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ABSTRACT
Adaptive Cruise Control (ACC) can reduce traffic congestion and
accidents. In dense traffic flow conditions and when changing
lanes, drivers prefer to deactivate the ACC. These control transi-
tions between automation and manual driving could impact driver
behaviour characteristics. However, few studies have analysed the
magnitude and duration of these adaptations. This research aims at
quantifying the adaptations in speed, acceleration, distance head-
way and relative speed when drivers resume manual control. We
collected driver behaviour data in an on-road experiment with full-
range ACC during peak hours in Munich. We analysed these data
using linear mixed-effects models to identify statistically significant
changes in driver behaviour characteristics after drivers resumed
manual control (transition period). The results reveal that the speed
decreased significantly after the system was deactivated and it
increased significantly after the system was overruled by pressing
the gas pedal. These adaptationsmight have a substantial impact on
traffic efficiency and safety.
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Introduction

Automated vehicles and systems supporting drivers in their control task can contribute to a
reduction of traffic congestion and accidents. Automated vehiclesmay improve traffic flow
stability, accelerate the outflow from a queue, and increase road capacity (Hoogendoorn,
van Arem, and Hoogendoorn 2014). Automated vehicles are also expected tomitigate traf-
fic accidents by reducing driver error, which is responsible for the majority of collisions
(International Transport Forum2015). To predict these impacts, it is essential to understand
howthedrivingassistance systems that are currently available influence theperformanceof
thedriving task. The influenceofAdaptiveCruiseControl (ACC) systemsondriver behaviour
has been an object of research, mainly in driving simulator experiments, since the 1990s.
The ACC has a direct adaptation effect on the longitudinal control task of drivers because
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it keeps a target speed and time headway (Martens and Jenssen 2012). On-road experi-
ments (NHTSA 2005; Alkim, Bootsma, and Hoogendoorn 2007; Malta et al. 2012; Schakel
et al. 2017) have shown that ACC systems have a substantial impact on driver behaviour.
When the ACC system is used, drivers maintain larger time headways (NHTSA 2005; Alkim,
Bootsma, and Hoogendoorn 2007; Malta et al. 2012; Schakel et al. 2017), spend more
time in the middle and left lane (fast lane) and change lanes beforehand to avoid possi-
ble interactions with slower vehicles (Alkim, Bootsma, and Hoogendoorn 2007). However,
these results might be determined by the traffic situations in which the ACC system is acti-
vated (e.g. non-critical traffic situations, light-medium traffic conditions, andmedium-high
speeds).

In certain situations, drivers might choose to disengage the ACC system and resume
manual control, or the system disengages because of its operational limitations. These
transitions between automation and manual driving are called control transitions (Lu et al.
2016) and may influence considerably traffic flow efficiency (Varotto et al. 2015) and safety
(Vlakveld et al. 2015). Lu et al. (2016) categorised control transitions based on who (driver
or automation) initiates the transition and who is in control afterwards. In this framework,
transitions are defined as ‘Driver Initiates transition, andDriver in Control after’ (DIDC)when
drivers deactivate the system, ‘Driver Initiates transition, and Automation in Control after’
(DIAC) when drivers activate it, and ‘Automation Initiates transition, and Driver in Con-
trol after’ (AIDC) when the system deactivates because of its operational limitations. The
situations in which these transitions happen are related to the functioning of the driver
assistance system, the road, the traffic flow, and the drivers themselves (Varotto et al. 2014).
Field Operational Tests have suggested that drivers initiate DIDC transitions with ACC sys-
tems that are not operational at low speeds to avoid potentially safety-critical traffic situa-
tions (Xiong and Boyle 2012) and to regulate the speed before changing lane (Pauwelussen
and Minderhoud 2008; Pauwelussen and Feenstra 2010) (for a detailed review, see Varotto
et al. [2017]). When drivers deactivate the system, the mean time headway and the mean
acceleration decrease significantly (Pauwelussen and Minderhoud 2008; Pauwelussen and
Feenstra 2010). These significant changes in the mean driver behaviour characteristics can
be interpreted as adaptation effects on the driver control task. Further analysis is needed
to analyse the duration of these adaptations. Recently, full-range ACC systems that oper-
ate at low speeds in stop-and-go conditions have been introduced into the market. These
systems might be activated and deactivated in different circumstances and result in dif-
ferent adaptation effects. Recently, controlled on-road studies have shown that full-range
ACC systems are deactivatedwhen the subject vehicle approaches a slower leader (Varotto
et al. 2017, 2018), changes lane (Pereira, Beggiato, and Petzoldt 2015), and exits the freeway
(Pereira, Beggiato, andPetzoldt 2015; Varotto et al. 2017, 2018). These systemsareoverruled
by pressing the gas pedal a few seconds after activation and when the vehicle deceler-
ates (Varotto et al. 2017, 2018). However, these studies did not analyse possible adaptation
effects in the driver behaviour characteristics after the full-range ACC was deactivated or
overruled by pressing the gas pedal.

Full-range ACC systemsmight have a beneficial impact on traffic flow efficiency in dense
traffic (Van Driel and van Arem 2010). To assess this impact at varying penetration rates,
mathematicalmodels of automated andmanually driven vehicles canbe implemented into
microscopic traffic flow simulations. To date,most car-following and lane-changingmodels
used to assess the impact of ACC do not describe control transitions. A few mathematical
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models (Van Arem, De Vos, and Vanderschuren 1997; Klunder, Li, and Minderhoud 2009;
Xiao, Wang, and van Arem 2017; Xiao et al. 2018) have implemented deterministic decision
rules for transferring control and have ignored possible adaptation effects in manual driv-
ing behaviour before the system is activated and after the system is deactivated. Therefore,
the effects on traffic flow forecasted by these models could be unrealistic. The behavioural
realism of the mathematical models available can be improved by incorporating find-
ings from human factors and driver psychology (Saifuzzaman and Zheng 2014; Hamdar,
Mahmassani, and Treiber 2015; Paschalidis, Choudhury, and Hess 2018, 2019a; Van Lint
and Calvert 2018; Hamdar et al. 2019; Manjunatha and Elefteriadou 2019; McDonald et al.
2019).

This study analyses speed, acceleration, distance headway and relative speed during
control transitions from full-rangeACC tomanual driving using statistical analysismethods.
These driver behaviour characteristics were chosen because they are relevant to represent
the longitudinal control task of drivers in microscopic traffic flow models. The aim of this
statistical analysis is to identify possible adaptation effects in longitudinal driver behaviour
in the first few seconds after the system has been deactivated and after it has been over-
ruled by pressing the gas pedal. To this purpose, a controlled on-road experiment was
designed and driver behaviour data were collected on the A99 freeway in Munich during
peak hours. This data collection method allows to analyse driving behaviour in real traffic
with a highdegree of external validity, controlling for confounding factors (e.g. roaddesign,
traffic flowconditions, timeof theday andweather) and increasing the exposure to the con-
ditions under investigation (e.g. congestion) (for a comprehensive review on on-road data
collection methods, see Carsten, Kircher, and Jamson [2013]).

The paper is organised as follows. The next section provides an overview on adaptations
in longitudinal driver behaviourwhenmanual control is resumed and on limitations of data
analysis methods for repeated measures. The research gaps and the research hypotheses
are presented at the end of this section. The following section describes the specifications
of the ACC system, the experimental design, and the data collection. Next, the dataset, the
data processing, and the exploratory data analysis are presented. The following section
describes the statistical analysis methods capturing adaptations in driver behaviour char-
acteristics and the estimation results. After that, the driver behaviour characteristics of
individual drivers during control transitions and during manual driving are compared. The
last section discusses the relevance of these findings for the development of new driving
assistance systems and microscopic traffic flow models.

Literature review

This section describes adaptations in driver behaviour characteristics during control transi-
tions from ACC to manual driving based on on-road studies in real traffic. In this study, we
define adaptions as the significant changes in thedriver behaviour characteristics in the first
few seconds after the ACC system has been deactivated. Notably, control transitions have
also been analysed in driving simulator experiments which have mainly focused on reac-
tion times in automation failures (for a review, see Varotto et al. [2015]). We conclude the
literature review by defining the research gaps and formulating the research hypotheses
that are tested in this study.
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Adaptations in driver behaviour characteristics during transitions tomanual
control

Control transitions can be initiated by the automated system because of its operational
limitations or by the driver voluntarily. Several FOTs (NHTSA 2005; Alkim, Bootsma, and
Hoogendoorn 2007; Viti et al. 2008; Xiong and Boyle 2012) have analysed driver behaviour
with ACC systems that are not operational at speeds below 30 km/h (or 20mph) and
have limited decelerations capabilities. A few studies (Pauwelussen andMinderhoud 2008;
Pauwelussen and Feenstra 2010) have analysed changes in the means and standard devia-
tions of the driver behaviour characteristics before and after the control transitions (values
aggregated over 10-s intervals) using a repeated measures analysis of variance (ANOVA).
After the ACC system was deactivated (DIDC transitions to Inactive), the mean time head-
way decreased significantly (from1.79 to 1.40 s), the standard deviation of speed decreased
(from 15.5 to 11.4 km/h), the mean acceleration decreased (from−0.02 to−0.40m/s2) and
the standard deviation of acceleration increased (from 0.22 to 0.35m/s2). These results sug-
gest that drivers braked and drove closer to the leader after deactivating the system. After
the ACC was overruled by pressing the gas pedal (DIDC transition to Active and Acceler-
ate), the mean acceleration increased significantly (from −0.03 to 0.10m/s2). This finding
suggests that drivers pressed the gas pedal for a few seconds after overruling the system.
Recently, controlled on-road studies have analysed the situations in which drivers resume
manual control in full-range ACC (Pereira, Beggiato, and Petzoldt 2015; Varotto et al. 2017,
2018). However, these studies did not analyse potential adaptation effects in the driver
behaviour characteristics after the systemwas deactivated or overruled by pressing the gas
pedal.

In summary, previous studies (Pauwelussen and Minderhoud 2008; Pauwelussen and
Feenstra 2010) have gained limited insight on the duration of adaptation effects during
control transitions because the 10-s intervals were chosen arbitrarily and any temporal evo-
lution of the driver behaviour characteristics over these time intervals was ignored. Since
traffic density levels were not captured explicitly, it is not clear whether adaptations in the
meandriver behaviour characteristics occur inmedium-dense traffic flow conditions,which
are more relevant to understand impacts on traffic efficiency and safety. In addition, these
studies did not control for the confounding effect of any additional control transitions initi-
atedwithin these time intervals, when the systemwas deactivated or overruled by pressing
the gas pedal for less than 10 s. To control for these factors, a more in-depth analysis is
needed.

The time needed by drivers to stabilise their behaviour after AIDC transitions was anal-
ysed byMerat et al. (2014) in a driver simulator experiment with a high degree of controlla-
bility. Driver behaviour measurements over consecutive 5-s time intervals were compared
using repeated measures ANOVA. A similar approach can be used to investigate adapta-
tions indriver behaviour characteristics afterDIDC transitions. However, repeatedmeasures
ANOVA is only suitable to analyse data in which the hierarchical structure is simple (e.g.
subjects and repetitions over time for each subject), the same number of repetitions are
available for each subject, and all observations are complete. To analyse the impact of
several observable and unobservable factors simultaneously on the driver behaviour char-
acteristics in an experimentwith a higher degree of validity, we need a flexible data analysis
technique capturing variations between subjects and correlations between observations
over time for the same subject.
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Statistical analysis methods for adaptations in driver behaviour

Few studies have analysed adaptations in driver behaviour capturing the impact of sev-
eral explanatory factors and interdependencies between repeated observations over time
for the same subject. For this purpose, recent studies have proposed linear mixed-effects
models for repeated measures, which can accommodate both fixed and random effects
capturing complex error structures (Peng, Boyle, and Lee 2014; Peng and Boyle 2015;
Oviedo-Trespalacios et al. 2017; Wang et al. 2017; Geden, Staicu, and Feng 2018; Saad,
Abdel-Aty, and Lee 2018; Albert 2019). Linear mixed-effects models allow to define explic-
itly a hierarchical structure (e.g. subjects and occasions within subjects) and a residual
variance-covariance structure (e.g. correlations between consecutive observations over
time) (Pinheiro and Bates 2000; Tabachnick and Fidell 2013). Alternative model struc-
tures and residual variance-covariance structures can be tested and compared based on
statistical significance (Verbeke and Molenberghs 2009; Zuur et al. 2009). Notably, linear
mixed-effects models are robust against unequal number of repetitions for each subject
and missing data that are frequent in on-road experiments. The model can be used to pre-
dict the estimated marginal means of the dependent variable in different treatment levels
for each factor. Pairwise comparisons can be used to test statistically differences between
specific treatment levels, controlling for the confounding effect of the fixed and random
effects that are captured in the model (Quené and van den Bergh 2004). We conclude that
linear mixed-effects models are a suitable data analysis technique to capture adaptations
in driver behaviour characteristics over time.

Research gaps and hypotheses

In summary, FOTs have shown significant changes in the mean driver behaviour charac-
teristics before and after control transitions with ACC systems that are not operational at
low speeds (Pauwelussen and Minderhoud 2008; Pauwelussen and Feenstra 2010). These
studies compared themean values of the driver behaviour characteristics aggregated over
10-s intervals in a wide range of traffic situations using repeated measures ANOVA (before
vs. after control transitions). However, limited insight was gained on the duration of these
adaptation effects, on the magnitude of these adaptations in medium-dense traffic flow
conditions, and on the confounding effect of any additional control transitions initiated
within these time intervals. Repeated measures ANOVA is not suitable to analyse data col-
lected in experiments with a high degree of validity, in which the hierarchical structure is
complex (e.g. subjects, occasions within subjects, repetitions over time within occasions),
a different number of repetitions is available for each subject, and some observations are
missing. To capture the impact of several observable and unobservable factors simultane-
ously on the driver behaviour characteristics in these experiments, we need a flexible data
analysis technique. Quantifying the duration and magnitude of significant adaptations in
driverbehaviour characteristics after drivers resumemanual control represents the first step
towards understanding driver interaction with the system. We are particularly interested
in analysing driver behaviour characteristics in dense traffic because describing accurately
driving behaviour in these conditions is more relevant to assess potential impacts of con-
trol transitions on traffic flow efficiency. It should be clarified that the statistical analysis
proposed in this study provides an empirical foundation for developing microscopic traf-
fic flow models but does not aim directly at developing mathematical models that can
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be implemented into a microscopic traffic flow simulation. In this paper, the following
two main research hypotheses are tested based on driver behaviour data collected in an
on-road experiment:

• H1: The mean speed, acceleration, distance headway, and relative speed change signifi-
cantly over a certain time period (transition period) when drivers resumemanual control
after the ACC system is deactivated or overruled;

• H2: The duration of this transition period and the magnitude of the adaptation in driver
behaviour characteristics vary significantly depending on the traffic density.

The data analysis is structured as follows. Descriptive statistics are used to explore the
relationships existing between driver behaviour characteristics in control transitions and
ACC system states, average traffic density conditions, and time period after transferring
control. Linearmixed-effectsmodels are proposed to analyse the temporal evolution of the
mean driver behaviour characteristics in different traffic conditions accounting for the ACC
system states. Pairwise comparisons of the estimated marginal means are used to test sta-
tistically the research hypotheses H1 andH2. The results reveal the duration andmagnitude
of the transitionperiods for each typeof control transition. Finally, drivers’ responses during
the transition periods and during manual driving in similar traffic situations are compared.

Experimental set-up

In this section,wedescribe the characteristics of theACC systemand thedata collection sys-
tems available, the experimental design, the test route and the data collection. A reduced
description of the experiment has been presented in a previous study analysing the main
factors that influence drivers’ decisions to resumemanual control (Varotto et al. 2017).

ACC system specifications

The research vehicle (BMW5 series, 2013) was equippedwith a regular version of full-range
Adaptive Cruise Control (ACC) and a Lane Change Warning (LCW). The ACC system takes
over speed control at speeds between 0 and 210 km/h and adapts the following distance
to the vehicle in front at speeds higher than 30 km/h. The target time headways that can be
set are 1.0, 1.4, 1.8, and 2.2 s. Themaximumacceleration and deceleration supported by the
system are 3m/s2 and−3m/s2. The radar range is equal to 120m.When the radar does not
detect any vehicle in front in the same lane (leader), the system functions as a cruise control
and keeps the speed set by the user (free speed). When the vehicle stands still for less than
3 s, the system restarts the engine automatically and the vehicle moves off. However, the
system is not able to regulate the speed and followingheadwaybasedonobjects that stand
still. The LCW system detects vehicles that approach at high speeds in the adjacent lanes
and warns the driver with a light on the wing mirrors. In addition, drivers are warned by
a vibration of the steering wheel and a flashing light when they set the turning indicator
to change lane in a safety critical situation. The LCW system is not active at speeds below
70 km/h. In this paper, we will focus on the functioning of the full-range ACC only.

The ACC system can be in each single moment in one of the following states: Off (O),
Inactive (I), Active (A), Active and Accelerate (AAc). Figure 1 presents possible DIDC and DIAC
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Figure 1. Control and state transitions between ACC system states that can be initiated by drivers.
Note:Whiteboxesdenote systemstates inwhichdrivers are in control,while greyboxes states inwhichACC is in control. Solid
arrows indicate control transitions, while dashed arrows state transitions. Grey solid arrows define ‘Driver Initiates transition,
and Automation in Control after’ (DIAC), black solid arrows ‘Driver Initiates transition, and Driver in Control after’ (DIDC). An
early version of the figure was presented in Varotto et al. (2017).

transitions. Pressing the on/off button once, drivers can transfer fromO to I, and, pressing it
a second time, from I to A. Control transitions betweenO and Iwere executedwhen the sys-
temwas activated for the first time at the beginning of the test trial andwill not be analysed
in the remainder of the paper. The system can also be activated (to A) using the switch to
regulate the desired speed or the resume button, which re-engages the desired speed and
time headway previously used (ResumeACC). When the system is active, it is possible to set
a target speed and time headway by using the switches. The system transfers to AAc when
the gas pedal is pressed, and back to A, maintaining the settings previously stored, when
the gas pedal is released. The system can be disengaged (to I) by braking or by pressing the
on/off button. However, the system cannot handle all possible driving situations (e.g. safety
critical situations) and might fail unexpectedly without any warnings (AIDC). The system
switches off automatically (to I) when the vehicle stands still for more than 3 s (e.g. in con-
gestion), when the system-support constraints (e.g. maximumdeceleration) are reached in
a safety critical situation and as a result a Take Over Request (TOR) is triggered, and in case
of a system failure (e.g. the sensors cannot work properly and the system is switched off
without warning the driver). After ACC switches off automatically at speeds equal to zero,
the system is re-engaged when the driver presses the gas pedal (I to AAc).

Data collection systems (sensors)

GPS position, ACC system state and settings, speed, acceleration, distance headway (from
radar), and speed of the leader (from radar) weremeasured and registered in the Controller
Area Network (CAN) of the instrumented vehicle. The data were recorded at a frequency
of 1Hz (GPS position), 15Hz (e.g. distance headway), and 50Hz (e.g. speed of the subject
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(a)

(b)

Figure 2. (a) Map of the test route on the A99 in Munich (Google Maps Viewed May 17, 2018) and (b)
picture of the basic freeway section.
Note: An early version of the figure was presented in Varotto et al. (2017).

vehicle). In addition, lane-specificmean speeds and countswere recordedbydual inductive
loop detectors at one minute intervals.

Test route

The test route was pre-set in the navigation system to allow a valid comparison between
participants. It comprised four freeway segments (Figure 2(a)) mostly composed of three
lanes per direction (Figure 2(b)) on the A99 in Munich (46 km in total). Drivers entered and
exited each freeway segment. This route was selected based on traffic data which showed
high density conditions during peak hours. The outward journey to reach the entrance of
the freeway, on-ramps, connections, off-ramps and the return journey after exiting were
not included in the analysis.

Experimental design

The experiment consisted of a single drive along a pre-set test road (controlled on-road
study) that comprised different traffic flow conditions (i.e. light, medium and dense traffic)
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and freeway sections, resulting in awithin-subjects experimental design. During the training
session on the first freeway segment, participants tested the ACC system and found their
preferred time headway setting. During the experiment on the remaining three freeway
segments, participants were instructed to drive as they normally would do in real-life and
use the ACC systemonlywhen they thought it was appropriate. Therefore, they could over-
rule the system and regulate the desired speed at any time. LCWwas active all the time and
could not be deactivated.

Participants and data collection

A sample of twenty-three participants with a valid driving license and more than one
year of driving experience was recruited from the BMW employees in Munich. All of them
completed the experiment successfully. Fifteen participants were males, and eight were
females. Participants were aged between 25 and 51 years old (M = 31.57, SD = 6.73). Six
participants had no experience with Advanced Driving Assistance Systems (ADAS), nine
were used to drive with ADAS less than once a month and eight more often than once a
month. None of them had been directly involved in the development of the system. The
experiment was conducted from June, 29th to July, 9th 2015 during the morning (7–9 am)
and the evening (4–6 pm, 6–8 pm) peak hours. The weather conditions (clear sky or light
clouds) and the lightening conditions (daylight)were favourable. Participants receivedwrit-
ten instructions on the potential safety risks, the specifications of the systems, and the
general scope of the research before the experiment. However, the precise purpose of
the experiment (i.e. analysing driving behaviour during control transitions) was not com-
municated. Participants signed a written informed consent form according to the ethical
regulations of Delft University of Technology. All participants reported that they had under-
stood the functioning of the ACC system during the training session and that they were
confident of participating in the experiment. The duration of test drive was between 45
and 90min based on the traffic flow conditions.

Datasets used

In this section, we briefly discuss the different data sets (CAN-bus and loop detector data)
that were collected during the experiment and analysed in this study.

CAN-bus data

Only the data registered on the three freeway segments being part of the experiment were
processed. In the dataset (23 drives of 35.5 km each) there were 378 transitions to manual
control, 326 of which were initiated by drivers and 52 were initiated by the ACC system.
Table 1 reports the occurrences of each type of transition. Drivers transferred most fre-
quently from A to AAc (54.8% of total) and deactivated the systemmost often by using the
brake pedal. Analysing the transitions initiated by the ACC system, we noted that the ACC
switched off most often in a stand-still and sometimes because of an unexpected failure.
Notably, the occurrences of these failures are not representative of the system functioning
in a serial car. Two TORs happened in safety critical situations (cut-inmanoeuvres) when the
maximumdeceleration of the systemwas not sufficient to avoid collision and thedriver had
to brake manually. This paper will analyse only the transitions initiated by drivers.
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Table 1. Number and percentage of transitions to Inactive (A to I) and to Active and accelerate (A to AAc)
based on initiation mode.

Transition initiation

Driver ACC

A to I 119 (31.5% of total) 52 (13.8% of total)
Initiation mode: Initiation mode:
On/off button 19 (16.0%) Stand still 42 (80.8%)
Brake 100 (84.0%) System failure 8 (15.4%)

Take Over Request 2 (3.8%)
A to AAc 207 (54.8% of total)

Initiation mode:
Press gas pedal 207 (100%) –

Tr
an
sit
io
n
ty
pe

Loop detector data

The test road is equipped with 30 stationary detectors which provide lane-specific time
mean speeds and counts at one minute intervals. The detectors are placed at a distance
between 320 and 2250m (M = 1273m, SD = 441m) as presented in the road network in
Figure 3(a) and 3(c). Two detectors did not record any data, all detectors malfunctioned for
24 h and some of themmalfunctioned temporarily during the experiment due to failures in
the communication system. The valid loop detector data recorded during the experiment
were processed using the Adaptive Smoothing Method (ASM) to reconstruct the general
traffic conditions as smooth functions of space and time (Treiber and Helbing 2002). The
ASM is preferred to simple interpolation because it accounts for the characteristic propa-
gation velocities in free and congested traffic, and it is suitable to reconstruct traffic when
some detectors fail and the distance between valid detector measurements is shorter than
3 km (Treiber and Helbing 2002). As a result, the mean speed, traffic flow and density were
calculated for each lane at a space resolution of 100m and time resolution of 30 s.

CAN-bus data and loop detector data were synchronised (manually). Figure 3(b, c)
presents the trajectory of a participant on a time–space speed contour plot of the lane in
which the vehicle was in during the experiment. The driver maintained the ACC system
active most of the time in a full-speed range and transferred control more often in dense
traffic conditions. At thebeginningof the first segmentbeingpart of the experiment (Figure
3(d)), the driver transferred from A to AAc and from A to I multiple times before changing
lane in dense traffic conditions. In medium and light traffic conditions, control transitions
were initiated less frequently (e.g. A to I before exiting the freeway in Figure 3(d)). At the
end of the third freeway segment (Figure 3(b)), the ACC system deactivated automatically
after the vehicle stood still for more than 3 s in very dense traffic. However, the driver re-
activated the system as soon as the leader moved off. These results support the relevance
of the current study showing that, in contrast with previous findings on ACC systems that
are not operational at low speeds (Viti et al. 2008), the full-range ACC was used in dense
traffic conditions.

Data processing

To gain insight into driver behaviour during control transitions, we analysed the longitu-
dinal driver behaviour characteristics (speed, acceleration, distance headway, and relative
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(a) (b)

(c) (d)

Figure 3. Road network of the test site: (a) northbound A99, and (c) southbound A99. (b, d) Trajectory
of a test vehicle (blue line) and time-space speed contour plots of the lane in which the vehicle was in
during the experiment.
Note: In (a) and (c), red boxes represent the loop detectors, and blue arrows the locations where the vehicle entered and
exited each segment. In (b) and (d), dark blue dots represent ACC Inactive, blue ACC Active, and light blue ACC Active and
accelerate.
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speed) in the intervals 10 s before and 10 s after each transition. These driver behaviour
characteristicswere selectedbecause they are relevant todevelop amicroscopic traffic flow
model. The time intervals were chosen because they are considered suitable to execute
a manoeuvre (e.g. the average lane change duration is equal to 5–6 s [Toledo and Zohar
2007]) and were used in a similar previous study (Pauwelussen and Feenstra 2010). The
measurements were reduced to a 1Hz frequency to test significant changes in the mean
variables over time (within the 10-s intervals) and interaction effects with the system states
(H1) and the traffic density levels (H2).

Averagedensity levelswere calculatedbyusing the lane-specific loopdetectormeasure-
ments. Unreliable loop detectors measurements (mean speeds below 72 km/h at densities
lower than 22 veh/km/lane, andmean speeds below 36 km/h)were discarded as suggested
by Knoop and Daamen (2017). To compare changes in driver behaviour characteristics in
different traffic conditions, the observed transitionswere classified into three density levels
as follows:

• low density, if the detector measurements were considered reliable and the mean den-
sity was lower than 11 veh/km/lane (i.e. HCM level of service A and B [Transportation
Research Board 2010]), or if the loop detector measurements were discarded and the
mean speed of the leader over the 20-s interval was higher than 110 km/h, or if the loop
detector measurements were discarded and the leader was not detected by the radar
over the 20-s interval (i.e. distance headway larger than 120m);

• medium density, if the detector measurements were considered reliable and the mean
density was between 11 and 22 veh/km/lane (i.e. HCM level of service C and D [Trans-
portation Research Board 2010]), or if the detector measurements were considered
unreliable and the mean speed of the leader was between 80 and 110 km/h;

• high density, if the detector measurements were considered reliable and the mean den-
sity was higher than 22 veh/km/lane (i.e. HCM level of service E and F [Transportation
Research Board 2010]), or if the detector measurement was discarded and the mean
speed of the leader was lower than 80 km/h.

Data analysis

In this paper, we analyse 119 DIDC transitions to I (36 at low densities, 50 at medium den-
sities, and 33 at high densities) and 207 DIDC transitions to AAc (63 at low densities, 96
at medium densities, and 48 at high densities). Transitions to I comprises 2380 1-s obser-
vations for speed and acceleration and 2003 1-s observations for distance headway (front
bumper to rear bumper) and relative speed (speed of the leaderminus speed of the subject
vehicle), while transitions toAAc 4140 1-s observations for speed and acceleration and3544
1-s observations for distance headway and relative speed. Distance headways and relative
speeds are considered missing if the radar does not detect any leader (i.e. sudden leader
change due to a cut-in or a lane change and distance headway larger than 120m). Drivers
differed considerably in the number of transitions executed. During the 35.5-km test drive,
drivers transferred to I from 1 to 13 times (M = 5.17, SD = 2.72) and to AAc from 0 to 43
times (M = 9.00, SD = 9.52). Some drivers drove with the system active most of the time,
others resumedmanual control frequently or drovemainlymanually. These results suggest
that differences between drivers should be accounted for when analysing driver behaviour
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Table 2. System state in the 10-s interval before and 10-s after the transitions to Inactive (A to I) and to
Active and accelerate (A to AAc).

A to I A to AAc

System state Before After Before After

I 1.8% 86.0% 5.1% 7.1%
A 87.7% 11.5% 69.5% 30.7%
AAc 10.4% 2.5% 25.4% 62.2%
Total 100% 100% 100% 100%

during control transitions. In the remainderof this section,weexplore, at anaggregate level,
the relationships existing between driver behaviour characteristics in control transitions
and ACC system states, average traffic density conditions, and time period before and after
transferring control.

Table 2 shows the percentages of time in each system state in the 10-s intervals before
and after the transitions. These percentages indicate that other transitions were initiated in
the10-s intervals. Sometimes the systemwasactive in the10-s interval after the transition to
I, meaning that the ACCwas deactivated for less than 10 s. The systemwas AAc for a limited
percentage of time after the transition to AAc, meaning that the ACC was overruled for a
few seconds only. These results support our hypothesis that it is necessary to control for the
system statewhen analysing the driver behaviour characteristics during control transitions.

Themeanand standarddeviation (values aggregatedover 10-s intervals) of speed, accel-
eration, distance headway and relative speed were calculated for each density level in the
10-s interval before and 10-s after the transitions (Appendix A, Table A1). Paired samples
t-tests were performed to check whether the differences in thesemean values were signifi-
cant (Appendix A, Table A1). Figure 4 presents themeans and standard deviations of speed,
acceleration, distance headway and relative speed over time in the 10-s interval before and
10-s after the transitions. The percentages of observations in each system state are also
represented as a function of time.

Driver behaviour characteristics during control transitions from A to I showed similar
changes in the three traffic conditions (AppendixA, TableA1): themean speeds andacceler-
ationsdecreased significantly, the standarddeviationof speedsandaccelerations increased
significantly, and the mean distance headways decreased significantly. Figure 4(a-c) show
that themean speed, themean acceleration, and themean distance headway were almost
constant before deactivation anddecreased afterwards in each traffic condition. Figure 4(b)
shows that the mean acceleration decreased relatively with a sharp drop 0–1 s after the
transition and increased for a few seconds afterwards. The standard deviation of relative
speed increased significantly atmediumdensities. Figure 4(d) shows that themean relative
speed decreased before the transition and increased afterwards. These results suggest that
drivers deactivated the ACC systemwhen approaching a slower leader.Most drivers braked
to deactivate the system and then released the brake pedal after few seconds. Therefore,
the speed and the distance headway decreased. Figure 4(e) shows that, in the 10 s before
the transition, the system was active most of the time. Some drivers re-activated the sys-
tem in the interval 3–10 s after the transition and the system was A or AAc in 28.6% of the
observations 10 s after the transition.

When the systemwas transferred fromA toAAc, themeanaccelerations increased signif-
icantly in each traffic conditions, the standard deviations of speeds increased significantly
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Figure 4. Transitions to Inactive (A to I, a-e) and to Active and accelerate (A to AAc, f-j): mean (solid line)
and standard deviation (dashed line) of (a, f ) speed, (b, g) acceleration, (c, h) distance headway and (d,
i) relative speed calculated as a function of time in the interval 10 s before (−10, 0) and 10 s after (0, 10)
the instant when the transition is initiated (dashed black line); (e, j) percentage of observations in each
system state as a function of time.
Note: In (a)-(d), green lines represent low density conditions (0–11 veh/km/lane), yellow lines medium density conditions
(11–22 veh/km/lane), and red lines high density conditions (> 22 veh/km/lane). In (e, j), dark blue bars represent Inactive,
blue represent Active, and light blue Active and accelerate.

at medium and high densities, and the standard deviations of accelerations increased sig-
nificantly at medium densities (Appendix A, Table A1). Figure 4(f-g) show that the mean
speeds and the mean accelerations slightly decreased before the ACC system was over-
ruled by pressing the gas pedal and increased afterwards in each traffic conditions. Figure
4(h) shows that the mean distance headways were almost constant before and after the
transition. The mean standard deviations of relative speeds increased significantly at low
and high densities. Figure 4(i) shows that the mean relative speeds increased before the
transition and decreased afterwards. Figure 4(j) shows that the systemwas I or AAc in 28.5%
of the observations 10 s before the transition and it transferred to A in the interval 0–6 s
before the transition. After the transition, the system was transferred again to A or I, and,
10 s after the transition, it was still AAc in only 42.5% of the observations. Further analysis is
necessary to control for the confounding effects of additional control transitions initiated
in these time intervals.

These empirical analyses have shown that the means and standard deviations of driver
behaviour characteristics change significantly over time during control transitions. The
meanprofiles differ between traffic flowconditions. In addition, theACCsystem isoverruled
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for a few seconds only when the gas pedal is pressed, and certain drivers are more likely
to transfer control than others. In the next section, we will examine adaptation effects in
driver behaviour characteristics during control transitions using linear mixed-effects mod-
els,which control for theeffect of all these factors simultaneously (timeperiod, density level,
ACC system state, and between-subjects variability).

Statistical analysis of adaptations in driver behaviour characteristics when
drivers resumemanual control

Multiple control transitions and repeated 1 s-observations over a 20 s-time interval for each
transition are available for each driver (panel data, Figure 5). To analyse the impact of sev-
eral within-subjects factors simultaneously (e.g. time period, traffic density, ACC system
state) on the driver behaviour characteristics capturing between-subjects variations and
correlations between observations over time for the same subject, we estimated linear
mixed-effects models for repeated measures containing fixed and random effects. Linear
mixed-effects models are preferred to alternative analyses of repeated measures because
they are robust to missing data (e.g. distance headway and relative speed are missing
when a leader is not detected by the radar), and they allow to define explicitly a hier-
archical structure (correlations between observations for the same driver) and a residual
variance-covariance structure (correlations between consecutive observations over time).

The data analysis technique proposed aims at capturing explicitly the duration of adap-
tation effects in the mean values of each driver behaviour characteristic in different traffic
conditions. Notably, the scope of this analysis is merely descriptive. The specification of
the fixed effects was selected based on the research hypotheses H1 and H2, while the
specification of the random effects and of the residual variance-covariance matrix were
chosen based on the hierarchical structure of the data and statistical significance. Select-
ing themost appropriate random effects and variance-covariance structure is fundamental
for obtaining consistent estimates of the fixed effects and covariance parameters. Pairwise
comparisons of the estimatedmarginal means were calculated to identify the duration and
magnitude of significant changes in the driver behaviour characteristics over time (tran-
sition periods) when drivers resume manual control (I or AAc, H1) and at different traffic
densities (H2).

Figure 5. Multi-level structure of the driver behaviour data.
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Linearmixed-effectsmodels

The linear mixed-effects models (8 in total) were estimated separately for each type of con-
trol transition and driver behaviour characteristic. Time period (20 levels), traffic density
(3 levels) and ACC system state (3 levels) are defined as categorical explanatory variables
to analyse the mean response of drivers in each level and possible interactions between
time, system state and traffic density. Notably, this specification captures explicitly adapta-
tions in driver behaviour characteristics over the 20 s-time interval assuming that themean
response varies every 1 s (i.e. the means are time-specific as described in Steele (2014),
pp. 29–31). This time duration (1 s) was chosen because it is similar to the mean reaction
time between the recognition of a stimulus and the execution of the response in liter-
ature (Toledo 2003). The driver behaviour characteristic (DriBeChar) Speed, Acceleration,
ln(Distanceheadway) (front bumper to rear bumper), and Relative speed (speedof the leader
minus speed of the ego) for driver n, transition Tr, and time t (t = 1, . . . , 20) are given by
eq. (1):

DriBeCharn,Tr(t) = α + βTime(t) · TimeTr(t) +
3∑

i=1

β i
SystSta · SystStaiTr(t)

+
3∑

k=1

βk
Dens · DenskTr +

3∑
i=1

β i
SystSta·Time(t) · SystStaiTr(t) · TimeTr(t)

+
3,3∑

i=1,k=1

β
i,k
SystSta·Dens·Time(t) · SystStaiTr(t) · DenskTr · TimeTr(t)

+ γ · ϑn + σ · εn,Tr(t)

(1)

where α is the intercept (mean); β are the parameters associated with each level of
the categorical explanatory variables; TimeTr(t) is a dummy variable denoting the time
t (t = 1, . . . , 20); SystStaiTr(t) is a dummy variable equal to 1 when the ACC system
state is equal to SystStai ∈ {Inactive, Active, Active and accelerate}, for i = 1,2,3; DenskTr
is a dummy variable equal to 1 when the level of traffic density is equal to Densk ∈
{Low density, Medium density, High density}, for k = 1,2,3; γ is the parameter (between
drivers variance) associated with the driver-specific error term ϑn ∼ N(0,1); σ is the param-
eter (between observations variance) associated with the observation-specific error term
(residual) εn,Tr(t),

εn,Tr =

⎡
⎢⎢⎢⎢⎢⎣

εn,Tr(1)

...
εn,Tr(20)

⎤
⎥⎥⎥⎥⎥⎦

∼ N(0,�n,Tr), �n,Tr =

⎡
⎢⎢⎢⎢⎢⎣

1 ρ · ϕ ρ2 · ϕ · · · ρ19 · ϕ

ρ · ϕ 1 ρ · ϕ · · · ρ18 · ϕ

ρ2 · ϕ ρ · ϕ 1 · · · ρ17 · ϕ
...

...
...

. . .
...

ρ19 · ϕ ρ18 · ϕ ρ17 · ϕ · · · 1

⎤
⎥⎥⎥⎥⎥⎦

The distributions of speed, acceleration and relative speedwere assumed to follow the nor-
mal probability density function. The log-normal probability density function was found to
best fit the distance headway distributions based on goodness-of-fit measures (log likeli-
hood). For model estimation, the parameters associated with one level of each categorical
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explanatory variable have been normalised to zero. Alternative specifications of the fixed
effects were explored including factors such as experience with ACC and lane changes,
which had a non-significant effect on the mean driver behaviour characteristics.

Responses for different subjects are assumed to be independent. Unobserved prefer-
ences that influence all driver behaviour characteristics of the same individual driver are
captured by the driver-specific error term ϑn (random effect). To account for the serial
correlation between 1 s-measurements over the 20 s-time interval in each control transi-
tion (repeated effects), the residual covariance structure �n,Tr is specified as a first-order
autoregressive moving-average ARMA(1,1) (Pinheiro and Bates 2000; Box, Jenkins, and
Reinsel 2013). The autoregressive parameterρ captures the decline in correlations between
observations with increasing time-lag and the moving-average parameter ϕ captures con-
stant correlations over the 20 s-time interval. This structure has been selected based on
goodness-of-fit measures (log likelihood) and information criteria (AIC, BIC). Alternative
specifications of the residual covariance matrix (e.g. unstructured) were explored but, con-
trolling for the number of parameters estimated, did not result in a significant improvement
in goodness of fit.

Pairwise comparisons of the estimatedmarginal means

The ‘MixedModel’ command in SPSS 24 (IBMCorporation 2016)was used formodel estima-
tion. The estimationmethod chosen was the restrictedmaximum-likelihood (REML), which
provides unbiased estimators of the variance components accounting for the degrees of
freedom used to estimate the fixed effects (Verbeke and Molenberghs 2009; Zuur et al.
2009). The parameters estimated were used to calculate the marginal means of the driver
behaviour characteristics over time in each traffic conditions controlling for the system
state, between-subjects variation and residual covariance structure. Pairwise comparisons
were used to test statistically the hypothesis of significant changes in the mean driver
behaviour characteristics over time when drivers are in control of the vehicle (I or AAc) in
different traffic flow conditions. Mean values at time t were compared to mean values at
time t+ 1. Significant changes in each second over a certain interval of time after the ACC
system was deactivated or overruled by pressing the gas pedal can be interpreted as an
indicator of the time duration needed to stabilise driving behaviour after resumingmanual
control (transitionperiod, similar toMerat et al. [2014]). Themagnitude of the corresponding
adaptation in driver behaviour characteristics was calculated using the model. The advan-
tage of this data analysis technique is to quantify the transition period explicitly based on
significant changes in the driver behaviour characteristics. The final results are robust to the
initial choice of the 20-s time interval for each transition.

Estimation results

The tests of fixed effects and of covariance parameters of the linear mixed-effects mod-
els for each dependent variable and transition type are reported in Appendix A, Table
A2. Results statistically significant at the 95% confidence level are discussed in the next
sections. Estimates of fixed effects are tested using F-tests, which allow identifying the
impact of each single factor on the driver behaviour characteristics. Estimates of covariance
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Figure 6. Transitions to Inactive (A to I, a-d) and to Active and accelerate (A to AAc, e-h): estimated
marginal means (solid line) and 95% confidence intervals of the mean estimates (error bars) of (a, e)
speed, (b, f ) acceleration, (c, g) distance headway and (d, h) relative speed calculated as a function of sys-
tem state and time in the interval 10 s before (−10, 0) and 10 s after (0,10) the instantwhen the transition
is initiated (dashed black line).
Note: Green lines represent low density conditions (0–11 veh/km/lane), yellow lines medium density conditions
(11–22 veh/km/lane), and red lines high density conditions (> 22 veh/km/lane).

parameters ρ and ϕ are tested using two tailedWald z-tests (i.e. the parameters can be pos-
itive or negative), while estimates of variance parameters are tested using one-tailed Wald
z-tests (i.e. the variance can be equal to or larger than zero) (Tabachnick and Fidell 2013).
To test the research hypotheses proposed in this study, pairwise comparisons of the esti-
mated marginal means were calculated as described in the previous section. Reporting
the parameters estimatedwould not contribute to this purpose. The parameters estimated
cannot be directly interpreted as unconditional marginal effects due the inclusion of mul-
tiplicative interaction terms in the specification of the fixed effects. Figure 6 shows the
estimated marginal means and the confidence intervals of the mean estimates of each
driver behaviour characteristic calculated as a functionof systemstate and time in each traf-
fic density level. Notably, themeanprofiles showthe temporal evolutionofdriverbehaviour
characteristics over time at different traffic densities controlling for the confounding effect
of other control transitions in the 20-s interval and between-subjects variability. Table 3
presents the summary of the estimated marginal means analysis in terms of transition
period and corresponding adaptation in driver behaviour characteristics when the driver
controlled the vehicle at low, medium and high traffic densities. These results represent
the primary focus of the current study.



794 S. F. VAROTTO ET AL.

Table 3. Transitionperiods (TP) and correspondingadaptations indriver behaviour characteristics (DBC)
in transitions to Inactive (A to I) and to Active and accelerate (A to AAc).

I (after A to I) AAc (after A to AAc)

DBC Density level TP (s) DBCi DBCf 
DBC TP (s) DBCi DBCf 
DBC

Speed (km/h) Low 8 126 105 −20.2 5 115 119 3.90
Medium 9 102 82.6 −19.0 3 97.8 98.6 1.20
High 4 44.4 33.9 −10.5 5 37.3 44.7 6.50

Acceleration (m/s2) Low 1 −0.923 −1.23 −0.309 1 −0.128 0.173 0.301
1 −1.23 −0.930 +0.302

Medium 1 −0.964 −1.08 −0.118 1 −0.044 0.227 0.271
2 −1.08 −0.614 +0.469

High 1 −0.895 −1.03 −0.133 1 0.104 0.536 0.432
2 −1.03 −0.437 +0.590

Distance headway (m) Low 1 48.6 40.9 −7.63 1 44.1 48.1 3.99
Medium NS NS NS NS NS NS NS NS
High 2 22.8 17.6 −5.23 1 16.3 17.7 1.46

Relative speed (km/h) Low 4 −14.4 −4.87 9.57 NS NS NS NS
Medium NS NS NS NS NS NS NS NS
High NS NS NS NS NS NS NS NS

Note: DBCi and DBCf denote the driver behaviour characteristic at the beginning and at the end of the transition period,
and
DBC the adaptation in the driver behaviour characteristics during the transition period; NS indicates non-significant
results.

Adaptations in transition to Inactive (DIDC)

The linear mixed-effects models (Appendix A, Table A2) indicated a significant main effect
of time and of traffic density on all driver behaviour characteristics and of system state on
accelerations. The interaction terms of time and system state and of time, system state and
traffic density did not have a significant impact on all driver behaviour characteristics. These
results mean that the driver behaviour characteristics change significantly over time and
these changes do not differ significantly between traffic density levels. The driver-specific
error terms were not significant (distance headways: p = 0.056), meaning that the driver
behaviour characteristics do not differ significantly between drivers. The residual covari-
anceparameterswere significant, suggesting that, controlled for the fixed effects, themean
driver behaviour characteristics differ significantly between observations (sigma) and are
significantly correlated over the 20-s time intervals (rho and phi).

Figure 6(a-d) show the profiles of the mean driver behaviour characteristics, which are
consistent with the empirical findings in Figure 4(a-d). Pairwise comparisons showed that,
when the system was I, the speed was significantly higher than the speed in the follow-
ing observation in each second in the interval 0–9 s after the transition (0–1 s to 8–9 s:
p<0.0005), meaning that the speed decreases significantly. This duration indicates the
timedrivers need to stabilise the speed (transitionperiod, Table 3). The accelerationwas sig-
nificantly higher 0–1 s after the transition than 1–2 s after (p<0.0005) and in each second
in the interval 1–4 s the acceleration was significantly lower than in the following observa-
tions (1–2 s: p<0.0005; 2–3 s: p<0.0005; 3–4 s: p = 0.009), meaning that the acceleration
decreases for 1 s and then increases significantly. The distance headwaywas higher in each
second in the interval 0–3 s after the transition than in the following observations (0–1 s:
p<0.0005; 1–2 s: p<0.0005; 2–3 s: p = 0.001), meaning that the mean distance headway
significantly decreases after drivers deactivate the system. The relative speed was signifi-
cantly lower in each second in the interval 0–3 s after the transition than in the following
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observations (0–1 s, 1–2 s: p<0.0005, 2–3 s: p = 0.001), meaning that the relative speed
increases significantly. These results are consistent with the fact that most drivers deacti-
vated the ACC system by braking and then released the brake pedal after few seconds in
each traffic condition.

Adaptations in transition to Active and Accelerate (DIDC)

The linear mixed-effects models (Appendix A, Table A2) indicated significant main effects
of time and of system state on all driver behaviour characteristics, and of traffic density on
speed, distance headway and relative speed. The interaction terms of time, system state
and traffic density had a significant effect on all driver behaviour characteristics. These
results mean that the driver behaviour characteristics change significantly over time and
these changes differ significantly between traffic density levels. The driver-specific error
term had a significant impact on relative speeds, meaning that relative speeds differ signif-
icantly between drivers. The residual covariance parameters were significant, suggesting
that, controlled for the fixed effects, the mean driver behaviour characteristics differ sig-
nificantly between observations (sigma) and are significantly correlated over the 20-s time
intervals (rho and phi).

Figure 6(e-h) show the profiles of the mean driver behaviour characteristics, which are
consistent with the empirical results in Figure 4(f-i). Pairwise comparisons showed that,
when the system was AAc, in each second in the interval 1–5 s after the transition at low
densities (1–2 s: p = 0.014, 2–3 s to 4–5 s: p<0.0005), 1–3 s after the transition at medium
densities (1–2 s: p<0.0005; 2–3 s: p = 0.011), and 0–5 s after the transition at highdensities
(0–1 s: p = 0.001; 1–2 s to 3–4 s: p<0.0005; 4–5 s: p = 0.024) the speed was significantly
lower than in the following observations, meaning that the speed increased significantly.
This duration indicates the time drivers need to stabilise the speed (transition period,
Table 3). The acceleration was significantly lower 0–1 s after the transition than 1–2 s after
(p<0.0005) at low, medium and high densities, meaning that the acceleration increased
significantly. The distance headway was significantly lower 0–1 s after the transition than
1–2 s after at low (p = 0.006) and high densities (p = 0.008), meaning that it increased sig-
nificantly. Pairwise comparisons showed non-significant results on relative speeds when
the systemwasAAcafter the transition. These results are consistentwith the fact thatdrivers
pressed the gas pedal and then released the gas pedal after few seconds.

Comparison between adaptations in control transitions andmanual driving

We compared the driver behaviour characteristics of individual drivers during control tran-
sitions and during manual driving to understand if drivers’ responses differed in similar
traffic situations. This analysis focused on traffic situations in which a leader was detected
by the radar (120m range) and lane changes were not executed within a time interval of
10 s. Observations in manual driving in the 10-s interval before the activation of the ACC
system were excluded. Figure 7(a)-(b) show the acceleration of two individual drivers at
time t+ 1 as a response of the relative speed and of the distance headway at time t. Three
phases are distinguished: transition period to I, transition period to AAc, and manual driv-
ing after resuming control. The duration of the transition periodwas defined for each traffic
density level based on the findings in Table 3. In addition, we selected an equal number of
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observations during the transition period to I andmanual drivingwhen drivers approached
a slower leader and during the transition period to AAc and manual driving when drivers
approached a faster leader in similar combinations of relative speed and distance head-
way. Two-sample Kolmogorov–Smirnov tests were used to test whether the distributions

(a)

(b)

Figure 7. Relative speed, distance headway and acceleration planes for (a) Driver 1 and (b) Driver 2:
transition period to Inactive (red colour map circles), transition period to Active and accelerate (green
colour map circles), and manual driving after resuming control (black empty circles).
Note: Each circle corresponds to a 1-s observation. The colour maps indicate the time after the transition.
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of relative speed, distanceheadway and accelerationdiffered significantly between the two
conditions.

Figure 7(a) shows that the driver decelerated more during transitions to I (M = −1.15,
SD = 0.832m/s2) than during manual driving (M = −0.179, SD = 0.288m/s2) when
approaching a slower leader in similar combinations of relative speed and distance head-
way (n = 17). The two-sample Kolmogorov Smirnov test indicated that the acceleration
distributions differed significantly between the two conditions (p = 0.001). Clear conclu-
sions for transitions to AAc cannot be drawn due to the limited number of observations
available in manual driving when approaching a faster leader. In Figure 7(b), the driver
decelerated more when approaching a slower leader during transitions to I (M = −0.724,
SD = 0.326m/s2) than in similar situations (n = 7) during manual driving (M = −0.200,
SD = 0.141m/s2). The acceleration distributions differed significantly between the two
conditions (p = 0.004). In addition, the driver acceleratedmore when approaching a faster
leader during transitions to AAc (M = 0.101, SD = 0.268m/s2) than in similar situations
(n = 17) duringmanual driving (M = 0.0155, SD = 0.279m/s2). However, the acceleration
distributions did not differ significantly (p = 0.673).

Conclusions and recommendations for future research

This study has analysed adaptations in speed, acceleration, distance headway, and relative
speed a few seconds after drivers deactivated or overruled the full-range ACC. To the best
of the authors’ knowledge, this is one of the first studies capturing explicitly the duration
(transition period) and themagnitude of significant changes in these driver behaviour char-
acteristics over time in non-critical traffic situations based on data collected in an on-road
experiment. The on-road experiment was designed to control for potentially confounding
factors suchas roaddesignand traffic conditionswhichare common limitationsof FOTs and
naturalistic studies. Twenty-three participants drove a research vehicle equipped with full-
range ACC on a 35.5-km freeway in Munich during peak hours. The average traffic density
during the experiment was calculated using loop-detector data.

The statistical analysismethodproposed (linearmixed-effectsmodels) is suitable to anal-
yse adaptations in driver behaviour characteristics when drivers resumed manual control,
capturing the impact of observable factors, variationsbetween individuals, and correlations
between consecutive observations over time. This method explicitly recognises the hierar-
chical structure of the data (subjects, control transitions within subjects, observations over
time for each transition) and is robust tomissingdata andunbalanceddesigns (e.g. different
number of repetitions for each driver). Correlations between driver behaviour characteris-
tics of the same individual driver are captured by a driver-specific error term, while correla-
tions between observations over time in each control transition by an ARMA(1,1) residual
covariance structure. The parameters estimatedwere used to calculate themarginalmeans
of the driver behaviour characteristics over time in each traffic condition controlling for
the system state, between-subjects variation and residual covariance structure. Pairwise
comparisons of the estimated marginal means were calculated to determine the duration
and magnitude of significant adaptation effects when drivers are in control of the vehi-
cle in different traffic flow conditions. The results revealed that the time duration after the
control transition was initiated, the traffic density and the system state (Inactive, Active,
Active and accelerate) had a significant impact on speed, acceleration, distance headway
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and relative speed. Finally, the driver behaviour characteristics of individual drivers dur-
ing control transitions and during manual driving were compared to understand if drivers’
responses differed in similar traffic situations.

After the ACC system was deactivated, the speed and the distance headway decreased
significantly, the acceleration decreased for 1 s and then increased significantly, and the
relative speed increased significantly in each traffic condition. At high densities, the speed
decreased by 10.5 km/h (from 44.4 to 33.9 km/h) in 4 s after deactivation. Based on theo-
ries proposed in driver psychology, these significant speed reductions can be interpreted
as a compensation strategy to decrease the feeling of risk and task difficulty (Fuller 2005,
2011) associated with a complex traffic situation such as preparing to change lane (Pereira,
Beggiato, and Petzoldt 2015), approaching a slower leader (Varotto et al. 2017, 2018),
approaching areas of increased lane changes as on-ramps (Varotto et al. 2017, 2018),
expecting vehicles cutting-in (Varotto et al. 2017, 2018), and preparing to exit the freeway
(Varotto et al. 2017, 2018). The transition period can be interpreted as the duration needed
to stabilise driving behaviour after the deactivation. All drivers showed a similar compensa-
tion strategy when deactivating the system in different traffic situations. Further research
is needed to analyse differences between drivers in mean distance headways, whichmight
indicate that somedrivers accept higher riskswith the systemactive. These findings are also
supported by the comparisonwithmanual driving behaviour. During the transition period,
most drivers were more sensitive to the stimulus and responded with larger decelerations
when approaching a slower leader.

After the ACC was overruled by pressing the gas pedal, the speed and the acceleration
increased significantly in each traffic condition. At high densities, the speed increased sig-
nificantly by 6.50 km/h (from 37.3 to 44.7 km/h) in 5 s after the systemwas overruled. These
significant speed increments can be interpreted as a compensation effect to increase the
traffic complexity of a situation as proposedby Pereira, Beggiato, and Petzoldt (2015), when
approaching a faster leader (Varotto et al. 2017, 2018) orwhenpreparing a lane change. Sig-
nificant differences between drivers in terms of relative speeds during control transitions to
Active and accelerate suggest that certain drivers overrule the systemwhen the differences
in speeds are smaller. In contrast with transitions to Inactive, the adaptation effects in driver
behaviour characteristics differed significantly between traffic conditions. Drivers showed
the largest accelerations and speed increments after overruling the system at high densi-
ties. Further research is needed to understand if drivers are more sensitive to the stimulus
and respond with larger accelerations during the transition period than in manual driving
when approaching a faster leader.

The main conclusion from this study is that driver behaviour characteristics change
significantly over time when drivers deactivate the full-range ACC or overrule it by press-
ing the gas pedal. The duration and magnitude of these adaptions can be quantified
by using linear mixed-effects models, which are suitable to control for observable and
unobservable factors. These adaptations can be interpreted as a compensation strategy
to decrease (or increase) the feeling of risk and task difficulty experienced. During the tran-
sition period, drivers aremore sensitive to the stimulus than inmanual driving and respond
with larger decelerations when approaching a slower leader. This study presents a descrip-
tive analysis of the driver behaviour characteristics during control transitions and further
analysis is needed to develop a driver behaviour model. Nonetheless, the findings pro-
vide an empirical foundation for developing human-like driving assistance systems that are
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acceptable for drivers in a wider range of situations and more realistic microscopic traffic
flow models that account for driver interaction with ACC in different traffic conditions.

Driving assistance systems that mimic human driving style are needed to enhance com-
fort and acceptability (Goodrich and Boer 2003; Bifulco et al. 2013). The results in this study
suggest that drivers couldmaintain the ACC active if the systemdecreased the speed, while
guaranteeing safety and comfort, in traffic situations in which they are likely to deactivate.
Similarly, drivers could maintain the ACC active if the system increased the speed in situa-
tions in which they are likely to overrule the system by pressing the gas pedal. The choice
models we developed in previous studies can be implemented into these new systems to
identify the situations in which drivers are likely to resume manual control (Varotto et al.
2017, 2018). A controller based on these empirical findings is expected to be acceptable
for drivers in a wider range of traffic situations, increasing the market penetration and the
actual adoption of the system.

Microscopic traffic flow models that capture the empirical findings in this study are
needed to assess accurately the impacts of full-range ACC on traffic flow efficiency and
safety. Current car-following models should be advanced to forecast the conditions in
which drivers transfer control (Varotto et al. 2017, 2018) and to mimic the response of
manual drivers during control transitions. Based on the empirical insights in this study
and theories of driver behaviour, future research can focus on developing a novel model
framework grounded on feeling of risk and task difficulty. In this framework, the vehicle
acceleration can be specified explicitly as a function of two additive terms, the first one rep-
resenting regular car-following behaviour and the second one representing adaptations
during control transitions (similar to the advanced car-following models capturing com-
pensation effects at sags by Goni-Ros et al. (2016), driver distraction by Hoogendoorn, Van
Arem, and Hoogendoorn (2013) and by Saifuzzaman et al. (2015)). For instance, the second
term can be specified as a function of the transition period and the corresponding speed
change described in this study. Implementing this advanced car-following model into a
microscopic traffic flow simulation, the impact of transitions from ACC to manual control
on capacity, capacity drop and string stability can be investigated more realistically than
in current traffic flow simulations. The significant speed decrement after the system was
deactivated and the significant speed increment after the system was overruled can, for
instance, result in string instability at high penetration rates of ACC vehicles.

Future research is required to gain a deeper insight into driver behaviour during transi-
tions tomanual control. The statistical analysismethods proposed in this study can be used
to investigate the impact of other explanatory factors on adaptations in driver behaviour
characteristics, such as lane changes, driver characteristics (e.g. experience with the ACC
system and driving styles), and characteristics of the freeway segment. The model pro-
posed, however, can control for the impact of a limited number of factors simultaneously
with the interaction of time (20 levels), depending on the number of observations available.
Physiologicalmeasurements capturingdriverworkload and situation awareness (DeWinter
et al. 2014) can be analysed to shed light on the origin of these adaptation effects in driver
behaviour characteristics (Manjunatha et al. 2019; Paschalidis, Choudhury, and Hess 2019a,
2019b). Finally, the findings in this study are dependent on the characteristics of the ACC
system tested and further analysis is needed to assess their generalisability to other driv-
ing assistance systems and to higher levels of vehicle automation. Adaptation effects are
likely to increase for higher levels of automation, when the system controls both the lateral
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and the longitudinal control task (SAE Levels 2–4) and drivers are expected to monitor the
surrounding environment only in specific circumstances (SAE Level 3–4).
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Appendix. Data analysis

Table A1. Speed, acceleration, distance headway and relative speed in the 10-s interval before and 10-s
interval after for transitions to Inactive (A to I) and to Active and accelerate (A to AAc): statistics and results
of paired samples t-tests.

A to I A to AAc

Variable Density Level Before After p-value Before After p-value

Mean of mean speeds Low 129 113 < 0.0005 120 120 0.988
Medium 102 90.0 < 0.0005 97.2 97.3 0.909
High 44.3 34.7 < 0.0005 41.1 43.4 0.156

Mean of standard deviation of
speeds

Low 2.63 7.85 < 0.0005 3.70 4.67 0.120
Medium 3.00 6.69 < 0.0005 2.48 3.29 0.042
High 3.66 5.75 0.042 3.87 5.32 0.050

Mean of mean accelerations Low −0.0672 −0.606 < 0.0005 −0.0853 0.126 0.005
Medium 0.104 −0.541 < 0.0005 −0.0733 0.0627 0.003
High 0.0962 −0.435 < 0.0005 −0.103 0.256 < 0.0005

Mean of standard deviation of
accelerations

Low 0.266 0.533 < 0.0005 0.307 0.378 0.058
Medium 0.285 0.512 < 0.0005 0.239 0.321 0.017
High 0.310 0.558 < 0.0005 0.399 0.465 0.229

Mean of mean distance
headways

Low 66.0 52.0 0.009 55.5 56.2 0.852
Medium 46.7 38.4 0.003 43.3 41.2 0.350
High 27.8 20.1 < 0.0005 19.8 23.2 0.089

Mean of standard deviation of
distance headways

Low 8.31 10.8 0.283 8.09 6.89 0.252
Medium 6.09 8.54 0.069 4.56 4.94 0.643
High 4.18 5.15 0.291 2.87 3.96 0.113

Mean of mean relative speeds Low −7.40 −5.74 0.569 −3.19 −3.95 0.759
Medium −1.14 −1.03 0.961 −1.28 −1.14 0.501
High −2.76 −2.51 0.825 −0.720 0.407 0.272

Mean of standard deviation of
relative speeds

Low 5.19 7.23 0.058 3.78 5.37 0.020
Medium 3.47 4.76 0.019 2.53 2.83 0.418
High 4.07 3.69 0.656 2.90 4.01 0.032

Note: The unit of the speed and of the relative speed is km/h, the unit of the acceleration ism/s2, and the unit of the distance
headway is m.
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Table A2. Transition to Inactive (A to I) and to Active and Accelerate (A to AAc): linear mixed-effects models for empirical adaptation effects in driver behaviour.

A to I A to AAc

Speed Fixed Effects df Error F p-value df Error F p-value

Intercept 1 16.46 1850.59 < 0.0005 1 18.69 1366.14 < 0.0005
Time 19 1936.72 56.30 < 0.0005 19 3247.93 12.93 < 0.0005
Density 2 110.89 133.23 < 0.0005 2 177.32 168.39 < 0.0005
System state 2 2149.46 1.43 0.239 2 2664.88 10.41 < 0.0005
Time*System state 31 1599.19 1.22 0.187 38 1811.64 4.17 < 0.0005
Time*System state*Density 85 1500.17 1.03 0.415 112 2078.50 1.46 0.001

Covariance parameters Wald Z p-value Wald Z p-value

Gamma (var. between driv.) 0.01 0.496 1.57 0.059
Sigma (var. between obs.) 7.33 < 0.0005 10.18 < 0.0005
Rho (autoregressive) 1151.35 < 0.0005 1959.96 < 0.0005
Phi (moving-average) 2301.07 < 0.0005 3923.10 < 0.0005

Acceleration Fixed Effects df Error F p-value df Error F p-value

Intercept 1 740.21 13.55 < 0.0005 1 20.74 5.95 0.024
Time 19 1547.78 8.29 < 0.0005 19 2324.19 4.09 < 0.0005
Density 2 563.93 4.44 0.012 2 205.58 1.53 0.220
System state 2 1968.06 8.93 < 0.0005 2 3531.06 147.93 < 0.0005
Time*System state 31 1507.33 0.91 0.604 38 2409.02 2.63 < 0.0005
Time*System state*Density 85 1379.54 0.94 0.643 112 2535.20 2.43 < 0.0005

Covariance parameters Wald Z p-value Wald Z p-value

Gamma (var. between driv.) – – 0.82 0.206
Sigma (var. between obs.) 20.41 < 0.0005 22.87 < 0.0005
Rho (autoregressive) 34.21 < 0.0005 60.40 < 0.0005
Phi (moving-average) 79.09 < 0.0005 126.14 < 0.0005

(continued).
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Table A2. Continued

A to I A to AAc

Ln(Distance headway) Fixed Effects df Error F p-value df Error F p-value

Intercept 1 26.78 3190.59 < 0.0005 1 13.48 4528.70 < 0.0005
Time 19 1356.99 5.29 < 0.0005 19 2109.85 4.01 < 0.0005
Density 2 154.82 37.55 < 0.0005 2 192.94 72.88 < 0.0005
System state 2 1594.31 1.73 0.177 2 2974.21 11.77 < 0.0005
Time*System state 31 1337.59 1.03 0.425 38 2165.10 1.91 0.001
Time*System state*Density 84 1242.33 1.24 0.077 112 2185.09 1.26 0.039

Covariance parameters Wald Z p-value Wald Z p-value

Gamma (var. between driv.) 1.59 0.056 1.32 0.093
Sigma (var. between obs.) 10.37 < 0.0005 12.75 < 0.0005
Rho (autoregressive) 108.85 < 0.0005 203.86 < 0.0005
Phi (moving-average) 176.71 < 0.0005 345.89 < 0.0005

Relative speed Fixed Effects df Error F p-value df Error F p-value

Intercept 1 25.31 14.71 0.001 1 19.36 7.14 0.015
Time 19 1373.78 5.04 < 0.0005 19 2057.97 2.69 < 0.0005
Density 2 153.01 3.23 0.042 2 233.74 5.13 0.007
System state 2 1658.32 0.08 0.924 2 3006.63 8.04 < 0.0005
Time*System state 31 1323.34 0.61 0.955 38 2149.53 1.43 0.044
Time*System state*Density 84 1208.22 0.82 0.879 112 2171.00 1.97 < 0.0005

Covariance parameters Wald Z p-value Wald Z p-value

Gamma (var. between driv.) 0.20 0.420 2.02 0.022
Sigma (var. between obs.) 11.16 < 0.0005 14.66 < 0.0005
Rho (autoregressive) 87.84 < 0.0005 116.97 < 0.0005
Phi (moving-average) 158.99 < 0.0005 207.22 < 0.0005

Note: df denotes the degrees of freedom, F the statistics of the F test, Wald Z the statistics of the Wald Z test.
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