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Graph Ginzburg—Landau: discrete dynamics. continuum
limits, and applications. An overview

Yves van Gennip
Deift Institute of Applied Mathematics (DIAM)

Technische Universiteit Deift
Deift, The Netherlands

1 Introduction

In [BELL BEll;] the graph Ginzburg—Landau functional.

FJu) := wj(u _uj)2+IZTT(ui), (1)

iEV

was introduced. Here ii is a real-valued function on the node set V of a simple , undirected
graph (with u its value at node i), w 0 are edge weights which are assumed to be positive
on all edges in the graph and zero between non-neighbouring nodes i and j. E is a positive
parameter, and TV is a double well potential with wells of equal depth. A typical choice is the
quartic polynomial W(x) = x2(x

—

1)2 which has wells of depth 0 at x = 0 and x = 1, but we
will encounter some situations where other choices are useful or even necessary.

This introduction of this graph—based functional was inspired by its continuum counterpart.

FE(u) :ef Vu2dx4f WQu)dx, (2)
o p

which was introduced into the materials science literature to model phase separation (such
as the separation of oil and water) [ClIiiS], but has since been extensively used in the image
processing literature as well, because of its intimate connection to the total variation functional,
which we will explore further below. In FE Qu) above, u is a real-valued function on a domain
C C R” and e and TV are as before. For small positive values of e, minimization of F- will lead
to functions 11 which take values close to the wells of TV (say 0 and 1) while keeping the L2
norm of the gradient small. i\iinimizers of F-2 tend to have regions where u 0 and regions
where u 1, with transition regions in between whose length is (approximately) minimal and
whose thickness is of order a

The study of a graph-based version of the Ginzburg—Landau functional in [BE 12] was mo
tivated by the translation of the phase separating behaviour of its continuum counterpart F
into node clustering behaviour on a graph. Forcing the double well potential term to have a
small value has the same effect as before: It drives u to take values close to 0 or 1. The term

Z w(ut — u)2 encourages it to take similar values on those nodes which are connected by a
highly weighted edge. These two effects together result in a function it which can be interpreted
as a labelling function which indicates which of two clusters a node in the graph belongs to,
based on the (weighted) structure of the graph. combined with either an additional fidelity term
in the functional. which weakly enforces compatibility of the final result with a priori known

‘We call a graph simple if it has no self-loops and at most one edge between each pair of nodes.
2Careful readers will have noted that minimizers of FE are given by constant functions which take value 0

everywhere or value 1 everywhere. In practice FE is always minimized with some additional term or constraint
present as we will see shortly.

— 89 —



data, or a hard mass constraint (if the desired cluster sizes are known), the graph Ginzburg—
Landau functional was sucessfully used in [13F12[ for various data clustering and classification
and image segmentation1 tasks.

The method used in [BF12] to minimize the graph Ginzhurg—Landau functional again took
its inspiration from a practice which is common in the world of continuum variational methods
using a gradient flow. This approach consists of introducing an artificial time parameter and
computing a solution to Ut = —grad F. For the graph Ginzhurg—Landau functional, this leads
to the graph Allen—Cahn equation.

= (Au)
—

(3)

which earns its name due to its great similarity to the (continuum) Allen—Cahn equation1’,
which is the L2 gradient flow of F6 [ACiD]. In the equation above we bave used the suggestive
not at ion

(Au) := w1(u1 — it1). (4)

In fact, the object in (4) has been extensively studied by the field of spectral graph theory
[CliuDi] and is known as the (combinatorial) graph Laplacian.

In [ilKBi3] a second method was devised for (approximately) minimizing the graph Ginzburg—
Landau functional: the graph Merriman—Bence--Osher (MBO) scheme. Also this method took
its inspiration from an existing continuum method. The MBO scheme (or threshold dynam
ics scheme) was originally’ introduced as a method for approximating flow by mean curvature
[\lBOD2. \[B093]. It consists of alternatively diffusing the indicator function of a set antI
thresholding the diffused result back to an indicator function. On a graph. this gives rise to the
following iterative scheme:

Ii, ifieS,
u1 =cs)1 :=

ifi e Sc,

solves

I u(O) = zz, -

=
—

(Azt). on (0, r],

— Ji, if u°(v)
.

— O, if u0(r) <

On an intuitive level, one can think of the thresholcling step (going from to u°) as (ap
proximately) mimicking the effect of the nonlinear term —41V’(zq) in the Allen—Cahn equation.
The MBO scheme is usually easier to implement than the nonlinear Allen—Calm equation.

Both the Allen—Cahn and MBO approach have been used successfully for various applica
tions in later papers. e.g. [FILPB L3. MNB13, GCMB I-I, HSB1Ec CvCS ii. MBC1S]. and for
the former convergence has been proven [LB 17]. At the end of this overview paper we will

3Data clustering refers to the process of grouping data points together without a priori knowledge of the
classes —except perhaps class size— while data classification refers to that process using such prior knowlwedge.

1lmage segmentation is the process of extracting specific structures from an image. For a digital image this
can he interpreted to mean clustering or classification of the image’s pixels.

5Variational methods broadly refer to the practice of modelling a system as the minimizer of a given func
tion(al).

°Note that the minus sign in the Laplacian term is not a mistake: Different from the continuum Laplacian,
the graph Laplacian is positive semi-definite.
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discnss some of these applications, but first we will dive deeper into the theoretical understand
ing of the Ginzburg—Landan fnnctional and its related dynamics that has been bnilt since the
functional’s introdnction in [13F12]. These theoretical studies can roughly be divided into two
categories: those that are concerned with the functional or the dynamics on the discrete graph
level and those that try to bridge the gap between the discrete and continnum worlds. In Sec
tion 2 we take a look at the former and in Section 3 we discnss the latter. In Section 4 we give
an overview of some applications of these methods.

2 Discrete dynamics

The graph Laplacian which we discussed above is an important operator when studying discrete
dynamics on graphs. As is well known from spectral graph theory [CliuOY], the spectral proper
ties of the graph Laplacian tell us important infonnation abont the properties of the underlying
graph (such as its number of connected components). Conversely, any graph dynamics driven
by the graph Laplacian will be highly dependent on the graph strnctnre.

It is somewhat misleading to talk about the graph Laplacian. as there are different versions
of the discrete Laplacian that appear in the literature. To understand their differences, we need
to consider the node degree

d1
jeV

The three most commonly encountered graph Laplacians are the combinatorial graph Laplacian
defined above, the random walk graph Laplacian. which has an additional factor 411 On the
right hand side compared to the combinatorial graph Laplacian in (4), and the symmetrically

—1/2 / —1/2 —1/2normalised graph Laplacian d wq
—

d u

Where we encountered the combinatorial graph Laplacian in the dynamics above, we can
also consider versions w’hich use the random walk or symmetrically normalised graph Laplacian.
In fact, by introducing the parameter r, we can capture both the combinatorial (r = 0) and
random walk Laplacians (r 1) in the same definition:

:= d11 Zwij(ui — ui). (6)

Taking the gradient flow of the graph Giuzburg—Landau functional with respect to the topology
generated by the inner product

(u,v)y :=

zEV

on the space of real-valued node functions I) := {u : V —* R}. naturally leads to an Allen—
Cahu equation which uses the generalised definition of the graph Laplacian from (6). The
symmetrically normalised Laplacian cannot be incorporated iii this framework and we will not
consider it further here.

The two main discrete dynamics that are studied in the context of the graph Ginzburg—
Landau functional are those generated by the graph Allen—Cahn equation and the graph MBO
scheme which are explained in the previous section. For both of their continuum counterparts
it is known that they approximate flow by mean curvature in a sense that can be made precise
in the form of various limiting arguments. In its geometric formulation. (continuum) flow by

TUsing this inner product, the Allen—Cahn gradient flow also picks up a factor dir in the 4W’(u) term.
Alternatively, we can redefine the double well potential term in F to be (11 o it, xv)v, in which case the
gradient flow remains unchanged as in (3). Both choices appear in the literature.
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mean curvature of a Euclidean subset is obtained by letting its boundary evolve with a normal
velocity at each point proportional to the boundary’s curvature at that point [BraTS, ACT9]. The
possibility of singularity formation during this process has given rise to different fornmlations
of continuum flow by mean curvature, such as the level set description [CGGiIi. ESt)1, ESO2a,
P592b. F.S9T3]. In {BR91] aud [ESS92J it was proven that solutions of the continuum Allen—Calm
equation converge (when r —* 0) to solutions of the continuum flow by mean curvature. The
first paper does this in the radial case (where flow by mean curvature is well understood) while
the second shows that the Allen—Calm solutions converge to viscosity solutions of the level set
equation for continuum flow by mean curvature. Also solutions of the continuum MBO scheme
converge to solutions of the continuum flow by mean curvature (in some appropriate senses)
when r —* 0 [EvaOd, BG!r3[.

It is therefore reasonable to ask if similar connections can be found between the various dis
crete dynamics. In particular the following ciuestions have been considered: (a) Are the graph
Allen—Cahn equation and MBO scheme related and if so. how? (h) Can a graph-based flow by
mean curvature be defined in a way that preserves important properties of its continuum coun
terpart? Specifically. (c) are the graph Allen—Cahu equation and MBO scheme approximations
of graph based flow by mean curvature in any rigorous sense?

In [vGCOB 1-i] these questions were first asked and. in the case of question (b). partly
answered. In [vCGOBI -Ij (and its sequel [vGI9]) a graph—based version of the variational
formulation for flow by mean curvature, which was originally given by [AT\V93. L595} in the
continuum, was introduced’: Given an initial node set Sp. a discrete time step (At > 0) sequence
of node sets evolving by graph-based mean curvature flow is defined by

S 6 argminTV s) + 1cs.sdn_i)v. (7)
ScV At

Here sd_1 is a signed distance to the set 5n1 from the previous iteration and the graph total
variation is defined as

TVQ) := WijdL, —

— ijcV

In particular. we note that

TVc5) > (8)
‘Es

JESC

is the graph cut between the node subset S and its complement (a concept known from graph
theory).

Above we have been a bit vague in defining the signed distance sd01. This was done on
purpose. as it is still a topic of ongoing research what influence the choice of distance has on
the resulting flow. In [vGGOB1-l[ the signed distance was taken to the boundary of the set

which was defined to be the union of the set of nodes in S which have a neighbour
in SC and the set of nodes in 5C which have a neighbour in S. While tins definition gives
rise to a well—defined flow on a given graph and is an obvious cliscretisation of the continuum
distance used in {ATXV!Ll. LS9], it is tmstable with respect to small perttu’hations in the graph
structure. Consider ‘completing’ a given graph by adding an edge with a very small positive

8ft the same paper, also a graph-based (mean) curvature.

d JZJCS. W,j. if t ES,

ifzE

was introduced, with the property that TV(ys) = (tCs, ys)v.
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weight between every pair of non-neighbouring nodes. If we expect flow by mean curvature to
resemble a diffusion generated process, as per our question (c) above, such a small perturbation
of the edge weights should not have a large impact on the resulting flow. This perturbation
however, does have a major impact on the boundaries of node snbsets: For any nonempty
proper snbset of V, every node in the graph is now in its bonndary. This suggests that to be
able to answer question (c) positively, a different notion of distance needs to be employed in the
definition of graph flow by mean curvature. This is a subject of current research by the author
and coauthors.

It should also be noted that the variational approach to flow by mean curvature on graphs
is different from the ‘partial difference equation on graphs’ approach in [ECED1-I}.

Most progress has been made on question (a): How are the graph MBO scheme and Allen—
Cahn equation related? The answer, as given in [BvCepa], is that MBO corresponds to a specific
time cliscretisation of Allen—Cahu. with some important caveats which we will address below.

First we will redefine the graph Allen—Cahn equation slightly:

= —Au
— !W’ on.

dt S

Comparing this with (3) we see that e is lacking froni the Laplacian term. The e has been
removed with an eye to the limiting behaviour for s —k 0 which we will discuss in more detail
below. From the point of view of the discrete dynamics. we can simply interpret this as a
rescaling of time.

We partly discretise the Allen—Cahn equation above with a time step r: We treat the
diffusion term continuously in time, while using an implicit Euler discretisation for the potential
term:

= eTAuk
— Tw’ o u1. (9)

We note that c_Tuk is the solution at time r of the graph diffusion equation u = —Au

with initial condition uSC. This time discretisation addresses one obvious difference between
the Allen—Calm equation and MBO scheme: The former is continuous in time, while each
iteration of the latter generates outputs at discrete times. The second immediately noticeable
discrepancy between these two dynamics. is that MBO produces binary ({0, 1}-valued) results
at a given node in each iteration. while solutions of the Allen—Calm equation a priori can have
any real value at a node. To deal with this, we change the (discretised) Allen—Cahn equation
further: Instead of using a continuous function TV as double well potential. such as the quartic
polynomial given above, we use the double obstacle potential:

W(x) :=
fx(1 — x), ifs e [0,11,

+00, otherwise.

The non-smoothness of this potential requires us to interpret 11’ in a subdifferential way. This
is done rigorously in [l3vCcpa}, where it is concluded that for A := 1, the iterates of (9) are
the same as the iterates of the graph AIBO scheme (5). Moreover, every sequence r0 —* 0 has a
subsequence whose corresponding sequence of solutions to (9) converges pointwise to a solution
of the graph Allen—Cahn equation (3). If 0 < A < 1 the iterates of (9) correspond to an MBO
like scheme with a relaxed thresholding step, in which the hard thresholding step function is
replaced by a piecewise linear continuous approximation. This allows the semi-discrete scheme
to avoid pinning in certain situations, which can be of practical interest.

91n this context, pinning describes the trivial dynamics which can occur in the MBO scheme w’hen r is so

small that at every node the value of is on the same side of as in u” and thus u1 = u” and nn more
changes occur. For more information, see [v000131 1, vG 19].
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In [BvGcph] the above procedure, which relates the graph Allen—Cahn equation to the graph
MBO scheme, is applied to a version of the Allen—Cahn equation with an additional term which
assures that mass is conserved along iterates (where the mass of a node function is defined
to be M(u) := dçzq). The resulting mass preserving MBO scheme corresponds to a
version of the one introduced in [vGll3] for (approximately) minimizing the pattern forming
Oht a—Kawasaki functional on graphs.

We close this section with a c1uick return to question (c). Even though the search for an
explicit relationship between the graph Allen—Calm equation and MBO scheme on the one hand
and graph flow by mean curvature on the other is still open, there are some preliminary results
worth mentioning in this context. These results are also of interest in their own right and are
formulated in the language of F-convergence.

The notion of F-convergence is specifically tailored to minimization problems. Its precise
definition can he found in any of the standard works on the topic [13ni02, D [93] and we will not
repeat it here. For our present purposes it is enough to remember the main result which makes
this a worthwhile concept: If a seciuence of function(al)s (f0) F-converges to a limit function f.
and (x0) is a sequence such that r7 minimizes f, then every limit point of (x) is a minimizer
of f.

In [vGf312] it was proven that the graph Ginzburg—Lanclau functionals FVc F-converge
(when E —* 0) to a limit functional that takes the value TV(u) when u = xs for some node set
S and +00 otherwise. This mirrors a well-known result from [MM77, \IOC1] which states that
in the continuum the functionals FE F—converge (when E —> 0) to a hunt functional that is equal
to the total variation on indicator functions and +00 otherwise.

Because flow by mean curvature is defined in (7) via (approximate) minimization of total
variation (and because the first variation of total variation is graph curvature in the sense of
footnote 8). tins limiting result which connects the functional which generates the Allen—Calm
equation as a gradient flow to the total variation teases a connection between Allen—Cahn and
flow by mean curvature on graphs.

A similarly promising F-convergence result is formulated for the graph MBO scheme in
[vG1]. To understand this result, we need to consider the Lyapunov functional for the graph
MBO scheme, introduced in [vGGOB [-1] (following the introduction of a similar functional for
the continuum MBO scheme in [EOi.5]):

J(u) : (1 — u. eTu)V.

This is a Lvapunov functional for the graph MBO scheme, in the sense that k i— J(u’) is
non-increasing if (vk) is a sequence of iterates generated by the graph MBO scheme in (5).
I\Ioreover. these iterates can also be obtained as minimizers of the first variation of J:

11k+1
E argmin dJ(u; uk) where dJT(v:

11k)
= (1 — 2e_T

, v)v.

The minimization is over [0, 1]-valued node functions v. We thus see that, at nodes where
1 < 0. minimization of clJr(v; u1) forces v to take the value 1 at that node. Similarly.
at nodes where 1 — > 0 the function v will take value 0. Hence. we recover the MBO
scheme (up to the underdetermined value at nodes where 1 — 0).

In [vC4 IS] it was proven that JT F-converges to the same limit functional we encountered
as F-limit of F.p (when —* 0), i.e. the functional which is equal to TV(u) when u = for
some node set S and +00 otherwise. For the same reasons as above, this is a promising sign
that also the graph MBO scheme has links to flow by mean curvature.

10The rescaling F,jv amounts to removing the E prefactor from the first term in (1). The reason for this
is that, contrary to the corresponding term in the continuum functional .T, this discrete gradient term is finite
even for binary functions u and so no rescaling with E is needed to keep this term finite in the limit —* 0.
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3 Continuum limits

In the previous section we discussed dynamics and some F-convergence results at a discrete
level: All the dynamics and convergence results happened against the fixed background of a
given finite graph. We can also consider the question what happens if we let the graphs change
in such a way that we can reasonably talk about continuum limits.

We will discuss here three different ways to consider graph limits: F-convergence along a
sequence of graphs generated through mesh refinements; F-convergence along a seqnence of
graphs generated through sampling; and graphon limits. The results and papers discussed in
this section typically consider 14” to be a smooth double well potential, such as the quartic
polynomial given in Section 111.

In [vGL312] a sequence of 4-regular graphs is generated by refining a regular mesh on the fiat
torus. Identifying the torus with [0, 112 (with periodic boundary conditions) it can be discretised
by a square grid with horizontal and vertical spacing 4, such that the resulting graph will have
N2 points. Choosing the edge weights wq 4 on all edges of this square grid, we denote
the resulting graph Ginzburg—Landau functional (obtained from in (1); see footnote 10)

by FEJ’br. By choosing a N—° for a > 0 large enough (depending on the growth rate of
TV near its wells) and letting N —* 00, FE.N is shown to F—converge to a functional which is
equal to the anistropic total variation for {0, 1}-valued functions of bounded variation (and +00

otherwise), with the anisotropies aligned with the horizontal and vertical directions of the grid:

f u[ + u dx.
The paper [vGB 12] also considers a second sequence of discrete Ginzburg—Landau function

als generated by directly discretising the continuum Ginzburg—Landau functional in (2) using
forward finite differences for the gradient and equidistant Biemanu sums for the integrals. This
leads to a different scaling in the discrete functional: The gradient term has a factor a (where
this was iV’ in FEJv) and the potential term a factor a1N2 (which was a1 in Fc.jv). Again
setting a = N°. but this time with a > 0 small enough (depending on the polynomial growth
of TV’) a different F-limit is recovered: a functional which is proportional’2 to the standard
isotropic total variation I IVu dx for {0, 1}—valuecl functions of bounded variatioa (and +00

otherwise). We see that the graph functional Fjv retains iaformation about the structure of
the graph (the horizontal and vertical directions of its grid) even in the limit, while the discrete
functional which is obtained using standard cliscretisation techniques from numerical analysis
does not retain this information (as one would want for consistency of a numerical method).

An important step in deriving the discrete-to-continuum results in [vCLl 12] discussed above
is the identification of the graph-based ftuwtions with continuum-based functions, as the setup
of F-convergence requires the domain of the functionals along the sequence, FN, to agree with
the domain of the limit functional. This is clone by identifying the graph-based functions with
their piecewise constant extensions, which is possible because the grid structure of the graph
gives a tesselation of [0, 112. The next type of discrete-to-continuum F-convergence results we
discuss here use a different technique which can be used in less regularly structured situations.

In [GTS1G], the authors consider a sequence of graphs constructed by sampling ever more
points X (which serve as the graphs’ vertices) from D C Rd according to some measure ii and
constructing an edge structure via the weights w := a_dn(X, — X/a), where ij is some given
kernel (which can be taken to have compact support if complete graphs are to be avoided). The
identification of functions defined on such graphs with functions defined on D is accomplished
using ideas from optimal transport theory. The key idea is not to consider graph-based functions

11\\’hjch is not to say these result could not be generalised to include non-smooth potentials such as the double
obstacle potential considered in Section 2.

‘2W’ith proportionality factor depending on the explicit form of U’.
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u and continuum-based functions ti y themselves. but look at function-measure pairs (pn. tin).

(p. ii), with u 6 LP(D. Pu) and it E LP(D, t) and express convergence using a transportation
distance between such pairs:

dTLP((Pn, u,), (p, uflP := inf f f (x — yjP + un(s) — u(y)) dxG, y),7rEF(p,p) D D

where F(p, p) denotes the set of all Borel measures on D x D whose marginal on the first
variable is p and whose marginal on the second variable is p. By letting ftn := Z7=1 6x1,

the empirical measure supported at the sampled points, tins provides the discrete—to-continuum
identification needed to make sense of F-convergence statements.

This tool was used in [GTSUi] to prove that a rescaled graph total variation. a1 ,r-2TV. on
such sampled graphs as described above. F-converges’3 to a constant (depending on rj) times a
weighted continuum total variation, with the weight depending on the sampling measure p:

TV(u:p2) := sup{j tdivcLr : Vs ED d(x) <p2(x), 6

These discrete-to-continuum indentification methods have since been used in a series of papers
to prove discrete—to-continuum F-convergence results for many different functionals, including
the Ginzburg—Landau functional [LSVBib, TNSSA1T, ThiS. 5TH), TvG}.

A third and final approach to discrete—to—continuum graph limits that should he mentioned
here. is that of graphons [L506, BCLOS, BCL11, 13C1L+12. Glalö] (see [BCC1L1XI and refer
ences therein for recent generalisations), as applied in various recent papers [)‘ludf-l. HFEiSL.
HFEINa}. A graphou is a measurable symmetric function K on [0. 112. By partitioning 0. 1[
into n intervals of length and defining edge weights wg := n2

Jj±,!i)x[i.1-ti) Ic(i, y) di dy.
every graphon gives rise to a sequence of simple umveighted graphs. Conversely, any simple
umveighted graph 0 = (V(G). E(0)) with V (0) = ii can he identified with a graphon by
setting

K(r )
fi. if (i,j) 6 E(G) and (i,y) 6 [, ) x [, ),
1o, otherwise.

A sequence of simple graphs (On) is called convergent if t(F, On) is convergent for all simple
graphs F. where

HF 0
hom(F,Gn)

n)
.—

is the density of homomorphisms (i.e. adjacency preserving maps from V(F). the vertex set of
F. to V(On). the vertex set of On). It is a fundamental result in the study of graphons that
for each convergent sequence of simple graphs (On) there exists a graphon K such that, for all
simple graphs F,

t(F,Gn) t(F,K) =1 fl K(i1.i)di.
10 11 i(F):• (i.j)EE(F)

In [1-TEE ISa] convergence (with error estimates) of minimizers is proved for a discrete functional
consisting of an P fidelity term plus the discrete gradient term from F H These minimizers are

‘3Where e —> 0 slow enough as n —s oc fnr the sampled graphs to be cnnnected with high probability.
‘1The paper considers the more general case where the gradient term has a power p C [1, oc) instead of 2.
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shown to converge to the minimizer of a continuum functional with a similar L2 fidelity term
and the L2 norm15 of the nonlocal gradient’°

VKU(x,y) := K(x,y)”2(u(y) —

where the kernel K is determined as graphon limit of the graphs determined by the edge weight
matrices in the gradient term along the discrete sequence. To the best knowledge of the author,
the graphon approach has not yet been applied to the graph Ginzburg—Landau functional.

4 Applications

The applications of PDE-inspired methods on graphs are numerous even when we restrict
ourselves to those which directly use (variants of) the graph Ginzburg—Landau functional. In
this section we present a short selection of such applications.

One of the applications studied in [J3F12. BF1I5] is image segmentation in the presence of
some a priori information. A graph is constructed from a digital image in the following way:
Each pixel in the image is represented by a node in the graph. A weighted edge structure is
created via := eIlzt_zj112/U2, where z is a feature vector associated with pixel i. In simple
cases, such a feature vector consists of the nine grey values of tile pixels in tile three by three
window around tile pixel (or tile values from a larger window; or, ill the case of colour hnages or
ilyperspectral images, tile 9c inteilsity values, where c is the number of colour/spectral cllannels
ill tile image). but it can also incorporate, say, texture filters. In principle such an edge weigilt is
computed for each pair of pixels (i, j) ill the graph. but since tilis is conlputatiollally unfeasible in
practice. [BP 12, UP1G] proposes to use the Nystrdnl matrix conlpletioll tecilnique [Nvs2S, Nys29,
13F(\102, PBC\101) wilicll approximates tile full weight matrix based n a sampled subset of
pairs. Tile a priori known pixel assignnlents are incorporated into tile functional via a fidelity
term. Tile resulting Allen—Calln equation with fidelity term is solved by colIlbillilIg a convex
splitting metilod with a projection onto the top eigenvectors of tile graph Laplaciall (wilich
ill turn makes tile Nyströnl method even more valuable, as it allows for a quick computation

of the top eigenvectors and eigenvalues, witilout tile Ileed to conlpute tile full weigilt illatrix).

In [13L12. PEEl] the same method is also applied to other data classification and clustering

methods. wilich each require their own context specific grapil constructioll (and fidelity terms or

nass constraints), but can all be tackled with the same general Allen—Cahn/Nyströnl approach.

In [CvGS+ 17] tilis same Illetilod was illcorporated into an image segnlelltation amId measurement

method developed to be employed in zoological research (specifically for the automated detection

and nleasurenlent of the blaze (white spot) on a bird’s head in pictures). It should also be

mentioned here that image segnlentation can be achieved through other PDE-inspired graph-

based nletllods as well, see for exanlple [LETtU] and references therein.

The Ginzburg—Landau based method for image segmentation and data clustering and clas

sification has been adapted and extended to allow for multiple phases [GCIMB+13, GCEP13,
)1GCl3I1, GCMBi-l, GCEP15], high-dimensional data (such as hyperspectral images) [HLB12,
HSf3iE. M\1N17], and computation with the MBO scheme instead of the Allen—Cahn equation

[MKB13]. It has also proven useful for clustering signed graphs, i.e. graphs in wilicll the edge

weights can have negative, as well as non-negative, values, with the (highly) negatively weighted

edges connecting pairs of nodes that should not be clustered together [(PvG]. In this case the

MBO scheme uses a signed graph Laplacian, which is the sum of a regular graph Laplacian on

the graph induced by the positively weighted edges and a signless Laplacian (see (10) below)

on the graph induced by the negatively weighted edges.

‘50r L° norm.
‘°Or Ko(x,y) := K(x,y)’(u(y) —
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We end with an application which uses a variant of the graph Ginzburg—Landan functional:
(approximate) computation of the maximum cut of a graph. A classic task in graph theory
[KarT2. 0.1874. PTR5] (with some applications in physics and engineering [BGJPS, DLP4a,
DLO4L. EJRO:3, MMU6. GM19]) is to find the maximum value the graph cut from (8) can have.
if we allow S to be any subset of the graph’s vertex set. To tackle this task, in [IKvG] the signless
graph Ginzhurg—Landau functional is introduced:

FtQu) : wu(uj + + i
— i.jEV ieV

Note that the only apparent difference between Ft and FE is the plus sign instead of the minus
sign in (what in FE was) the discrete gradient term of the functional. There is, however, a
significant second difference: While in FE the specific placement of the two wells of IF was
not very important (we chose the well locations to be at 0 and 1 to make their connection to
indicator functions of node sets more immediate). in Ft it is important that the wells are placed
symmetrically with respect to the origin, e.g. IV(x) := (x

—

1)2(x + 1)2 with wells located at
±1. The reason for this is that we want minimizers of Ft (without any further constraints
imposed) to be (approximately) binary and not just constant functions equal to, say, 0.

Heuristically it quickly can be seen that in minimizing Ft, the first term encourages it to take
different values in strongly connected nodes, thereby leading to high graph cut values. While
any hard guarantees of this kind (which are unlikely, given that accurately solving the maximum
cut problem is NP-hard [TSS\V0Oj) or even lower bound guarantees on the performance of the
method (how close are minimizers to a maximum cut?) are lacking. in practice the method gives
results that are competitive with those of the well—established Goemans—Williamson method
[GWO5].

The practical (approximate) minimization of Ft is achieved via a variant of the MBO
scheme. which uses a siguless graph Laplacian [PR94, INU-l. dRSUT, JQ+JO. BHI1].

(Au) := dir Zwu(ui + ui). (10)

instead of one of the usual graph Laplacians. This method is faster and scales to much larger
graphs than the Goeman—Williamsion method on the same hardware. Au extension of these
methods to mulitple phases is in development b the authors of (KvC4I.

5 Conclusions

In this overview article we have looked at multiple appearances of the graph Ginzburg—Landau
functional (and related concepts) in both theoretical studies and applications in recent literature.
It is a paradigmatic example of a variational method on graphs which is inspired by ideas,
concepts. and results from the area of continuum variational methods, and which has been very
successfully applied in various practical contexts, yet is also still a central object in an area of
active study.

Acknowledgements Thanks to Jeremy Budd for his feedback and comments on an earlier
draft of this document.
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