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Abstract: For the assessment of existing slopes, the precise determination of slope
stability is challenging, in part due to the spatial variability that exists in soils. Such
uncertainties are often reflected in the adoption of higher levels of conservatism in
design. Reliability-based design, which can take account of uncertainties and
specifically the variability of soil parameters, can better reflect the probability of
slope stability compared to the traditional single factor of safety. It has also been
shown that field measurements can be utilised to constrain probabilistic analyses,
thereby reducing uncertainties and, in turn, generally reducing the calculated
probabilities of failure. Previously, research has utilised measurements of
stress/strain (e.g. displacement), to improve estimations of strength parameters and
therefore slope stability; and used pore pressure measurements to improve
estimations of permeability. This paper presents a method to utilise pore pressure

measurements, which are more easily and cheaply obtained than stress/strain
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measurements, to first reduce the spatial uncertainty of hydraulic conductivity. The
spatial distribution of the hydraulic conductivity has been estimated by using inverse
analysis linked to the Ensemble Kalman Filter. Subsequently, the hydraulic
conductivity has been utilised to constrain the uncertainty in the strength
parameters using the cross-correlation of parameters. The method has been tested
on the hypothetical example of an embankment under steady state flow conditions.
It has been demonstrated that the uncertainty in the slope stability can be reduced,
and that this usually leads to an increase in the calculated slope reliability.

Key words: Ensemble Kalman filter, reliability, slope stability, spatial variability,

uncertainty reduction

1. Introduction

Conventional methods for the determination of slope stability are deterministic, with
soil properties characterised as constants for a given soil layer and each specified
layer assumed to be homogeneous. The results tend to be expressed as a single
number; that is, by a factor of safety (FOS) (Fredlund and Krahn, 1977; Griffiths and
Lane, 1999). However, natural soils are highly variable and heterogeneous (Phoon
and Kulhawy, 1999). The limitations of deterministic methods, which do not explicitly
account for variability and uncertainty related to soil parameters, have been
highlighted, e.g. by Vanmarcke (1977), Gui et al. (2000) and Cho (2007), and it has
been shown that they can over or under predict the true FOS.

Reliability based methods for geotechnical applications have been developing
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since the 1970s; from simpler methods such as the First Order Second Moment
(FOSM) method, First Order Reliability Method (FORM) (Hasofer and Lind, 1974) and
Point Estimate Method (PEM) (Rosenblueth, 1975), to more complex methods such
as the Random Finite Element Method (RFEM) (Griffiths and Fenton, 1993). In RFEM,
random fields of spatially varying soil properties are linked with finite elements
within @ Monte Carlo simulation. Such analyses require a knowledge of the
distributions of the soil parameter values, including the scale of fluctuation, which is
the distance over which variables are significantly correlated (Fenton and Vanmarcke,
1990). These data can be derived from field tests (e.g. Cone Penetration Tests (CPTs)
and piezometers), laboratory tests and previous experience. However, the overall
distribution of soil parameters is a general description of soil parameter variability,
whereas, if the local variability was captured better, the overall uncertainty could be
reduced (Lloret-Cabot et al., 2012).

In geotechnical engineering, many projects are equipped with tools to monitor
the project performance, for example through measurements of displacement, strain,
pore pressure and so on. These measurements cannot be directly incorporated into
conditional random fields to reduce the uncertainty of soil parameters, as they
measure system responses and not soil properties. However, a general way to make
use of these measurements is inverse analysis, which can be used to back-calculate
the soil parameters (e.g. Cividini et al., 1983; Gens et al., 1996; Honjo et al., 1994;
Ledesma et al., 1996a).

Honjo et al. (1994) indicated that inverse analysis methods can generally be
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categorized into two types: direct methods and indirect methods. Direct methods
need to build a unique explicit relationship between parameters and measurements,
so that the relationship can be inverted. However, due to the complexity of most
engineering problemes, it is virtually impossible to build such a relationship. Indirect
methods are iterative procedures and make use of the forward relationship between
parameters and measurements.

A number of indirect methods exist. These include the maximum likelihood
method, which considers the measurements as random quantities and estimates a
set of parameters which are statistically the most likely, i.e. to maximise the
probability of achieving the measured data; and Bayesian methods, which consider
the parameters to be random and the distribution of parameters which are able to
produce the measured data are estimated. The Kalman filter is a scheme which uses
ongoing measurements to better estimate parametric inputs. In the case of the
ensemble Kalman filter, an ensemble of potential parameters is used, making it a
variant of the Bayesian approach (Ledesma et al., 1996b).

Ledesma et al. (1996b) and Gens et al. (1996) implemented the maximum
likelihood method in a synthetic problem of tunnel excavation. The authors
combined this method with the finite element method to back-calculate the Young's
modulus. Wang et al. (2013; 2014) utilised the maximum likelihood method in
analysing a slope failure and an excavation, respectively, to improve the estimation of
soil parameters based on field measurements such as slip surface inclination and

ground settlement. The application of the maximum likelihood method was found to
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better explain the slope failure mechanism and also the prediction of wall and
ground responses in the staged excavation.

Lee and Kim (1999) used the extended Bayesian method in tunnelling
engineering and tried to back-calculate four parameters, i.e. the elastic modulus, the
initial horizontal stress coefficient at rest, the cohesion and the internal friction angle.
Zhou et al. (2007) proposed a modified extended Bayesian method in the estimation
of the Young's modulus for a three-layered embankment. Papaioannou and Straub
(2012) utilised Bayesian updating to improve the estimation of the reliability of an
excavation, with a sheet pile retaining wall, in sand, based on non-linear deformation
measurements. Zhang et al. (2013) applied the Bayesian method to back-calculate
hydraulic parameters by utilising measurements of pore water pressure and
investigated the effect of uncertainties in the hydraulic parameters on the prediction
of slope stability, but without considering the spatial variability of hydraulic
parameters. Zhang et al. (2014) further investigated the effect of measurement data
duration and frequency in the Bayesian updating of hydraulic parameters.

Kalman (1960) developed the Kalman Filter (KF), which was initially used to
estimate a set of variables and uncertainties and, based on a set of observations,
improve the estimation. Later a number of variants were developed, such as the
Extended Kalman Filter (EKF) and the Ensemble Kalman Filter (EnKF). The EnKF
requires no linearisation when updating state variables which are governed by a
non-linear relationship, in contrast to the EKF. Hommels et al. (2005) and Hommels

and Molenkamp (2006) utilised the EnKF and observations of settlements to improve
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the estimation of Young’s modulus. Yang et. al. (2011) made use of the EKF and
observations of displacement in a tunnel to back-analyse the natural stress in the
rock mass.

The majority of the inverse analysis methods given above only made use of
direct measurements which were directly related to the undetermined parameters.
For example, the measurements used in Chen and Zhang (2006) were pressure head,
so the corresponding uncertain parameter was hydraulic conductivity. In Hommels
and Molenkamp (2006), the parameter and measurement were stiffness and
settlement, respectively. This limits the choice of information which could contribute
to the determination of parameters, although, as the underlying differences in
material behaviour come from, in general, differences in composition, stress state or
stress history, it is likely that material parameters are correlated (Nguyen and
Chowdhury 1985; Ching and Phoon 2013). Fenton and Griffiths (2003) and Cho and
Park (2010) studied the influence of cross-correlation between cohesion and friction
angle on the bearing capacity of a strip foundation. Griffiths et al. (2009) investigated
the influence of cross-correlation between Mohr—Coulomb strength parameters (i.e.
cohesion and friction angle) in probabilistic analyses of slope stability. Zhang et al.
(2005) considered the cross-correlation between different unsaturated hydraulic
parameters in seepage analysis, and Arnold and Hicks (2011) considered the
cross-correlation of hydraulic and strength parameters in stochastic analyses of
rainfall-induced slope failure.

In this paper, the authors present a theoretical study of the uncertainty in the
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factor of safety (with respect to the stability) of embankment slopes under steady
state seepage conditions. The work takes advantage of the fact that instrumentation
is often available in geotechnical projects, but also that, in soils, pore pressure
measurements are cheaper, easier to install and more reliable than stress/strain
measurements. In addition, it takes account of the cross-correlation between
material properties; specifically, it proposes that the hydraulic conductivity, cohesion
and friction angle are cross-correlated. Therefore, the pore pressure measurements
can be used to reduce the uncertainty in the slope stability, via more accurate
effective stress and shear strength estimations. The proposed method first utilises
the EnKF inverse analysis method to better determine the hydraulic conductivity field;
then the cohesion and friction angle are cross-correlated with hydraulic conductivity
so that the estimation of slope stability can be improved.

The purpose of this paper is to present, demonstrate and evaluate the
robustness of the new method within a controlled (albeit simplified) environment.
This has been facilitated by the use of synthetic (i.e. numerically generated)
“measurements”, so that full knowledge of the solution is available and the results
can be properly tested. First the method is presented, and this is followed by a series
of analyses to examine the effects of the various parameters on the overall calculated
uncertainty. These results will be used to guide future studies involving real field
situations.

2. Framework and theoretical formulation

2.1 Framework of the overall analysis



155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

The framework of the proposed numerical approach is shown in Figure 1. The flow
chart shows that it can be split into two parts: inverse and forward analyses. Inverse
analysis is possible where there are measurements available, i.e. pore pressures in
this paper. Synthetic data have here been used to provide a fully known solution
against which the method can be tested, and are sampled to provide a proxy for real
measurements. In the remainder of the paper these sampled data are referred to as
“synthetic measurements”.

The analysis starts with an estimation of the hydraulic conductivity in the field,
which is the distribution of hydraulic conductivity characterised by its mean,
standard deviation and scales of fluctuation. Based on this statistical characterisation
of the hydraulic conductivity an RFEM analysis can be undertaken, whereby multiple
realisations of the hydraulic conductivity field are generated and analysed to give a
distribution of computed pore water pressure fields. Then, via the EnKF, the
ensemble of realisations are compared to the synthetic measurements, so that the
estimation of the hydraulic conductivity field can be updated/improved.

The forward analysis benefits from the output of the preceding inverse analysis.
The updated hydraulic conductivity field improves the computed pore pressure field,
which in turn affects the effective stress field. In addition, by using the
cross-correlation between the hydraulic conductivity and strength parameters, the
strength parameters can also be updated. Another RFEM analysis is then carried out,
this time to obtain a probabilistic description of the slope stability. However, the

EnKF method cannot be used to update the slope stability, as the shear strength



177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

cannot be easily/directly measured in a non-destructive way. The improvements
achieved during the inverse and forward analysis stages, i.e. with respect to pore
water pressure and strength parameters, cause a reduction in the uncertainty in the
calculated factor of safety of the slope.

In order to facilitate the understanding and evaluation of the model, in the
analyses in Section 4 the following simplifications were adopted: (i) a one-directional
coupled analysis; (ii) no flow in the unsaturated zone; (iii) linear elastic, perfectly
plastic constitutive behaviour, with a Mohr—Coulomb failure surface; and (iv) steady

state seepage.

2.2 Slope stability under seepage conditions

In this paper, a one-way coupled slope stability analysis has been undertaken. First,
the pore pressure distribution due to steady state seepage has been analysed; next,
the influence of the pore pressure distribution has been incorporated in the slope

stability analysis.

2.2.1 Steady state seepage
The governing mass conservation equation for steady state saturated groundwater
flow in 2D is utilised, with the deformation of the domain and compressibility of
water being neglected. Therefore, the governing equation is (Smith et al., 2013),

7 (ke32) + 2 (ky35) = 0 (1)
where h =z + p/y, is the hydraulic head, in which z is the elevation, p is the
pore pressure and ¥, is the unit weight of water, and k, and k, are the hydraulic

conductivity in the x and y directions, respectively. The equation is spatially
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discretized using the Finite Element Method (FEM) with the Galerkin weighted
residual method. A no-flow condition in the unsaturated zone is assumed for
simplicity and an iterative procedure (Chapuis and Aubertin, 2001; Chapuis et al.,
2001) has been adopted to determine the phreatic surface and exit points on the
downstream surface of the embankment. For more details of this algorithm see Liu

et al. (2015).

2.2.2 Slope stability
The slope stability analysis uses the results of the previous seepage analysis to define
the pore water pressure, in order to generate the effective stress field. The effective
stress vector 6’ = [0, 0y Tyxy 0;]T canbe expressed as

6' =6 —pm (2)
where o is total stress vector generated by the gravitational load, m = [1,1,0,1]T
for 2D plane strain analysis and p is the pore water pressure.

The slope stability analysis considers an elastic, perfectly plastic soil with the
Mohr—Coulomb failure criterion (e.g. Smith et al., 2013) and the factor of safety (FOS)
of the slope is computed using the strength reduction method (Griffiths and Lane,
1999), i.e.

¢; =c'/FOS (3)

tang’
(08

@ = arctan( -

) (4)

where ¢’ and ¢’ are the effective cohesion and friction angle, and c} and <p]’c are

the respective factored shear strength parameters corresponding to slope failure.

2.3 Stochastic FE analysis

10
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Due to the spatial variability of the soil parameters, FEM is combined with random
field theory within a stochastic (Monte Carlo) process. This involves multiple
simulations (i.e. realisations) of the same problem, a procedure often referred to as
the Random Finite Element Method (RFEM) (Griffiths and Fenton, 1993). In each
realisation of an RFEM analysis, a random field of material properties is generated,
based on the point and spatial statistics of the material properties. RFEM has proved
to be an efficient approach for conducting stochastic slope stability analyses (e.g.

Hicks and Samy 2002, 2004).

2.3.1 Random field generation for single variable

The Local Average Subdivision (LAS) method (Fenton and Vanmarcke, 1990) has been
applied to generate the random fields. This method generates standard normal fields,
in which the spatial variation of property values is related to a correlation function
incorporating the scale of fluctuation. The standard normal field is then transformed
to the appropriate distribution based on the mean and standard deviation of the
variable being modelled, and also post-processed to account for different scales of
fluctuation in different directions (Hicks and Samy, 2004).

For the application in this paper, as the distribution of hydraulic conductivity is
usually considered to be log-normal (Griffiths and Fenton 1993; Zhu et al. 2013), the
natural log of hydraulic conductivity, In(k), follows a normal distribution. Hence the
standard normal random field is transformed into a normal field of In(k). An
exponential Markov correlation function has been used to build the covariance

function relating the spatial correlation between the variable values at different

11
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locations, i.e.

p(D) = exp(=5—1) (7)
where 7 is the lag distance between two points in a random field, and 6, is the
scale of fluctuation of In(k). Fenton and Griffiths (2008) indicated that 6, = 0
(where 6, is the scale of fluctuation of k), and this relationship has been adopted in
this paper.

2.3.2 Random field generation for multiple variables

In this paper, three variables are spatially random, i.e. hydraulic conductivity,
cohesion and friction angle. The paper makes use of the inter-dependence between
these parameters (Nguyen and Chowhury, 1985) to cross-correlate the random fields.
Cross-correlated parameters are first transformed into standard normal space and
the dependence between the parameters is defined via a correlation matrix (Fenton

and Griffiths, 2003),

1 plnk,c plnk,q)
P = | Pink,c 1 Pc,p (8)
plnk,(p pc,(p 1

where p represents the correlation (in standard normal space) between the
parameters identified by the first and second subscripts. The matrix is decomposed
by Cholesky decomposition, i.e. p=LLT, and used to generate correlated random field

values from initially uncorrelated random field values, via:

Gdepend = Lgindepend (9)
Gink Gink
G, =L| 9c ] (10)
G‘P depend g(p independ

where Ggepeng is @ vector of correlated values and gingepena is @ vector of

12
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2.4 Inverse analysis via the Ensemble Kalman Filter
Evensen (1994) proposed the EnKF based on the traditional Kalman Filter (Kalman,
1960), to reduce parameter uncertainty based upon measured data. In this paper,
the EnKF is linked to the random field approach to better capture the local variability
of hydraulic conductivity. In the approach of Evensen (1994) the measurements are
time dependent, but here the measured data are fixed in time and hence the EnKF
has been used independent of time.

In this paper, the EnKF follows an iterative process, in which each iteration
contains two steps: forecast and update. For applying the EnKF to stochastic seepage,
a state vector has to be constructed to incorporate both the unknown local hydraulic

conductivities and measurements of hydraulic head. This is expressed as

_ (kY _ ((n(kqy) In(ky) ... In(k,)T
xi = () = ( (Ry By o hp)T ) (11)

where subscript i represents an ensemble, Kk is the vector of logarithmic hydraulic
conductivity, In(k), as the EnKF can only be applied to normally distributed variables
(Chen and Zhang, 2006); h is the vector of hydraulic heads computed at the
measurement locations; and n and m are the number of unknown hydraulic
conductivity values and hydraulic head measurements, respectively. In this case, the
number of unknown hydraulic conductivity values is equal to the number of Gauss
points in the foundation of the FE mesh. In the EnKF, an ensemble of N state vectors
is used to simulate the initial estimation of the hydraulic conductivity field, i.e.
X = (X1,Xp, ", Xp)-

13
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In the forecasting step of each iteration, the ensemble of state vectors is
forecasted to the second (i.e. update) step by the model describing the problem, i.e.
X, = F(X;_1), where t is the iteration number in the EnKF. In this case, the seepage
model is utilised to compute the hydraulic heads for all realisations of the ensemble,
based on the updated hydraulic conductivity fields from the end of the previous
iteration.

After the forecasting step, the computed hydraulic heads at the measurement
locations in the forecasted ensemble of state vectors are compared with the

III

collected “real” hydraulic head measurements. The ensemble of state vectors is then

updated (with respect to hydraulic conductivity) by

x! = xI + K (D — Hx!) (12)
D= (hlﬂhZJ ""hN) (13)
hi =h*+ &; (14)

where x}' is the matrix containing the ensemble of updated state vectors, of
dimensions (m+n)xN, and x{ is the corresponding matrix of state vectors resulting
from the forecasting step; D is the matrix of measurement data perturbed by noise,
of dimensions mxN; h; is a vector of perturbed measurements; h* is the vector of
real measurements; and g; is a vector of measurement errors added to the real
measurements in order to create perturbed measurements. Each element in the
error vector g; is randomly selected from a normal distribution with a zero mean
and a variance defined by the input measurement error. Here, R is a matrix based on

g, i.e.

14
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R=— (15)
e =(g,€&,,...8y) (16)
Also, with reference to equation (12), H is the measurement operator which relates
the state vector to the measurement points; it is in the form of H=[0 | 1], where O is
an mxn null matrix and | is an mxm identity matrix. K¢ is the Kalman gain derived
from the minimization of the posterior error covariance of the ensemble of state
vectors, i.e.
K = PFHT(HPfHT + R) ™! (17)
Pl = —(xf —xH(xf —xD)T (18)
where Pf is the error covariance matrix of the ensemble of forecasted state vectors,
and X! is the ensemble mean of x,i.e. Xf = xf1,, where 1, isa matrix in which
each element is equal to 1/N.

At the end of the iteration process, the ensemble mean is considered to be the
best estimate of the hydraulic conductivity field, and the pore pressures generated
using this result are passed to the slope stability analysis in Section 2.2.2 and utilised
to generate correlated strength parameters in Section 2.3.2. The implementation of
this aspect is undertaken utilising the subroutine found in Section 5 of Evensen
(2003).

3. Model performance
In this section, an illustrative example is presented, to show how the proposed

approach can affect the uncertainty in the calculated slope stability via the use of

only hydraulic measurement data.

15
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Figure 2 shows the geometry of an embankment overlying a foundation. The
embankment is 4 m high, with upstream and downstream side slopes of 1:2. Itis4 m
wide at the crown and 20 m wide at its base. The upstream water level is 4 m above
the base of the embankment and the downstream water level is at 0 m. The soil
foundation is 40 m wide and 5 m deep, and the lateral and bottom boundaries of the
foundation are assumed to be impermeable.

3.1 Application of EnKF in stochastic seepage

3.1.1 Results

As previously stated, the results of an arbitrary realisation have been selected to
represent the actual spatial variability of hydraulic conductivity at the site, which
means that the hydraulic conductivity is known at all points, i.e. in contrast to a real
situation where it would not be known everywhere. In the analysis, the embankment
is assumed to be homogeneous, whereas the foundation is heterogeneous. This is for
simplicity, to enable better understanding of the performance of the model.
Moreover, the hydraulic conductivity is assumed to be isotropic, i.e. the same in the
vertical and horizontal directions, again for simplicity. The FE mesh size is 1.0 m by
1.0 m, as shown in Figure 5(e), and the elements are 4-noded bi-linear elements with
four Gaussian integration points. The cell size in the random field is 0.5 m by 0.5 m,
which means that each of the four integration points are assigned a different cell
value from the random field. Hence 800 hydraulic conductivity values are generated
in the foundation layer for the inverse analysis.

Initially 500 realisations were generated for the ensemble. The mean and

16
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standard deviation (log-normal distribution) of the hydraulic conductivity for the
random field generation were both selected to be 10° m/s. The scale of fluctuation
was selected to be anisotropic (Lloret-Cabot et al., 2014) and within realistic bounds,
with the vertical and horizontal scales of fluctuation for the foundation being 1.0 m
and 8.0 m, respectively (Hicks and Onisiphorou, 2005; Firouzianbandpey et al., 2014;
Cho and Park, 2010; Suchomel and Masin, 2010). It is anticipated that these initial
values can be estimated from laboratory tests, or soil databases, where sufficient
similar material is available. Such tests have previously been utilised to generate
input statistics for RFEM analyses or parameter variations in parametric FEM
analyses. Moreover, the initial estimated scale of fluctuation and degree of
anisotropy of the heterogeneity could be estimated from CPT data (e.g. Lloret-Cabot
et al., 2014).

The realisation selected to provide the measured data is shown in Figure 3(a),
with the discrete nature of the hydraulic conductivity values in the figure being due
to single values being assigned to each Gauss point. Figure 3(b) shows that the initial
estimate, based on the mean of 500 realisations, approximates to the input mean of
k = 10° m/s. Figures 4(a) and 4(b) show the error in the hydraulic head values,
generated by the initial estimation of the hydraulic conductivity and the updated
hydraulic conductivity, respectively, i.e.

Einitial = Minitiat — Preference (19)
€ypdated = Nupaatea — Nreference (20)

where €;niriqi and €,p4qateq are the initial and updated errors in hydraulic head,

17
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respectively, and hyererence s Minitiae @nd hypgereq are the hydraulic heads
calculated from the reference hydraulic conductivity field, and the initial and updated
estimations of the hydraulic conductivity field, respectively. Figures 4(c), (d) and (e)
show the reference, initial and the updated pore water head distributions. It is seen
that the geometry of the system controls the overall shape of the distribution, with
only relatively minor perturbations due to the heterogeneity. However, these
perturbations are large enough (~0.3 m) to give more information on the local
hydraulic conductivity distribution.

The number of synthetic measurements used in the analysis was first chosen to
be 88, with the locations of the measuring points shown in Figure 5(a) as solid dots.
Three further patterns of measuring points were also used, i.e. 44 (Figure 5(b)), 24
(Figure 5(c)) and 12 (Figure 5(d)) points, where the full column of synthetic
measurements is used in each measurement configuration. The element and local
Gauss point numbering are given in Figure 5(e). All monitoring points for the
synthetic measurements have been located in the foundation, for two reasons: (i) for
long term field measurements, ensuring that the points are saturated increases the
reliability of the sensors; and (ii) the foundation of an embankment is more likely to
be highly heterogeneous.

Each element in g; (equation (14)) has been selected from a normal
distribution, with a zero mean and a variance chosen to be 10°® mz, for the hydraulic
head measurement. The variance is related to the precision of the measurement

tools. A variance of 10°m? means that the accuracy of the synthetic measurements
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of hydraulic head are required to be £0.003 m (i.e. 30).

In this illustrative example, the authors use 50 iteration steps of the EnKF. The
updated estimated hydraulic conductivity field (the average of the final updated
values of the 500 ensemble members), arising from the EnKF results, is shown in
Figure 3(c) and displays a clear local variability. The hydraulic head errors resulting
from this updated field are small, as shown in Figure 4(b). Figure 6 shows the
comparison between the 800 reference values of the local hydraulic conductivity
field, the initial estimation of the local hydraulic conductivity field and the updated
estimate of the local hydraulic conductivity field, based on averaging the 500
ensemble members. Figures 6(a), (b) and (c) are the comparisons at the ends of
iteration steps 1, 5 and 50, respectively, while the sequential numbering of the Gauss
Points used in Figures 6 (a)-(c) is shown in terms of depth in Figure 6 (d). It can be
seen that the estimation of the local hydraulic conductivity field improved quickly.
After 5 iterations, there is no significant change in the estimation.

3.1.2 Sensitivity analysis of EnKF
A sensitivity analysis has been undertaken to study the influence of various aspects.
In order to evaluate the final results, the root mean square error (RMSE) of the

hydraulic head has been used. This is defined as

1 N
RMSE = \/N—kzijl(hf — h{)? (21)
where N is either the number of unknown hydraulic head values in the foundation
layer (i.e. the total number of nodes in the foundation), or the number of

measurement points (i.e. m), and superscripts t and e represent the true and
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estimated values, respectively. The lower the RMSE, the better the result. For this
analysis the hydraulic conductivity, although being the variable updated, has not
been used in the RMSE calculation due to the steady state calculations used.
Specifically, due to the steady state nature of the simulations, the results of the
hydraulic conductivity are not unique; only the relative differences between the
hydraulic conductivities at different points are. Hence, it is the hydraulic head values
which have been used and optimised in the Kalman filter.

3.1.2.1 Measurement error

Figure 7 shows the RMSE resulting from different measurement error variances. The
solid lines represent the RMSE values when only the measurement points are taken
into account, whereas the dotted lines include all of the unknown hydraulic head
values in the foundation layer. In all cases, the size of the ensemble was 500
members. Considering the RMSE for only the measured points, the error is generally
seen to reduce with each iteration step. When the input variance of the
measurement error is equal to or lower than 10° m? the RMSE for the measured
points reduces to almost zero and has therefore been used in the further analyses
presented in this paper. This clearly illustrates that the method is able to optimise the
results based upon the measured data. Considering the RMSE for all the unknown
hydraulic head values, in all cases the RMSE initially reduces before converging. Note
that, in this method, for each iteration of the EnKF a different ensemble of random
errors (g; from equation (14)) was used. An alternative algorithm was also examined

where the same random ensemble was used; however, with this algorithm, the
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results were found not to converge for larger values of the measurement error. It is
seen that, where the measurement errors are small, the majority of the
improvement occurs within 10 iteration steps. For larger errors convergence is slower,
although the improvement continues with more iteration steps for all cases.
3.1.2.2 Ensemble size
Another important aspect of the EnKF is the size of the ensemble. The authors
analysed several cases with different sizes to see the influence, although, in all cases,
the input variance of the measurement error was 10° m”. Figure 8 shows the RMSE
for different ensemble sizes; once again, with the solid lines representing RMSE
values based on only the measured points and the dotted lines for RMSE values
based on all the unknown hydraulic head values in the foundation layer. Figure 8
shows that, when the size of the ensemble is too small (i.e. 200), the RMSE oscillates.
It was found that, for the problem analysed, 500 ensemble members were sufficient,
although for other problems this may not be the case.
3.2 Prediction of seepage uncertainty
Initially, there is only knowledge about the global distribution of hydraulic
conductivity in the whole foundation and there is no information about the local
variability of the hydraulic conductivity. Before the inverse analysis was applied, a
stochastic seepage analysis was carried out to predict the seepage behaviour based
on the global distribution of hydraulic conductivity.

Figure 9 shows the comparison of results from the stochastic seepage analysis

before and after inverse analysis. It can be seen from Figure 9(a) that the range of
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inflows is reduced, which indicates an improvement in the estimation of the
hydraulic conductivity. In Figure 9(b), it is seen that there is a significant change in
the cumulative distribution function (CDF); in particular, an increase in the gradient
indicates a reduction in the uncertainty. Note that, although the absolute values of
the inflow are not important in this case, due to the steady state nature of the
analyses, the reduction in uncertainty represents a much improved hydraulic
conductivity field with respect to the local comparative variations.

3.3 Slope stability with improved seepage behaviour estimation

The improved prediction of pore water pressure in the foundation has been
imported into the slope stability analysis. The slope stability has been computed
based on the unimproved and improved pore pressure fields. The saturated unit
weight of both the embankment and foundation is 20 kN/m?>. The unsaturated unit
weight of the embankment is 13 kN/m®. The Young's modulus and Poisson's ratio are
10°kPa and 0.3, respectively. The strength parameters (cohesion and friction angle)
of the foundation follow truncated normal distributions (i.e. with any negative values
discarded), whereas constant strength parameters are used for the embankment and
these are selected to be equal to the mean values assumed for the foundation. The
mean cohesion and friction angle are 10 kPa and 30°, respectively. The coefficient of
variation of cohesion is 0.2 (Arnold and Hicks, 2011) and the coefficient of variation
of the friction angle is chosen to be 0.15 (Phoon and Kulhawy, 1999). The scale of
fluctuation is related to the deposition process (Firouzianbandpey et al., 2014), so it

is assumed that the scale of fluctuation of the cohesion and friction angle are equal
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to each other and also identical to the scale of fluctuation of the hydraulic
conductivity. However, note that this assumption is not implicit to the method and
that the method is also applicable to the case where different scales of fluctuation
exist for different parameters. The cross-correlations are included using the method
defined in Section 2.3.2.

The distribution of FOS from the slope stability analysis without improvement of
the pore pressure prediction, and for uncorrelated strength parameters, is shown in
Figure 10 in light grey and approximated by a normal distribution. The distribution of
FOS for the slope with the updated hydraulic conductivity (based on the measured
data), for uncorrelated strength parameters, is shown hatched.

The mean and standard deviation of the FOS in the original case are 1.95 and
0.12, whereas the mean and standard deviation of the FOS in the updated case are
2.02 and 0.11. Hence there is a modest reduction in the uncertainty and an increase
in the computed slope reliability when considering updated pore pressure
simulations. Note that the increase in the mean FOS is due to the specific distribution
of pore pressures within the foundation layer and the associated changes in shear
strength; for another spatial distribution of pore pressure, it could be possible for the
mean FOS to decrease when using updated pore pressure simulations. The slight
reduction in the standard deviation is explained by a reduction in the possible
effective stress variations in the analysis, due to the constrained hydraulic
conductivity field.

3.4 Slope stability by using improved hydraulic conductivity estimation and
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strength parameters cross-correlated with hydraulic conductivity

In this section, the previous improved estimations of pore pressure are again
imported into the slope stability analysis. However, due to the cross-correlation
proposed between hydraulic conductivity and strength parameters, and between the
shear strength components themselves, updated strength parameters have also been
used in the slope stability analysis.

This paper proposes that the hydraulic conductivity can be correlated with the
shear strength properties of the soil. While little experimental data have previously
been analysed in this manner, both properties have been investigated in terms of
porosity and particle size. The well-known Kozeny—Carman equation (Carman, 1937)
correlates the saturated hydraulic conductivity with porosity and particle size, and
has been widely applied in research, such as in Le et al. (2015). The equation defines
a relationship in which the hydraulic conductivity increases with increasing porosity
and increasing particle size. Vallejo and Mawby (2000) investigated the influence of
porosity and particle size on the shear strength of granular mixtures and found that
the porosity of the mixture has a strong influence on the shear strength, with the
peak shear strength generally correlating to the minimum porosity. Bartetzko and
Kopf (2007) studied the undrained shear strength and porosity versus depth
relationships of marine sediments. While a spread of results was noted, most field
tests exhibited an increase in shear strength with depth and a decrease in porosity,
i.e. the porosity and shear strength were negatively correlated. Moreover, the effect

of particle size was also studied; it was shown that the shear strength, in terms of the
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coefficient of friction, increased with an increase in quartz content (and a decrease in
clay content). Thevanayagam (1998) investigated the effects of particle size and void
ratio on the undrained shear strength, finding that, in general, with a lower porosity
the shear strength increased. The mixture of particle sizes influenced the shear
strength in a more complex way, with high proportions of a certain constituent
particle size dominating the behaviour, alongside a dependence on density and
confining pressure. Therefore, it seems reasonable that the hydraulic conductivity
can be correlated to the shear strength of a soil in a certain setting. However, the
correlation properties will depend on how the variation of a soil in a certain locale
depends upon the particle size and/or porosity distributions.

The correlation matrix that has been used, for illustrative purposes, is

1 -05 -0.2
p=|Pmke 1 =05 (22)
plnk,(p pc,(p 1

As outlined above, it is proposed that, as a soil gets denser, the permeability will
decrease and the friction angle and cohesion will increase (e.g. Carman, 1937;
Bartetzko and Kopf, 2007; Thevanayagam, 1998). Moreover, a lower permeability
may also be apparent if there are more smaller, e.g. clay, particles, which may then
result in a higher cohesion. Therefore, a negative cross-correlation between hydraulic
conductivity and both the friction angle and cohesion has been considered. The
effect of the cross-correlation has been investigated in detail in Section 3.5.2. As for
the cross-correlation between cohesion and friction angle, Arnold and Hicks (2011)
indicated that normally there is a negative correlation between these two strength

parameters. Rackwitz (2000) suggested that the correlation coefficient between
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friction angle and cohesion is negative and around -0.5, although EI-Ramly et al.
(2006) and Suchomel and Masin (2010) found that the cross-correlation between
cohesion and tangent of friction angle is -0.06 and -0.0719, respectively, for the same
marine clay. Therefore, in this paper, two different cases were analysed; one
considered the cross-correlation between cohesion and friction angle, and the other
did not.

It can be seen, in Figure 11, that there is a further reduction in slope stability
uncertainty when the cross-correlations between the hydraulic and strength
parameters are accounted for. The mean and standard deviation of FOS, which are
based on the updated hydraulic conductivity and cross-correlated strength
parameters with hydraulic conductivity, are (a) 1.97 and 0.10 when the cohesion and
friction angle are uncorrelated (p.,, = 0); and (b) 2.00 and 0.06 when the cohesion
and friction angle are negatively correlated (p., =-0.5). Figure 11(c) summarises the
results in the form of cumulative distribution functions. It can be seen that the
reliable FOS, e.g. at the 95% confidence level, increases from 1.76 for the initial
distribution of hydraulic conductivity, to 1.82 for the updated distribution of
hydraulic conductivity, and to 1.90 when the shear strength properties are
cross-correlated as shown in Figure 11(b).

3.5 Sensitivity of the numerical approach
This section focuses on the sensitivity of the numerical approach with respect to
both the number of synthetic measurements and the degree of cross-correlation

between the hydraulic conductivity and strength parameters.
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3.5.1 Number of measurement points
In the previous illustrative example, the number of measurement points is 88. In
order to investigate the influence of the number of measurement points, three
further configurations of measurement points have been considered; these are for
12, 24 and 44 points, at the locations shown in Figure 5.

It can be seen from Figure 12 that, when the number of measurement points is
12, the RMSE of hydraulic head for the measured points is higher than in the other
three cases, indicating more error. Figure 13 shows the standard deviation of the
inflow (the sums of the fluxes flowing into the model domain) against the number of
measurement points. As the number of measurement points increases, the standard
deviation of the calculated inflow decreases. However, it can be seen that, even
when the number of measurement points is small, i.e. 12, there is still a significant
reduction in the standard deviation, illustrating that the hydraulic conductivity field is
better captured.
3.5.2 Influence of cross-correlation between hydraulic conductivity and strength
parameters
This section studies the sensitivity of the FOS distribution to different correlation
coefficients. Table 1 gives the scenarios which have been studied. Scenario 1 is to
keep Pk, constant and change pi,k - Scenario 2 is the opposite. Scenarios 1 and
2 do not take account of the cross-correlation between cohesion and friction angle.
In Scenario 3, the cohesion and friction angle are cross-correlated.

In the case which does not utilise inverse analysis, uros = 1.95 and the standard
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deviation of FOS is 0.122. The 405 for the case which utilises inverse analysis, but
does not take account of cross-correlation between any of the parameters, is 2.02
and the standard deviation of FOS is 0.108. Table 1 shows that there can be a further
improvement in z4osand the standard deviation, irrespective of the cross-correlation.

It can be seen in Figure 14(a) that, in Scenario 1, when the cross-correlation
Pink,p increases, Liros also increases. The increase in tosis related to the hydraulic

III

conductivity in the foundation. In Figure 3(a), the “real” values of hydraulic
conductivity near the embankment toe, through which the slip surface passes, are
relatively large compared to those in other areas of the foundation. After using
inverse analysis, the improved estimation of the hydraulic conductivity also gives
higher local values in this area. Therefore, when py,; . is constant and pyi
changes from negative to positive values, it means that the friction angle, which is
cross-correlated with the improved estimation of k, increases near the embankment
toe. The increase of friction angle results in an increase of shear strength which
causes the higher calculated FOS. Meanwhile, Table 1 shows that the standard
deviation also increases with py,x ,. The shear strength is the combined effect of
cohesion and friction angle, so when pynx, increases and pjy . is negative and
constant, the range of shear strength becomes wider with the increase of the
correlation coefficient. The uncertainty in FOS is strongly related to the range of
shear strength; hence, the wider the range of shear strength, the larger the standard

deviation of FOS. In Figure 14(b), the variations of the mean and standard deviation

of FOS for Scenario 2 are similar to those for Scenario 1.
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In Figure 14(c), when the cohesion and friction angle are negatively
cross-correlated, the standard deviation of FOS can be further reduced compared to
the case in which the cohesion and friction angle are uncorrelated.

In this section, it has been shown that the cross-correlation can play an
important role in the final distribution of FOS; in particular, by reducing the
uncertainty and thereby generally increasing the FOS corresponding to a confidence
level of, for example, 95%. Further research on the values of the cross-correlations, in
general, is needed.

4 Conclusions

In this paper, a method to reduce the uncertainty in slope stability analyses via field
observations, inverse analysis and the Random Finite Element Method is presented.
It is shown, via the use of a synthetic dataset, that the method can be used to reduce
the uncertainty in calculated factors of safety and, in general, reduce the calculated
probabilities of failure. It is anticipated that this may contribute significantly to the
assessment of existing geotechnical infrastructure.

The main workflow is to first make use of the hydraulic measurements (i.e. pore
pressures) to directly improve the estimation of local hydraulic conductivity via
inverse analysis. The updated hydraulic conductivity can generate better predictions
of the seepage behaviour in the domain. Meanwhile, due to the cross-correlation
between hydraulic parameters and strength parameters, the strength parameters (i.e.
cohesion and friction angle) can be indirectly updated based on the updated

hydraulic conductivity. The updated predictions of both seepage behaviour and
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strength parameters are simultaneously imported into the slope stability analysis. It
is shown that the slope stability computation can not only be improved by the better
prediction of the seepage behaviour (i.e. the uncertainty reduced), but also be
further improved by cross-correlating the hydraulic and strength parameters. This
represents an improvement from previous research in which the hydraulic
parameters were updated based on hydraulic measurements and the strength
parameters were updated based on displacements.

Extending this method to include time dependency is proposed, as a further
step to further reduce uncertainty in predictions and reduce the amount of
measurement data points required.
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Table 1. Scenarios for the sensitivity analysis of the cross-correlation coefficients

Scenario Analysis Pink,c Pink,¢p Pcp Hros OFos
1 -0.5 1.954 0.079
2 -0.2 1.973 0.097
1 3 -0.5 -0.1 0 1.980 0.101
4 0.2 2.002 0.108
5 0.5 2.028 0.109
6 -0.3 1.983 0.103
7 0 2.000 0.107
2 -0.2 0
8 0.3 2.020 0.107
9 0.5 2.034 0.106
10 -0.5 -0.2 -0.5 1.996 0.062
3
11 -0.5 -0.2 -0.2 1.982 0.085
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Figure 3. Initial and updated estimations of the logarithmic hydraulic conductivity,
In(k), field compared to the reference case (k in m/s): (a) Reference field of In(k) in
the foundation; (b) Initial estimation of In(k) field (taken to be the mean of the
ensemble); (c) Updated estimation of In(k) field after inverse analysis (mean of the
ensemble).



Error (m)
0.3021

1 \m!

0.2

VTR

0.1

E -0.0274

Pore pressure head (m)

0 O

H

HH\HMHHH\
()]

N

o

Figure 4. Error in hydraulic head (in meters) based on the initial and updated
hydraulic conductivity fields relative to the reference hydraulic conductivity field: (a)
Error between reference and initial hydraulic conductivity fields; (b) Error between
reference and updated hydraulic conductivity fields; (c) is the reference pore
pressure head field; (d) is the initial pore pressure head field; and (e) is the updated
field.



(a)

88 points
(b)
44 points
(c)
24 points
(d)
12 points
Element numberin
(e) g
1 8
9 20
21 36
37 | . [56
57 96
97 136
137 176
177 216
217 256
X X1 2 Local Gaussian point numbering
X X|[3 4

Figure 5. Locations of measuring points: (a) measurement point locations for 88
observation points; (b) measurement point locations for 44 observation points; (c)
measurement point locations for 24 observation points; (d) measurement point
locations for 12 observation points; and (e) mesh, element and local Gauss point
numbering.



(a) Sequential numbering of Gaussian points

0 100 200 300 400 500 600 700 800

Ln(k)

———Reference —— Initial —— Iteration 1
-17 |

(b)

Sequential numbering of Gaussian points

0 100 200 300 400 500 600 700 800

Ln(k)

———Reference —— Initial ——Iteration 5
-17
(c) Sequential numbering of Gaussian points
0 100 200 300 400 500 600 700 800

Ln(k)

——Reference —— Initial ——Iteration 50

a7

(d) Sequential numbering of Gaussian points
0 160 320 480 640 800

-~ 0
£
T
5
o
S
w2
o
=
-
g 3
2 .
< . X X[1 2| Local Gaussian
'*E_ | [X X|3 4| point numbering
8 s !

Figure 6. Comparison between the reference values, initial values and updated values
of the local hydraulic conductivity at different EnKF iteration steps: (a) Comparison at
step 1; (b) Comparison at step 5; (c) Comparison at step 50; (d) Gauss point
numbering against depth.



—0.01
——0.0001
——0.000001
——0.00000001
0.01_all
0.0001_all
X 0.000001_all

CoO0O0C00onooaITEeeseeEseeaeaceaceecoa. O 0.00000001_all

RMSE (m)

0 10 20 30 40 50
Iteration steps

Figure 7. RMSE of hydraulic head for various input measurement error variances.
Solid lines represent RMSE values with only the measurement points taken into
account and the dotted lines include all of the unknown hydraulic head values in the
foundation layer.

0.07
— 200
0.06 — 500
— — 700
g 0.05 l — 1000
W 0.04] — 1200
7,) -— 1500
S 0.03 ] S T L L L 200_all
o :‘-u: ALAAAALLLLLALAAAAAAAAAAAAALALLALAAAAAY) + 500_all
0.02 ++++:+++++++++++++++++++++++++++++++++++++++++++ - 700_3"
¢ 1000_all
0.01 = 1200_all
E% 1500_all
0 e

0 10 20 30 40 50
Iteration steps

Figure 8. RMSE for different ensemble sizes.



(a) [ Initial k (histogram) Initial k (distribution fit)
Updated k (histogram) — — Updated k (distribution fit)

X 106
18

16
14

Probability density function

1 2.2 2.4 2.6x10°°

—
(=2
—

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1¢

—— CDF of total inflow (Initial k)
— — CDF of total inflow (Updated k) |

I
1
1
I
1
1
1
I
1

{

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6x10_6
Total inflow (m®/s/m)

Cumulative distribution function
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