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Abstract

One of the promising platforms for creating Majorana bound states is a hybrid nanostructure
consisting of a semiconducting nanowire covered by a superconductor. We analyze the previously
disregarded role of electrostatic interaction in these devices. Our main result is that Coulomb
interaction causes the chemical potential to respond to an applied magnetic field, while spin—orbit
interaction and screening by the superconducting lead suppress this response. Consequently, the
electrostatic environment influences two properties of Majorana devices: the shape of the topological
phase boundary and the oscillations of the Majorana splitting energy. We demonstrate that both
properties show a non-universal behavior, and depend on the details of the electrostatic environment.
We show that when the wire only contains a single electron mode, the experimentally accessible
inverse self-capacitance of this mode fully captures the interplay between electrostatics and Zeeman
field. This offers a way to compare theoretical predictions with experiments.

1. Introduction

Majorana zero modes are non-Abelian anyons that emerge in condensed-matter systems as zero-energy
excitations in superconductors [ 1-3]. They exhibit non-Abelian braiding statistics [4] and form a building block
for topological quantum computation [5]. Following theoretical proposals [6, 7], experiments in
semiconducting nanowires with proximitized superconductivity report appearance of Majorana zero modes
signatures [8—12]. These ‘Majorana devices’ are expected to switch from a trivial to a topological state when a
magnetic field closes the induced superconducting gap. A further increase of the magnetic field reopens the bulk
gap again with Majorana zero modes remaining at the edges of the topological phase.

Inducing superconductivity requires close proximity of the nanowire to a superconductor, which screens the
electric field created by gate voltages. Another source of screening is the charge in the nanowire itself that
counteracts the applied electric field. Therefore, a natural concern in device design is whether these screening
effects prevent effective gating of the device. Besides this, screening effects and work function differences
between the superconductor and the nanowire affect the spatial distribution of the electron density in the wire.
The magnitude of the induced superconducting gap reduces when charge localizes far away from the
superconductor. This restricts the parameter range for the observation of Majorana modes.

To quantitatively assess these phenomena, we study the influence of the electrostatic environment on the
properties of Majorana devices. We investigate the effect of screening by the superconductor as a function of the
work function difference between the superconductor and the nanowire, and we study screening effects due to
charge. We focus on the influence of screening on the behavior of the chemical potential. In particular, we
consider the response of the chemical potential to a magnetic field, because this directly impacts the Majorana
signatures.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic cross section of the Majorana device. It consists of a nanowire (red hexagon) lying on a dielectric layer (blue
rectangle) which covers a global back gate. A superconducting lead (yellow region) covers half of the nanowire.

The zero-bias peak, measured experimentally in [8—12], is a non-specific signature of Majoranas, since
similar features arise due to Kondo physics or weak anti-localization [13, 14]. To help distinguishing Majorana
signatures from these alternatives, we focus on the parametric dependence of two Majorana properties: the
shape of the topological phase boundary [15, 16] and the oscillations in the coupling energy of two Majorana
modes [17-21].

Both phenomena depend on the response of the chemical potential to a magnetic field, and hence on
electrostatic effects. Majorana oscillations were analyzed theoretically in two extreme limits for the electrostatic
effects: constant chemical potential [19—21] and constant density [20] (see appendix A for a summary of these
two limits). In particular [20], found different behavior of Majorana oscillations in these two extreme limits. We
show that the actual behavior of the nanowire is somewhere in between, and depends strongly on the
electrostatics.

2. Setup and methods

2.1. The Schrodinger—Poisson problem
We discuss electrostatic effects in a device design as used by Mourik etal [8], however our methods are
straightforward to adapt to similar layouts (see appendix B for a calculation using a different geometry). Since we
are interested in the bulk properties, we require that the potential and the Hamiltonian terms are translationally
invariant along the wire axis and we consider a 2D cross section, shown in figure 1. The device consists of a
nanowire with a hexagonal cross section of diameter W = 100 nm on a dielectric layer with thickness
Agielectric = 30 nm. A superconductor with thickness dsc = 187 nm covers half of the wire. The nanowire has a
dielectric constant ¢, = 17.7 (InSb), the dielectric layer has a dielectric constant ¢, = 8 (SizNy). The device has
two electrostatic boundary conditions: a fixed gate potential V; set by the gate electrode along the lower edge of
the dielectric layer and a fixed potential Vic in the superconductor, which we model as a grounded metallic gate.
We set this potential to either Vsc = 0V, disregarding a work function difference between the NbTiN
superconductor and the nanowire, or we assume a small work function difference [22, 23] resulting
inVec = 0.2 V.

We model the electrostatics of this setup using the Schrédinger—Poisson equation. We split the Hamiltonian
into transverse and longitudinal parts. The transverse Hamiltonian Hy reads

71 0? 0? Egap
My = ———| = + | — ep(x, ) + =2, 1
! 2m*(8x2 8)/2] ¢ ) 2 )

with x, y the transverse directions, m™ = 0.014m, the effective electron mass in InSb (with . the electron
mass), —e the electron charge, and ¢ the electrostatic potential. We assume that in the absence of electric field
the Fermi level Eg in the nanowire is in the middle of the semiconducting gap Eg,p, with Eg,, = 0.2 €V for InSb
(see figure 2(a). We choose the Fermi level Eg as the reference energy such that Ex = 0.

The longitudinal Hamiltonian H; reads

2 2
U a— IOég y + Eza'z, (2)

Hy = — -
- 2m* 0z 0z

with z the direction along the wire axis, a the spin—orbit coupling strength, E; the Zeeman energy and o the
Pauli matrices. The orientation of the magnetic field is along the wire in the z direction. In this separation, we
have assumed that the spin—orbit length Iso = 72/(m™*«) is larger or comparable to the wire diameter,

2
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Figure 2. Band alignment and the Fermi level, shown schematically for Vsc = 0. (a) In the absence of an electrostatic potential (gate
voltage Vi = 0) the Fermi level Ef is assumed to be aligned to the middle of the semiconducting gap (of size E,,,, semiconductor
conduction band shown as dashed blue line). Confinement in the nanowire leads to discrete subbands (red solid lines). (b) A positive
gate voltage gives rise to an electrostatic potential landscape lowering the energy of all subbands. Subbands below the Fermi level Eg
are occupied. For these bands, we define effective chemical potentials 11;. (Note that the subband spacings depend on ¢ (x, y) and are
typically different for different V5.) For simplicity, we set the spin—orbit interaction to zero in these dispersions. For nonzero spin—
orbit strength, the chemical potentials ;; are defined with respect to the crossing point of the spin bands rather than at the band edge.

Iso = W [24,25]. Furthermore, we neglect the explicit dependence of the spin—orbit strength « on the electric

field. We ignore orbital effects of the magnetic field [26], since the effective area of the transverse wave functions

is much smaller than the wire cross section due to screening by the superconductor, as we show in section 3.
Since the Hamiltonian is separable in the limit we are using, the charge density in the transverse direction

p(x, y)is:
P(x> )’) = —f?ZWJz‘(X’ }’)|2 TI(E,‘, Ez, Oé), (3)

with 1, the transverse wave function and E; the subband energy of the ith electron mode defined by
Hr); = E;v;. Further, n(E;, Ez, «)isthe 1D electron density, which we calculate in closed form from the Fermi
momenta of different bands in appendix C. The subband energies E; depend on the electrostatic potential
é (x, ¥),and individual subbands are occupied by ‘lowering’ subbands below E (shown schematically” in
figure 2(b)).
The Poisson equation that determines the electrostatic potential ¢ (x, y) has the general form:

_Pxy)
€ >

V2¢ (x, }’) = 4

with e the dielectric permittivity. Since the charge density of equation (3) depends on the eigenstates of
equation (1), the Schrodinger and the Poisson equations have a nonlinear coupling.

We calculate the eigenstates and eigenenergies of the Hamiltonian of equation (1) in tight-binding
approximation on a rectangular grid using the Kwant package [27]. We then discretize the geometry of figure 1
using a finite element mesh, and solve equation (4) numerically using the FEniCS package [28].

Equations (1) and (3) together define a functional p [¢], yielding a charge density from a given electrostatic
potential ¢. Additionally, equation (4) defines a functional ¢ [p], giving the electrostatic potential produced by a
charge density p. The Schrédinger—Poisson equation is self-consistent when

olplgll — ¢ = 0. (€)

We solve equation (5) using an iterative nonlinear Anderson mixing method [29]. We find that this method
prevents the iteration process from oscillations and leads to a significant speedup in computation times
compared to other nonlinear solver methods (see appendix E). We search for the root of equation (5) rather than
for the root of

plolpll — p =0, ©6)

since we found equation (5) to be better conditioned than equation (6). The scripts with the source code as well
as resulting data are available online as ancillary files for this manuscript.

2.2.Majorana zero modes in superconducting nanowires

Having solved the electrostatic problem for the normal system, i.e. taking into account only the electrostatic
effects of the superconductor, we then use the electrostatic potential ¢ (x, y) in the superconducting problem.
To this end, we obtain the Bogoliubov-de Gennes Hamiltonian Hpgg by summing Hy and H; and adding an

4 Note that E; agrees with the subband bottom only if & = 0 and Ez = 0. See appendix C for details on the subband occupation in the
general case.
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induced superconducting pairing term:

ﬁ2 2 Egap . 8
Hpac = || —=—=V* —ed(x, y) + — |0y — ia—0, | ® 7, + Ez0, ® 7o + Aoy @ 75, (7)
2m* 2 0z
with 7 the Pauli matrices in electron—hole space and A the superconducting gap.
The three-dimensional BAG equation (7) is still separable and reduces for every subband with transverse
wave function ; to an effective one-dimensional BAG Hamiltonian:

2

Hpdg,i = [( 4 M,‘)Uo + gpay] QR 7, + Ezo, ® 19 + Aoy @ Txs (8)
2m 7

where p = —i7%0/0z and we defined j1; = —E; (see figure 2(b). Since the different subbands are independent,

1t; can be interpreted as the chemical potential determining the occupation of the ith subband.

While the Fermi level is kept constant by the metallic contacts, the chemical potential j; of each subband
does depend on the system parameters: p; = p; (Vg, Ez). Most of the model Hamiltonians for Majorana
nanowires used in the literature are of the form of equation (8) (or a two-dimensional generalization) using one
chemical potential 1. To make the connection to our work, ¢ should be identified with ;, and not be confused
with the constant Fermi level Eg. For example, the constant chemical potential limit of [20] refers to the special
case that 4, is independent of Ez, and itis not related to Eg being always constant”’.

Properties of Majorana modes formed in the ith subband only depend on the value of 1, (or equivalently E;).
In the following we thus determine the effect of the electrostatics on 11, before we finally turn to Majorana bound
states.

3. Screening effects on charge density and energy levels

We begin by investigating the electrostatic effects in absence of Zeeman field and a spin—orbit strength with

Iso = 233 nm, negligible for the electrostatic effects. We solve the Schrodinger—Poisson equation for a
superconductor with Vsc = 0 V and a superconductor with Vic = 0.2 V, and compare the solutions to two
benchmarks: a nanowire without a superconducting lead, and a nanowire in which we ignore screening by
charge. Specifically, we compute the influence of screening by the superconductor and by charge on the field
effect on the lowest energy levels and charge densities. To evaluate the role of screening by charges in the wire, we
compare the full solution of the Poisson equation (4) to its solution with the right-hand side set to zero. Our
results are summarized in figure 3 showing the dispersion of 11, and figure 4 showing the charge density for the
same situations and the values of V; marked in figure 3.

The approximate rotational symmetry of the wire leads to almost doubly degenerate bands with opposite
angular momenta when electric field is negligible—a situation realized either in absence of the superconductor
(figure 3(a)) or when Vg = Vi¢ (figures 3(b)—(d)). However in most cases, presence of the superconductor leads
toalarge V; required to induce a finite charge density in the wire, and the degeneracy is strongly lifted.

The lever arm of the gate voltage on the energies E;, reduces from the optimal value of 1 , at V5 < 0 by
approximately a factor of 4 due to charge screening alone (figure 3(a)). Screening by the superconductor leads to
an additional comparable suppression of the lever arm, however its effect is nonlinear in V; due to the transverse
wave functions being pulled closer to the gate at positive V5. Comparing panels (b) and (c) of figure 3 we see that
screening by the superconductor does not lead to a strong suppression of screening by charge when Vsc = 0: the
field effect strongly reduces as soon as charge enters the wire when we take charge screening into account. This
lack of interplay between the screening by superconductor and by charge can be understood by looking at the
charge density distribution in the nanowire (figures 4(b) and (c). Since a positive gate voltage is required to
induce a finite charge density, the charges are pulled away from the superconductor, and the corresponding
mirror charges in the superconductor area are located at a distance comparable to twice the wire thickness. On
the contrary, a positive Vic requires a compensating negative Vg to induce comparable charge density in the
wire, pushing the charges closer to the superconductor (figure 4(d)). In this case, the proximity of the electron
density to the superconductor leads to the largest suppression of the lever arm, and proximity of image charges
almost completely compensates the screening by charge.

The Van Hove singularity in the density of states leads to an observable kink in y; each time an extra band
crosses the Fermi level (inset in figure 3(a)). However, we observe that the effect is weak on the scale of level
spacing and cannot guarantee strong pinning of the Fermi level to a band bottom.

Using the notion of a variable chemical potential j¢ is natural when energies are measured with respect to a fixed band bottom, i.e. ina
single-band situation. In our case, different subbands react differently on changesin ¢ (x, y) and it is more practical to keep the Fermi level
Eg fixed.
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Figure 3. The nine lowest subband energies 1; as a function of gate voltage. (a): wire without a superconducting lead, (b): wire with a
superconducting lead at Vs¢ = 0 V, neglecting charge screening effects, (c): the same problem including charge screening effects, and
(d): asuperconducting lead with Vsc = 0.2 V including charge screening. The Fermilevel Er = 0 is indicated as a solid horizontal
line. The red lines indicate the gate voltages used in the calculation of charge density and electric field of the corresponding panels in
figure 4. In all plots, we take weak spin—orbit interaction (a spin—orbit length 0of 233 nm). The inset of the top panel shows a zoom,
revealing Fermi level pinning every time a new band crosses the Fermi level.
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Figure 4. Charge density distribution and electric field in the wire cross section, at the gate voltage indicated by the red line in the
corresponding panel of figure 3. (a): self-consistent solution when no superconducting lead is attached. (b): superconducting lead at
Vsc = 0V, neglecting screening by charge. (c): Same problem, but including screening by charge (self-consistent). (d): self-consistent
solution for a superconducting lead at Vsc = 0.2 V. The total densityis ~5.5 x 10> cm~! for plots (a), (c), and (d). Plot (b) has a total

density of 1.6 x 10®cm™1.
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4. Electrostatic response to the Zeeman field

4.1. Limit of large level spacing
The full self-consistent solution of the Schrédinger—Poisson equation is computationally expensive and also
hard to interpret due to a high dimensionality of the space of unknown variables. We find a simpler form of the
solution at a finite Zeeman field relying on the large level spacing ~10 meV in typical nanowires. It ensures that
the transverse wave functions stay approximately constant, i.e. | () (Ez) |1 (0)) | ~ 1 up to magnetic fields of
~7 T.In this limit we may apply perturbation theory to compute corrections to the chemical potential for
varying Ey.

We write the potential distribution for a given E, in the form

N
¢(x) Vs EZ) = qsb‘c.(x: }’) + Z¢; (.X, 2 EZ)’ (9)

i=0
where ¢, _ isthe potential obeying the boundary conditions set by the gate and the superconducting lead, and
solves the Laplace equation

V2, (%, y) = 0. (10)

The corrections ¢, to this potential due to the charge contributed by the ith mode out of the N modes
below the Fermi level then obeys a Poisson equation with Dirichlet boundary conditions (zero voltage on the
gates):

V26, (x, y, Ez) = f | (5, Y)Pr(—p; — Sptiy Ezy 1) (11)

where we write the chemical potential at a finite value of E as 1, (Ez) = p; + oy, where pu, is the chemical
potential in the absence of a field.
We now define a magnetic field-independent reciprocal capacitance as

¢i (X, Vs EZ)

Pl‘ X, =
() —en(—p; — b, Ez, @)

12)
which solves the Poisson equation
ViR y) = = [ ) (13)
Having solved the Schrodinger—Poisson problem numerically for E; = 0, we define 6¢;, = ¢, (x, y, Ez)

— ¢;(x, y, 0)and 6n = n(—p; — op;, Ez, o) — n(—p;, 0, o). The correction OF; to the subband energy E; is
then given in first order perturbation as

N
OB = —e (PilY_86)li). (14)
j=0
Using equations (12), (14) and ép; = —OE; we then arrive at:
N
bp; = —e*y Pybn;, (15)
=0

with the elements of the reciprocal capacitance matrix P given by
P = (YilPil4i). (16)

Solving the equation (15) self-consistently, we compute corrections to the initial chemical potentials ;. The
equation (15) has a much lower dimensionality than equation (5) and is much cheaper to solve numerically.
Further, all the electrostatic phenomena enter equation (15) only through the reciprocal capacitance matrix
equation (16).

4.2. Single- and multiband response to the magnetic field
We start by computing the electrostatic response to changes in the magnetic field when the Fermi level is
close to the band bottom for a single band (N = 1, and we write the index 1, = p for brevity). We
study the influence of the electrostatic environment and assess whether the device is closer to a constant
charge density or constant chemical potential situation (using the nomenclature of [20] explained in
appendix A).
The top panel of figure 5 shows the chemical potential response to Zeeman field. Without a superconducting
contact, the electron-electron interactions in the nanowire are screened the least, and the Coulomb effects are
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Figure 5. Top and middle panel: variation in chemical potential (top panel) and in electron density (middle panel) as a function of
magnetic field. The green solid line corresponds to the case without a superconductor. Other solid lines correspond to Vsc = 0V,
dashed lines to Vsc = 0.2 V. Black, red and blue indicate spin—orbit lengths of 233, 100, and 60 nm respectively. Bottom panel:
dispersion relation E(k) for Eso > Ey (left)and Esp < Ez (right). Dashed lines indicate the evolution of the dispersion for the
increasing magnetic field.

the strongest, counteracting density changes in the wire. In agreement with this observation, we find the change
in chemical potential ;r comparable to the change in Ez. Hence, in this case the system is close to a constant-
density regime.

A superconducting contact close to the nanowire screens the electron-electron interaction in the wire due to
image charges. The chemical potential is then less sensitive to changes in magnetic field. We find that this effect is
most pronounced for a positive work function difference with the superconductor Vgc = 0.2 V, when most of
the electrons are pulled close to the superconducting contact. Then, the image charges are close to the electrons
and strongly reduce the Coulomb interactions. In this case the system is close to a constant chemical potential
regime. For V5c = 0 V screening from the superconducting contact is less effective, since electric charges are
further away from the interface with the superconductor. Therefore in this case, we find a behavior intermediate
between constant density and constant chemical potential.

Besides the dependence on the electrostatic surrounding, the magnetic field response of the chemical
potential depends on the spin—orbit strength. Specifically, the chemical potential stays constant over a longer
field range when the spin—orbit interaction is stronger®. The bottom panel of figure 5 explains this: when the
spin—orbit energy Eso >> Ey, thelower band has a W-shape (bottom left). A magnetic-field increase initially
transforms the lower band back from a W-shape to a parabolic band, as indicated by the dashed red lines.
During this transition, the Fermi wavelength is almost constant. Since the electron density is proportional to the
Fermi wavelength, this means that both the density and the chemical potential change very little in this regime.
We thus identify the spin—orbit interaction as another phenomenon driving the system closer to the constant
chemical potential regime, similar to the screening of the Coulomb interaction by the superconductor.

Atlarge Zeeman energies E; 2 Ego, the spin-down band becomes parabolic (bottom right of figure 5). This
results in the slope of 1 (Ez) becoming independent of the spin—orbit coupling strength, as seen in the top panel
of figure 5 at large values of Ey.

Close to the band bottom and when spin—orbit interaction is negligible, we study the asymptotic behavior of
w1 and n by combining the appropriate density expression equation (C.6) with the corrections in the chemical
potential equation (15). In that case, the chemical potential becomes

2

= —%xﬂm*(u T Ep. (17)

6 . . S . .

Although we decrease the spin—orbit length to Iso = 60 nm, which is smaller than the wire diameter of 100 nm, we assume separable wave
functions. Screening by the superconductor strongly localizes the wave functions, such that the confinement is still smaller than the spin—
orbitlength.




10P Publishing

NewJ. Phys. 18 (2016) 033013 AVuik et al

p [meV]

p [meV]

u [meV]
I

N=10

Figure 6. Response of /1y, as a function of magnetic field for N = 1, 3, and 10, all close to the band bottom. The solid green line
corresponds to the case of no screening by a superconductor. Other solid lines correspond to Vsc = 0 V, dashed linesto Vsc = 0.2 V.
Black, red and blue indicate spin—orbit lengths 0f 233, 100, and 60 nm, respectively.

We associate an energy scale Ep with the reciprocal capacitance P, given by

2m*e*P?
T o

and study the two limits Ep > E; and Ep < Ey.In the strong screening limit Ep >> E; we find the asymptotic
behavior i &~ —Ey, corresponding to a constant-density regime. The opposite limit Ep < E; yields

u =~ —/EpEyz, close to a constant chemical potential regime. We computed Ep explicitly for the chemical
potential variations as shown in the top panel of figure 5. For a nanowire without a superconducting lead, we
findan energy Ep ~ 42 meV >> Ey,indicatinga constant-density regime. Using the classical approximation of
ametallic cylinder above a metallic plate, we find an energy of the same order of magnitude. For a nanowire with
an attached superconductinglead at Vsc = 0 V, we get Ep ~ 7 meV ~ Ey, intermediate between constant
density and constant chemical potential. Finally, a superconductinglead at Vsc = 0.2 V yields

Ep = 0.5 meV < Ey, indicating a system close to the constant chemical potential regime.

Since integrating over density-of-states measurements yields 6n, the inverse self-capacitance — e (to| By|1)¢)
can be inferred from experimental data by fitting the density variation curves to the theoretical dependence
1 (Ez). This allows to experimentally measure the effect of the electrostatic environment, when knowing the
remaining Hamiltonian parameters.

We compare the response to Zeeman field in the multi-band case for N = 3and N = 10 to the single band
behavior in figure 6. We observe that presence of extra charges further reduces the sensitivity of the chemical
potential to the magnetic field. We interpret the non-monotonous behavior of the chemical potential (most
pronounced for N = 10 in figure 6, but in principle present for all N) as being due to a combination of the Van
Hove singularities in the density of states and screening by charges. For a fixed chemical potential, the upper
band, moving up in energy due to the magnetic field, loses more states than the lower band acquires, since it
approaches the Van Hove singularity in its density of states. To keep the overall density fixed, the chemical
potential increases. Once the density in the lower band equals the initial density, the upper band is empty and the
chemical potential starts dropping again. In the limit of constant density and a single mode the magnetic field
dependence of the chemical potential can be solved analytically, reproducing the non-monotonicity and kinks
(see appendix D).

Relating the variation in (1, to density measurements is experimentally inaccessible for N > 1, since
corrections to y; depend on the density changes of each individual mode, as expressed in equation (15).
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Figure 7. Majorana transition boundary for a superconductor at Vsc = 0 V (upper panel) or a superconductor at Vsc = 0.2 V (lower
panel). The superconducting gap A = 0.5 meV. The boundaries are obtained for the single-band case. The solid black, red, and blue
lines correspond to a spin—orbit length of 233, 100, and 60 nm respectively. The black, red and blue horizontal lines in the upper plot
indicate the gate voltages at which we compute the correspondingly colored Majorana coupling oscillations in the inset of figure 8.

5. Impact of electrostatics on Majorana properties

5.1. Shape of the Majorana phase boundary

The nanowire enters the topological phase when the bulk energy gap closes ata Zeeman energy of

E; = Jp? + 2. Theelectrostatic effects affect the shape of the topological phase boundary through the
dependence of 12 on Ey. To find the topological phase boundary as a function of both experimentally
controllable parameters Vi and Ez, we perform a full self-consistent simulation at E; = 0. We then compute
corrections to the resulting chemical potential at arbitrary E7 using equation (15), and find topological phase
boundary E; = /u? + A? by recursive bisection.

Figure 7 shows the resulting phase boundary corresponding to A = 0.5 meV. The phase boundary has a
non-universal shape due to the interplay between electrostatics and magnetic field. In agreement with our
previous conclusions, the electrostatic effects are the strongest with absent work function difference Vsc = 0 V
(top panel of figure 7) when the nanowire is intermediate between constant density and constant chemical
potential”. Close to the band bottom, the charge screening reduces changes in density, and thus lowers the
chemical potential by an amount that is similar to Ez. Hence, the lower phase boundary (at smaller V) hasa
weaker slope than the upper phase boundary (at larger V). Note that in the limit of constant density, the lower
phase boundary would be a constant independent of E7 (see appendix D).

For a work function difference Vic = 0.2 V, the system is closer to the constant chemical potential regime.
In this regime, ;1 changes linearly with Vg, yielding a hyperbolic phase boundary with symmetric upper and
lower arms and its vertex at E; = A. When spin—orbit interaction is strong, a transition in the lower arm of the
phase boundary from constant chemical potential (hyperbolic phase boundary) to constant density (more
horizontal lower arm) occurs, resulting in a ‘wiggle’ which is most pronounced for Vsc = 0 V and Iso = 60 nm.
This feature is less pronounced for V5c = 0.2 V due to the screening by the superconductor suppressing the
Coulomb interactions.

5.2. Oscillations of Majorana coupling energy

The wave functions of the two Majorana modes at the endpoints of a finite-length nanowire have a finite overlap
that results in a finite nonzero energy splitting AE of the lowest Hamiltonian eigenstates [17-21]. This splitting
oscillates as a function of the effective Fermi wave vector kg ¢ as cos (kg L) [20]. We investigate the

The presence of a superconductor is essential for Majorana fermions, but inevitably leads to screening. For the geometries of our
calculations we thus do not have a situation close to constant density.
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Figure 8. Peak spacing of the Majorana energy oscillations in a magnetic field for ananowire oflength L = 2 pm. Solid lines
correspond to Vsc = 0V, dashed lines to Vsc = 0.2 V. Black, red and blue indicate spin—orbit lengths 0f 233, 100, and 60 nm
respectively. Inset: splitting energy oscillations for Vsc = 0 V. The three horizontal lines in the upper panel of figure 7 indicate the
corresponding gate potential. The energy splittings are found by solving for the lowest energy of the Hamiltonian of equation (8),
using the chemical potentials obtained from the perturbation scheme as described in section 4.

dependency of the oscillation frequency, or the oscillation peak spacing on magnetic field and the electrostatic
environment.

A peak in the Majorana splitting energy occurs when Majorana wave functions constructively interfere, or
when the Fermi momentum equals g7 /L, with g the peak number and L the nanowire length. The momentum
difference between two peaks is

Vs
Ke,eff (Ez,g+1) — kpett (Ezg) = T (19)

where Ez , is the Zeeman energy corresponding to the gth oscillation peak. In the limit of small peak spacing, we
expand kg, e (Ez,q+1) — Kg,eff (Ez,q) to first order in Ez:

dke AE, = X, (20)
dE; L
yielding the peak spacing
dke )
AEzpen = —[ =L . 21
Z,peak L(dEz) ( )

Since kgeff = Kg,eff (Ez, 14 (Ez)), we substitute

dhe Ok, Ok du o

dEz 8EZ 8u dEz
We obtain the values of Okp/ OEz and Okg/Op from the analytic expression for kg, presented in appendix C. The
value dy1/dEjy results from the dependence p (Ez) shown in figure 5.

Figure 8 shows the peak spacing as a function of Ez for a nanowire of length L = 2 pum. Stronger screening
reduces the peak spacing (i.e. increases the oscillation frequency) by reducing the sensitivity of the chemical
potential to the magnetic field, as discussed in section 4. In addition, spin—orbit strength has a strong influence
on the peak spacing, since for E; < Egq the density, and thus kg ¢, stays constant. This results in alower
oscillation frequency and hence a larger peak spacing. Correspondingly, we find that the peak spacing may
increase, decrease, or roughly stay constant as a function of the magnetic field.

Similarly to the shape of the Majorana transition boundary, figure 8 shows that the peak spacing does not
follow a universal law, in contrast to earlier predictions [21]. In particular, our findings may explain the zero-bias
oscillations measured in [11], exhibiting a roughly constant peak spacing.

Figure 9 shows Majorana energy oscillations as a function of both gate voltage and magnetic field strength
for Vsc = 0.2 V,with L = 1000 nm to increase the Majorana coupling. The diagonal ridges are lines of constant
chemical potential. The difference in slope between the ridges of both plots indicates a difference in the
equilibrium situation: closer to constant density for weak spin—orbit coupling, closer to constant chemical
potential for strong spin—orbit coupling. The bending of the constant chemical potential lines in the lower panel
indicates a transition from the latter mechanism to the former mechanism, due to the increase of magnetic field,
as explained in section 4.
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Figure 9. Majorana energy oscillations as a function of gate voltage and magnetic field for a superconductor at V¢ = 0.2 V with weak
spin—orbit interaction, Iso = 233 nm (upper panel), and strong spin—orbit interaction, lso = 60 nm (lower panel).

6. Summary

We have studied the effects of the electrostatic environment on the field control of Majorana devices and their
properties. Screening by charge and by the superconductor strongly reduce the field effect of the gates.
Furthermore, screening by the superconductor localizes the charge and induces a large internal electric field.
When we assume the superconductor to have a zero work function difference with the nanowire, charge
localizes at the bottom of the wire, which reduces the induced superconducting gap.

Coulomb interaction causes the chemical potential to respond to an applied magnetic field, while screening
by the superconductor and spin—orbit interaction suppress this effect. If a superconductor is attached, the
equilibrium regime is no longer close to constant density, but either intermediate between constant density and
constant chemical potential for a superconductor with zero work function difference, or close to constant
chemical potential for a superconductor with a positive work function difference.

Due to this transition in equilibrium regime for increasing screening and spin—orbit interaction, the shape of
the Majorana phase boundary and the oscillations of Majorana splitting energy depend on device parameters
rather than following a universal law.

We have shown how to relate the measurement of density variations to the chemical potential response.
Since the Majorana signatures directly depend on this response, our work offers a way to compare direct
experimental observations of both signatures with theoretical predictions, and to remove the uncertainty caused
by the electrostatic environment.

Our Schrédinger-Poison solver, available in the supplementary files for this manuscript, can be used to
compute lever arms and capacities for different device dimensions and geometries, providing practical help for
the design and control of experimental devices.
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Appendix A. Nomenclature—constant density and constant chemical potential

In [20] Das Sarma et al considered Majorana oscillations as a function of magnetic field. The authors considered
there two extreme electrostatic situations that they refer to as constant chemical potential and constant density.

In particular, [20] considers a one-dimensional nanowire BdG Hamiltonian as in equation (8), with y, being
denoted as . In this model, the subband energy Ej, is fixed and set to 0. The electron density is changed by
adjusting y (shown for the E; = 0 case in figure 10(a).
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Figure 10. Schematic explanation of constant chemical potential and constant density limits discussed in [20]: (a) in the absence of a
magnetic field, aband is filled up to the chemical potential /.. 41 is measured with respect to the band edge E}, that serves as a reference
energy. For a finite Zeeman splitting Ey the two spin-bands split by +E; with respect to Ey. In this case there can be two extreme
situations: (b) constant chemical potential—_ stays unchanged (and hence the total electron density changes). (c) constant density—
the total electron density stays constant leading to a new chemical potential 1 (for simplicity, all plots are shown for a = 0).

¢ = Ve

Figure 11. Schematic picture of the cross section of an InAs-Al device. It consists of a nanowire with a square cross section on a
dielectric layer which covers a global back gate. A superconducting lead covers one side of the wire. A vacuum gap separates the wire
from a second gate.

For fixed j1 in equation (8) electron density will change upon changing Ey. For example, if Ez > p, Eq,,
electron density will increase monotonically as Ey is increased (see figure 10(b)). This constant chemical
potential situation is realized in the limit of vanishing Coulomb interaction, as then density changes do not
influence the electrostatic potential. The same assumption is used in [19,21].

Reference [20] also considered the opposite case of infinitely strong Coulomb interaction. In this case the
electron density is fixed, and consequently p must change as E; changes. This constant density situation is
schematically shown in figure 10(c).

Appendix B. Lever arms in an InAs-Al nanowire

Another promising set of devices for the creation of Majorana zero modes is an epitaxial InAs-Al
semiconductorsuperconductor nanowire. These systems exhibit a hard superconducting gap and a high
interface quality due to the epitaxial growth of the Al superconductor shell [30].

Figure 11 shows a cross section of the device. The ¢, = 14.6 nanowire (InAs) lies on an ¢, = 4 dielectric layer
(S10,) of thickness dgielectric = 200 nm and is connected on one side to an Al superconducting shell. The device
has two gates: a global back-gate with a gate potential V3G, and a side gate with a potential Vig, separated by a
vacuum gap of width dg,,. We model the superconductor again as a metal with a fixed potential Vs¢. These three
potentials form the boundary conditions of the system.

We estimate the dependence of the lever arm of the side date dE/d Vs on d,,, using the self-consistent
Schrédinger—Poisson simulations. We set the back gate to Vg = —3.5 V, and choose the work function
difference of the Al shell equal to 0.26 eV, such that one electron mode is present at a side gate voltage of
Vog = —2 V, with dgap = 145 nm, as was observed in experiments [31]. We use the band gap 0.36 eV for InAs.

12
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Figure 12. Top panel: six lowest energy levels with a fixed gate potential Vg = Vsg = 0 V. Bottom panel: lever arm in the InAs-Al
device as a function of gate spacing with Vg = 0 V.

Our results are shown in figure 12, and allow to translate the gate voltages into the nanowire chemical
potential. The work for the InAs-Al device shows that our numerical algorithm is easily adjusted to different
device geometries, as long as the nanowire stays translationally invariant.

Appendix C. Electron density in a nanowire

Integration over the 1D density of states yields the electron density # (E, Ez, «), related to the charge density by
equation (3). To derive the density of states, we start from the nanowire Hamiltonian, consisting of the
transverse Hamiltonian of equation (1) and the longitudinal Hamiltonian of equation (2):

o, .0
H=|- V2 — e (x, y) |op — ia—o0, + Ez0,. (C.1)
2m* 0z

Assuming that the wave function has the form of a plane wave oce'** in the longitudinal direction, and quantized
transverse modes 1); with corresponding energies E; in the transverse direction (where i denotes the transverse
mode number), the energies of the Hamiltonian are

2

2
E(k) =E; + 'k + JEZ + o2k, (C.2)

2m*

yielding the dispersions of the upper and the lower spin band. Converting equation (C.2) to momentum as a
function of energy yields

ki(E, E;, Ez, ) = %\/oﬂ + 2(E—E)+ o' + 4a%(E — E)) + 4E2, (C.3)

where o, E, Ez, and E; are in units of /22/2n7*. The relation between the density of states D(E) and k is
1 dk

D(E) = 1

(C4)
We obtain the density n (E;, Ez, o) by integrating the density of states up to the Fermi level Ez = 0. The Zeeman
field opens a gap of size 2E; between the upper and the lower spin band. Due to the W-shape of the lower spin
band, induced by the spin—orbit interaction, we distinguish three energy regions in integrating up to Eg. If

—E; > Ez,both spin bands are occupied and the integration yields

1
n(Ei) EZ) OZ) - _(k+(EF) Ei) EZ’ a) + k*(EF) Ei) EZ’ Oé)) (CS)
™

If —-E; < —E; < Eyz, onlythelower band is occupied, and the dispersion has two crossings with the Fermi level,
yielding a density
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n(E;» Bz, @) = “k,(E, Es Bz, ). (C.6)
T

For a nonzero spin—orbit strength, we have four crossings of the lower spin band with Egif —E; < —Ey (see
figure 5, bottom panel). Since only the interval k_ < k < k. contributes to the density, integration of the
density of states yields

n(Ei, Ez, a) = l(k+(E1:, Ei) Ez, Oé) — k,(EF, E,‘, Ez, Oé)) (C7)
™

Equations (C.5), (C.6), and (C.7) provide analytic expressions for the electron density. We use these
equations to calculate the charge density of equation (3).

Appendix D. Response to the Zeeman field in the constant density limit and for small
spin—orbit

The limit of small spin—orbit interaction and constant electron density in the nanowire independent of Zeeman
field allows for an analytic solution the magnetic field dependence of the chemical potential, 4 = i (Ez). In
particular, we have from equations (C.5) and (C.7) for 1 (Ez = 0) = p, > 0:

24 2m* V2m*
Py =~ (i By 40— En i~ Ep), (D.1)

where 6 is the Heaviside step function. This is readily solved as

(D.2)

po Lot E}/(4pg) for Ez < 241,
4p, — Ez  for Ez > 2p,.

Hence, the chemical potential first increases with increasing E7 until the upper spin-band is completely
depopulated. Then the chemical potential decreases linearly with E;. At the cross-over point the dependence of
the chemical potential is not smooth but exhibits a kink, also seen for example in the numerical results of
figure 6.

In the constant density limit we can also compute the asymptotes of the topological phase in - Ez-space. For
E; > A, the topological phase coincides with the chemical potential range where only one spin subband is
occupied. From equation (D.2) we find the two asymptotes thusas ;n = 0 and i = Ez/2. Hence, in the constant
density limit, the phase boundary that corresponds to depleting the wire becomes magnetic field independent.

Appendix E. Benchmark of nonlinear optimization methods

We apply the Anderson mixing scheme to solve the coupled nonlinear Schrodinger—Poisson equation:

{v2¢(x, y) = —p@i(x, y), E)/ €

. (E.1)
Hig x, »1Yi(x, y) = Eii(x, y)

Optimization methods find the root of the functional form of equation (E.1), as given in equation (5). As
opposed to other methods, the Anderson method uses the output of the last M rounds as an input to the next
iteration step instead of only the output of the last round [29]. The memory of the Anderson method prevents
the iteration scheme from oscillations and causes a significant speedup in computation times in comparison to
other methods, and in particular the simple under-relaxation method often used in nanowire

simulations [32, 33].

As a test system, we take a global back gate device, consisting of a hexagonal InSb nanowire onan ¢, = 4
dielectric layer (SiO,) of thickness 285 nm, without a superconducting lead. Due to the thick dielectric layer in
comparison to the Majorana device, this device is more sensitive for charge oscillations (a different number of
electron modes in the system between two adjacent iteration steps). This makes the device well-suited for a
performance benchmark. We compare the Anderson method to three other nonlinear optimization methods:
Broyden’s first and second method [34] and a method implementing a Newton—Krylov solver (BiCG-stab) [35].

Figure 13 shows the results. In this plot, we show the cumulative minimum of the error. Plateaus in the plot
correspond to regions of error oscillations. The figure shows that the Anderson method generally converges
quickly and is not affected by error oscillations. However, the three other methods show oscillatory behavior of
the error over a large range of iterations. Both Broyden’s methods perform worse than the Anderson method,
but generally converge within ~ 10 iterations. The Newton-Krylov method performs the worst, having a large
region of oscillations up to ~10°~10" iterations. Due to its robustness against error oscillations, the Anderson
method is the most suited optimization method for the Schrodinger—Poisson problem. For a much thinner
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Figure 13. Benchmark of the Anderson solver (solid lines) with the First Broyden’s method (dashed lines), the Second Broyden’s

method (dotted lines) and the BiCG-stab Newton—Krylov method (diamond markers). Black, blue and red colors correspond to a gate
voltage Vi =0.3,0.4,and 0.5 V respectively. We show the cumulative minimum of the error.

dielectric layer, such as the 30 nm layer in the Majorana device, the iteration number is typically ~ 10! for all four
tested optimization methods.

In our approach, we choose not to use a predictor-corrector approach [36, 37] that can also be used together
with a more advanced nonlinear solver such as the Anderson method [38]. The advantage of the direct approach
used here is its simplicity, without a significant compromise in stability and efficiency.
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