking of weak targets. Inverse windowing
compromises interferences complete elimination and smooth-
ing the area between the signal and the interference. Both
zeroing and windowing cause signal-to-noise ratio (SNR) loss.

Despite all the aforementioned research studies on interfer-
ence mitigation, there is still a need to develop an interference
mitigation technique that: 1) relies on the FFT as the primary
beat-frequency estimation tool in the radar system; 2) attempts
to restore any SNR loss after mitigating the interference;
3) is usable for very extended-target scenarios (atmospheric
observations, for example) where a single target peak-power
threshold level—or any form of target detection—cannot be
set to begin with. The justification for the emphasis on
using the FFT is: 1) real-time implementation considerations
and performance predictability; 2) compatibility with legacy
receiver architectures; 3) linearity of the FFT in the sense
that noise and clutter still maintain their statistical distribution
further up the radar processing chain, beyond range-Doppler
maps. This linearity is not guaranteed if the parametric fre-
quency estimation algorithms are used instead of the FFT.
The maintenance of such a statistical distribution for noise
and clutter is beneficial for many detection algorithms.

Looking at the zeroed parts of beat-frequencies as a missing
data frame or segment has lead us to consider model-based
interpolation as a possible solution, similar to the problem in
acoustics signal processing. McAulay’s (a member of the radar
signal processing group at the Lincoln Laboratory) speech
was proposed to be considered as a sum of sine waves with
arbitrary amplitudes, frequencies, and phases [19]. As we will
discuss in Section II, this analogy holds and is applicable for
FMCW deramping beat frequencies by virtue of the radar’s
transmitter linearity. Kauppinen showed a significantly related
finding, being that a single frequency sinusoid can be linearly
extrapolated by an impulse response of two coefficients [20].
He then generalizes to that the minimum number of coef-
ficients should be twice the number of frequencies in a
signal. Kauppinen showed that the extrapolation of missing
sinusoidal data can be done forward and backward from the
known samples, hence the term interpolation instead of just
extrapolation from one side [21]. Interpolation of the FMCW
time-domain beat signal at full bandwidth—typically in the
megahertz, even after deramping—would then require a pro-
hibitively high-order filter with thousands of coefficients [20].
Coefficients estimation for such a high-order filter would also
typically require the usage of a number of samples at least
twice the filter order, which would even further burden the
radar.

Decomposing the FMCW time-domain signal in the STFT
domain would, however, relieve the radar from the high-order
extrapolation filter requirement, since each frequency (target)
will theoretically be represented by a single slice in the
STFT time–frequency axes. The idea of working in the STFT
domain for speech was indeed also presented by McAulay
in the 1980s for the purpose of speech analysis and synthe-
sis (reconstruction) back to speech [22], and later presented
for radar without further investigation [23]. The work was
continued by McAulay andQuatieri for the purpose of audio

cross-channel interference suppression using the aforemen-
tioned sinusoidal model in the STFT domain, followed by an
inverse STFT (ISTFT) for synthesis [19], [24].

We note that in all the previously cited works, no strict
linking of the extrapolated or interpolated data—in the STFT
domain—from a phase-continuity point of view has been
attempted. The methods suggest none or just the averaging
of the forward and backward extrapolated amplitudes using
a cross-fading window. The quality of these reconstruction
methods was evaluated subjectively using listening tests.
A momentary phase discontinuity might be negligible to the
human ear in speech, but remains a limiting factor in radar.
There is also no concept of a coherent processing inter-
val (CPI) phase stability (coherence) across multiple sweeps
in acoustics. In FMCW, however, the end goal would be
to perform FFT operations on the reconstructed sinusoids—
after an ISTFT—for range and Doppler information. Phase
discontinuities after concatenating the original signal with
the interpolated part would cause significantly high sidelobes
after performing a range-compression FFT, and as a result,
phase stability from pulse-to-pulse will subsequently degrade,
resulting in additional high sidelobes after the Doppler
(second) FFT.

Considering the suppression/removal of FMCW interfer-
ences in the STFT domain and their reconstruction (as
in Fig. 1 for example), defines the problem as one of
the nature of the reconstruction of an amplitude-modulated
single-frequency sinusoid per target which was observed
in two separate windows. The single-frequency amplitude-
modulated sinusoid per target is the simplest beat-frequency
signal model, as we will discuss how this varies for real
scenarios in Section II. Inspired by acoustics, in this paper,
we propose an interference mitigation technique in the STFT
domain, tuned for deramping FMCW radar. In our technique,
interference-contaminated parts of the beat frequencies within
a sweep are then suppressed in the STFT domain. Useful
beat frequencies are to be subsequently reconstructed based
on a known signal model (being amplitude-modulated single-
frequency sinusoids). The STFT is the analysis tool for the
signal model parameters estimation. LP coefficients for the
signal parameters are then estimated using autoregression
(AR). These coefficients are estimated for each STFT fre-
quency slice from the interference-free parts of the sweep,
or optionally, in a reconfigurable manner, from a previously
known interference-free sweep in the CPI. Suppressed beat
frequencies are then replaced by linear-predicted interpolated
ones, followed by a phase matching procedure. The difference
from the previous techniques and the novelty in this paper is
highlighted.

1) The first ever interference mitigation technique for
FMCW radar deramp receivers via model-based beat-
frequencies interpolation in the STFT domain.

2) An optional LP interpolation coefficients reconfigurable
estimation mode for CPI processing. Coefficients are
estimated for the current observation scene using a
known single interference-free sweep. These coeffi-
cients are then reused for the restoration of subsequent
interference-contaminated sweeps in the CPI.
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Fig. 1. STFT for a single interference contaminated sweep as received using
the FMCW radar’s double-sideband (DSB) receiver. This sweep is used for
the experiment in Section V-B. (a) Interference contaminated. (b) Interference
contaminated frames suppressed. (c) Beat frequencies interpolated using our
proposed technique.

3) The proposed technique is real-time implementable, with
a predictable execution delay (latency), based on FFT
banks and fixed-length extrapolation filters, as opposed
to iterative methods relying on algorithm convergence.

4) An evaluation of the technique’s performance in the
range-Doppler domain as opposed to range-only (range-
profiles) as in previously cited work. The aim is to
additionally showcase the maintenance of the radar’s
coherence over a CPI after interference mitigation.

The rest of the paper is organized as follows. Section II
presents the theoretical aspects related to the proposed tech-
nique. Section III describes the technique used for interfer-
ence mitigation. Section IV presents technique simulations.
Section V presents experimental results with real radar data
and discusses the findings. Conclusions and final remarks are
given in Section VI.

II. THEORY

A. Deramp Linear FMCW Receivers

In linear FMCW [25], the transmitted signal can be
described as

T (t) = At x cos

�
2�

�
fct +

1

2
�t2

��
(1)

Fig. 2. After [4], [6] and [18]. (a) Deramping linear FMCW opera-
tional overview. The transmitted and received chirps are mixed to pro-
duce beat frequencies which are usually bound by an LPF. (b) Simplified
receiver architecture (top) where R�

b(t) from (6) is shown after the LPF.
A victim/interferer FMCW interference example (bottom) where the shaded
area represents interferences in a DSB receiver implementation.

for �Tsw/2 < t < Tsw/2, where Tsw is the duty cycle/sweep-
time interval as in Fig. 2, At x is the transmitted amplitude,
fc the carrier center frequency, the chirp rate � = Bt x/Tsw,
and Bt x the transmitted bandwidth. The chirp rate sign deter-
mines an up or down chirp. The received signal is

Ri (t) = Arx cos

�
2�

�
fc (t � �i ) +

1

2
� (t � �i )2

��
(2)

for �(Tsw/2) + �max < t < Tsw/2, where Arx is the received
amplitude, �i is a target’s response time delay, and �max is
the maximum time delay corresponding to the FMCW radar’s
desired maximum range. In deramping, the transmitted and
received signals are mixed to produce beat-frequencies. This is
illustrated in Fig. 2 where a receiver’s output can be considered
as a sum of beat-frequencies. The receiver implementation can
be an I/Q (SSB) or DSB. These beat frequencies are usually
bound by a low-pass filter (LPF), limiting the maximum
frequency in the beat-frequency interval to a desired maximum
range. The beat frequencies are then typically sampled to a
point that satisfies the Nyquist criterion for that maximum
range. A beat frequency for a target return after mixing and
filtration can also be expressed as [16]

Rb,i (t) = Ai cos[�i (t)] (3)

and the receiver output for M multiple responses can be
written as

Rb(t) =
M�

i=0

Rb,i (t) (4)

confirming that targets’ beat frequencies, like speech, can
indeed be considered as a sum of sinusoids with arbitrary
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amplitudes, frequencies and phases. A full derivation showing
all phase terms can be found in [26]. This insight lends itself
to working with targets’ beat frequencies in the STFT domain.
Each frequency (target) will theoretically be represented by a
single slice in the STFT time–frequency axes. Targets with
different velocities will later be resolvable in the Doppler
domain after processing a CPI. It is worth noting that in
the interference mitigation technique presented in this paper,
we do not consider the case where a target might have a
considerably high acceleration— causing a frequency change
within a single sweep—as in ballistic missile applications,
for example. The proposed technique can, however, work
in radars experiencing targets range-migration phenomena,
as this happens from sweep-to-sweep.

B. FMCW Interference

In a victim deramp FMCW radar receiver like the one
in Fig. 2(b), a received interference from a similar interferer
FMCW radar can be described similar to (2) as

RI (t) = AI cos

�
2�

�
fc(t � ��) +

1

2
�I (t � ��)2

��
(5)

where AI is the interference amplitude, �� is the inter-
ferer’s transmission start time delay with respect to the vic-
tim radar transmit start time, and the interferer’s chirp rate
�I = BI /Tsw_I . The interferer’s bandwidth is BI and its
sweep time interval is Tsw_I . This interference will be mixed
with the transmitted reference, along with useful received
echoes. This means that the receiver output in (4) can be
written as

R�
b(t) =

�
��	

��


Rbeat(t), �
�

Tsw

2

�
+ �max < t < t1

Rbeat(t) + RI (t), t1 � t � t2
Rbeat(t), t2 < t < Tsw/2

(6)

where the interference duration TINT = t2 � t1 + 1 following
the derivations in [4], [16] and [18]. It has been demonstrated
that after deramping, the instantaneous frequency of RI (t) can
be expressed as fi (t) = (�I � �)t � �I �� . The analysis
in [18] show that since fi (t) is bound by the victim’s LPF
as illustrated in Fig. 2(b), the interference duration will be
TINT � |2 • LPF/(�I � �)|. Note that the factor 2 will
not be present in an SSB receiver implementation. For a
DSB receiver, the interference appears as a “V” like shape
intersecting across the beat frequencies band, as in Fig. 1(a).

C. Linear Prediction of FMCW Beat Frequencies

In the STFT domain, FMCW target beat frequencies—
as in (4) and Fig. 1—appear as horizontal (slices) in the
time–frequency plane. The full derivation in [26] shows that—
except for target range—contributing factors to the phase
elements of (2) are usually very small in one sweep compared
to � radians and can be neglected. It is expected that a noise-
free single point target will have a single constant-amplitude
frequency slice. In reality, we however observe amplitude
fluctuations on each frequency slice which depend on factors
as follows.q

1) target(s) radar-cross section (RCS) frequency depen-
dence varying in response to swept instantaneous fre-
quency (Swerling RCS models) in relation to target(s)
behavior and nature (point/extended/stable/moving).

2) FFT leakage and resolution degradation due to the fact
that the STFT window and hop sizes being typically
smaller than the observed signal length;

3) ripple on beat frequencies as a result of imperfect digital
filters’ passband-ripple.

There usually are one or more digital filters in an FMCW radar
receiver chain (dc-block, I/Q demodulation, maximum-range,
and so on).

Because of the aforementioned reasons, the beat frequen-
cies in the STFT domain can be considered as time sinu-
soidal signals as well, but—as key—with a much lower
frequency than the original time domain deramped signal.
In Section III, we will show that we propose to suppress
interference-contaminated beat-frequency frames in the spec-
trogram, and interpolate them. Since it has long been known
in acoustics that time signals’ parameters can be modeled
using AR, and further extrapolated using these parameters
by LP, we propose to do so for FMCW radar beat-frequencies
in the STFT domain in this paper.

In LP, future y values are estimated using a linear combina-
tion of previous ones, with the most common representation
being

�x[y] =
L Pord�

i=1

ai x[y � i ] (7)

where �x[y] is the predicted value, L Pord is the prediction filter
order, and ai is the AR prediction coefficients. AR coefficients
estimation algorithms recommend having available samples—
to estimate from—at least twice L Pord. Noting that when esti-
mating from postinterference region samples, nothing changes,
except that samples are flipped-around before being used. This
will further be discussed in Section III. The coefficients are
estimated following the Burg method [27] in our implemen-
tation. Several methods exist for AR parameters estimation,
such as the least square and Yule-Walker [28]. These methods
lead to approximately the same results for large data sets
(typically more than 2048 points [29]). It has, however, been
demonstrated that the Burg method is more reliable than the
others [29].

D. Beat-Frequencies in the STFT Domain

At the output of a typical deramping FMCW receiver,
similar to the one shown in Fig. 2, let a received sweep—
as in (6)—have k samples, a sampling frequency fs Hz, and
a sampling time ts (in seconds), yielding an observation time
Tobs = k/ fs (in seconds). The beat-frequency resolution of
this signal would then be � f = 1/Tobs (in Hertz). In the
STFT domain, the sweep can be represented as

xl[n] =

Wlen
2 �1�

n=� Wlen
2

h[n]x[n + l�hop]e�i2�n/Wlen (8)

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2020 at 09:15:10 UTC from IEEE Xplore.  Restrictions apply. 



NEEMAT et al.: INTERFERENCE MITIGATION TECHNIQUE FOR FMCW RADAR USING BEAT-FREQUENCIES INTERPOLATION 1211

Fig. 3. Recipe for the proposed interference mitigation technique, and the setup for the first experiment in Section V-B.

where l is the frame number in the STFT, and Wlen is the
number of samples for each FFT forming the STFT. h is the
analysis window function (Hamming in our case), and x is
the input sweep fragment. �hop is the number of samples
from successive STFT windows to create an overlap, and �
the frequency index. The number of frames is defined as
l = 1+floor((k�Wlen)/�hop), where floor is a round-toward-
zero operation. The observation time will be determined by
Wlen as Tobs_STFT = Wlen/ fs ( in seconds). The reduced obser-
vation time will yield an STFT frequency axis resolution being
� fSTFT = 1/Tobs_STFT (in Hertz). � fSTFT will be significantly
coarser than � f of the original signal. On the STFT’s time
axis, the time equivalent of the �hop size is T�hop = �hop/ fs ,
resulting in a different sampling frequency f�hop = 1/T�hop.
To satisfy the Nyquist criterion, the maximum STFT beat-
frequency-slice fluctuation that can then be unambiguously
observed is f�hop/2. Note that the STFT is the analysis tool
for the signal model (beat-frequencies) parameters estimation.

E. Beat-Frequency Fluctuation Model

We model the beat-frequency fluctuations discussed in
Section II-C using a classical amplitude modulation defined
with a depth and frequency where

sm(t) =
A0

1 + m
(1 + m cos(�mt + �m)) cos(�bt + �b) + n(t)

(9)

for 0 < t < Tsw, where sm(t) is an amplitude modulated STFT
beat-frequency slice, A0 its amplitude, m is the modulation
depth, �m is the modulation frequency, �m is the modulation
phase, �b = 2� fb where fb is the beat frequency, with an
initial phase �b, and n(t) is noise. The modulation frequency
�m = (2�/Tsw) • g, where g is the number of oscillations
per observation period, and fm = g/Tsw is the frequency
(in hertz).

Any of the fluctuation reasons can lead to the following:

1) m possibly ranging from 0 to 1 in depth;
2) fm being smaller than � fSTFT, or being closely spaced

to another frequency, and therefore be unresolvable by
the STFT on a single-frequency slice;

3) fluctuations periodicity behavior not being captured by
the LP coefficients when the number of oscillations g is
too small (depending on the interference duration being
suppressed); and

4) the SNR affected by the noise amplitude. This model
will assist in the tradeoffs for the selection of the Wlen,
�hop and L Pord parameters in Section III-B, and for
simulation in Section IV.

III. METHOD

In the following, the steps for beat signal reconstruction,
discusses the reconstruction parameters selection tradeoffs and
CPI processing are presented.

A. Beat Signal Reconstruction Steps

The proposed interference mitigation technique is illustrated
in Fig. 3. This technique assumes a priori knowledge of
the interference location in the sweep, or the usage of the
simple method in [9] to identify that location. The steps are
as follows.

1) A deramped sweep is received and taken to the STFT
domain.

2) p interference-contaminated frames are then suppressed
where p is the index of the suppressed frames. The
suppression is illustrated in Fig. 1(b).

3) IQ amplitude LP coefficients (ai in (7)) for each n
frequency-slice are estimated from the interference-free
parts. The coefficients estimation is done from the left
and right sides of the suppressed frames. As illustrated
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