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Large Time Step and DC Stable TD-EFIE
Discretized With Implicit Runge–Kutta Methods

Alexandre Dély, Member, IEEE, Francesco P. Andriulli , Senior Member, IEEE, and Kristof Cools

Abstract— The time domain-electric field integral equation
(TD-EFIE) and its differentiated version are widely used to
simulate the transient scattering of a time dependent electro-
magnetic field by a perfect electric conductor (PEC). The time
discretization of the TD-EFIE can be achieved by a space-time
Galerkin approach or, as it is considered in this contribution, by a
convolution quadrature using implicit Runge–Kutta methods.
The solution is then computed using the marching-on-in-time
(MOT) algorithm. The differentiated TD-EFIE has two problems:
1) the system matrix suffers from ill-conditioning when the time
step increases (low frequency breakdown) and 2) it suffers from
the DC instability, i.e., the formulation allows for the existence
of spurious solenoidal currents that grow slowly in the solution.
In this article, we show that 1) and 2) can be alleviated by
leveraging quasi-Helmholtz projectors to separate the Helmholtz
components of the induced current and rescale them indepen-
dently. The efficacy of the approach is demonstrated by numerical
examples including benchmarks and real-life applications.

Index Terms— DC instability, electric field integral equation,
implicit Runge–Kutta (IRK), low frequency (LF), precondition-
ing, time domain.

I. INTRODUCTION

THE time domain-electric field integral equation
(TD-EFIE) can be used to model the transient scattering

from a perfect electric conductor (PEC) [1]. Many techniques
have been developed to improve the solution of time domain
integral equations (TDIEs), not only to decrease the overall
computational complexity such as the plane wave time domain
(PWTD) [2], [3] or the hierarchical-FFT (HIL-FFT) [4]
algorithms, but also to improve the stability using loop-tree
decomposition [5], [6], Calderón preconditioning [7],
quasi-Helmholtz projectors [8], combined field integral
equation (CFIE) [9], [10] and to improve the accuracy using
higher order spatial basis functions [11], [12], better temporal
basis functions [13]–[15], and exact evaluations [16], [17].
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The most common procedure to solve the TD-EFIE consists
in first discretizing in space using a space Galerkin testing
with a set of basis functions that spans the space of surface
currents, and then discretizing the system in time which
results in a fully discretized system that can be solved by
a marching-on-in-time (MOT) algorithm [1] which is one of
the most used scheme although other valid approaches exist
such as, for example, marching-on-in-order strategies [18].
The TD-EFIE is often solved after a time differentiation to
get rid of the time integration present in the formulation.
Regarding the time discretization, several strategies exist.
Point testing is a very common choice [1], although the
space-time Galerkin discretization is becoming increasingly
popular [19]. Another strategy for the time discretization,
however, is based on Implicit Runge–Kutta (IRK) convolution
quadrature methods [20], [21]. Similar to the IRK methods for
solving ordinary differential equations, the IRK methods based
convolution quadrature for solving TDIE have good stability
properties. The accuracy of the solution over time depends
on the order of the Runge–Kutta method used. Discretizations
in IRK convolution quadrature methods leverage on system
matrices which can be computed from Laplace domain integral
operators and thus it is relatively easy to get an IRK-based time
domain solver from a frequency domain code. This contrasts
with the state-of-the-art for space-time Galerkin methods,
where no exponentially converging quadrature schemes for
the computation of the interaction integrals are known. The
differentiated TD-EFIE [22] as well as the TD-CFIE [23]
have been successfully solved using this IRK methods based
convolution quadrature.

Its advantages notwithstanding, the differentiated TD-EFIE
still suffers from two serious problems: 1) the large time
step breakdown [time domain low frequency (LF) breakdown],
which causes the condition number of the system to grow
quadratically with the time step [7] and 2) the presence of
DC instabilities, which corresponds to the existence of static
or linear in time solenoidal currents in the solution of the
equation [24]. These currents grow slowly yet exponentially,
which results in a completely wrong solution.

This article addresses the solution of both 1) and 2).
In [8], the LF breakdown and DC instability are solved
for the space-time Galerkin discretization by leveraging
quasi-Helmholtz projectors. These projectors enable the
decomposition of the current in its Helmholtz components,
which then can be differentiated or integrated as appropriate.
This procedure leads to a discretization that does not suffer
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from the LF breakdown and DC instability. It remains effective
in the case of multiply connected geometries without needing
an expensive detection of global loops. It is not trivial to see
that these projectors can also apply to the IRK convolution
quadrature methods, where the frequency domain kernels
are evaluated in matrix valued complex frequencies. In this
article, the regularization of the IRK convolution quadrature
discretization of the TD-EFIE is investigated. It is shown
how quasi-Helmholtz projectors can be used to arrive at a
regularized scheme free from both 1) and 2). Numerical
results demonstrate the efficacy of the proposed approach.
Very preliminary results from this work have been presented
in the conference contribution [25].

This article is organized as follows. In Section II, the back-
ground and notations for the classical TD-EFIE discretized
with IRK methods are introduced. In Section III, the large
time step breakdown and the DC instability are analyzed.
In Section IV, we introduce the new regularized formulation.
Implementation details and the computational cost of the
scheme are discussed in Section V. In Section VI, numerical
results are presented to illustrate the efficacy and the efficiency
of the novel approach.

II. BACKGROUND AND NOTATIONS

A. Time Domain EFIE

We consider a PEC object with a boundary � in a medium
whose permittivity is ε0, permeability is μ0 and characteristic
impedance is η0 = (μ0/ε0)

1/2. This object is excited by an
incident wave whose electric field einc induces an electric
current density j on the surface �. The current density j
satisfies the TD-EFIE

−η0T j(r, t) = n̂r × einc(r, t) (1)

with the time domain EFIE operator T defined as

T j(r, t) = − 1

c0

∂

∂ t
T s j(r, t) + c0

� t

−∞
T h j(r, t �)dt � (2a)

T s j(r, t) = n̂r ×
�

�

j
�

r �, t − |r−r �|
c0

�
4π |r − r �| dS� (2b)

Th j(r, t) = n̂r × ∇
�

�

∇� · j
�

r �, t − |r−r �|
c0

�
4π |r − r �| dS� (2c)

where n̂r is the normal to � at r and c0 = (μ0ε0)
−1/2 is

the speed of light in the medium. The following differentiated
TD-EFIE is also often used to avoid the time integration:

η0

�
1

c0

∂2

∂ t2 T s j(r, t)−c0T h j(r, t)

�
= n̂r × ∂

∂ t
einc(r, t). (3)

To enforce the uniqueness of the solution, the fields are
assumed to vanish in the neighborhood of � when t < 0.

B. Laplace Domain EFIE

The TD-EFIE is transformed to Laplace domain as

−η0Ť ǰ(r, s) = n̂r × ěinc(r, s) (4)

with the Laplace domain EFIE operator Ť defined as

Ť ǰ(r, s) = − s

c0
Ť s ǰ(r, s) + c0

s
Ť h ǰ(r, s) (5a)

Ť s ǰ(r, s) = n̂r ×
�

�

e
− s

c0
|r−r �|

4π |r − r �| ǰ(r �, s)dS� (5b)

Ť h ǰ(r, s) = n̂r × ∇
�

�

e
− s

c0
|r−r �|

4π |r − r �|∇
� · ǰ(r �, s)dS�. (5c)

C. Spacial Discretization

The boundary � is approximated by a triangular mesh with
Ns edges, Nv vertices, and Nf faces. Let ( f m)Ns

m=1 be the
set of Ns Rao–Wilton–Glisson (RWG) basis functions [26]
built on the mesh. The expressions for the standard Helmholtz
subspace bases are simpler when the RWGs are normalized
such that

�
em

f m · m̂dl = 1, where em is the edge shared by
the two triangles in the support of f m and m̂ is the normal to
em , tangent to � [8].

The RWG basis functions are used to approximate the
surface electric current density

ǰ(r, s) ≈
Ns�

n=1

[j(s)]n f n(r) (6)

where j(s) is an array that contains the coefficients of the RWG
expansion.

The two sides of the Laplace domain EFIE (4) are tested
with rotated RWG basis functions (n̂r× f m)Ns

m=1, which results
in the linear system

Z(s)j(s) = e(s) (7)

with

[Z(s)]mn = −η0

�
�

n̂r × f m(r) · Ť f n(r, s)dS (8)

[e(s)]m =
�

�
f m(r) · ěinc(r, s)dS. (9)

The computation of these matrix elements is standard
(see [27], [28]).

D. Temporal Discretization

The system (7) in the Laplace domain has to be transformed
into a discrete time domain system. To do this, the system
is first discretized and then transformed to time domain.
More precisely, the discretization corresponds to convert (7)
from the Laplace domain to the Z-domain, i.e., the discrete
counterpart of the Laplace domain. The IRK methods are
used to express the Laplace variable s as a function of the
Z-domain variable z. Then, the system is transformed to time
domain using the inverse Z transform. A rigorous justification
of the Runge–Kutta convolution quadrature can be found in
[20] and [21]. In particular the conditions under which the
method results in a stable solution are accurately defined in
the references. In short, Runge–Kutta methods based on a
correspondence z(s) that maps the left half-plane inside the
unit circle will give rise to a MOT scheme that is stable
in principle. In the presence of quadrature error and/or finite
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machine precision this property might be violated. The design
of a solution method robust under these suboptimal conditions
is exactly the subject of this article.

Using convolution quadrature for the computation of the
retarded potentials is advantageous because it starts directly
from Laplace domain kernels. This means that often highly
singular time domain kernels can be avoided. Moreover, large
parts of well-established and well-tested frequency domain
codes can be reused, including bespoke routines for the inte-
gration of spatially singular integrals. The use of Runge–Kutta
convolution quadrature in particular has a number of additional
advantages: 1) good stability properties are inherited from
the Runge–Kutta methods for solving ordinary differential
equations and 2) The accuracy of the solution over time can be
simply improved by increasing the order of the Runge–Kutta
method. Note that in the context of ordinary differential
equations, Runge–Kutta methods can be used with an adaptive
step size [29]. This does not generalize to TDIEs since using
adaptive steps would break time translation symmetry, and the
scheme would not result in a discrete convolutional equation,
but a more general system, whose solution requires a much
higher computational effort. It is also worth mentioning that
some Runge–Kutta schemes can be derived from (discontinu-
ous) Galerkin methods [30].

In the Runge–Kutta method, the time dependent solution y
of the ordinary differential equation (dy(t)/dt) = F(t, y) is
computed consecutively at ti = t0 + i�t . The initial condition
is known: y0 = y(t0). The value of the unknown at the next
step is computed by adding to the current value a weighted
sum of p interpolants [Fi ]k of the slope

yi+1 = yi + �t
p�

k=1

bk[Fi ]k (10)

where [Fi ]k are approximations of intermediate times deter-
mined by a fraction of the time step ci , evaluated by

[Fi ]k = F

	
ti + ck�t, yi + �t

p�
l=1

Akl [Fi ]l



. (11)

The method is explicit if each [Fi ]k depends only on previous
[Fi ]l , i.e., only if Akl = 0 for all l ≥ k. Otherwise the
method is implicit. In this work only the IRK methods are
applicable. This means in particular that the well-known
Runge–Kutta 4 method is not admissible.

A Runge–Kutta method with p stages is completely speci-
fied by A ∈ R

p×p , b ∈ R
p , and c ∈ R

p concisely summarized
in its so-called Butcher tableau [29]

c A
bT . (12)

There exist many classes of Runge–Kutta methods but not
all of them are suitable for the discretization of a temporal
convolution in the context of TDIEs. The matrix A must be
invertible and must verify bTA−1

� = 1. Lobatto IIIC and
Radau IIA fulfill these requirements [20], [21].

The equation after Laplace transform corresponding to
the time domain differential equation (dy(t)/dt) = f (t)
is s y̌(s) = f̌ (s). Upon discretization, it is transformed to

a corresponding s(z)y(s(z)) = f(s(z)). Applying the IRK
method formally amounts to expressing the Laplace variable
s as a matrix valued approximation in terms of z [23]

s(z) = 1

�t

	
A + �bT

z − 1


−1

(13)

where � is a vector of size p that contains only ones. Applying
this same substitution in the Laplace domain integral equation
yields �Z(z)�j(z) = �e(z) (14)

where �Z(z) = Z(s(z)). The evaluation of the EFIE BEM
matrix elements for a matrix valued s instead of a scalar s
can be done by computing the eigenvalue decomposition of
s(z). In particular, the matrix s is diagonalized in the form
s = MDM−1 where D is a diagonal matrix that contains
the p eigenvalues of s, and M is the matrix that contains
the corresponding p eigenvectors in each column. The matrix
valued element is then computed by evaluating the BEM
matrix element for each scalar eigenvalue of the diagonal and
multiplying back M and M−1 on the left and right. Additional
details on this procedure can be found in [23]. We introduce
the notations �s = I ⊗ s, �M = I ⊗ M, �D = I ⊗ D, and�M−1 = I ⊗ (M−1) where I is the Ns × Ns identity matrix and
⊗ is the Kronecker product. From these definitions it follows
that: �s = �M�D�M−1.

The multiplication of the scalar s times a matrix or times
a vector can be thought as the multiplication of the diagonal
matrix sI times the matrix or the vector. The matrix sI has s on
each diagonal element so, by replacing s with s, the matrix sI
becomes the matrix with s on the diagonal, i.e., it becomes �s.
Explicitly �Z(z) = Z(s(z)) = �M(z)Z(D(z))�M−1(z) (15)

with

[Z(D(z))]p(m−1)+k,p(n−1)+k = [Z(Dkk(z))]mn (16)

where Dkk is the kth element on the diagonal D. Thus the
matrix valued Z(D) can be computed from the scalar valued
matrices Z(Dkk).

Given the Z transform X (z) of a temporal sequence (xn)
Nt
n=0

(X and x can be scalars, vectors or matrices), and a coun-
terclockwise contour C around the origin in the region of
convergence of X (z), xn can be computed using the inverse Z
transform

xn = Z−1(X (z))n = 1

2iπ

�
C

X (z)zn−1dz. (17)

When C is chosen to be a circle of radius ρ (ρ 	= 1),
the integral can be approximated using the trapezoidal rule
on a Q subintervals partition of [−π, π]

xn = ρn

2π

� π

−π
X (ρeiθ )eiθndθ (18a)

≈ ρn

Q

Q−1�
q=0

X (ρe2iπ q
Q )e2iπ q

Q n
. (18b)

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2020 at 07:14:26 UTC from IEEE Xplore.  Restrictions apply. 



DÉLY et al.: LARGE TIME STEP AND DC STABLE TD-EFIE DISCRETIZED WITH IRK METHODS 979

Performing the inverse Z transform of the product (14)
results in the convolution

i�
j=0

Z j ji− j = ei for each i ∈ [0, Nt] (19)

where

j(r, (i + ck − 1)�t) ≈
Ns�

m=1

[ji ]p(m−1)+k f m(r) (20a)

[ei ]p(m−1)+k =
�

�
f m(r) · einc(r, (i + ck − 1)�t)dS

(20b)

Z j = Z−1(Z(s(z))) j . (20c)

The coefficients ck (1 ≤ k ≤ p) are given by the Butcher
tableau (12) and correspond to the fraction of the time step
where the p stages occur.

The time discretized system (19) can be rewritten to be
solved in ji for each i ∈ [0, Nt], which corresponds to the
MOT algorithm

Z0ji = ei −
i�

j=1

Z j ji− j . (21)

Note that classically, the differentiated TD-EFIE is actually
solved which means that the system in the Laplace domain (7)
is multiplied on both sides by s. Introducing an extra differ-
entiation enables getting rid of the time integration of the
divergence of the currents in the TD-EFIE or, differently
said, it cancels the 1/s factor that appears in the EFIE
operator (5a). This is done to limit the number of terms in
the convolution (21) to a certain constant Nconv in the order
of D/(c0�t) where D is the diameter of the scatterer. Indeed,
it is possible to truncate the convolution after a certain number
of terms as the norm of the impedance matrices Z j decreases
exponentially [23]. The downside of this time differentiation is
that, in addition to the constant solenoidal currents responsible
of the DC instability, also linear in time solenoidal currents
end up in the kernel.

In this article, we use the quasi-Helmholtz projectors
(reviewed in Section II-E) to address these issues indepen-
dently by 1) differentiating only the capacitive part of the
operator that contains the integration of the divergence of the
current to have a fixed number of terms in the convolution
and 2) integrating only the inductive part that contains the
derivative of the current responsible of the DC instability.
Overall these two changes balance the TD-EFIE so that the
condition number remains stable at LF.

E. Quasi-Helmholtz Projectors

In this subsection the quasi-Helmholtz projectors [31] are
briefly reviewed. These projectors can be built from � ∈
R

Ns×Nf , the edge-face connectivity matrix of the mesh that
discretizes �. The same matrix is also the transformation basis

from the basis of stars [32] to the RWG basis. It is defined by

�e f =

⎧⎪⎨⎪⎩
±1, if edge e is on the boundary of

face f clockwise/counterclockwise

0, otherwise.

(22)

The quasi-Helmholtz projectors P
 and P�H ∈ R
Ns×Ns are

then constructed using the basic properties of the projectors

P
 = �(�T�)+�T (23a)

P�H = I − P
 (23b)

where the + denotes the Moore-Penrose pseudo inverse and I
is the identity matrix.

The projector P
 projects on the space of nonsolenoidal
functions or stars, and the complementing projector P�H

projects on the space of solenoidal local and global loops.
Characterizing the loop space as the range of the complement-
ing projector renders the expensive construction of a basis for
the global loop space unnecessary [31].

III. CONDITIONING AND DC STABILITY ANALYSIS

Both the standard and time differentiated TD-EFIEs are
plagued by ill-conditioning and DC instability issues. In this
section, the manifestation of these issues for the IRK convo-
lution quadrature discretization of the TD-EFIE is discussed.
The scaling of the condition number in terms of the time step is
derived and the regime solutions of the homogenous TD-EFIE
are characterized.

A. Large Time Step Ill-Conditioning (Low-Frequency
Breakdown)

As the large time step breakdown is a problem related to
the time discretization, the starting point of the analysis is
the space discretized system in (7) which is continuous in the
Laplace domain. The matrix Z(s) in (8) is rewritten to make
explicit the contribution of the two parts of the EFIE operator
in (5a)

Z(s) = η0

�
s

c0
Ts(s) + c0

s
Th(s)

�
(24)

where

[Ts(s)]mn =
�

�
n̂r × f m(r) · Ť s f n(r, s)dS (25a)

[Th(s)]mn = −
�

�
n̂r × f m(r) · Ť h f n(r, s)dS. (25b)

The quasi-Helmholtz projectors can be used to make explicit
the behavior of the impedance matrix Z(s) in a Helmholtz
decomposed basis. By inserting the identity I = P�H + P


on the left and the right of Z(s), Z(s) can be rewritten in a
block matrix form that makes clear different scalings

Z = η0
�
P�H P


� ⎛⎜⎝
s

c0
Ts

s

c0
Ts

s

c0
Ts

s

c0
Ts + c0

s
Th

⎞⎟⎠�
P�H

P


�
(26)

where we have used the property P�H Th(s) = Th(s)P�H = 0
[31]. It is clear from (26) that the matrix is ill-conditioned
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at LF, i.e., when s → 0 since the bottom right block
(nonsolenoidal testings and sources) scales as 1/s while the
others (solenoidal testings and/or sources) scale as s.

Eventually, the system in Laplace domain is transformed
into the discrete time domain where the scalings by s become
scalings by �t−1, and similarly 1/s scales proportionally
to �t (13). This results in a condition number growth for
Z0 in (21) proportional to �t2.

B. DC Instability

It can be easily checked that the solution of the TD-EFIE
j(r, t) in (1) is determined up to a constant solenoidal current
jcs(r), i.e., if (∂/∂ t) jcs(r) = 0 and ∇ · j cs(r) = 0 then
j(r, t) + jcs(r) is also solution of the EFIE in (1). This
problem is also present in the differentiated TD-EFIE in (3)
for which the solution is determined up to a linear in time
solenoidal current j ls(r, t) that verifies (∂2/∂ t2) j ls(r, t) = 0
and ∇ · j ls(r, t) = 0. This nonuniqueness is problematic.
In fact, because of numerical approximations and floating
point truncation errors in the discretized equation, the solution
current will show a nonphysical constant offset which may
even grow exponentially for late time steps [24].

Further characterization of these spurious currents can
be done. For the (nondifferentiated) TD-EFIE, the equation
(∂/∂ t) jcs(r, t) = 0 is transformed in the Laplace domain
(with the initial condition j cs(r, t = 0) = 0) as

s ǰ
cs

(r, s) = 0. (27)

After the discretization and after performing the inverse Z
transform, the spurious current jcs

i verifies the following recur-
rence relation for all i ∈ [1, Nt]

i�
j=0

Z−1(�s)i jcs
i− j = 0. (28)

While initializing the sequence with jcs
0 = 0 should result

in jcs
i = 0 for all i , this is not the case in practice. Indeed,

the solution current will eventually contain a nonzero constant
solenoidal part because of numerical errors.

A simplification of (28) can be obtained using the property
bTA−1

� = 1. This property enables rewriting s(z) in (13) as
a finite number of powers of z using the Sherman–Morrison
formula

s(z) = 1

�t
(A−1 − A−1

�bTA−1z−1). (29)

In this case, a multiplication by z−1 corresponds to the
previous element of the sequence in time domain. So the
inverse Z transform of (29) is

Z−1(s)i = 1

�t
(A−1δi,0 − A−1

�bTA−1δi−1,0) (30)

where δ is the Kronecker delta. Inserting (30) in (28) results
in the following recurrence relation for the spurious current of
the (nondifferentiated) TD-EFIE:

jcs
i = ���bT�A−1jcs

i−1 (31)

where �A = I ⊗ A and ���bT = I ⊗ �bT.

A similar characterization can be done for the differ-
entiated TD-EFIE that is more commonly used. In this
case, (∂2/∂ t2) j ls(r, t) = 0 is transformed in the Laplace
domain (with the initial conditions j ls(r, t = 0) = 0 and
(∂/∂ t) j ls(r, t = 0) = 0) as

s2 ǰ
ls
(r, s) = 0. (32)

Again, after the discretization and after performing the
inverse Z transform, the spurious current jlsi verifies the fol-
lowing recurrence relation for all i ∈ [2, Nt]

i�
j=0

Z−1(�s2) j jlsi− j = 0. (33)

As before, using (29), the recurrence equation (33) on the
spurious current of the differentiated TD-EFIE jlsi can be
written as

jlsi =�A(�A−1���bT+���bT�A−1)�A−1jlsi−1−�A2(�A−1���bT�A−1)2jlsi−2.

(34)

Note that both (31) and (34) are independent of the time
step �t .

IV. REGULARIZED TD-EFIE

In this section, the semidiscrete TD-EFIE (discrete in space,
continuous in time) is regularized by a judicious splitting, scal-
ing, and recombination procedure. The resulting semidiscrete
equation is then discretized in time by application of the IRK
convolution quadrature method. It is argued that the resulting
scheme does not suffer from either large time step breakdown
or DC instabilities.

A. Regularization in the Laplace Domain

To regularize the TD-EFIE, the solenoidal part (�H ) must
be multiplied by c0/s on the left which corresponds to an
integration in time domain, and the nonsolenoidal part (
)
must be multiplied by s/c0 on the right which corresponds to
a derivative. We also introduce a length a to keep a consistent
dimensionality. The specific choice of a does not affect the
asymptotic behavior of the preconditioning; it can be safely
chosen to be the diameter of the scatterer. The regularized
system is thus

Zreg =
� c0

sa
P�H + P


�
Z

�
P�H + sa

c0
P


�
(35)

= η0
�
P�H P


�⎛⎜⎜⎝
1

a
Ts

s

c0
Ts

s

c0
Ts a

s2

c2
0

Ts + aTh

⎞⎟⎟⎠�
P�H

P


�
(36)

= η0

	
1

a
P�H TsP�H + aP
ThP
 + a

s2

c2
0

P
TsP


+ s

c0

�
P
TsP�H + P�H TsP


��
. (37)

As the off-diagonal blocks will vanish when s → 0, the regu-
larized matrix Zreg(s) tends to a constant at LF. In particular,
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its condition number will remain stable (it actually tends to the
condition number of (1/a)P�H Ts(0)P�H +aP
Th(0)P
). In
the Laplace domain, the preconditioned system now reads

Zreg(s)y(s) = v(s). (38)

The original current j(s) can be retrieved accordingly from the
auxiliary current y(s)

j(s) =
�

P�H + sa

c0
P


�
y(s). (39)

The new right-hand side v(s) can also be expressed as a
function of the original RHS e(s)

v(s) =
� c0

sa
P�H + P


�
e(s). (40)

B. Time Discretization

We follow the same procedure for the time discretization
using IRK methods as described in Section II-D. So we first
substitute s by s(z) in Zreg(s) using (13) and then we perform
an inverse Z transform (17). It can be summarized with the
following formula:

Zreg
i = Z−1(Zreg(s(z)))i . (41)

To be compatible with the p stages of the Runge–Kutta
methods, the projectors P�H and P
 ∈ R

Ns×Ns need to be
transformed into �P�H = P�H ⊗ Ip and �P
 = P
 ⊗ Ip ∈
R

pNs×pNs where ⊗ denotes the Kronecker product and Ip is
the p × p identity matrix. An intuitive explanation of this
transformation is that the projectors are independent of the
Laplace variable s, so each coefficient in the projectors can
be thought as being multiplied by s0. So after the substitution
of s by the matrix valued s, each coefficient is multiplied by
s0 i.e. the p × p identity matrix Ip . Using the above notations
and definitions, and substituting s by s in (37), Zreg(s) can
be written as

Zreg(s) = η0

�
1

a
�P�H �MTs(D)�M−1�P�H (42a)

+ a�P
�MTh(D)�M−1�P
 (42b)

+ a

c2
0

�P
�M�D2Ts(D)�M−1�P
 (42c)

+ 1

c0

�P
�M�DTs(D)�M−1�P�H (42d)

+ 1

c0

�P�H �M�DTs(D)�M−1�P


�
. (42e)

Zreg
i in (41) is computed by inserting the above expression

for Zreg(s) in the formula for the inverse Z transform (18b).
Regarding the time discretization corresponding to the exci-

tation vector, as the inverse of s in Laplace domain corre-
sponds to a time integration in time domain, a primitive Einc

of the excitation einc needs to be computed (∂ Einc/∂ t = einc).
This can be done analytically or numerically by applying an
integrator based on the same IRK scheme as used elsewhere.
The time discretization of the excitation vector (40) for the
preconditioned TD-EFIE becomes

vi = c0

a
�P�H Ei + �P
ei (43)

where ei was defined in (20b) and Ei is defined similarly
replacing einc by one of its primitives Einc

[Ei ]p(m−1)+k =
�

�
f m(r)· Einc(r, (i + ck − 1)�t)dS. (44)

The choice of the primitive’s constant for Einc does not change
the result of vi as it is canceled by the multiplication with�P�H . However in practice to avoid numerical cancellations,
the primitive constant should be chosen to have Einc(t) = 0
when einc(t) vanishes for t → ±∞.

Transforming the stable system in the Laplace domain (38)
to the discrete time domain results in the following convolution

i�
j=0

Zreg
j yi− j = vi . (45)

This equation is rewritten to make the MOT scheme evident.
In addition, as explained at the end of the Section II-D,
the number of terms in the convolution can be truncated to
Nconv terms

Zreg
0 yi = vi −

Nconv�
j=1

Zreg
j yi− j . (46)

C. Computation of the Electric Current

After completion of the MOT procedure (46), we need
to reconstruct (ji )

Nt
i=0 from the auxiliary (yi )

Nt
i=0 using their

corresponding relation in the Laplace domain (39). Performing
an inverse Z transform on the discrete counterpart of (39)
results in

ji = �P�H yi + a

c0

�P

i�

j=0

Z−1(�s) j yi− j (47)

where �s(z) = I⊗s(z). A simplification of (47) can be obtained
using (29) and reads

ji = �P�H yi + a

c0�t
�P
(�A−1yi − �A−1���bT�A−1

yi−1). (48)

V. IMPLEMENTATION DETAILS

In this section, we describe how the solution of the stable
system (46) can be implemented in practice: we explain why
the use of the quasi-Helmholtz projectors in the precondition-
ing is compatible with existing fast solvers. Computational
complexity and memory usage are discussed.

A. Quasi-Helmholtz Projectors

Although they exhibit a pseudo inverse in their definitions,
the projectors P
 and P�H can be multiplied by a vector
in linear complexity O(Ns) by leveraging algebraic multigrid
techniques [31], [33]. These schemes can be applied also in
the case of multiscale scatterers.

Consider the multiplication of �P
 = P
 ⊗ Ip by some
vector x whose elements are given by [x]p(m−1)+k = [xk]m

where the xk are subvectors of x elements of the stage k (1 ≤
m ≤ Ns, 1 ≤ k ≤ p). Then the elements of the product are
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[�P
x]p(m−1)+k = [P
xk]m . Otherwise said, the multiplication
of �P
 can be computed with p multiplications of P
 that are
linear in complexity. As a consequence, �P�H and �P
 can also
multiply a vector in O(Ns) operations. The required storage
is O(Ns) for the sparse matrix �.

B. Excitation Vectors

The computation of the excitation vectors Ei and ei in (43)
is linear in complexity, their multiplications by the projectors
are also linear. So the overall cost of computing the precon-
ditioned excitation vectors vi for each i ∈ [0, Nt] is O(Ns Nt)
both in time and memory.

C. Retrieving the Solution Current

When yi and yi−1 are known, ji is computed using (48).
Again the multiplications by the projectors cost O(Ns). Then,
as �A−1 and �A−1���bT�A−1 are block diagonal matrices with A−1

and A−1
�bTA−1 blocks in their diagonals, the multiplications

by �A−1 and �A−1���bT�A−1 are also linear in complexity because
they actually correspond to Ns multiplications by A−1 and
A−1

�bTA−1. This is done for each time step, so the overall
retrieving of the original solution ji for each i ∈ [0, Nt] costs
O(Ns Nt) in time and memory.

D. Marching-on-in-Time

Using an iterative solver to solve for yi in (46) at each time
step, we can assume that it requires a fixed number of itera-
tions Niter. There are also Nconv terms in the convolution in the
RHS. So overall, the MOT (46) requires O((Niter + Nconv)Nt)

multiplications of Zreg
j by a vector. Note that the number

of iterations Niter is independent of the time step but it still
depends on the discretization density. The number of terms in
the convolution in the RHS Nconv is proportional to D/(c0�t)
where D is the diameter of the scatterer. In particular, Nconv
is low for large time step, however, it is unbounded for small
time steps. Fast Runge–Kutta convolution quadrature methods
for use in this regime have been described in [34].

It only remains to explain the multiplication Zreg
j x where x

is a vector. Using the definitions of Zreg
j (41) and the inverse

Z transform (18b) we have

Zreg
j x = ρ j

Q

Q−1�
q=0

e2iπ q
Q j Zreg

�
s

�
ρe2iπ q

Q

��
x. (49)

Zreg
n x requires Q multiplications of the form Zreg(s)x.

So overall it requires O(Q(Niter + Nconv)Nt) multiplications
of this form. Note that in our case where the temporal
sequence is real, it is possible to take advantage of the complex
conjugation to avoid half of the multiplications in the inverse
Z transform.

E. Interaction Matrix-Vector Product

As it can be read from (42e), Zreg(s)x involves multipli-
cations of x by �M, �D, and �M−1 that have a O(Ns) com-
plexity like the multiplication by �A−1 because they are block

diagonal matrices as explain above. Also the multiplications
by the projectors are linear in complexity. It remains the
multiplications of Tx (D) by a vector (Tx is either Ts or Th).
Similar to the multiplications with the projectors as it was
explained above, x can be subdivided into p subvectors xk

such that [x]p(m−1)+k = [xk]m . Then using (16), the ele-
ments of the product are [Tx(D)x]p(m−1)+k = [Tx(Dkk)xk]m .
Otherwise said, the product Tx(D)x can be computed with
p multiplications of Tx (s) by a vector. These multiplications
can be done in a fast way using a multilevel fast multipole
method (MLFMM) in a O(Nslog(Ns)) complexity [35], [36].
In summary, the computational cost for the multiplications of
Zreg

j by vectors is O(Q(Niter+Nconv)Nt Nslog(Ns)) operations
overall and O(QNslog(Ns)) in memory, which is the dominant
complexity of the solver.

VI. NUMERICAL RESULTS

In the following numerical results we have used a modulated
Gaussian plane wave for the excitation

einc(r, t) = p̂e− τ2

2σ2 cos(2π f0τ )A0 (50)

where τ (r, t) = t − k̂ · r/c0 is the delay, p̂ = x̂ is the
polarization, k̂ = −ẑ is the direction of propagation, and
A0 = 1 V/m is the peak amplitude. f0 is the central frequency
and σ is the characteristic time that essentially depends on the
frequency bandwidth of the excitation. Given the function einc

above, its time primitives Einc− and Einc+ that are equal to 0
when t goes, respectively, to −∞ and +∞, used in (44), are
equal to

Einc− (r, t) = p̂α�(erfc(−β)) (51)

Einc+ (r, t) = − p̂α�(erfc(β)) (52)

α =
�

π

2
σe−2π2 f 2

0 σ 2
A0 (53)

β = τ + 2iπ f0σ
2

√
2σ

(54)

where �(erfc(·)) is the real part of the complementary error
function. In the following simulations, we used Q = 16 and
ρ = 1 + 10−4 for the inverse Z transform (18b). The IRK
method used is the three stages Radau IIA (fifth-order) whose
Butcher tableau is

4 − √
6

10

88 − 7
√

6

360

296 − 169
√

6

1800

−2 + 3
√

6

225
4 + √

6

10

296 + 169
√

6

1800

88 + 7
√

6

360

−2 − 3
√

6

225

1
16 − √

6

36

16 + √
6

36

1

9
16 − √

6

36

16 + √
6

36

1

9

.

(55)

Also, the length parameter a is fixed to 1 m.
The first experiment demonstrates the absence of DC insta-

bility in the solution. We have used a unit sphere with Ns =
750 edges. There are Nt = 400 time steps between t0 = −10σ
and tend = 15σ (�t = 23.9 ns, σ = 382 ns, f0 = 1 MHz).
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Fig. 1. Norm of the current density as a function of time on a unit sphere.

Fig. 2. Norm of the current density as a function of time on a torus.

Fig. 1 shows the norm of the current in the point (0.45 m,
0.88 m, 0.06 m). It can be observed that the regularized
formulation does not suffer from the DC instability as the
solution keeps vanishing where it grows exponentially for the
differentiated TD-EFIE. It has been tested numerically that
this spurious current verifies (34).

The formulation works perfectly in the case of multiply
connected geometries. In this second experiment, we have
done the simulation with a torus (Ns = 900 edges) those
inner radius is 0.5 m and the outer radius is 1 m, with the
same parameters as the previous example. Fig. 2 shows the
norm of the current in the point (0.97, 0.14, 0.05 m). Again,
we can see that the regularized formulation provides the same
correct result as the differentiated TD-EFIE but does not suffer
from the DC instability.

Another way to observe the effect of the preconditioner on
the DC instability is to plot the polynomial eigenvalues associ-
ated with the sequence (Z j ) [24]. The polynomial eigenvalues

Fig. 3. Polynomial eigenvalues of the nonregularized (differentiated)
TD-EFIE system showing a cluster at 1.

Fig. 4. Polynomial eigenvalues of the regularized (preconditioned) TD-EFIE
system (there is no cluster at 1).

are the eigenvalues of the companion matrix that corresponds
to a MOT in the absence of excitation. Therefore, the formula-
tion is stable only if all the eigenvalues are inside the unit circle
because any current will vanish exponentially in the absence of
excitation. On the contrary, if there are eigenvalues outside of
the unit circle, the error in the solution will grow exponentially.
Figs. 3 and 4 plot the polynomial eigenvalues associated with
the sequences of interaction matrices discretized with the IRK
scheme in the cases of the time differentiated TD-EFIE (large
time step and DC unstable) and the regularized TD-EFIE
(this work that is stable). A unit sphere with Ns = 270
unknowns is used to approximate the solution and the time
step is set to �t = 5.31 ns. Also N = 16 matrices are used
in each sequences. The regularization removes the cluster of
eigenvalues in 1 that is indeed the source of the DC instability.
A zoom on the cluster reveals that some of the eigenvalues
have an absolute value greater than 1.

The LF stabilization is demonstrated numerically by com-
puting the condition numbers of Z0 for the differentiated
TD-EFIE and Zreg

0 for the stable TD-EFIE for an increasing
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Fig. 5. Condition number of the system as a function of the time step on a
unit sphere.

time step �t on a unit sphere (Ns = 750 as in Fig. 1). It can be
seen on Fig. 5 that there is a quadratic growth of the condition
number for the non preconditioned TD-EFIE whereas it tends
to a constant for the regularized formulation. Note that in the
small time step limit, a growth of the condition number can be
observed. The regularization introduced here is based on the
large time step behavior of the equation and does not optimize
the conditioning for all time steps.

VII. CONCLUSION

We have presented a regularized TD-EFIE that uses IRK
methods for its time discretization. In particular, the new
equation is stable at LFs and it does not suffer from the
DC instability. The quasi-Helmholtz projectors enable the
separation of the two Helmholtz components that can be
independently rescaled. On the one hand, the time derivative
that allows the existence of the spurious static solenoidal
current responsible of the DC instability is removed. On the
other hand, the ill-scaling of the linear system that is solved
and removed which results in a well-conditioned system.
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