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Abstract: River training and river restoration often imply modifying the patterns and dimensions of
bars, channels, and pools. Research since the 1980s has greatly advanced and matured our knowledge
on the formation and behavior of river bars, thanks to field work, laboratory experiments, theoretical
analyses, and numerical modelling by several research groups. However, this knowledge is not easily
accessible to design engineers, river managers, and ecologists who need to apply it. This is mainly
due to confusing differences in terminology as well as to difficult mathematical theories. Moreover,
existing scientific publications generally focus on specific aspects, so an overall review of the findings
and their applications is still lacking. In many cases, the knowledge achieved so far would allow
minimizing hard engineering interventions and thus obtaining more natural rivers. We present
an integrated review of the major findings of river bar studies. Our aim is to provide accessible
state-of-the-art knowledge for nature-based bar management and successful river training and river
restoration. To this end we review the results from analytical, numerical, experimental, and field
studies, explain the background of bar theories, and discuss applications in river engineering and
river restoration.

Keywords: river bars; river training; river restoration; river engineering; bar theory

1. Introduction

River bars are large sediment deposits, separated by channels, emerging during low flows.
The presence and dynamics of these deposits are at the heart of many river engineering problems,
since bars may block water intakes, hinder navigation, and reduce the water conveyance under bridges
(Figure 1). Bars are also associated with local scour and bank erosion, which may undermine bridge
piers and hydraulic structures, such as groynes. Finally, bars form important fluvial or riparian
habitats, and for this reason the restoration of bars is a common goal in river rehabilitation projects
(e.g., [1]). However, despite their great practical importance, no general treatise on how to deal with
bars is available.

Bar studies include theoretical analyses [2–11], field observations [12–14], numerical
modelling [3,15–21], as well as experimental investigations [22–26]. A comparative analysis integrating
the results of these works is still lacking, so practitioners are confronted with publications treating only
specific aspects of the overall picture. The use of different terminologies to distinguish different types
of bars adds confusion, some terminologies related to mechanistic explanations (e.g., free bars, steady
bars, forced bars, spatial bars, hybrid bars, migrating bars, central bars, braid bars), other terminologies
to shapes (e.g., longitudinal bars, diagonal bars, transverse bars, crescentic bars, medial bars [27]).
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Figure 1. (a) Gravel-bars under a bridge, Tagliamento River, Italy (courtesy of Paolo Reggiani);
(b) sediment sorting on a bar in the River Adige, at Castelvecchio Bridge, Verona, Italy.

In this paper, we seek to integrate the results from theoretical analyses, numerical simulations,
laboratory experiments, and field observations by different research groups, and to translate those
results in an accessible way for applications. We propose practical definitions to clearly distinguish the
different types of bars and describe the factors influencing their formation. We summarize the insights
gained and discuss applications of the present knowledge in river engineering.

2. Summary of Bar Studies

2.1. Bar Classification and Terminology

Bars have horizontal sizes that scale with the width of the main river channel and heights that
scale with the bankfull water depth [28]. Bars can appear as single or periodic alternations of shoals,
accompanied by deeper pools.

Single bars form at geometrical features or discontinuities of the river channel causing a permanent
flow perturbation or “forcing,” such as structures, exposed bedrock, confluences, bends, or bankline
irregularities. Classic examples of these “forced bars” are the point bars that form inside a river bend
(Figure 2a) and the central bar that forms in locally wider sections (Figure 2b).

Periodic bars develop from an instability phenomenon that arises as a response to water flowing
over loose material under certain hydraulic and sediment mobility conditions. They appear as
double-harmonic waves of the riverbed surface (Figure 3), i.e., with transverse and longitudinal
wavelengths, and are either steady or migrating. The periodic bars that form in straight channels
without any forcing are indicated as “free bars” and are typically migrating in downstream or sometimes
upstream direction [29]. The presence of forcing, causing a permanent flow configuration at a certain
location, fixes the location of the bars, at least for a certain distance, which then become steady. These
periodic bars are called “hybrid bars”, because they depend on both morphodynamic instability and
forcing (Figure 4). There is a relation between bar celerity and bar size so that migrating bars are
generally shorter than steady bars [26].

The presence of hybrid bars in alluvial rivers was first recognized from a large oscillation in the
longitudinal profile of point bars inside river bends, and for this reason these bars were first recognized
as an “overshoot” [3] or “overdeepening” phenomenon [4,9]. They were later named “forced bars” to
distinguish them from the “free bars,” highlighting their dependency on forcing. However, this term
did not allow distinguishing them from the single bars that arise close to the source of forcing which
do not originate from morphodynamic instability but from local perturbation. This ambiguity was
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discussed by Eekhout et al. [13] and Rodriguez et al. [14] and was resolved by Duró et al. [19], who
introduced the term “hybrid bars.”

Alluvial rivers present different bar patterns, ranging from alternate bars that alternatingly form
at the left and the right bank, central bars that form in the middle of the channel, and multiple bars that
appear as several bars in each cross-section (Figure 3). The terms “mid-channel bar” and “braid bar,”
often encountered in the literature, refer to bars in the middle of the channel and to a single component
of a multiple-bar system, respectively.

Figure 2. (a) Rhine River, the Netherlands. Point bar inside a river bend, forced by channel curvature,
hinders navigation. Flow direction from top to bottom. (b) Cauca River, Colombia. Compound central
bar forced by a local width expansion. Flow direction from bottom to top.

Figure 3. Tagliamento River, Italy. Multiple free bars have merged into large compound bars.
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Figure 4. Bar classification after Duró et al. [19].

2.2. Linear Bar Theories

Mathematical theories on river bars are generally based on depth-averaged and turbulence-
averaged equations for the motion of water and sediment. The motion of water is represented by
hydrodynamic equations, expressing conservation of mass and momentum, along with relationships
for hydraulic resistance and the effects of curvature-induced helical flows. The motion of sediment is
represented by a sediment mass balance, as well as by relationships for sediment transport rate and
direction. The averaging over depth implies that the equations are inaccurate close to the banks where
vertical flow components are significant. It also implies that detailed flow features around smaller
bedforms, such as flow separation, are not represented explicitly but accounted for by tuning the
parameters of the relationships for resistance and sediment transport. The averaging over turbulence
implies that sediment transport capacity depends on the mean flow features, without any influence
from variations in turbulence intensity. The resulting set of equations and relationships has been
implemented in numerical models, but it cannot be solved analytically. Analytical solution requires
further simplification and, hence, involves further simplifying assumptions that limit the validity
of the model. The art of mathematical analysis consists of introducing simplifications that do not
compromise the essential behavior of the physical system while keeping track of the validity limits
in applications and interpretation. Theoretical results are nonetheless also useful beyond their strict
limits of validity, as reasonable estimates for rapid assessment or as qualitative indicators for the effects
of changed conditions.

A first major simplification is linearization. The formal procedure for this is expansion into Taylor
series, but the principle is explained more easily as follows. Suppose that the flow depth, h, can
be decomposed into a constant average value, h0, and a deviation from this value, h′, that varies in
time and space: h = h0 + h′. The average flow depth corresponds to a flat riverbed without bars.
The deviation, or perturbation, corresponds to a superimposed pattern of bars and pools. Suppose that
the square of the flow depth, h2, appears somewhere in the equations. This can then be elaborated as:
h2 = h2

0 + 2h0h′ + (h′)2. The key assumption of linearization is that the perturbation is much smaller
than the average value, also called “basic state”: h′ << h0. This justifies neglecting (h′)2. The remaining
h2

0 + 2h0h′ is then substituted for h2 in the equations, along with similar substitutions for other nonlinear
terms. The basic state, however, is already known to be a solution of the set of equations. Subtracting
the corresponding basic-state equations for h0 from the perturbed equations results in a set of equations
for the perturbation, h′, only. These are the equations that describe the pattern of bars and pools.

The next step consists of assuming that all perturbations can be represented by harmonic functions
(exponential functions, sines, and cosines). This assumption rests on the Fourier theorem that any
arbitrary function can be represented by a sum of harmonic functions. Not explaining this explicitly has
been a source of reservations against linear bar theories. For instance, Rhoads and Welford [30] question
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the postulation of such a harmonic perturbation instead of a random perturbation. The Fourier theorem
implies, however, that random perturbations are composed of harmonic perturbations. The one with
the fastest growth rate emerges as the dominant initial pattern of bars.

The simplifications and assumptions result in a characteristic system of equations describing the
relation between bar wavelength, migration speed (celerity), and rates of growth or damping in time
and space. The final bar amplitude is not a part of this but requires a nonlinear approach, since it cannot
be described by a small perturbation of the local water depth. Figure 5 shows that the bar pattern is
periodic in longitudinal and transverse direction. In theory, the transverse bar wavelength is equal to
an integer m times two channel widths, where m is the “bar mode.” Different ratios between transverse
wavelength and channel width result in different bar patterns: alternate, central, and multiple. The bar
mode corresponds to the number of parallel rows of alternate bars that can be distinguished in the
channel (Figure 5) and thus m can be used to represent the bar pattern.

Figure 5. Longitudinal and transverse bed oscillations caused by the presence of alternate and central
(periodic) bars. Alternate bars: one row of alternate bars in the channel (m = 1). Central bars: two
parallel rows of alternate bars in the channel (m = 2).

The characteristic system of equations has been analyzed further in two different approaches,
which Parker and Johanneson [4] termed “Genoa approach” and “Delft approach.” The Genoa
approach assumes that the channel is infinitely long without any irregularities in the bank lines.
The bar amplitude can then be assumed constant in longitudinal direction. The resulting stability
analysis reveals the conditions for incipient growth of free bars without forcing, following the approach
developed by Hansen [31] and Engelund [32]. These conditions are represented by marginal stability
curves, one for each bar mode, m, indicating the limits of stable-bed conditions, intended as channel
beds without m-mode bars. Above these curves, incipient m-mode bars grow with time. Below these
curves, incipient bars decay, and no m-mode bar pattern forms [33]. Mode, longitudinal wavelength,
growth rate, and celerity of free bars mainly depend on flow width-to-depth ratio, with higher bar
modes forming at larger width-to-depth ratios. It is particularly important to consider that no free bars
form on the riverbed below a critical value of the width-to-depth ratio (critical value for bar formation),
which defines the limit for stable alluvial channels (i.e., channels without any bars). This means that
bars are expected to form only if the flow width-to-depth ratio is larger than the critical value. Since
bars depend also on sediment mobility, represented by the Shields number, and to a minor extent on
other parameters too, the critical value of width-to-depth ratio varies from river to river.

Combining the bar stability analysis with the bend stability analysis of Ikeda et al. [34], Blondeaux
and Seminara [2] identified a resonance point for which free alternate bars with constant amplitude
have zero celerity, enabling the forcing of channel bend growth. Zolezzi and Seminara [29] found
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that this point separates two bar regimes: sub-resonant, with width-to-depth ratios smaller than the
resonant one and bars migrating in downstream direction; and super-resonant, with width-to-depth
ratios larger than the resonant one and bars migrating in upstream direction.

The Delft approach focuses on the periodic steady bars that develop in unstable channels in
presence of forcing hybrid bars [3,10,35]. The source of forcing can be a channel bend, a structure,
a width restriction or expansion, etc. The channel is not assumed to be infinitely long, and the bar
amplitude can increase or decrease in longitudinal direction. The 2D linearized system of equations
describes flow velocity and water depth variations related to steady incipient bars of a specific mode.
A cross-section with prescribed constant flow velocity and water depth perturbations represents
a boundary that forces the system. By neglecting temporal variations, bars are assumed to be steady in
the sense that they do not migrate, grow, or decay. This “equilibrium bar state” describes wavelength
and longitudinal amplitude variation of incipient bars, because the linearization removes the influence
of nonlinear effects on the wavelength and longitudinal amplitude variation of fully developed
hybrid bars.

The two approaches of Genoa and Delft focusing on free and hybrid bars, respectively, have in
common the resonance point [4,9], where free bars have zero celerity and hybrid bars have constant
amplitude. All bar modes have their resonance point (Table 1).

Table 1. Approaches in bar studies.

Bar Regime
Approach Bar Type Key

Characteristics Sub-Resonant Resonant Super-Resonant

Genoa Uniform free
bars Migrating Downstream

migration Zero celerity Upstream migration

Delft
Hybrid bars

long. varying
amplitude

Steady
Amplitude damping

in downstream
direction

No amplitude
variation

Amplitude growing
in downstream

direction

Applicable to all bar modes Width-to-depth ratio =>

2.3. Nonlinear Bar Theories

Linear theories provide information on changes in bar amplitude in time and space, but they
cannot predict the actual values of bar amplitude. This requires a nonlinear approach. Both weakly
nonlinear and fully nonlinear theories have been developed for this. Weakly nonlinear theories [5,7]
are extensions of linear theories of free bars. They also assume that perturbations of a flatbed are
harmonic and much smaller than the flow depth. Here Eckhaus [36] distinguishes two levels of “small,”
“infinitesimally small” amplitudes for linear analysis and “finite small” amplitudes for nonlinear
analysis. River bar amplitudes, however, are not small in either of these senses and, accordingly,
the results of Colombini et al. [5] show that their weakly nonlinear analysis predicts just the order
of magnitude of experimentally observed amplitudes, with considerable scatter. Another limitation
is that this type of analysis is formally limited to a small range of width-to-depth ratios close to the
smallest width-to-depth ratio for which bars are formed, i.e., close to the minimum of the marginal
stability curve [5]. Nonetheless, weakly nonlinear analyses have given useful insights in the growth
toward a finite amplitude [5] and the effects of discharge variations [37] and suspended sediment
transport [38].

Fully nonlinear theories have been elaborated for the shape of cross-sections in river bends,
to calculate pointbar height along inner bends and pool depth along outer bends. These theories neglect
variations in streamwise direction and therefore refer to the constant cross-section of an infinitely
long bend. As this hypothetical condition implies a river spiraling down around a vertical axis, this
approach is called “axisymmetric” [3].
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2.4. Numerical Modelling

The advantage of numerical approaches lies in the full non-linearity of the equations they solve,
allowing the simulation of bar development beyond their incipient state and far from their critical
conditions. Struiksma et al. [3], pioneers in morphodynamic simulations, showed that a 2D model is
capable of reproducing what they called “the overshoot effect”: a waving channel bed inside river
bends due to the presence of hybrid bars superimposed on forced point bars. Nelson [15] studied the
elongation of bars from incipient to fully developed conditions.

Numerical models have also the advantage of allowing analyzing the morphodynamic processes
of river channels with spatially varying characteristics and non-uniform sediment. Including bank
erosion, Jang and Shimizu [39] studied the effects of irregular bank strength on free alternate bar
processes, finding that channel widening slows down the celerity and reduces the height of free bars.
This is in agreement with the results of the linear analysis of Zolezzi and Seminara [29] if the bar
regime is sub-resonant. Duró et al. [19] analyzed the effects of groynes and other types of channel
restrictions or expansions on hybrid bar formation, showing that the intensity of forcing exerted by
groynes of different lengths determines the growth rate and the location where hybrid bars form. But
the intensity of forcing does not affect their wavelength and amplitude, which are determined by the
morphodynamic characteristics of the system. Duró et al. also showed that imposing a symmetric
flow forces central bar formation and that imposing an asymmetric flow forces alternate bars even
beyond their linear instability range, but just for a limited distance. After that distance, hybrid bars
acquire the mode that pertains to local morphodynamic characteristics, described by width-to-depth
ratio, sediment size, and mobility, etc. Singh et al. [20] studied the effects of sediment heterogeneity on
bar mode in gravel-bed braided rivers, indicating the limits of assuming uniform sediment. Cordier
et al. [21] analyzed sediment sorting in straight channels with series of free or hybrid bars, showing
that coarser sediment accumulates on bar tops if bars are migrating, but accumulates in deeper parts if
bars are steady.

The evolution of bars from incipient to fully developed conditions has been simulated with 2D
and 3D models, visualizing the merging phenomenon that occurs in broad shallow channels with
multiple bars. Merging gradually decreases the bar mode through the formation of compound bars
e.g., [18,20,40].

2.5. Laboratory Investigations

Bar processes have been studied in laboratory flumes since the 1970s [41]. Based on his experimental
results, Ikeda [42] developed an empirical method to assess the wavelength and the amplitude of free
alternate bars. Fujita and Muramoto [22] studied the free-bar evolution in a straight flume, showing
that these bars elongate with time until they attain a stable length. Crosato et al. [26] showed that free
alternate bars might present an unstable behavior, as they observed them to flatten suddenly repeatedly
all together and then to reform. This was attributed to a forcing from the boundaries. Lanzoni
performed long series of experiments in a straight channel with uniform [23] and non-uniform [24]
sediment, observing that non-uniform sediment results in bars with smaller amplitude and that
bars tend to become steady if the coarser fraction is only partly mobile. The formation of hybrid
alternate bars has been generally obtained in the laboratory by adding some forcing, created by placing
a transverse plate at the upstream boundary. Generally forming in the upstream half of the flume close
to the source of forcing, hybrid bars were found to have wavelengths two to three times longer than
those of the free bars that formed in the second half of the flume [23,25,35]. In general, hybrid bars were
found to have wavelengths on the order of 10–15 times the channel width, but shorter wavelengths are
also possible [35].

Kinoshita and Miwa [41] studied the interaction between free alternate bars and point bars,
finding that free bars can migrate through sinuous channels but that a critical curvature exists that
prevents their migration. Whiting and Dietrich [43] performed laboratory experiments in mildly to



Water 2020, 12, 596 8 of 18

strongly sinuous channels to study migrating bar stabilization by channel bends and tested existing
linear theories.

The effects of vegetation on river pattern and bars were studied in the laboratory by Tal and
Paola [44], who observed that riparian vegetation reduces the channel width, and consequently also
the bar mode, and thus the degree of river braiding. Later, Vargas-Luna et al. [45], showed that
riparian vegetation shortens alternate hybrid bars and that further colonization of bar tops tends to
elongate them.

2.6. Field Observations

Field observations show that free alternate bars are common in channelized river systems whereas
in natural rivers hybrid bars are more common than free bars. This is due to the forcing by numerous
long-lasting geometrical features and discontinuities, such as spatial width variations, structures
protruding in the river channel, meanders, tributaries, bedrock, bridge piers, etc.

Leopold [46] made quantitative measurements of migrating and hybrid alternate bars, including
migration rates and wavelengths, in the channelized reach of the Colorado River and in straight
reaches between channel bends of Baldwin Creek and East Fork. Jaeggi [47] studied the alternate bars
in the straightened and narrowed Rhine River at the border between Switzerland and Liechtenstein.
Ferguson et al. [48] analyzed alternate bar processes in an almost straight channelized river, providing
their geometry and migration rates. Eekhout et al. [13] monitored the formation and evolution of bars
in a 600 m long reach of a recently restored stream in the Netherlands. In the first three years after
restoration alternate bars appeared and then gradually elongated during high-flow events. Because
of their low dynamics, Eekhout et al. classified these bars as steady. Rodrigues et al. [14] studied
the dynamics of bars in a channel expansion of the Loire River, showing the alternating formation of
central and lateral bars as a response to discharge variations. Adami et al. [49] analyzed the long-term
dynamics of the alternate bars that characterize the morphology of the channelized Rhine River in the
same reach as studied by Jaeggi [47]. They provide a detailed description of bar and river characteristics
and their evolution with time. Multiple-bar dynamics in gravel-bed braided rivers were observed,
among others, by Ham and Church [50].

Caruso et al. [51] studied the effects of vegetation on the braided Ahuriri River in New Zealand
and found that vegetation correlates with the frequency of occurrence of high flows, showing that by
reducing the flood intensity, river damming would promote the colonization of bar tops and riverbanks
by vegetation. The interactions between free bars and colonizing vegetation has been recently analyzed
on the dammed Isère River by Serlet et al. [52], who found that colonization by vegetation transforms
free migrating alternate bars in much longer and steady hybrid bars.

3. Summary of Insights Gained

The following insights have been gained from combining the results of linear and nonlinear bar
theories with the results of laboratory experiments, numerical modelling, and field observations:

(1) Fluvial bars can be divided into forced bars, occurring locally, and periodic bars, occurring as
rhythmic sequences of more or less similar bars.

(2) Forced bars are generated by local geometry or discontinuity. Examples are point bars at inner
bends, confluence bars at tributary junctions, and eddy bars at locations of flow separation.

(3) Periodic bars result from morphodynamic instability of the riverbed. The influence of physical
parameters on their features can be understood from linear and nonlinear theoretical analyses of
the fundamental mathematical equations for the motion of water and sediment.

(4) Periodic bars can be divided into free bars, migrating through the river, and hybrid bars, which
have fixed positions because at least one of the bars in the sequence is forced locally.
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(5) The river pattern can be characterized by the bar mode, which represents the number of bars in
cross-sections. Alternate bars are typical of meandering rivers whereas multiple bars characterize
braided rivers.

(6) The major parameter governing bar length, bar growth rate, bar migration speed (celerity), and bar
mode is the width-to-depth ratio of the flow. Periodic bars do not develop if the width-to-depth
ratio is below about 10. Channels become braided at width-to-depth ratios larger than about 50.
Forced bars do not depend on morphodynamic instability and can occur at width-to-depth ratios
below the critical value for the formation of periodic bars.

(7) The wave lengths of hybrid alternate bars are 10–15 times the channel width. The wave lengths
of free bars at the same width-to-depth ratio are two to three times smaller.

(8) The longer the bar, the smaller the migration speed.
(9) Observed bar migration is not necessarily associated with free bars. It can also result from

elongation during the development of a pattern of hybrid bars, as observed experimentally [26],
numerically [15], and in the field [14]. Bars forced during floods at locations of overbank flows
migrate too after the fall of the flood, while being eroded away gradually.

(10) Migrating bars can be distinguished from non-migrating bars by their shape. They present a clear
migration front and tend to be triangular (Figure 6).

(11) The intensity of the forcing determines the location of hybrid bars, but it does not alter the
bar mode. The type of forcing (symmetric in cross-sectional direction or antisymmetric) can
impose the presence of symmetric (such as central bars) or antisymmetric bars (such as alternate
bars) for a certain distance and thus locally influence the bar mode. For instance, imposing an
asymmetric flow to a central-bar system has been found to force the formation of compound
alternate bars [19].

(12) Linear theories provide fair predictors of bar mode, bar length, and bar migration (Sections 4.1
and 4.2). Neither linear nor nonlinear theories, however, provide reliable predictors for bar
height and pool depth (Section 4.3). The latter inevitably require numerical modelling or
empirical estimates.

(13) Bars may have a simple shape, or a compound shape crossed by smaller channels. Compound
bars may arise from discharge variability [53] and from forcing (see point 11).

(14) Fully developed bars assume a lower mode if incipient bars have modes higher than 2. This
occurs through a process of merging into larger compound bars. This means that linear theories,
strictly speaking valid for incipient bar characteristics, tend to overestimate the bar mode at larger
width-to-depth ratios.

(15) The development of an initially straight channel with erodible banks into a meandering alignment
can be explained from the formation of non-migrating bars, either hybrid bars [54] or free bars with
zero celerity [2]. However, meandering requires accretion of the opposite bank too. Otherwise
the bank erosion merely results in a pattern of width expansions and constrictions as in Figure 7.

(16) Discharge variations affect bar characteristics. Tubino [37] finds that bars grow during falling
stages of floods, and that bar geometry is controlled by the duration of the active part of flood
waves, i.e., the part capable of reworking bed sediment. Hall [55] finds that the mere presence of
flow variations can produce non-migrating bars.

(17) Sediment transport in suspension changes bar characteristics if it exhibits significant spatial lags
in its adaptation to changing flow conditions [56]. Talmon [57] finds that sediment suspension
makes hybrid bars longer and higher. Extending analyses by Bolla Pittaluga and Seminara [58]
and Federici and Seminara [59], Bertagni and Camporeale [38] find that suspension has the same
effect on free alternate bars. Comparing experimental findings with theoretical and numerical
results, Talmon [57] infers that gravity pull along transverse bed slopes affects not only bedload
but also part of the suspended load.
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(18) Riverbeds composed of mixtures of different grain sizes lead to other bar characteristics than
beds composed of uniform sediment. Horizontal and vertical sorting because of bar migration
and selective transport interact with the formation and evolution of bars. Free bars are higher
and longer for mixed-size sediment than for uniform sediment [21]; hybrid bars, however, are
lower [21,24]. Their lengths were shorter compared to bars in uniform sediment in experiments
with weakly bimodal mixtures [24] but longer in numerical simulations for more strongly
heterogeneous mixtures [21]. Imposed spatial patterns of grain size variations suppress the
occurrence of free bars and force the bed into a pattern of steady bars [60]. Sediment heterogeneity
appears to influence also river braiding, since higher heterogeneity was found to increase the
braiding degree while decreasing the length of braid bars in numerical simulations [20].

Figure 6. (a) Free bars migrating in downstream direction in the laboratory. Flow direction from
bottom to top (courtesy of Andrés Vargas-Luna). (b) Comparison between the shape and size of free
bars migrating in downstream direction (channel above) and of steady hybrid bars (channel below)
obtained with identical boundary conditions in a 2D numerical model constructed with the Delft3D
code (courtesy of Le Thai Binh). Flow direction from left to right.

Figure 7. Alternate bars enhance opposite bank erosion (courtesy of Andrés Vargas-Luna).
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4. Applications

4.1. Managing Bar Modes

The simplified version of the linear model of Struiksma et al. [3] for hybrid bars allows predicting
the bar mode, m, as a function of morphodynamic parameters and channel geometry (longitudinal
slope and width), assuming uniform flow [10]:

m2 = 0.17g
(b− 3)
√

∆D50

B3i
CQW

(1)

in which m is the bar mode; g is the acceleration due to gravity (m/s2); b is the degree of non-linearity
of the sediment transport law expressed as a function of flow velocity (-), for which Crosato and
Mosselman [10] suggest b = 10 for gravel-bed rivers (low sediment mobility) and b = 4 for sand-bed
rivers (high sediment mobility). In our experience, b = 10 holds for laboratory experiments with
low-mobility sand too. B is the channel width (m); i is the longitudinal bed slope (-); ∆ is the
relative submerged mass density of sediment (-); D50 is the median sediment grain size (m); C is the
Chézy coefficient for hydraulic resistance (m1/2/s) and QW is the water discharge (m3/s), suggested as
bankfull [10], but in general to be chosen depending on the situation. The Chézy coefficient, C, can be
derived from the Manning coefficient, n, and flow depth, h, through C = h1/6/n.

The bar mode must be an integer number, but Equation (1) returns a real number. The correct
integer mode, denoted by bmc, is derived as the integer number closest to the calculated real value
of m. If bmc = 0 (m < 0.5), the river is expected to be morphodynamically stable, i.e., without any
periodic bars. However, forced bars that do not depend on morphodynamic instability might always
form close to the sources of forcing, such as point bars inside river bends. If bmc = 1 (0.5 ≤ m < 1.5),
the channel is expected to present alternate bars; if bmc = 2 (1.5 ≤ m < 2.5), the channel is expected
to present central bars; and if bmc > 2 (m ≥ 2.5), the channel is expected to present multiple bars.
The “fluvial style” or “channel pattern” of the river, meandering vs. braided, can be characterized by
the bar mode e.g., [31,61,62]. Meandering can be expected for bmc ≤ 1, transition between meandering
and braiding for bmc = 2, and braiding for bmc > 2. Being based on a linear approach, the theory
overestimates the bar mode for width-to-depth ratios larger than 100. For such a large value of this
ratio one can expect a braided river pattern [10], so even if the bar mode is overestimated, the bar
pattern is correctly predicted.

Bars could cause intake obstruction, enhance opposite bank erosion, and create problems to bridges.
Bars could hinder river navigation. River interventions are thus often aimed at bar removal, but mere
excavation or dredging would only have a temporary effect as bars would grow again. Equation
(1) shows that the bar mode primarily depends on channel width, B, so an effective intervention to
decrease the bar mode, or even to eliminate bars, in this case by reaching the condition bmc = 0, is
channel narrowing (if the associated increased flow velocities do not pose problems to navigation).
A well-documented example is the disappearance of bars by narrowing to avoid ice jams and improve
navigability of the river Waal in the Netherlands [63]. River restoration is becoming a common practice
in Europe [64] and in the United States [65], as well as in other parts of the world where trained rivers
are given more space to regain some dynamics and improve their ecological value [66]. In many cases,
restoration projects include the removal of bank protection works or the setback of dikes, enlarging the
river channel for entire river reaches (e.g., [67]). One of the goals is the development of bars, often
multiple bars, to achieve a less uniform bed topography that allows different aquatic habitats. This can
indeed be obtained by channel widening (Equation (1)). Examples are the widening to enhance habitat
heterogeneity in the Thur River [68] and the widening to create a more beautiful riverscape of the Aire
River [69], both in Switzerland.

Usually three questions arise: (1) What is the new channel width to be imposed to the river
channel? (2) How long should the river reach involved be? (3) What is the reference discharge?
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(1) Equation (1) is a useful tool to assess the new river width as a function of discharge, riverbed
slope, sediment characteristics. This formula derived for hybrid bars was found to provide good
predictions for migrating free bars too [10]. However, its application should be restricted to
channels having width-to-depth ratio smaller than 100. Considering that the channel roughness,
represented by Chézy’s coefficient, is a bulk parameter incorporating the effects of many factors
on flow and sediment processes, it is advised to use several values of this coefficient, selected
within a realistic range, and not a single value to compute the bar mode.

(2) Duró et al. [19] showed that it is sufficient to narrow a river for a distance of about 10 times the
channel width to free a location in the center of the narrowed reach from alternate bars.

(3) Equation (1) was successfully applied using the bankfull discharge. However, it can also be
used to assess the different bar modes that are likely to appear in a river channel as a result of
discharge variations [70]. The relation between bar mode and discharge, QW, is inverse: a larger
discharge decreases the bar mode, and vice versa. In practice discharge variations produce
compound bars that are a combination of different bar modes of which the dominant one pertains
to bankfull conditions.

4.2. Managing Bar Length and Migration Rates

The simplified linear theory by Struiksma et al. (1985) [3] allows predicting the wavelength of
hybrid bars of mode m:

2π
LP

=
1

2λW

(b + 1)
λW

λS
−

(
λW

λS

)2

−
(b− 3)2

4

1/2

(2)

where LP is the m-mode bar wavelength and

λW =
h0C2

2g
(flow adaptation length) (3)

λs =
1

(mπ)2 h0

(
B
h0

)2

f (θ0) (bed adaptation length) (4)

with h0 being the reach-averaged water depth andθ0 the reach-averaged Shields parameter. The function
for the effect of gravity pull, f (θ0), can be expressed as [71]:

f (θ0) =
0.85

E

√
θ0 (5)

with E being a calibration coefficient.
The same theory allows deriving the damping coefficient, 1/LD, which defines the longitudinal

damping of hybrid-bar amplitude:

1
LD

=
1

2λW

[
λW

λS
−
(b− 3)

2

]
(6)

Equations (2)–(6) are only valid for hybrid bars, which are the most common bars in natural rivers.
As strictly speaking the equations hold for incipient bars and bars have been observed to elongate
during further development [15,22], Equation (2) tends to underestimate the bar wavelength. Finally,
colonization by vegetation shortens the length of hybrid bars (Vargas Luna et al. [45]), whereas at the
same time vegetation transforms free bars in longer hybrid bars [52].

Bars can be stabilized by introducing a forcing that transforms free migrating bars into longer
steady hybrid bars [19], at least over a certain distance. The length of this distance depends on the
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value of the longitudinal damping coefficient computed with Equation (6). The higher the damping
coefficient, the shorter the distance in which bars are stabilized.

A popular river restoration intervention is re-meandering of previously straightened river reaches
(e.g., [64,72]) to stimulate the development of a sinuous channel with point bars inside the river bends.
The associated increased curvature suppresses the occurrence of free migrating bars [41,43,73]. Tubino
and Seminara [74] developed a theoretical predictor for the minimum curvature required for this
suppression, but this predictor is not easily translated into simple formulas for practical designs.

4.3. Managing Bar Height and Pool Depth

Bar height and pool depth depend on the amplitude of bars. Linear theories predict how a given
amplitude of hybrid bars attenuates along the river, but they cannot predict this given amplitude itself.
Weakly nonlinear theories would predict bar height and pool depth if these were small with respect
to flow depth, but this is not the case. These theories thus merely explain how bar height and pool
depth depend on width-to-depth ratio, sediment grain size, and sediment mobility in a relative way.
Quantitative predictions require a fully non-linear approach.

A fully nonlinear solution does exist for the cross-sectional shape of river bends, with a forced
point bar at the inner bend and a deep pool at the outer bend. It is based on the transverse bed slope
for which the outward gravitation along this slope balances the inward drag by the helical flow driven
by the centrifugal forces and pressure gradients [3]:

dzb
dy

= A f (θ)
h
R

(7)

where dzb/dy is the transverse bed slope; A is a coefficient weighing the intensity of helical flow;
f (θ) is a function of local Shields parameter representing gravity pull along the slope (Equation (5),
substituting θ0 with θ); h is the local water depth and R is the radius of depth-averaged streamline
curvature. Theoretically, for curved channels with uniform width and well away from the banks,
A depends on Chézy coefficient, C, and Von Kármán coefficient, κ (= 0.4), according to

A =
2
κ2

(
1−
√

g
κC

)
(8)

This fully nonlinear solution is called “axisymmetric” because it refers to the idealized but
unrealistic situation of an infinitely long river bend, spiraling down around a vertical axis. Bends
have a finite length and hence channel curvature varies spatially. This variation generates hybrid
bars as predicted by the linear theory of Section 4.2. Superimposition of these hybrid bars on the
forced point bar causes an overshoot in transverse bed slope, bar height, and pool depth [3], known as
“overdeepening” [4]. Both the linear theory and the axisymmetric nonlinear theory, however, ignore
bank roughness and the significant vertical flow components in the vicinity of banks. This means
that these theories have little practical value for the prediction of near-bank bend scour, relevant for
the design of bank protection. Empirical predictors for bend scour [75–77] perform better. These
empirical predictors, however, hold for well-defined bends without significant planimetric changes.
At least three more effects need to be accounted for when stabilizing banks along rivers with actively
shifting channels. First, channels along a stabilized bank tend to become narrower and deeper because
inner-bank accretion continues after arresting the outer-bank erosion [78]. Second, forced scour areas
near bank protection structures pose less resistance to the flow. This attracts more flow, eroding the
riverbed in such a way that also channels are directed toward the scour area along the alignments that
exacerbate the conditions for scouring [79]. Third, these exacerbating alignments create sharp bends at
the points where they impinge on the protected bank. This gives rise to complex 3D flows that separate
and generate extra turbulence at the associated mixing layers [80,81]. This scours the bed even further.



Water 2020, 12, 596 14 of 18

5. Conclusions and Recommendations

We presented an overview of studies on fluvial bars, integrating results from theoretical analyses,
laboratory experiments, numerical modelling, and field observations. We primarily distinguished
forced bars (Figure 2), free bars (Figures 3 and 6), and hybrid bars (Figure 6). We summarized the
key insights gained from these studies in a way accessible to practitioners in river training and river
restoration. We translated these insights into guidance for practical applications, providing simple
formulas for rapid assessment and design. These are the formulas for hybrid bars, not free bars, for
two reasons. First, hybrid bars are the most common bars in natural rivers, whereas free bars occur
primarily in straightened channelized streams. Second, the richer information of theories for free bars,
which includes predictions for bar growth and migration, is not easily translated into simple formulas.

We recommend applying the presented formulas straightforwardly only to small and
medium-sized rivers and streams. Our practical guidance is insufficient for expensive interventions
in larger rivers. Training and restoration of larger rivers require specialist expertise, supported
by numerical modelling. The latter are better suited for analyzing and solving bar problems than
physical models, because the geometrical distortion needed for sufficient model flow depth and
proper reproduction of the Shields parameter conflicts with the requirement of properly reproducing
the width-to-depth ratios that govern bars [82]. Physical models are thus fraught with scale effects.
Notwithstanding our recommendation of numerical modelling, the insights presented can help in first
assessments of promising interventions to reach river training or river restoration objectives in large
rivers too.
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