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SUMMARY

Network performance is determined by the interplay of underlying structures and
overlying dynamic processes on networks. This thesis mainly considers two types of
collective dynamics on networks, spread and transport, which are ubiquitous in our
daily lives, ranging from information propagation, disease spreading, to molecular
motors on cytoskeleton and urban traffic. Exploring the approaches on optimizing the
network performance is the fundamental motivation of this work, which helps to control
processes on networks and to upgrade network-based services.

Although the properties of phase transition in Susceptible-Infected-Susceptible (SIS)
processes have been investigated intensively, the time-dependent behavior of epidemics
is still an open question. This thesis starts with the investigation of the spreading time
(Chapter 2), which is the time when the number of infected nodes in the metastable
state is first reached, starting from the outbreak of the epidemics. We observe that the
spreading time resembles a lognormal-like distribution both for the Markovian and the
non-Markovian infection processes.

As a follow-up work of Chapter 2, we identify the fastest initial spreaders with the
shortest average spreading time in epidemics on a network, which helps to ensure
an efficient spreading (Chapter 3). We show that the fastest spreader changes with
the effective infection rate of a SIS epidemic process, which means that the time-
dependent influence of a node is usually strongly coupled to the dynamic process and
the underlying network. We propose the spreading efficiency as a metric to quantify the
efficiency of a spreader and identify the fastest spreader, which is adaptive to different
infection rates in general networks.

For maximizing the utility of spread, we introduce induced spreading, which aims
to maximize the infection probabilities of some target nodes by adjusting the nodal
infection rates (Chapter 4). We assume that the adjustment of the nodal infection
rates has an associated cost and formulate the induced spreading for SIS epidemics in
networks as an optimization problem under a constraint on the total cost. We address
both a static model and a dynamic model for the optimization of the induced SIS
spreading. We show that the infection rate increment on each node is coupled to both
the degree and the average hops to the target nodes in the static optimization method. In
the dynamic method, the effective resistance is a good metric to indicate the minimum
total cost for targeting a single node.

The average fraction of infected nodes in the NIMFA steady state, also called the
steady-state prevalence, in terms of the effective infection rate can be expanded into a
power series around the NIMFA epidemic threshold. Practically, we can faster compute
the nodal infection probability of the NIMFA steady-state by the truncated expansion
with enough terms and an effective infection rate within the radius of convergence.
Thus, we investigate the radius of convergence that validates the Taylor expansion of
the steady-state prevalence in Chapter 5. We show that the radius of convergence of

xi



xii SUMMARY

the steady-state prevalence expansion strongly depends upon the spectral gap of the
adjacency matrix.

The research on the robustness of transport on networks mainly encompasses two
robustness assessment approaches, along with their applications in communication
networks and freight transport networks, respectively. Network recoverability refers to
the ability of a network to return to a desired performance level after suffering malicious
attacks or random failures (Chapter 6). We propose a general topological approach
and recoverability indicators to measure the network recoverability in two scenarios:
1) recovery of damaged connections and 2) any disconnected pair of nodes can be
connected to each other. By applying the effective graph resistance and the network
efficiency as robustness metrics, we employ the proposed approach to assess 10 real-
world communication networks. For vehicle transport systems, Chapter 7 proposes a
robustness assessment for multimodal transport networks. The representation of inter-
dependent networks is an excellent proxy for the structure of multimodal transportation
systems. We apply our robustness assessment model to the Dutch freight transport,
taking into account three modalities: waterway, road and railway. The node criticality,
defined as the impact of a node removal on the total travel cost, resembles a power-law
distribution, which implies scale-free property of the robustness against infrastructure
disruptions.

Many transport processes have a similar objective that all nodes reach an agree-
ment regarding a certain quantity of interest by exchanging the nodal states with their
neighboring nodes, which are described by the consensus model in networks (Chapter
8). The robustness of consensus processes is related to the convergence speed to
the stability under external perturbations. The (generalized) algebraic connectivity
of a network characterizes the lower-bound of the exponential convergence rate of
consensus processes. We investigate the problem of accelerating the convergence of
consensus processes by adding links to the network. We propose a greedy strategy for
undirected network and further extend our approach to directed networks. Numerical
tests verify the better performance of our methods than other metric-based approaches.

This thesis considers two dynamic processes on networks and covers performance
analysis and optimizations, by means of problem proposal, theoretical analysis, case
study and algorithm designing. The developed concepts related to network efficiency
and robustness provide a better understanding of collective dynamics on complex
networks. The applicability of our methodologies bridges theoretical network models
and realistic applications, as well as demonstrates the promising efficacy of network
science.



SAMENVATTING

De prestatie van een netwerk wordt bepaald door de interactie tussen de onderliggende
structuur van het netwerk en de dynamische processen die plaatsvinden op het netwerk.
Dit proefschrift beschouwt twee typen dynamiek die plaatsvinden op een netwerk:
verspreiding en transport. Beiden zijn alom vertegenwoordigd in het dagelijkse leven,
van ziekteverspreiding en voortplanting van informatie tot het stadsverkeer en verplaat-
sing van motoreiwitten over cytoskeletten op moleculair niveau. Het verkennen van
methoden die de prestatie van een netwerk optimaliseren is de belangrijkste motivatie
voor dit werk, dat zijn methoden die netwerkprocessen aansturen en netwerkservices
kunnen verbeteren.

De eigenschappen van de faseovergang in het vatbaar-geïnfecteerd-vatbaarproces
(Engels: susceptible-infected-susceptible process, afgekort het SIS-proces) is uitvoerig
bestudeerd in de literatuur, maar het doorgronden van het tijdsveranderlijke gedrag van
epidemieën is grotendeels nog een open vraagstuk. In dit proefschrift beginnen we
met het onderzoeken van de epidemische verspreidingstijd (Hoofdstuk 2), de tijd van
de uitbraak van een epidemie tot het totaal aantal besmette individuen voor het eerst
gelijk is aan het gemiddelde aantal besmette individuen in de metastabiele toestand. Wij
merken op dat de verdeling van de verspreidingstijd lijkt op een lognormale verdeling
voor zowel Markoviaanse en niet-Markoviaanse verspreidingsprocessen.

Vervolgens identificeren wij de snelste initiële verspreiders in een netwerk met
behulp van de kortste gemiddelde verspreidingstijd (Hoofdstuk 3). Hiermee kan een
efficiënte verspreiding gegarandeerd worden als dit de doelstelling is. Wij laten zien
dat de snelste verspreider verandert als de effectieve infectiesnelheid van het SIS-proces
verandert, wat een indicatie is dat de tijdsafhankelijke invloed van een individu sterk
gerelateerd is aan het dynamische proces en het onderliggende netwerk. Tot slot
introduceren wij de spreidingsefficiëntie als maat voor de efficiëntie van een verspreider
en gebruiken deze om de snelste verspreider te kunnen identificeren.

Voor de optimalisatie van een verspreiding introduceren wij het concept geïndu-
ceerde verspreiding, een techniek die de besmettingskansen van individuen maxima-
liseert door het aanpassen van individuele infectiesnelheden (Hoofdstuk 4). Hierbij
modelleren wij dit proces met kosten voor het aanpassen van deze individuele infec-
tiesnelheden en formuleren wij de geïnduceerde verspreiding voor SIS-epidemieën als
een optimalisatieprobleem met een restrictie op de totale kosten. We beschouwen
zowel een statisch als een dynamisch model voor de optimalisatie van de geïnduceerde
verspreiding. We laten zien dat de toename in individuele infectiesnelheid is gerelateerd
aan zowel de graad van de knoop van het individu in het netwerk als de gemiddelde
afstand tot de knopen van de doelwitten van de geïnduceerde verspreiding. Voor de
dynamische methode blijkt de effectieve graafweerstand een goede maatstaf om te
identificeren bij welk individu geïnduceerde besmetting de totale kosten minimaliseert.

De stabiele toestandsprevalentie, het gemiddelde percentage geïnfecteerde knopen
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in de NIMFA stabiele toestand, kan worden uitgedrukt als een machtreeks rond de
epidemische kritieke drempel. Dit heeft als voordeel dat infectiekansen in de NIMFA
stabiele toestand sneller uitgerekend kunnen worden zolang er genoeg termen gebruikt
worden in de benadering en zolang de effectieve infectiesnelheid binnen de convergen-
tiestraal van de reeks ligt. Wij onderzoeken de convergentiestraal die de Taylorreeks
van de stabiele toestandsprevalentie van Hoofdstuk 5 valideert. Wij laten zien dat de
convergentiestraal sterk afhangt van de grootte van het verschil tussen de eerste twee
eigenwaarden van de verbindingsmatrix van het netwerk.

Het onderzoek naar de robuustheid van transport over netwerken richt zich met
name op twee methoden voor het meten van robuustheid en op hun respectievelijke
toepassingen in communicatienetwerken en vervoersnetwerken. Netwerkherstelbaar-
heid verwijst naar de mate waarin een netwerk kan terugkeren naar het gewenste
prestatieniveau nadat het bloot heeft gestaan aan vijandelijke aanvallen of heeft geleden
onder storingen (Hoofdstuk 6). Wij introduceren een algemeen topologisch raamwerk
met verschillende indicatoren om de herstelbaarheid van een netwerk te meten in
twee verschillende herstelscenario’s: bij het herstellen van een beschadigde verbinding
herstellen we in scenario 1) de verbinding die is beschadigd en in scenario 2) een
verbinding tussen twee willekeurig gekozen knopen in het netwerk. Door gebruik te
maken van de effectieve graafweerstand en de netwerkefficiëntie als robuustheidsin-
dicatoren analyseren wij de robuustheid van 10 bestaande communicatienetwerken.
In Hoofdstuk 7 beschouwen we de robuustheid van voertuigtransport in multimodale
vervoersnetwerken. Onderling-afhankelijke netwerken zijn een uitstekende benadering
van de structuur van multimodale vervoerssystemen. Wij passen ons model voor
robuustheid toe op het Nederlandse vrachttransportnetwerk met drie vervoerswegen:
water, weg en spoor. Het belang van een knoop is gedefinieerd als de impact op de
totale vervoerskosten als gevolg van het verwijderen van die knoop. Wij tonen aan
dat de verdeling van het belang van de knopen een machtsverband (Engels: power
law) vertoont, wat impliceert dat de robuustheid met betrekking tot infrastructurele
verstoringen schaalvrij (Engels: scale-free) is.

Veel transportnetwerken hebben de doelstelling om alle knopen overeenstemming
te laten bereiken in termen van een bepaalde grootheid door het uitwisselen informatie
met aangelegen knopen, een proces wat wordt beschreven door het consensusmodel
(Hoofdstuk 8). De robuustheid van consensusprocessen is gerelateerd aan de conver-
gentiesnelheid en stabiliteit onder externe perturbaties. De algebraïsche connectiviteit
van een netwerk vormt een ondergrens voor de exponentiele convergentiesnelheid van
consensusprocessen. Wij onderzoeken hoe de convergentie versneld kan worden door
het toevoegen van verbindingen in het netwerk. Wij introduceren een greedy strategie
voor ongerichte netwerken en we breiden onze aanpak uit naar gerichte netwerken. Nu-
merieke tests wijzen uit dat onze methode beter presteert dan vergelijkbare methoden
die ook op netwerkgerelateerde maten gebaseerd zijn.

Dit proefschrift onderzoekt twee dynamische processen op netwerken en behandelt
prestatieanalyse en optimalisaties in deze processen door middel van probleemiden-
tificatie, theoretische analyse, casussen en ontwerp van algoritmen. De ontwikkelde
concepten gerelateerd aan netwerkefficiëntie en robuustheid verschaffen een beter
inzicht in de dynamiek in processen op netwerken. De toepasbaarheid van onze
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methoden verbindt theoretische netwerkmodellen met het dagelijkse leven en toont
bovendien de toegevoegde waarde van de netwerkwetenschap aan.





1
INTRODUCTION

“Nature flies from the infinite, for the infinite is unending or imperfect, and Nature ever
seeks an end.”

— Generation of Animals

N ETWORKS are ubiquitous in the world and in our daily lives. Physically, networks
can represent vastly different objects including taffic infrastructures with roads

and junctions [1], power grids with wires and substations [2], the Internet with fiber
and switches [3], neural systems with axons and neurons [4]. Abstractly, networks can
describe friendship or collaboration relations among individuals [5], social contacts and
following connections in social media [6], the way the functional brain works [7] and so
on. Network is a prototype consisting of a collection of agents with connections where
various phenomena emerge due to the complexity of dynamics on networks. Network
model becomes a tool for interdisciplinary research, which includes statistical mech-
anism, particle physics, computer science, electrical engineering, biology, economics,
ecology and sociology.

It is universally recognized that network science origins from graph theory. In 1736,
Leonhard Euler (1707-1783) solved the Seven Bridges of Königsberg problem, which is
regarded as the originating point of graph theory. The investigation on the network
structure successively unveils topological properties and their practical implications.
Erdős–Rényi model [8] established the random graph theory in 1959. Besides intro-
ducing probability theory into graph theory, random graph model opened doors of
physics on general networks, e.g., percolation theory, which previously based on lattices
in Euclidean spaces. In 1998, Watts and Strogatz [9] proposed a model to generate small-
world networks, which complements theoretical basis for the phenomenon known as
"six degree of separation". In 1999, Albert and Barabási [10] discovered scale-free
property in the Internet and the World Wide Web, where the degree distribution follows

1
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a power law. The Barabási–Albert model proposed the method that generates scale-free
networks which introduces the preferential attachment mechanism in network growth.

Beyond network typologies, network dynamics is generally recognized as the macro-
scopic emergent phenomena due to the collective dynamics of microscopic individual
behaviors. We can understand network dynamics in another positivism view. We
quantify the practical significance of a kinetic model by the probability that the reality
agrees with the behavior of this model

Pr[Reality
agrees with−−−−−−−→ Model]

Traditional deterministic models generally feature the fundamental behaviors of dy-
namics, but ignore the practical limitations of communication between individuals,
e.g. geographic restriction, interpersonal relationship and communication medium.
Physically, the network topology essentially limits the range of interactions among
individuals. Considering that the network is the constraint or the condition rather than
the background, network science aims to explore the applicability of dynamic models in
network cases, which means to improve the conditional probability

Pr[Reality
agrees with−−−−−−−→ Model|Networks]

In these 280 years, such network constraints are introduced to a large bundle of tra-
ditional dynamics, e.g., synchronization [11], spread [12], percolation [13], which are
previously rooted in end-to-end, well-mixed [14] and lattice cases. The dramatic impacts
of the underlying network on dynamic processes are addressed, which helps to describe
the realistic collective dynamics better and to inspire many related areas of science.

1.1. PERFORMANCE OF NETWORKS
Network science has entered a new stage, where more and more researchers are devoting
themselves to practical applications of network approaches and aim to improve the
performance of networked systems. The performance of a network is defined by the
interplay of the structure of the network and the dynamic process that runs on top of
the network (illustrated by Figure 1.1). The structure of the network, represented by the
underlying topology, defines the relations (represented by links) among individuals (rep-
resented by nodes). The dynamics on the network usually refer to collective behaviors
of individuals in a spontaneous way or driven by external operations. The investigation
on the performance of networks is significant for not only predicting the trend of the
dynamic process but also providing better network-based services.

A large number of metrics of network performances can be classified into two as-
pects: efficiency and robustness. The efficiency of networks is the ability to avoid wasting
materials, energy, money, and time in producing a desired output or providing a desired
service. Efficiency of networks, putting forward higher demands than effectiveness,
usually concerns various optimization problems to minimize the budgets or maximize
the utility, e.g., pinning complex networks via controlling a minimum number of nodes
[15], maximizing the influence of spread with a fix number of initial spreaders [16]. The
optimization problems on complex networks are usually extremely high dimensional,
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Figure 1.1: Illustration of framework for analyzing network performances.

which obstacles us to apply traditional approaches and motivates us to propose novel
methods by making use of properties of complex networks. On the other performance
metric, the robustness is interpreted as the maintenance of functionality under external
perturbations [17]. Robustness is a long-lived research topic in engineering fields, but
the robustness assessment of complex networks still eludes us in recent years. In a
network perspective, Van Mieghem et al. [17] propose a framework, the R-model, for
quantifying topological network robustness by considering both a network topology
and a service for which the network is designed. Albert et al. [18] emphasized the
crucial influence of the underlying topology on the complex communication networks,
i.e., scale-free networks present high tolerance to random failures but are vulnerable to
targeted attacks. Broadbent et al. [19] proposed the percolation model to analytically
study the robustness of networks, which was followed by several further studies on
cascading failures [20][21]. The analytical framework proposed by Gao et al. [22]
collapsed the behaviour of different networks onto an universal resilience function by
separating the roles of the system’s dynamics and topology.

Two sorts of ubiquitous dynamic processes, i.e. spread and transport, are taken into
account in this thesis.

1.1.1. EFFICIENCY OF SPREAD

The first concerned process in this thesis is epidemics, also called non-conserved spread
[23], whose model was first proposed by Jacob Bernoulli [24]. Spreading processes can
describe the transmission of most infectious diseases, neural excitation, information
and rumors propagation [12]. The individuals in a spread are divided into several
compartments, e.g., the susceptible, the infectious, or the recovered. The individual
states switch among these compartments both by contacts between individuals and
by spontaneous processes. Previous research has provided an exhaustive investigation
on the phase transition behaviors and estimation of prevalence for different epidemic
models [12] [25]. The N-intertwined mean-field approximation (NIMFA) proposed by
Van Mieghem [26] is a reasonably accurate approximation of the exact epidemics on a
network [27].
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The further study on optimizing spreading processes encounters two variants cor-
responding to the underlying topology and the dynamics. The first variant is the
adjustment on the underlying topology of the network to control/eliminate a virus
spreading [28] by making use of the fact that the epidemic threshold is strongly related to
the largest eigenvalue of the underlying network. The other variant is the adjustment on
the spreading process, which refers to the optimization of the heterogeneous individual
infection behaviors (e.g. the infection rates and the curing rates) to maximize/minimize
the influence of a spread [29]. The second variant includes another research problem
on the identification of the influential initial spreaders [30]. Rather than the static
performance of spreading processes in the steady-state which has been investigated in
most previous works, this thesis focuses more on the time-dependent performance. The
issues such as investigation on the spreading time, identifying the fastest initial spreader,
dynamic allocation of spreading resources will be discussed in this thesis. All our efforts
aim to promote a more efficient spread on the network.

1.1.2. ROBUSTNESS OF TRANSPORT

The other process concerned in this thesis is transport. Different from the epidemic
models where the virus can reproduce in the system, most transport phenomena are
grounded in two primary concepts: the conservation laws and the constitutive equations
[31]. Transport processes cover a wide range of real-world dynamics, e.g., fluid flow
in tanks [32], power transmission in smart grid, packets delivery by optical fiber [33],
vehicles driving in transportation networks [1].

Transport networks are prone to suffer from various perturbations, such as in-
frastructure failures and malicious attacks, which highlights the significance of the
robustness performance of transport on networks. Unfortunately, the definition of
robustness and the approach for robustness assessment still outstanding issues without
consensus. Taking performance of specific transportation services into account, the
robustness of data communication networks should reflect packets end-to-end read-
ability; the robustness of road networks emphasizes the demands of the travel time
and the congestion/free state; the robustness of networked control systems against
external perturbations refers to the convergence rate to a stability [34]. The diver-
sity in various robustness requirements challenges the development of a generalized
robustness improvement framework. Further, the research gaps in optimization for
network robustness encompasses two aspects. Firstly, improved robustness assessment
models need to be proposed to evaluate the robustness performance of real-world
structures, while new structural types and application scenarios are emerging and
updating. Secondly, the optimal strategy for improving the network robustness could
be theoretically intractable in some cases (e.g., in directed networks), which requires
original feasible and heuristic methods to upgrade the network robustness effectively.

1.2. RESEARCH QUESTIONS

This thesis is motivated by the goal to promote promising applications of network theory
in the real world. This thesis encompasses analyzing behaviors of dynamics, proposing
performance assessment approaches, addressing network optimization problems, and
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verifying our approaches by case study. Some of the research challenges considered in
this thesis are the following:

Can characteristic time help us to investigate the time-dependent behavior of epi-
demics process in networks? If we define the spreading time as the time when a
spreading process reaches the meta-stable state, how is the distribution of the spreading
time in stochastic spreading processes? What is the implication of the distribution of
spreading time? (Chapter 2)

How can we further identify the fastest initial spreader for an efficiency spreading
process with the shortest average spreading time? We need to understand what factors
can influence the topological property of this fastest spreader. (Chapter 3)

If we aim to guide the virus to some determined regions instead of the whole
network, how can the resource be allocated on nodes if the total budget is limited? Does
the dynamic optimization benefit the targeted (induced) spreading on networks? What
heuristic algorithm is feasible for high-dimensional network optimization problems?
How is the cost scaling of resource for targeted spreading? (Chapter 4)

Since the prevalence in the steady state in the mean-field model can be represented
by a Taylor series, we are curious about how to determine the validate range (radius
convergence) of this series. (Chapter 5)

Relative to robustness against the failures, how can we assess the recoverability of
a network? How is the recoverability performance of real communication networks?
(Chapter 6)

How can we describe the multimodal transport system as a network model? How can
we evaluate the robustness of multimodal transport networks under attacks and failures?
How is the robustness performance of the Dutch freight transport network? (Chapter 7)

What topological property determines the convergence rate of consensus processes
in undirected or directed networks? What is the effective strategy of adjusting the
underlying topology to improve the convergence rate? (Chapter 8)

This thesis dedicates to a better understanding and solutions of the above mentioned
questions.

1.3. OUTLINE
This thesis is organized into two parts as Figure 1.2. Part I focuses on the epidemic
processes and the method to improve the efficiency performance of spread on networks.
Part II investigates the robustness of transport network.

1.3.1. PART I: EFFICIENCY OF SPREAD ON NETWORKS

Chapter 2 investigates the spreading time in a Susceptible-Infected-Susceptible (SIS)
process, which is the time when the number of infected nodes in the metastable state
is first reached, starting from the outbreak of the epidemics.

Chapter 3 proposes the method to identify the fastest spreaders, with the shortest
average spreading time, in epidemics on networks, which helps to ensure an efficient
spreading. We show how the fastest spreader changes with the effective infection rate.

Chapter 4 introduces a new application of epidemics, induced spreading, which
aims to maximize the infection probabilities of some target nodes by adjusting the
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Figure 1.2: Schematic depiction of the thesis.

nodal infection rates. The strategies for induced spreading are proposed for both static
optimization and dynamic optimization.

Chapter 5 focuses on the average fraction of infected nodes in the NIMFA steady
state, which can be expanded into a power series in terms of the effective infection rate
around the NIMFA epidemic threshold. We determine the radius of convergence of this
Taylor series, and investigate the relation between underlying topology and the radius of
convergence.

1.3.2. PART II: ROBUSTNESS OF TRANSPORT IN NETWORKS
Chapter 6 proposes a general topological approach and recoverability indicators to
measure the network recoverability in two scenarios. By applying the effective graph
resistance and the network efficiency as robustness metrics, we employ the proposed
approach to assess 10 real-world communication networks.

Chapter 7 proposes an approach on network modeling and robustness assessment
for multimodal freight transport networks, which captures the features of interconnec-
tion and interdependency. We apply our robustness assessment model to the Dutch
freight transport and identify the most critical infrastructure.

Chapter 8 investigates the problem of accelerating the convergence of consensus
processes by adding links to the network. We propose a greedy strategy for adding links
in undirected networks, and extend our strategy to directed networks.

Chapter 9 summarizes the contributions of this thesis and discusses some future
work.
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2
THE SPREADING TIME IN SIS

EPIDEMICS ON NETWORKS

In a Susceptible-Infected-Susceptible (SIS) process, we investigate the spreading time,
which is the time when the number of infected nodes in the metastable state is first
reached, starting from the outbreak of the epidemics. We observe that the spreading time
resembles a lognormal-like distribution, though with different deep tails, both for the
Markovian and the non-Markovian infection process, which implies that the spreading
time can be very long with a relatively high probability. In addition, we show that a
stronger virus, with a higher effective infection rate or an earlier timing of the infection
attempts, does not always lead to a shorter average spreading time. We numerically
demonstrate that the average spreading time in the complete graph and the star graph
scales logarithmically as a function of the network size for a fixed fraction of infected nodes
in the metastable state.

This chapter is based on the published paper [35].

9



2

10 2. THE SPREADING TIME IN SIS EPIDEMICS ON NETWORKS

2.1. INTRODUCTION

E PIDEMIC spreading on networks is a ubiquitous process, which can describe the
information spreading on social networks [12], emotions [36], biological diseases

[26] and failures in networked systems [37]. The Susceptible-Infected-Susceptible (SIS)
model is a simple epidemic model where each infected item can be cured, and becomes
susceptible again after recovering from the disease. Since the epidemic is a time-
dependent spreading process, we are naturally concerned with characteristic times that
can be applied to predict or control the spreading process. In spite of the simplicity of
the SIS process, unfortunately, only a few results for exact SIS times on a generic graph
have been presented [38, p. 460].

In the Susceptible-Infected-Susceptible (SIS) epidemics on a graph, the ratio be-
tween the infection rate β and the curing rate δ is called the effective infection rate
τ = β/δ. The SIS model features a phase transition [39] around the epidemic threshold
τc . Viruses with an effective infection rate τ above the epidemic threshold τc can
infect a sizeable portion of the population on average and stay for a long time in the
network. This long period is called the metastable state. Specially, in the Markovian SIS
model, the infection processes and the curing processes are Poissonian. A first-order
mean-field approximation of the epidemic threshold τ(1)

c = 1/λ1(A), where λ1(A) is the
spectral radius of the adjacency matrix A, was shown [26][40] to be a lower bound for the
epidemic threshold, τ(1)

c < τc .
Due to the existence of an absorbing state, which is the overall healthy or disease-

free state in the SIS process, any initial infection will ultimately extinguish in any finite
graph. The time until the network reaches the all-healthy state is called the extinction
time, or alternatively, the time to absorption or the survival time [41]. When the effective
infection rate τ is below the epidemic threshold τc , the infectious process dies out
exponentially fast [42][43], which is called quick die out or early extinction. A sufficient
condition for slow die out [44] is that the effective infection rate τ is above the epidemic
threshold τc . If the effective infection rate τ> τc , the infection stays very long on average
in any sufficiently large network [45]. The average survival time is dominated by the
second largest eigenvalue of the infinitesimal generator of the Markov chain [41][46].

In real-world large graphs, the extinction time is much longer than the actually
observed time that an epidemic lasts. Therefore, besides the extinction time, we are in-
terested in characteristic times before the absorbing state is reached. Van de Bovenkamp
and Van Mieghem [47] showed that the average hitting time to the metastable state
can be computed by using a uniformed embedded Markov chain for the complete
graph and the star graph. The modified SIS model in [47] removes the absorbing state
directly, implying that the process prevents itself from extinction and restarts to reach
the metastable state, from one infected node. Thus, the average time to the metastable
state is slightly overestimated, because the restarted process with one infected node
usually needs a longer time to reach the metastable state.

In this chapter, we define the spreading time Tm as the time when the number Im of
infected nodes in the metastable state is first reached, starting from one initially infected
node. The spreading time indicates the spreading velocity of the SIS process in the early
stage and unveils the transient, time-dependent properties of epidemic activity before
the metastable state. In practice, the average spreading time reflects the time interval in
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which the virus can be eradicated relatively easily.
Though it is intractable to estimate the spreading time in a general graph analytically,

we study the distribution of the spreading time and the factors that influence the spread-
ing time. Based on the simulations, we investigate the distribution of the spreading time
Tm for both the Markovian and non-Markovian infection process, and further investigate
the effect of the effective infection rate τ, the network size N and the non-Markovian
process on the average spreading time E [Tm].

This chapter is organized as follows. Section 2.2 introduces the definition and deter-
mination of the spreading time. We investigate the distribution of the spreading time Tm

in Section 2.3. In Section 2.4, we further present the effect of the effective infection rate
τ, the non-Markovian infection times and the network size N on the average spreading
time. We conclude the chapter in Section 2.5. We define the metastable state and the
stability ts in a SIS process in Appendix A.1. Appendix A.2 presents the procedure of the
simulator for SIS epidemics (SSIS). The generating function of the hitting time is derived
in Appendix A.3.

2.2. DEFINITION AND DETERMINATION OF THE SPREADING

TIME
We first propose a preferred definition of the metastable state and the stability time ts as
follow:

Definition 2.1 In an epidemic process, the metastable state is reached at the stability time

ts , which is the smallest time obeying d y(t )
d t

∣∣
t>ts

< ε, where the average fraction of infected

nodes is y(t ) = 1
N E [I (t )], with I (t ) ≥ 1 is the number of infected nodes at time t , and ε is a

small positive real number that needs to be agreed upon.

A more detailed discussion on the determination of the stability time is presented in
Appendix A.1.

Definition 2.2 The spreading time Tm is defined as the first time when the number Im =
I (ts ) of the infected nodes in the metastable state is reached, starting from one initially
infected node.

Specifically, the probability distribution of the spreading time Tm in the graph G with N
nodes follows

Pr[Tm ≤ t ] =
N∑

n=1
Pr[Tm ≤ t |I (ts ) = n]Pr[I (ts ) = n] (2.1)

Thus, the average spreading time E [Tm] follows from (2.1) as

E [Tm] =
N∑

n=1
E [THn ]Pr[I (ts ) = n] (2.2)

where the hitting time THn = Tm
∣∣

I (ts )=n is the first time when the process reaches the
state with n infected nodes. After differentiating both sides of (2.1) with respect to t , we
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obtain the probability density function (pdf) of the spreading time fTm (t ):

fTm (t ) =
N∑

n=1
fTm (t |I (ts ) = n)Pr[I (ts ) = n] (2.3)

Physically, the spreading time Tm describes the spreading velocity in the early stage
of the spreading process, which depends on the local topology around the initial spread-
ers. After Tm time units, the epidemic approximates the metastable state and already
infected a substantial part of the population. Thus, the action of control is preferred
to be taken earlier than the average spreading time E [Tm]. The average spreading time
together with the expected number of infected individuals in the metastable state can
guide public health officials in establishing the amount of resources and the available
time for the implementation of their mitigation strategies.

Due to the limitation of the analytical methods, an event-driven simulator SSIS (see
Appendix A.2) for the SIS spreading process on a network is implemented based on the
Gillespie algorithm [48] to estimate the spreading time. For an unaltered graph and a
fixed effective infection rate τ, the epidemic begins with one initially infected node and
lasts for the period of tl i mi t time units which is ensured to be long enough to make the
spreading process reach the metastable state but not the absorbing state. We record
every time point tk when the kth event happens, as well as the corresponding number
of the infected nodes i (tk ) immediately after the kth event. Assume that 0 < t1 ≤ t2 ≤
·· · ≤ tm < tl i mi t , then m events have occurred on the timeline before the time limit
tl i mi t . After identifying the metastable state and the stability time ts (see Appendix A.2),
we then determine the spreading time tm in each realization. The spreading time can
be determined from the time tm when the number of infected nodes i (tm) first equals
to the number i (ts ) of infected nodes at the stability ts of the metastable state. The
random variable Tm corresponds to the spreading time tm in all realizations that do
not go extinct. Figure 2.1 illustrates the estimation scheme of the spreading time ts in
a complete graph K50, which also shows the Gaussian-like distribution of the number of
infected nodes in the metastable state.

2.3. DISTRIBUTION OF THE SPREADING TIME Tm
We first investigate the distribution of the spreading time Tm in the Markovian SIS
process. The hitting time THi is the first time when the Markov process reaches the state
with i infected nodes, starting from one initial spreader. The epidemic process in the
complete graph KN is a birth and death process. Assume that the time is measured in
units of 1/δ, the average hitting time E [THi ] from one initial spreader can be analytically
derived [47] as

E [THi ] =
i−1∑
j=1

i− j−1∑
k=0

(N − i +k)!τ j+k−i

j (N − j )!
. (2.4)

in the modified SIS (MSIS) model [49], where the absorbing state is removed in MSIS
Markovian chain. However, a hitting time analysis is tractable when the spreading
process can be described as a simple, analytically tractable Markov chain [47].

Figure 2.2 exemplifies the average hitting time E [THi ], from one initial spreader,
as a function of the fraction y = i

N of the infected nodes in the complete graph K50
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Figure 2.1: Illustration of the estimation scheme of the stability time ts in the prevalence via SSIS and the
spreading time tm for one realization i (t ). The distribution of the number of infected nodes in the metastable
state is shown in the right subgraph. The green line represents the average number of infected nodes with time
based on 106 realizations. The time is measured in units of 1/δ.

with different effective infection rate τ. NIMFA approximates the average number of
infected nodes in the metastable state for a complete graph KN with N nodes as is =
bN

(
1− 1

τ(N−1)

)
c. When the effective infection rate τ is above the epidemic threshold τc ,

the average hitting time E [THi ] exhibits two different regimes in the average fraction y of

infected nodes as shown in Figure 2.2. In Regime 1, where y < is
N , the average hitting time

E [THi ] increases exponentially-like as eκy , where the rate κ decreases with the effective

infection rate τ. In Regime 2, where y > is
N , the average hitting time E [THi ] increases

faster than an exponential function.
Figure 2.2 suggests that the average hitting time E [THn ] scales approximately expo-

nentially with the number n of infected nodes around the average number E [I (ts )] of
infected nodes in the metastable state. Assuming that the hitting time THn with small
variance is correlated to the number n of infected nodes THn ∝ eκn , the spreading
time can be regarded as the random variable Tm(I (ts )) ≈ eκI (ts )+b , where the number
of the infected nodes I (ts ) is approximately a Gaussian-like random variable [49] with

probability density function Pr[I ( ts ) = n] ≈ 1
σ̃
p

2π
exp

[
− (n−µ̃)2

2σ̃2

]
. Therefore, we may

infer that the pdf of the spreading time is approximately given by

fTm (t ) ≈ 1

κt σ̃
p

2π
exp

[
− ( 1

κ (log t −b)− µ̃)2

2σ̃2

]
= 1

σt
p

2π
e
−

(
log t −µ)2

2σ2 , (2.5)

which is a lognormal distribution by replacing µ= κµ̃+b and σ= κσ̃.
We first show the spreading time Tm started from one initially infected node in two

typical graphs including a complete graph K50 and a star K1,49 with N = 50 nodes.
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Figure 2.2: The average hitting time E [THi
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Figure 2.4 and Figure 2.5 show the spreading time Tm for two values of normalized
effective infection rate x = τ/τc on a log-log scale, based on more than 107 realizations.
For both graphs, the distribution of the spreading time is fitted by a lognormal pdf
(2.5) well around the peak probability, with some deviations in the tail. The positive
skewness of the distribution, shown in Figure 2.4 – 2.5, means that the average spreading
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time E [Tm] is above the mode of the spreading time, which is caused by the rapidly
increasing average hitting time E [THn ] in (2.2), when the number of infected nodes n
exceeds the average number is of infected nodes in the metastable state. Comparing
the distributions with different normalized effective infection rate x in Figure 2.4 and
Figure 2.5, the probability of the small value of the spreading time Tm decreases or even
disappears with increasing effective infection rate τ.
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Figure 2.4: The distribution of spreading time Tm in the complete graph K50 with the effective infection rate
x, which is based on more than 5× 107 realizations. Both the axes are on log-scale while only x-axis in the
subgraph is on log-scale. The skewness of the distribution is 4.8 for x = 2 and 11.4 for x = 3.

Further, Figure 2.6 – 2.8 show the distributions of the spreading time Tm in an Erdős-
Rényi (ER) random graph, a rectangle lattice with N = 50 nodes and a BA (Barabási-
Albert) power law graph with N = 1000 nodes, respectively, where the distribution of the
spreading time is influenced by the position of the initially infected spreader and the
effective infection rate τ. Taking the lognormal distribution as a reference distribution
in the quantile-quantile plots, we find the spreading time also fits the lognormal pdf well
when the value of the spreading time is not very large, but deviates in the tail, with a
heavier tail than the lognormal distribution. Figure 2.6 presents the distribution of the
spreading time Tm in 103 ∼ 107 realizations for a connected ER random graph G0.2(50).
We observe that the deep tails can be reached only when the number of realizations is
extremely large (over 106 realizations). If the number of realizations is not large enough,
the spreading time is restricted around its average without extreme values. Then, the
good fit of the distribution by a lognormal pdf may lead to an incorrect conclusion that
the spreading time is precisely lognormal.

We also observe that the more regular the graph is, the better the distribution of
spreading time Tm fits a lognormal pdf. That regularity agrees with the governing rule
of a lognormal, as the limit distribution of a sum of the logarithm of random variable
that each does not differ much [38]. In the star or the power-law graph, viruses usually
need more time to infect one more node with a very small degree. Figure 2.3 for a star
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graph shows that the function of the hitting time THi as the number of infected nodes
i increases faster than an exponential around is , which may lead to a heavier tail in the
distribution of the spreading time, as shown in Figure 2.5. We also mark the stability time
ts via simulation in Figure 2.6 – 2.7, which shows that the stability time ts lies closely
to the tail of the distribution of the spreading time Tm , and is larger than the average
spreading time E [Tm].

The infection time is exponentially distributed in the classic Markovian SIS process.
More generally, we extend the investigation of the spreading time Tm in a non-Markovian
process, which is more common in real-world situations, such as information spread
in online social networks and real diseases with incubation periods [50]. We assume
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Figure 2.8: The distribution of the spreading time Tm in a power law graph G1000 with 1000 nodes starting from
one initial node. The histogram is based on 2×105 realizations.

that the infection and curing processes are independent in a non-Markovian SIS model,
where the curing process is still Poissionian with rate δ, and the infection process at each
node infects its neighbors in a time T that is Weibullean, with the pdf

fT (x) = α

b

( x

b

)α−1
e−(x/b)α . (2.6)

In order to compare the Weibull with the exponential distribution, we fix the average

infection time to 1
β , so that b = (

Γ
(
1+ 1

α

)
β
)−1

. Thus, the shape parameter α tunes the
power-law start and the tail of the Weibull distributions with the same mean infection
time E [T ] = 1

β .
Figure 2.9 and 2.10 show the distribution of spreading time Tm as a function of the

shape parameter α in a complete graph and a star graph. The pdf of the spreading
time remains heavy-tailed, and the shape parameter α shifts the mode of the pdf of the
spreading time. The tail of the distribution of the spreading time tends to a lognormal
pdf better with the increasing shape parameter α in the complete graph.
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The characteristic times with heavy-tailed distribution in Markovian processes have
been observed in a few previous research, such as the inter-record time in the extremal
process [51], the time of ruin in the risk model [52] and the first return time of random
walks [53]. In this section, we show that the spreading time in the SIS model on a
network resembles a lognormal-like distribution with different deep tails, regardless of
the process being Markovian or non-Markovian, the network topology and the initially
infected node.
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2.4. THE AVERAGE SPREADING TIME E [Tm] IN SIS PROCESSES

2.4.1. EFFECT OF THE EFFECTIVE INFECTION RATE ON E [Tm]
We study the average spreading time E [Tm] as a function of the effective infection
rate τ in a SIS process, started from a same initially infected node. Figure 2.11 and
Figure 2.12 illustrate the function of the average spreading time E [Tm] with the effective
infection rate τ in a complete graph and a star. The average spreading time E [Tm] is not
monotonic with the effective infection rate τ but exhibits a maximum, which means that
a stronger virus may not lead to a shorter average spreading time E [Tm].

To better explain the above phenomenon, we define the spreading capacity as c =
E [Im ]
E [Tm ] , which approximately indicates the average number of nodes that can be infected
in a time unit in the early state of the spreading. Thus, a higher effective infection rate
leads to a smaller reciprocal of the spreading capacity 1/c, which describes the average
time units to infect per node. Meanwhile, the average number of infected nodes E [Im]
in the metastable state increases with the effective infection rate τ in a network when
the effective infection rate is above the epidemic threshold τc . Therefore, the average
spreading time E [Tm], which is represented by E [Tm] = E [Im ]

c , is influenced by E [Im] and
the spreading capacity c simultaneously, exhibits the property of non-monotony with
the effective infection rate τ. The sub-graphs of Figure 2.11 and Figure 2.12 illustrate the
reciprocal of the spreading capacity 1/c and the average number of infected node E [Im]
in the metastable state as a function of the effective infection rate τ.
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Figure 2.11: The average spreading time E [Tm ] as a function of the effective infection rate x = τ/τc in a
complete graph K50. The subgraph illustrates the average number E [Im ] of infected nodes in the metastable
state and the the reciprocal of the spreading capacity 1/c with the normalized effective infection rate x = τ/τc .

2.4.2. EFFECT OF THE SHAPE PARAMETER α ON E [Tm]
We now investigate the effect of the shape parameter α in the Weibull-distributed
infection time with pdf (2.6) on the average spreading time E [Tm], where the Markovian
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Figure 2.12: The average spreading time E [Tm ] with x = τ/τc in a star graph K1,49 with 49 leaves, started from
the center of the graph. The subgraph illustrates the average number E [Im ] of infected nodes in the metastable
state and the the reciprocal of the spreading capacity 1/c with the normalized effective infection rate x = τ/τc .

infection process is a special case with α = 1. As discussed in Section 4.1, the average
spreading time depends on the spreading capacity c and the average fraction y(ts )
of infected nodes in the metastable state, both of which are influenced by the shape
parameter α.

The average number of infection attempts during a recovery time is a physically more
general description than the effective infection rate in non-Markovian epidemics [50].
Considering the distribution of the infection attempts over an infectious period of a
node, the occurrence of events is not uniformly distributed over an interval when the
infection process is non-Markovian. For α < 1, the infection events tend to happen
earlier than the Poission-distributed events (for α = 1 ) with high probability, while for
α > 1, the infection events tend to happen later. Therefore, the timing of the infection
attempts relative to the curing time of a node influences the epidemics process even for
the same average number of expected infection attempts [41]. Physically, the reciprocal
of the spreading capacity 1/c, which describes the average time units to infect per node
before the metastable state, also increases for a higher α.

Figure 2.13 shows that the average fraction y(ts ) of infected nodes in the metastable
state depends on both the effective infection rate τ and the shape parameter α. Specif-
ically, the average fraction y(ts ) of infected nodes in the metastable state decreases
with a higher parameter α for a same effective infection rate τ. Figure 2.14 suggests

that log(τ) ∼ log(N y(ts ))
α for the same number N y(ts ) of infected nodes in the metastable

state, which implies that τα ∼ y(ts ) in the complete graph when τ < 1. This relation is
consistent with the conclusion that the epidemic threshold τc (α) in the non-Markovian

SIS epidemics scales as (τ(1)
c )

1
α , where τ(1)

c = τc (1) is the epidemic threshold in the
Markovian SIS model [40]. As Figure 2.14 shows in the star graph, the Weibull shape
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factor α barely influences the fraction y(ts ) of infected nodes in the metastable state
when the effective infection rate τ≥ 1.

Figure 2.15 shows that, both in the complete graph and the star, the average spread-
ing time E [Tm] does not always increase monotonically with the shape parameter α,
but exhibits a maximum when the effective infection rate τ is small. For a higher α,
the timing of the infection attempts is postponed while the fraction of infected nodes in
the metastable state decreases. These two factors leads to the non-monotonicity of the
average spreading time E [Tm] with the shape parameter α, and implies that increasing
the parameter α may not shorten the average spreading time E [Tm].
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Figure 2.13: The average fraction of infected nodes in the metastable state for the same τ in the non-Markovian
SIS process in a complete graph K50 and a star graph K1,49.
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2.4.3. EFFECT OF THE NETWORK SIZE ON E [Tm]
We now investigate the effect of the network size N on the average spreading time
E [Tm]. Figure 2.16a – 2.16c show the average spreading time E [Tm] starting from one
initially infected node as a function of the network size for a complete graph KN , a star
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Figure 2.15: The average spreading time E [Tm ] as a function of the parameterα for the same effective infection
rate τ in the complete graph K50 and in the star graph K1,49.

K1,N−1, and an ER random graph Gp (N ). Referring to the average fraction of infected
nodes y (1)(ts ) = 1 − 1

(N−1)τ in the metastable state in a complete graph with N nodes

via NIMFA [49], we can estimate the effective infection rate τ = 1
(1−y(ts ))(N−1) for a fixed

average fraction y(ts ) of infected nodes in the metastable state. Similarly, in an ER graph,
the effective infection rate τ = 1

(1−y(ts ))(N−1)p for a fixed fraction y(ts ) of infected nodes

in the metastable state is estimated by the NIMFA approximation y (1)(ts ) = 1− 1
(N−1)pτ ,

where the link probability p = 2log N
N . The effective infection rate τ in a star is estimated

by the NIMFA approximation [49] that y (1)(ts ) = N−τ−2

N+1

{
1

τ−1+1
+ 1

τ−1+N

}
≈ τ

1+τ when

N À τ.

We ignore the curing events and consider a Susceptible-Infected (SI) process in the
complete graph. The average time when Im nodes are infected [38] follows

∑Im
n=1

1
τn(N−n) ,

where y(ts ) = Im
N ≈ 1− 1

Nτ is fixed. Thus, we obtain

E [Tm] ≈
Im∑

n=1

1

τn(N −n)
= 2

τN

Im∑
n=1

1

n
∼ 2(1− y(ts )) log(y(ts )N ), (2.7)

which scales logarithmically with the network size N . For an SIS process, Figure 2.16a –
2.16c show that the average spreading time E [Tm] via simulation approximately scales
logarithmically as a log(N ) + b for different fractions y(ts ) of infected nodes in the
metastable state in a complete graph, an ER random graph and a star. The process needs
more time to infect a same fraction of nodes in a network with a larger size. The slope a
of the fit is larger for a smaller fraction y(ts ) of infected nodes in the metastable state,
which means the average spreading time E [Tm] tends to increase more quickly with
the network size N when the fraction y(ts ) of infected nodes in the metastable state is
smaller. We observe the similar trend of the average spreading time with the network
size N in the complete graph and the ER random graph. Actually, when the link density

p in an ER random graph is above the critical link density pc = log N
N , the graph is already

dense and follows similar behaviors as the complete graph [38].
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Figure 2.16: The average spreading time E [Tm ] starting from one initially infected node as a function of the
network size in the graph.

2.5. CHAPTER SUMMARY
We define the spreading time as the time when the number of infected nodes in
the metastable state is first reached, starting from the outbreak of an epidemic. We
investigated the distribution of the spreading time. The average hitting time E [THi ]
to the state i around the average number of infected nodes in the metastable state
approximates an exponential function, where the number of infected nodes in the
metastable state resembles a Gaussian-like distribution. Thus, we observe that the
spreading time Tm resembles a lognormal-like distribution with different deep tails,
which is exhibited both in the Markovian and the non-Markovian infection process.

We further investigated the properties of the average spreading time. Because
the number of infected nodes in the metastable state and the spreading capacity are
influenced by the effective infection rate simultaneously, the average spreading time
E [Tm] is not necessarily monotonous with the effective infection rate τ but exhibits a
maximum, which means that a higher effective infection rate τmay not lead to a shorter
average spreading time E [Tm]. Similarly, both the fraction of infected nodes in the
metastable state and the timing of the infection attempts are influenced simultaneously
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by the parameterα of the Weilbullean infection times, which leads to non-monotonicity
of the average spreading time E [Tm] with the shape parameterα. Finally, we showed that
the average spreading time E [Tm] scales logarithmically as a function of the network size
N , given that the average fraction y(ts ) of infected nodes in the metastable state is fixed.



3
THE FASTEST SPREADER IN SIS

EPIDEMICS ON NETWORKS

Identifying the fastest spreaders in epidemics on a network helps to ensure an efficient
spreading. By ranking the average spreading time for different spreaders, we show that
the fastest spreader may change with the effective infection rate of a SIS epidemic process,
which means that the time-dependent influence of a node is usually strongly coupled to
the dynamic process and the underlying network. With increasing effective infection rate,
we illustrate that the fastest spreader changes from the node with the largest degree to the
node with the shortest flooding time. (The flooding time is the minimum time needed
to reach all other nodes if the process is reduced to a flooding process.) Furthermore, by
taking the local topology around the spreader and the average flooding time into account,
we propose the spreading efficiency as a metric to quantify the efficiency of a spreader
and identify the fastest spreader, which is adaptive to different infection rates in general
networks.

This chapter is based on the published paper [54].

25
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3.1. INTRODUCTION

I DENTIFYING the most influential initial spreaders in a network constitutes a basic
endeavor in network science, which helps to optimize the utility of resources and to

ensure an efficient diffusion [55]. Injecting information in the fastest spreaders results
in the most efficient spreading performance. The knowledge of the fastest spreader can
be applied in direct marking [56] or idea spreading [57], where the resources are limited
to start the spreading with a small number of spreaders.

Many topological metrics have been proposed to measure the influence of nodes in
networks [58], such as degree, betweenness, closeness [38], eigenvector centrality [59]
and the square eigenvector component [60]. Kitsak et al. [30] suggest that coreness
constitutes a better topological descriptor to identify influential spreaders in epidemics
[30]. However, many nodes performing differently in a spreading process may have the
same k-core value. Therefore, new metrics based on the existing centrality are proposed
to improve the identification of the influential nodes by coreness [61][62]. Considering
removing the nodes causing the biggest drop in the energy function, Morone and
Makse [63] propose the metric of collective influence through optimal percolation,
which performs well in locally tree-like networks. Van Mieghem et al. [64] propose that
the best conduction node in a resistor network is the minimizer of the diagonal elements
of the pseudoinverse matrix Q† of the weighted Laplacian matrix of the graph.

In the SIR (Susceptible-Infected-Removed) model [12], Šikić et al. [65] show that
the ranking of nodal influences is sensitive to the spreading dynamics, which depends
on the infection rate and the curing rate. Measured by the cumulative infection prob-
abilities of nodes, the degree centrality can better identify influential spreaders when
the spreading rate is very small. However, the eigenvector centrality performs better
when the spreading rate is close to the epidemic threshold [66]. Holme [67] discovers
similar results and proposes an exact method to identify the best spreaders for influence
maximization (the expected outbreak size) in the SIR model, but the method is only
tractable in small graphs. In the SIS (Susceptible-Infected-Susceptible) model, Qu et al.
[68] unveil that the ranking of nodal metastable infection probability also changes with
the effective infection rate.

The “influence” of the spreader in the SIS model is not well defined. In this
chapter, we confine ourselves to the spreading time Tm(i ), defined as the time [35]
when the number of infected nodes in the metastable state is first reached, started
with one initially infected node i . The spreading time of an epidemic process generally
determines the preferred period to take immunization actions to eradicate the spreading
[47]. We investigate the average spreading time E [Tm(i )] to identify the fastest spreader
in an SIS epidemic on a general network.

This chapter is organized as follows. Section 3.2 introduces the spreading time and
shows that the average spreading time depends on the topological metrics in an ER
random graph. Section 3.3 shows that the fastest spreader changes with the dynamic
process in SIS epidemics. Further, we propose the spreading efficiency to identify the
fastest spreader. We show the performance in four artificial and real networks in Section
3.4. Finally, we conclude our results in Section 3.5.
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3.2. THE SPREADING TIME IN EPIDEMICS ON NETWORKS

We concentrate on the Markovian SIS epidemics [26] on networks, where both the curing
and infection processes are Poisson processes. In the SIS epidemics model on a network
G with N nodes and L links, the ratio between the infection rateβ and the curing rate δ is
called the effective infection rate τ=β/δ. The SIS model features a phase transition [39]
around the epidemic threshold τc . Viruses with an effective infection rate τ above the
epidemic threshold τc can infect a sizable portion of the population and stay for a long
time in the network. A first-order mean-field approximation of the epidemic threshold
τ(1)

c = 1/λ1, where λ1 is the spectral radius of the adjacency matrix A of the network G ,
was shown to be a lower bound for the epidemic threshold [26]. We denote by x = τ/τ(1)

c
the normalized effective infection rate.

The spreading time Tm(i ) of the Markovian SIS process resembles a lognormal-like
distribution with deep tails [35]. The average spreading time E [Tm(i )] approximates the
average hitting time when the average fraction y∞ of infected nodes in the metastable
state is reached. Physically, the spreading time Tm(i ) describes the spreading velocity in
the early stage of the spreading process, which depends on the local topology around the
initial spreader i . The analytic expression of the spreading time in a general graph is hard
to derive in closed form [47]. Due to the limitation of the analytical methods, an event-
driven simulator SSIS for the SIS spreading process based on the Gillespie algorithm is
implemented to determine the spreading time [35].

A faster initial spreader speeds up the spreading in the outbreak period and leads
to a shorter average spreading time, which measures the efficiency of the spreader.
We can identify the fastest nodes by ranking the average spreading time. We first
show the effect of the topological properties of the spreader i on the average spreading
time E [Tm(i )] in a SIS epidemics on an Erdős-Rényi (ER) random network. Figure 3.1
shows the normalized topological metrics of node i versus the average spreading time
E [Tm(i )], which demonstrates that the average spreading time E [Tm(i )] depends on the
topological properties of initial spreader i . Specifically, the degree and the closeness of
the initial spreader seem to have a similar behavior as the average spreading time in the
ER random graph, while the betweenness of the initial spreader has a weaker correlation
with the average spreading time. The reciprocal of the diagonal element (Q†

i i ) of the

pseudoinverse matrix Q† also performs well in ranking the fastest spreaders and behaves
similarly as the degree in the ER random graph [64]. Figure 3.1 illustrates that the nodes
with the same coreness may occupy a large proportion of the network so that the fastest
spreader cannot be identified well by their coreness.

3.3. THE FASTEST SPREADER IN SIS EPIDEMICS

In this section, we further investigate the fastest spreader in the SIS epidemics. The
change of the fastest spreader with the effective infection rate τ is presented in an
exemplified barbell-like graph. Then, we propose a new metric to identify the fastest
spreader.
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Figure 3.1: The normalized topological metrics of the initial spreader i , e.g., the degree di , the betweenness

bi , the closeness cli , the coreness cri and the reciprocal of the diagonal element (Q†
i i ) of the pseudoinverse

matrix Q†, versus the average spreading time E [Tm (i )] in an connected ER random graph G0.4(30) with N = 30
nodes and link density p = 0.4.

x = 4, y∞ = 0.32, E[Tm(9)] = 2.3 x = 8, y∞ = 0.48, E[Tm(9)] = 5.2 x = 18, y∞ = 0.85, E[Tm(9)] = 2.4

0 1

initial spreader initial spreader initial spreader

probability

Figure 3.2: The probability that the nodes is infected at the spreading time for different normalized effective
infection rate x = τ/τc . Node 9 is the initially infected spreader. The darkness of the nodes represents the
probability. The results is based on 105 realizations.

3.3.1. CHANGE OF THE FASTEST SPREADER WITH τ IN A BARBELL-LIKE

GRAPH
We generate an asymmetric barbell-like graph G20 where a path graph L2 connects an
ER random graph G0.5(10) and a star graph K1,7, as shown in Figure 3.2. The barbell-like
graph helps us to trace the fastest spreader if the effective infection rate τ changes. Figure
3.2 illustrates the probability that the nodes is infected at the spreading time. Figure 3.2
shows that the infected nodes are usually localized around the initial spreader at the
spreading time, e.g., the viruses seldom reach node 14 for a small normalized effective
infection rate x = 4.

Figure 3.4 exemplifies that the fastest spreader changes with the effective infection
rate τ in G20. The fastest spreader changes dramatically from the highest degree node to
the lowest degree node with increasing effective infection rate τ. Specifically, we observe
three different cases in Figure 3.4. If the effective infection rate τ is relatively small, the
fastest spreader tends to be located in the dense part (the ER random subgraph) of the
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Figure 3.3: The average spreading time E [Tm (i )] as a function of the normalized effective infection rate x in
G20, started from node 9, 11 and 12, in the barbell-like graph G20.

network. With the increasing the effective infection rate τ, the fastest spreader transits
to nodes with a larger closeness in the path subgraph. At last, the process approximates
a flooding process if the effective infection rate τ is large enough. Since the average time
to infect all nodes in the star subgraph is larger than that in the ER random subgraph1,
the fastest spreader should be closer to the star subgraph.

In Figure 3.3, the crossings of the average spreading time E [Tm(i )] with the effective
infection rate τ for different initial spreaders demonstrate that not only the fastest
spreader but also the ranking of spreaders is not fixed for different effective infection
rates τ. Therefore, we conclude that the fastest initial spreader in SIS model, only
inferred by its location in the underlying graph of the network, cannot be determined.
Our finding implies that time-dependent “importance or centrality”of a node is usually
strongly coupled to the dynamic process and the underlying graph itself.

3.3.2. A HEURISTIC TOPOLOGICAL METRIC FOR THE FASTEST SPREADER
In this section, we discuss the topological property of the fastest spreader throughout
the increase of the effective infection rate τ, i.e., τ ↓ τc , τ> τc and very large τ.

CASE: τ ↓ τc

Invoking the infection probability vector V (t ) = ((v1(t ), v2(t ), · · · , vN (t ))T , we approxi-
mate the spreading dynamics in the early stage of the spreading [40] and obtain

dV (t )

d t
≈βAV (t )−δIV (t ) (3.1)

1The average time to infect all nodes [69] in an ER random graph Gp (N ) is estimated to be 1
β

∑N−1
n=1

1
np(N−n) ∼

2log(N−1)
βN . The average time to infect all nodes in a star graph K1,N from the center is estimated to be the

maximum of N exponentially distributed random variables with mean 1/β, which approximates
∑N

n=1
1
βn ∼

log N
β

.
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Figure 3.4: Illustration of the changing of the fastest spreader with different τ. The size of the nodes represents
the degree, and the darker node represents the faster spreader. The orange node is the fastest initial spreader.

The average fraction y(t ,τ) of infected nodes at the spreading time tm with τ obeys that

y(tm ,τ) = 1

N
uT V (tm) ≈ 1

N
uT e(βA−δI )tm V (0) (3.2)

where uT = (1,1, . . . ,1). If the effective infection rate τ = β
δ approaches the first order

mean-field approximation of the epidemic threshold τ(1)
c = 1

λ1
, only a very small propor-

tion y(tm ,τ) of nodes will be infected in the metastable state. The spreading time tm ,
defined as the the first hitting time when N y(tm ,τ) nodes are infected in the Markovian
SIS process without extinction [35], is finite. Figure 3.3 also exemplifies that the average
spreading time is relatively small if τ ↓ τ(1)

c . The matrix (βA−δI )tm in (3.2) is dominated
by the largest eigenvalue δ(τλ1 − 1)tm , which tends to be 0 if the effective infection
rate τ ↓ τ(1)

c (by Perron-Frobenius Theorem [38]). Simplified, invoking the degree vector
d = Au and V (0) = ei , we arrive at

lim
τ↓τ(1)

c

y(tm ,τ) ≈ 1

N
uT (

I + (βA−δI )tm
)

V (0)

≈ 1

N

(
uT + (βd T −δuT )tm

)
V (0)

= 1

N

(
1− tmδ+ tmβdi

)
(3.3)

Relation (3.3) exhibits that the degree of the spreader dominates the spreading time
tm for the unaltered ratesβ, δ and their corresponding y(tm) = y∞. This result is different
from the result that the eigenvector of the adjacent matrix A belonging to the largest
eigenvalue determines the infection probability vector in the metastable state [38]. We
here exemplify an extreme case: if the effective infection rate τ approaches τc , and
there is only one infected node in the metastable stable, i.e., y(tm) = 1

N , the spreading
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time tm equals the minimum time when any one of the neighbors of the spreader i is
infected. Then, the average spreading time E [Tm] is the minimum of the di exponential
distributed random variables with a mean 1/β, where di is the degree of the spreader
i . Thus, the average spreading time follows E [Tm] = 1

βdi
, which is determined by the

degree of the initial spreader.

CASE: INCREASING τ

We then investigate the case for the increasing effective infection rate τ. Inspired by
the illustration in Section 3.3.1, we postulate that the fastest spreader depends on the
local topology around itself, i.e., the number of nodes and the connectivity of nodes
around the spreader. We first consider the number of nodes around the initial spreader
and regard that the efficiency of the initial spreader is related to the expansion [38] of
the subgraph centered at the spreader. Specifically, assuming that the hop count h is
the farthest distance from the initial spreader i that the viruses can reach before the
spreading time, the expansion of the subgraph is the number of nodes |Ci (h)| within h
hops from the initial spreader i .

We then consider the connectivity of the nodes around the initial spreader. An
epidemic behaves like a continuous time Markov branching process in the early stage
[70]. For a branching process, we obtain that the number of infected nodes follows

N y(t ) ≈ uT eβAt V (0) ≤ eβλ1t N y(0) (3.4)

which implies that the lower bound of the time to infect N y(t ) nodes around the initial

spreader follows that t ≥ log(N y(t ))
βλ1

. Inspired by (3.4), we propose λi (h)
log |Ci (h)| as an indication

of the connectivity of the local topology around the spreader i for a fixed infection rate
β, where λi (h) is the largest eigenvalue of the subgraph within h hops around the initial

spreader i . A larger λi (h)
log |Ci (h)| implies a higher connectivity that leads to a faster spreading

in the local network within h hops.
Considering the above two factors including the expansion |Ci (h)| of the subgraph

and the connectivity indication λi (h)
log |Ci (h)| within the subgraph, we propose the spreading

efficiency as a new metric to measure the efficiency of the initial spreader in the SIS
model. The spreading efficiency of node i is defined as

Ei = λi (h)

log |Ci (h)| |Ci (h)| (3.5)

In case that the sub-graph expansion |Ci (h)| of the initial spreaders are the same, a larger
sub-eigenvalue λi (h) leads a higher spreading efficiency in the subgraph due to a higher
connectivity of nodes.

The hop count h describes the average farthest distance of the infected nodes from
the spreader at the spreading time for the effective infection rate τ, which is difficult
to be determined precisely in a general network. Morone and Makse [63] identify the
influential spreaders by the Ball (subgraph) centered at the spreader, where the optimal
radius of the Ball is 3 or 4. The optimal hop h = f (τ) in our method is more flexible, which
is a function of the effective infection rate τ. We hereby proceed with an approximation.
First, the average fraction of infected nodes y∞ in the metastable state can be estimated
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by the NIMFA approach for a determined τ. The number NC of nodes in a branch process

follows NC ≈ µH+1−1
µ−1 , where H is the largest hop count from the root and µ= E [D]−1 is

the mean degree minus 1 in this graph [38]. In that case, we have the largest hop count

H ≈ log(NC (µ−1)+1)
logµ − 1 ≈ log NC

logµ if NC À µ . Invoking the fact that a spreading process
approximates a branching process in the early stage, we can estimate the hop count h in
a sparse and large graph by

h =
[

log N y∞
logµ

]
(3.6)

CASE: LARGE τ

With the increase of the effective infection rate τ and the average fraction y∞ of infected
nodes in the metastable state, the nodes that need relatively more time to be reached
gradually dominate the spreading time. Thus, the fastest spreader could be closer to the
sparser subgraph of the network.

Finally, if the effective infection rate τ is large enough, the SIS process is reduced to
be a flooding process [69]. The average flooding time E [TN (i )] of an initial spreader i is
the average minimum time for the virus to reach all other nodes in a flooding process.
Therefore, we could regard the reciprocal of the average flooding time φi = 1

E [TN (i )]
determines the fastest spreader if τ is very large.

Assuming that λ1(0) = 1 and |Ci (0)| = di , the spreading efficiency in (3.5) with h < 1
follows the same rank as the degree di . In summary, we simplify and propose the overall
metric “spreading efficiency” to identify the fastest initial spreader in an SIS epidemics
as

Ei =


λ1(h)|Ci (h)|

log |Ci (h)| y∞ ≤ y∗
∞

φi y∞ > y∗
∞

(3.7)

where y∗∞ is a prescribed parameter indicating that the process approximates a flooding
process if y∞ > y∗∞. We set y∗∞ = 0.8 in this chapter for the simulation.

Figure 3.5 shows the Kendall rank correlation coefficient κ between the average
spreading time and the above discussed metrics, including the degree, the spreading
efficiency in (3.5) and the reciprocal of the average flooding time φi via Monte-Carlo
estimation. If the effective infection τ is close to the epidemics threshold τc ≈ 0.17, the
degree centrality could be a better metric. We then observe that the best hop count h
increases with the effective infection rate τ, and the spreading efficiency Ei with the
proposed hop count h in (3.6) can lead to the maximum correlation coefficient κ in a
wide range of τ. At last, the reciprocal of the average flooding time shows the advantage
when τ is large enough.

3.4. NUMERICAL RESULTS
We evaluate the performance by identifying the ranking of the fastest initial spreaders
in four, artificial and real, networks with different sizes and topologies: co-appearances
of characters in Les Misérables [71], small world citation network (SmallWCitation) [72],
the artificial barbell network G20 and Co-authorship network of scientists (Net-Science)
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Figure 3.5: The Kendall rank correlation coefficient κ between the average spreading time E [Tm (i )] and the
metrics: the degree di , the spreading efficiency Ei and the reciprocal of the average flooding time φi in the
barbell graph G20.

[73]. Table 3.1 shows some properties of the giant component of the four networks
including the number of nodes N , the number of links L, the diameter ρ, the largest
eigenvalue λ1, the clustering coefficient CG , the Pearson degree correlation coefficient
ρD .

N L ρ λ1 CG ρD

Les Misérables 77 254 5 12.01 0.57 -0.17
SmallWCitation 233 994 4 20.96 0.56 -0.30
Barbell G20 20 39 7 6.14 0.33 -0.11
NetScience 379 914 17 10.38 0.74 -0.08

Table 3.1: The topological properties of the giant component of the four experimental networks

We extract the giant component of the above network and select 10 nodes randomly
in each network. In each implementation, only one of the selected nodes is infected
initially, and then the virus spreads in the network according to the Markovian SIS
model. After obtaining the average spreading time via SSIS started from different initial
spreaders, we compare the Kendall rank correlation coefficients κ between the average
spreading time and some other metrics including degree, closeness, betweenness,
coreness and the proposed spreading efficiency in (3.7). Physically, the identification of
the fastest spreaders in a flooding process is a 1-center problem [74] in a graph, where the
weights of links in the graph are exponentially distributed random variables with mean
1
β . Thus, we estimate the average flooding time E [TN (i )] by Monte-Carlo approach and
the efficiency shortest path algorithm [75].

Figure 3.6 shows the performance of the several centrality metrics for ranking the
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(a) Characters network in Les Misérables
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(b) SmallW citation network
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(c) Barbell network G20
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(d) NetScience network

Figure 3.6: The Kendall rank correlation coefficient κ between the average spreading time E [Tm (i )] and the
metrics including degree di , closeness cli , betweenness bi coreness cri and the spreading efficiency Ei in
four networks.

fastest initial spreader in four networks. We observe that, in the networks with a small
diameter (e.g., Les Misérables and SmallW citation network), the spreading efficiency
performs similarly with the coreness, both of which are better than other centrality
metrics. In addition, the spreading efficiency shows its advantage over the coreness if the
effective infection rate τ is relatively large because the reciprocal of the average flooding
time determines the fastest spreader in that case.

However, the degree and coreness show the vulnerability in the community networks
with a large diameter (e.g., Barbell and NetScience network). Meanwhile, the closeness
becomes a better metric, which considers the average length of the path between the
spreader and all other nodes. Especially, in the Barbell G20, we observe the changing
of the performance of the centrality metrics with the increasing effective infection rate
τ. When τ is small, the degree and the coreness perform better, but the closeness and
the betweenness become better if τ is large enough, which further convinces us that a
single existing centrality metric fails to identify the fastest spreader in the SIS model.
The results suggest that, in the real world, the viruses or information may spread more
efficiency starting from the spreader with a large degree within the community for a
small τ, but it is better to choose the spreader with a high closeness for a large τ.
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In summary, we can observe that the proposed spreading efficiency performs bet-
ter than the compared topological metrics in general, which is adaptive to different
topologies and different dynamic process. We find that the accuracy of the spreading
efficiency drops a little around the effective infection rate corresponding to the transition
parameter y∗∞. We also expect a better transition method and a better estimation of hop
h = f (τ) that can improve the performance.

3.5. CHAPTER SUMMARY
We investigated the properties of the fastest initial spreader with the shortest average
spreading time in the SIS model. We showed that the fastest spreader changes from
the node with the largest degree to the node with the shortest flooding time for the
increasing effective infection rate, which implies that the fastest spreader is coupled to
not only the underlying graph but also the dynamic process.

By considering the expansion and the largest eigenvalue of the subgraph around the
spreader, we proposed the spreading efficiency as a metric to rank the fastest spreaders.
The spreading efficiency depends on the effective infection rate τ, and reduces to the
reciprocal of the flooding time for a large τ. The simulation results on several real-
world networks show that the spreading efficiency can better rank the fastest spreaders
than some existing topological metrics including degree, closeness, betweenness, and
coreness, in different topologies and dynamic processes.





4
OPTIMAL INDUCED SPREADING OF

SIS EPIDEMICS IN NETWORKS

Induced spreading aims to maximize the infection probabilities of some target nodes
by adjusting the nodal infection rates, which can be applied in biochemical and infor-
mation spreading. We assume that the adjustment of the nodal infection rates has an
associated cost and formulate the induced spreading for SIS epidemics in networks as
an optimization problem under a constraint on total cost. We address and solve both
a static model and a dynamic model for the optimization of the induced SIS spreading.
By numerical results in some artificial and real networks, we investigate the effect of the
network topology on the optimal induced strategy with a quadratic cost function. In the
static method, the infection rate increment on each node is coupled to both the degree
and the average hops to the targets. In the dynamic method, we show that the effective
resistance could be a good metric to indicate the minimum total cost for targeting a single
node. We also illustrate that the minimum total cost increases much less sharply with the
increasing fraction of targets in the SIS model than in linear control systems.

This chapter is based on the published paper [76].
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4.1. INTRODUCTION

S INCE the earliest account of mathematical modeling of diseases was proposed by
Daniel Bernoulli in 1766, epidemic models help us to better understand dynamics of

spreading processes [12]. Spreading in networks can describe many physical phenom-
ena and human activities, such as information spreading on social networks, biological
diseases [26] and computer viruses on cyber-physical networks [77]. Some previous
research investigated the strategies to eliminate or control the spreading of viruses as
quickly as possible [78]. The optimal epidemics control problem for mean-field models
can be converted into a spectral control problem, e.g., how to decrease the spectral
radius of a graph [28] more efficiently by some strategies (e.g., link removals)? Preciado
et al. [29] propose the budget-constrained allocation problem and present a solution
framework based on Geometric Programming to control the epidemics by adjusting the
infection rates and the curing rates of nodes.

Although the existing work on controlling the spreading has presented some useful
proposals and frameworks on a microscopic level, the previous research focuses on
the performance of the whole network. Induced spreading or targeted spreading is a
more general task, which aims to maximize (minimize) the infection probability of some
specific nodes instead of all nodes in the network. The induced spreading problem is
first introduced by Sun et al. [79] for identifying the single best spreader if the spreading
only aims to cover a specific group of nodes. The induced spreading problem is inspired
by many real applications. In the biochemical application, induced spreading can be
applied for targeting biochemical cascades to treat cancer [80]. We prefer to guide the
drug to reach affected areas effectively with a minimum dose to reduce side effects.
In the context of information spreading, some advertisements (e.g., cigarettes) on the
Internet should reach as much as possible to the potential customs; and a strategy
for active cyber defense [81] based on spreading patches for targeting the infected
computers should be designed.

Notwithstanding the importance of the induced spreading, the methods and proper-
ties of the induced spreading have been considered only in a few works [79] [82]. In this
chapter, we focus on the Susceptible-Infected-Susceptible (SIS) model and specialize
in the optimal induced spreading problem in networks. We address two optimization
models: the static and the dynamic. The static optimization aims to maximize the sum
of the steady-state infection probabilities of the target nodes, under a constraint on the
nodal infection rates. In the dynamic optimization, we model the induced spreading
as an optimal control problem for maximizing the cumulative infection probabilities
of the target nodes in a time interval, where the time-dependent nodal infection rates
are the control variables. For the dynamic optimization, Lokhov and Saad [82] propose
a framework for maximizing impact in spreading processes based a message-passing
[83] under the assumption of a locally tree-like network. Instead, we formulate both
optimization problems based on the heterogeneous NIMFA model [84][85] for better
investigating the effect of topology on the induced spreading behaviors.

We solve the static optimization problem by the Differential Evolution algorithm
[86], and solve the dynamic optimization based on the optimality system. Further, we
investigate the impact of the topological properties of the target nodes on the induced
strategy by numerical results in some artificial and real networks. We explore the
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behaviors of both the static and dynamic induced spreading, as well as compare the
performance between these two optimization models.

This chapter is organized as follows. Section 4.2 briefly introduces the SIS model
in networks and the heterogeneous NIMFA model. We propose and solve the static opti-
mization for the induced spreading in Section 4.3, and address the dynamic optimization
for the induced spreading in Section 4.4. In Section 4.5, we explore some properties of
the induced strategy by numerical results. We introduce the related work in Section 4.6
and conclude this chapter in Section 4.7.

4.2. PRELIMINARIES AND MODEL

4.2.1. SIS MODEL IN NETWORKS
We first recall the SIS model. The SIS model is an epidemic model where each infected
item can be cured, and becomes susceptible again after recovering from the disease [38].
We define a Bernoulli random variable Xi (t ) ∈ {0,1} as the state of a node i at time t , with
Xi (t ) = 0 for the healthy state and Xi (t ) = 1 for the infected state. The network G with N
nodes and L links is represented by an adjacent matrix A, where ai j = 1 if there is a link
between node i and node j , otherwise ai j = 0. We denote by N = {1,2, . . . , N } the set of
nodes in the network.

In Markovian Susceptible-Infected-Susceptible (SIS) epidemics, both the curing and
infection processes are Poisson processes [38]. Since Xi is a Bernoulli random variable,
it holds that E [Xi (t )] = Pr[Xi (t ) = 1], and the exact SIS governing equation for node i
equals

dE [Xi (t )]

d t
= E

[
−δXi (t )+β(1−Xi (t ))

N∑
k=1

aki Xk (t )

]
(4.1)

The ratio between the infection rate β and the curing rate δ is called the effective
infection rate τ = β/δ. The SIS model features a phase transition [39][40] around the
epidemic threshold τc . Viruses with an effective infection rate τ above the epidemic
threshold τc can infect a sizeable portion of the population on average and stay for a
long time in the network. This long period is called the metastable state [35].

4.2.2. HETEROGENEOUS NIMFA MODEL
In the N-Intertwined Mean-Field Approximation (NIMFA) [26], the infection probability
vi of node i that approximates the exact E [Xi ] is given by the following first-order
nonlinear ordinary differential equation:

d vi (t )

d t
=β

N∑
j=1

ai j v j (t )− vi (t )
(
β

N∑
j=1

ai j v j (t )+δ)
. (4.2)

A first-order mean-field approximation of the epidemic threshold τ(1)
c = 1/λ1(A), where

λ1(A) is the spectral radius of the adjacency matrix A, was shown to be a lower bound,
i.e., τ(1)

c < τc , for the epidemic threshold [26][40].
Heterogeneous infection is more realistic than the assumption of homogeneity in

real-world spreading processes. For example, the transmission capacity per link in a
data communication network can be different. In social networks, people who are keen
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on the social activities could spread a rumor more efficiently. The individual behavior
leads to a difference in the infection rate βi and the curing rate δi . The heterogeneous
NIMFA model [84][85] with the time-dependent infection rate βi (t ) and the curing rate
δi (t ) of node i is described by

d vi (t )

d t
= (1− vi (t ))

N∑
j=1

ai jβ j (t )v j (t )−δi (t )vi (t ) (4.3)

In this chapter, we focus on a method to adjusting the nodal infection rates βi (t ) for
the induced spreading. For simplicity and without lack of generality, we normalize the
curing rate by δi (t ) = 1 at any time for all nodes. Hence, the infection rate βi (t ) equals
the effective infection rate τi (t ).

4.3. STATIC OPTIMIZATION FOR INDUCED SPREADING

4.3.1. PROBLEM STATEMENTS
The SIS process can stay in the metastable state for a much longer time compared to
the transient period if the effective infection rate τ is above the epidemic threshold τc .
Induced spreading for a long term refers to the static optimization of the steady-state
infection probability vector v∞ = (v1∞, v2∞, . . . , vN∞) by adjusting the infection rates β j

for some nodes j ∈N . Static optimization is time-independent and has the advantage
of operational simplicity. Specifically, the optimization problem aims to maximize the
total steady-state infection probabilities of the nodes in the target set S ,

max
v∞,∆β

J = ∑
i∈S

vi∞ (4.4)

subject to the steady-state NIMFA equation with the infection rateβ j = β̂+∆β j of node j ,

(1− vi∞)
N∑

j=1
ai j (β̂+∆β j )v j∞− vi∞ = 0, i , j ∈N (4.5)

where β̂ is the original infection rate for all nodes, and the rate increment vector ∆β =
(∆β1,∆β2, . . . ,∆βN ) are the control variables. Also, we have the constraint on the total
cost budget

N∑
i=1

g (∆βi ) ≤C , i ∈N (4.6)

where g (∆βi ) is a convex function of the infection rate increment ∆βi , and C denotes a
prescribed positive constant for the cost budget. Before solving this problem, we have
Lemma 4.1 and Theorem 4.1 as follow:

Lemma 4.1 The steady-state infection probability vi∞ of any node i in the graph GN

monotonically increases with the infection rate β j of any node j .

Proof: See Appendix B.1. ä
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Theorem 4.1 The steady-state infection probability vi∞ of node i is not always concave
with respect to the infection rate β j for i 6= j .

Proof: See Appendix B.1. ä
Since the diagonal element ∂2vi∞

∂β2
j

in the Hessian matrix of the steady-state infection

probability v∞ with respect to the infection rate increment∆β could be positive accord-
ing to Theorem 4.1, the Hessian matrix is not negative semi-definite. Thus, we conclude
that the static optimization for induced SIS spreading is not a convex program, which
cannot be solved by a simple method.

4.3.2. GLOBAL OPTIMIZATION BY DIFFERENTIAL EVOLUTION

We further simplify the NIMFA constraint (4.5) by expressing vi∞ explicitly, and only
dependent on the infection rates β, but not on any other v j∞ for j 6= i . For any effective
infection rate τ ≥ 0, the nonzero steady-state infection probability vi∞ of any node i
in the NIMFA can expressed as a continued fraction [26][38]. We define the k-level
infection probability for node i as v (k)

i∞ = 1−wi (k), where the k-th convergent is wi (k) =
1

1+∑N
j=1 ai jβ j −

∑N
j=1 ai jβ j w j (k−1)

with starting value wi (0) = 0 and limk→∞ wi (k) = 1− vi∞.

If the level k is large enough [26], the infection probability v (k)
i∞ is sufficiently close

to vi∞. By approximating the infection probability vi∞ by v (k)
i∞, the optimization

problem can be reduced to max∆β
∑

i∈S
v (k)

i∞ subject to the cost constraint (4.6). We further

reduce the inequality constraint
∑N

i=1 g (∆βi )−C ≤ 0 to a penalty term by converting the
objective to

min
∆β

− ∑
i∈S

v (k)
i +ζmax{0,

N∑
i=1

g (∆βi )−C } (4.7)

where ζ is the penalty parameter. If the constraint is violated during the optimization
process, the penalty term feeds the deviation to the objective function and draws the
solution to the feasible region.

Since Problem (4.7) is multi-dimensional and nonlinear, we propose an approach
based on the Differential Evolution (DE) algorithm to solve the constrained optimization
problem. Differential evolution can approximate the global optima of a nonlinear
program, which was proposed by Storn and Price [86]. The Differential Evolution
algorithm resembles other traditional evolution algorithms like genetic algorithms (GA),
and can represent the solution domain of∆βby real numbers. The Differential Evolution
algorithm has the advantage of implementation simplicity over other non-genetic global
optimization algorithms, e.g., the performance of simulated annealing algorithm is
sensitive to the cooling rate and the initial solution. Also, the Differential Evolution
algorithm [87][88] is usually more efficient and accurate than several other optimization
methods, e.g., simulated annealing and genetic algorithms. The proposed Differential
Evolution method is based on population generation, mutation, crossover, and selec-
tion. The implementation is presented in Algorithm 2.1 (see Appendix B.2).
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4.4. DYNAMIC OPTIMIZATION FOR INDUCED SPREADING

4.4.1. PROBLEM STATEMENTS
Dynamic optimization is a more general and more flexible method for the induced
spreading. The infection rate increment ∆β(t ) = (∆β1(t ),∆β2(t ), . . . ,∆βN (t )) is time
dependent in the dynamic optimization, which is different from the static optimization.
Specifically, the dynamic optimization for the induced spreading aims to maximize the
total cumulative infection probability vi (t ) of the nodes in the target set i ∈S in the time
interval [t0, t f ], i.e.,

max
∆β(t )

J =
∫ t f

t0

∑
i∈S

vi (t )d t (4.8)

subject to the NIMFA equation

d vi (t )

d t
= (1− vi (t ))

N∑
j=1

ai j (β̂+∆β j (t ))v j (t )− vi (t ), i , j ∈N (4.9)

and the constraint on the cumulative cost in the time interval [t0, t f ]∫ t f

t0

∑
i∈N

g (∆βi (t ))d t ≤C , i ∈N (4.10)

where C is a prescribed cost budget. The dynamic optimization for induced SIS spread-
ing is a control-affine nonlinear model [89] with the integral constraint (4.10), which
cannot be solved by the standard methods for Linear Quadratic Regulator (LQR) prob-
lems.

4.4.2. THE OPTIMAL SOLUTION
We first introduce an additional control variable z and rewrite the cost constraint (4.10)
as

d z(t )

d t
= ∑

i∈N
g (∆βi (t )) (4.11)

with z(t0) = 0 and z(t f ) =C , where t0 is the initial time and t f is the final time. Then, the
corresponding Hamiltonian is

H(v,∆β,θ,µ) = ∑
m∈S

vm +µ ∑
i∈N

g (∆βi (t ))+
N∑

i=1
θi

[
(1− vi )

N∑
j=1

ai j (β̂ j +∆β j )v j −δvi

]
(4.12)

where the parameter θ = (θ1,θ2, . . . ,θN ) and µ are undetermined. Next, we present the
optimality conditions for the dynamic optimization.

Theorem 4.2 Suppose ∆β∗(t ) is an optimal control for the problem, and v∗(t ) is the
optimal solution with ∆β(t ) =∆β∗(t ). Then, there exist functions θ∗(t ) and µ∗(t ), such
that 

dθ∗i
d t

=χi +θ∗i (
N∑

j=1
ai j β̂ j v∗

j +1)− β̂i

N∑
j=1

ai j (1− v∗
j )θ∗j , i ∈N

dµ∗
d t

= 0

(4.13)
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with the terminal (transversality) conditions µ∗(t f ) = 0 and θ∗i (t f ) = 0 for i = 1,2, . . . , N , where
χi =−1 for i ∈S , and χi = 0 for i ∉S .

Furthermore, the optimal control variable∆β∗(t ) obeys

d g (∆β∗i )

d∆β∗i
=− 1

µ
v∗

i

N∑
j=1

ai j (1− v∗
j )θ∗j , i ∈N (4.14)

Proof: According to the Pontryagin Maximum Principle [90], we can obtain the costate
equations as 

dθ∗i
d t

=−∂H(v∗,∆β∗,θ∗,µ∗)

∂vi

dµ∗

d t
=−∂H(v∗,∆β∗,θ∗,µ∗)

∂z

(4.15)

for t0 ≤ t ≤ t f and i = 1,2, . . . , N . Direct computing (4.15) yields to the equations (4.13).
According to the optimality condition H(v∗,∆β∗,θ∗,µ∗) = min∆βi H(v∗,∆β,θ∗,µ∗), we
obtain that the optimal control ∆β∗

i (t ) for t0 ≤ t ≤ t f and i = 1,2, . . . , N obeys

∂H(v∗,∆β,θ∗,µ∗)

∂ui
=µ∗

d g (∆β∗i )

d∆β∗i
+ v∗

i

N∑
j=1

ai j (1− v∗
j )θ∗j = 0 (4.16)

The optimality conditions include the state equations (4.9), the costate equations (4.13),
and the stationary equations (4.14). ä

The method of Adapted Forward Backward Sweep [89] with a Runge-Kutta fourth
order scheme is applied to solve the optimality system. The convergence of this method
is given in [91].

4.5. NUMERICAL RESULTS AND DISCUSSION
In this section, we investigate the behaviors of the induced SIS spreading by numerical
results in some artificial and real networks. We define the quadratic cost function as
g (∆βi ) = (∆βi )2 in the static method and g (∆βi (t )) = (∆βi (t ))2 in the dynamic method
for i = 1,2, . . . , N . Since the control inputs are generally related to the external force or the
electric current, the cumulative quadratic cost can be interpreted as the control energy
[92] [93]. Applying the quadratic cost function also helps to compare the behavior of
the induced spreading model with other existent models, e.g., LQR model. In order to
guarantee the induced SIS spreading without extinction, we set the original constant
infection rate β̂ = τ(1)

c = 1
λ1

, and the infection probability vi (t ) ≈ 0 for all nodes. Thus,
the additional cost C for the induced spreading leads to a positive payoff on the infection
probabilities of nodes.

4.5.1. NUMERICAL RESULTS IN THE STATIC OPTIMIZATION

PAYOFF VERSUS COST BUDGET FOR A SINGLE TARGET NODE

We first investigate the impact of the cost budget C for targeting a single node in the
static model. Fig. 4.2 presents the payoff B = J (∆β∗) as a function of the cost budget
C for a single target node in the lattice network L3×5 in Fig. 4.1a. Fig. 4.2 shows that
the payoff B of the target node for the same cost budget C depends on the topological
properties of the target node. The target node with a larger degree (e.g., node 2 and 3)
can obtain a higher payoff for the same cost budget C .
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Figure 4.1: Illustration of the network topologies. (a) The lattice network L3×5 with N = 15 nodes. (b) The
Karate network with N = 34 nodes.
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Figure 4.2: The payoff B = J (∆β∗) in the static optimization as a function of the cost budget C for a single target
node in the lattice network L3×5.

COST ALLOCATION IN STATIC OPTIMIZATION

We apply our methods to the Karate network [94] with N = 34 nodes, as illustrated in
Fig. 4.1b. Figure 4.3 compares the time-dependent payoff B(t ) after the optimal cost
allocation in the exact Markovian model and NIMFA. The payoffs B(t ) in both models
follow a similar behavior, and the gap in the payoff between NIMFA and the exact model
decreases for a larger cost budget C . Since NIMFA usually provides an upper bound of
infection probability in the SIS spreading process [26], the exact payoff is also upper-
bounded by the payoff in NIMFA.

For the static optimization, it is of practical significance to investigate the cost
allocation on the nodes in the network. We define the average target distance h̄i as
the mean of all the minimum hops hi j from node i to the target nodes j ∈ S , i.e.
h̄i = 1

|S |
∑

j∈S hi j , where |S| denotes the number of targets. Since the infection rate β j

does not directly influence the infection probability v j∞ of node j , the actual minimum
hops of the influence on infection probability v j∞ by the infection rate β j is 2 hops.
Hence, we set h j j = 2 instead of h j j = 0 to compute the average target distance h̄ j for
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Figure 4.3: The time-dependent payoff B(t ) after the static optimization with a determined cost budget C for
|S| = 5 randomly selected target nodes in the Karate network. The spreading processes start from the initial
spreader 34. The payoff B(t ) in the exact model is obtained from the simulations based on Gillespie algorithm
[35] by averaging 104 realizations.

the target node j ∈S .
Fig. 4.4 shows the relation between the optimal rate increment ∆β∗

i and the topo-

logical properties of node i , e.g., the degree di and the average distance h̄i , for different
fraction of targets |S|. We illustrate that both the degree di and the average distance h̄i

are highly related to the cost allocation on nodes. Specifically, the node with a relatively
high degree di and a shorter average distance h̄i to the target nodes usually has a larger
infection rate increment ∆β∗

i . The steady-state infection probability [26] approximates

vi∞ ≈ 1− 1

1+∑N
j=1 ai jβ j

(
1− 1

1+∑N
k=1 a j kβk

) ≈ 1− 1

1+∑N
j=1 ai jβ j

(
1− 1

1+d jβk

) (4.17)

assuming that the infection rate βk of the neighbors of node j are the same. The
infection rate increment on the node with a larger degree d j among the neighbors of
node i could provide a larger payoff on the infection probability vi∞ of the target node

i . If the fraction of target nodes |S |
N is relatively large, the cost allocated on the node

with a larger degree can benefit more neighbors of this node, which leads to a stronger
correlation between the infection rate increment ∆β∗

i and the degree di .
Figure 4.5 shows the relation between the optimal rate increment∆β∗

i on node i and
the degree di in Les Misérables network [71] and the dolphins network [95]. Figure 4.5
shows that the correlation between the optimal rate increment ∆β∗

i and the degree di

usually becomes stronger with the increasing number of target nodes |S|.

4.5.2. NUMERICAL RESULTS IN THE DYNAMIC OPTIMIZATION

INDUCED STRATEGY FOR A SINGLE TARGET NODE

Dynamic optimization is concerned with the spreading trajectory for steering the viruses
from the initial spreader to the target nodes. We first investigate the behavior of the



4

46 4. OPTIMAL INDUCED SPREADING OF SIS EPIDEMICS IN NETWORKS

0.8

0.6

0.4

0.2

0.0

 O
p

ti
m

al
 r

at
e 

in
cr

em
en

t 
∆

β
i*

161412108642
Degree di

 |S| = 2
 |S| = 5
 |S| = 20 
 |S| = 34

(a) Degree

0.8

0.6

0.4

0.2

 O
p
ti

m
al

 r
at

e 
in

cr
em

en
t 

∆
β

i*

3.53.02.52.01.5
Average target distance h– i

 |S| = 2
 |S| = 5
 |S| = 20 
 |S| = 34

(b) Average target distance
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Figure 4.5: The relation between the optimal rate increment ∆β∗i on node i and the degree di for different
number of target nodes |S|. The target nodes are randomly selected.

optimal induced spreading for a single target node. Fig. 4.6 shows the optimal control
∆β∗(t ) in the lattice network L3×5 in Fig. 4.1a with the single target node 4 and the initial
spreader 1, which illustrates that the behavior of the optimal rate increment ∆β∗(t )
depends on the cost budget C . For a small cost C (e.g., C = 0.5 in Fig. 4.6a), most of
the cost budget is allocated to the nodes on the shortest paths from the initial spreader
to the target node. For a large cost C (e.g., C = 10 in Fig. 4.6b), the time-dependent
optimal control ∆β∗(t ) can be divided into two periods: first steering the viruses from
the initial spreader to the target node, and then the control inputs on the neighbors (e.g.
∆β∗

5 (t ),∆β∗
8 (t ),∆β∗

9 (t )) of the target node 1 stay in a meta-steady state (e.g., t = 1.5−4)
to maintain the infection probability of the target node.

We define the payoff B = J (∆β∗(t )) with the optimal control ∆β∗(t ) for the SIS
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induced spreading. Fig. 4.7 shows the payoff B as a function of the cost budget C for a
single target node in the lattice network L3×5. The logarithmic payoff logB increase faster
than a linear function with the logarithmic cost budget logC for small cost budgets C ,
while the sub-figure in Fig. 4.7 shows the relation B ∼ logC for larger cost budgets C . This
result is in agreement with the above discussion on the behavior of the optimal control
∆β∗(t ). The small cost budget mainly contributes to steering the viruses from the initial
spreader to the target nodes, and the payoff increases relatively faster. The larger cost
budget is mainly allocated to the neighbors of the target nodes, and the payoff presents
diminishing returns, which approximates the induced strategy in the static optimization
(e.g., Fig. 4.2).
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Figure 4.6: The optimal control ∆β∗(t ) for the target node 4 with the initial spreader 1 in the lattice network
L3∗5. The initial time is t0 = 0 and the final time is t f = 5. (a) The optimal control ∆β∗(t ) for the cost budget
C = 0.5; (b) The optimal control∆β∗(t ) for the cost budget C = 10.
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Figure 4.7: The payoff B = J (∆β∗(t )) as a function of the cost C with the initial spreader 1 for a single target
node in the lattice network L3∗5.
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Figure 4.8: (a) The minimum cost C∗
1 j to make the target node v j for j = 2,3, . . . ,15 be infected at least once

in the time interval [0,5], i.e.,
∫ 5

0 v j (t )d t ≥ 1, in the Lattice network L3×5. The spreading starts from the initial

spreader 1; (b) The relation between the minimum cost C∗
1 j and the normalized shortest distance

h1 j
max j∈N h1 j

as well as the normalized effective resistance
ω1 j

max j∈N ω1 j
.

COST SCALING WITH THE TOPOLOGICAL PROPERTIES OF A SINGLE TARGET NODE

Further, we investigate the cost scaling with the topological properties of a single target
node. Fig. 4.8 shows the minimum cost C∗

i j that makes the target node v j be infected

at least once in the time interval [0,5], i.e., the cumulative infection probability J =∫ 5
0 v j (t )d t ≥ 1, in the lattice L3×5 with the initial infection node i . Intuitively, the

minimum cost C∗
i j depends on the shortest distance (minimum hops) hi j from the initial

spreader i to the target j because all the nodes on the paths should be allocated some
cost to steer the viruses to the target. Meanwhile, Fig. 4.8a illustrates that the minimum
cost C∗

i j is also coupled to the number of paths from the initial spreader i to the target

node j , i.e., a larger number of paths leads to a less cost C∗
i j .

Inspired by Thompson’s principle [96] that the minimum energy dissipation is re-
lated to the effective resistance in electric circuits, we introduce the effective resistance
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ωi j between node i and node j as ωi j = (Q†
i i +Q†

j j − 2(Q†
i j )), where Q† is the pseu-

doinverse of the Laplacian matrix Q of the network topology. Van Mieghem et al. [64]
shows that the best conducting node j in a graph as the minimizer of the diagonal
element Q†

j j of the pseudoinverse matrix Q†. Fig. 4.8b shows that the relation between

the optimal cost C∗
1 j with the initial spreader 1 and the normalized shortest distance

h1 j

max j∈N h1 j
as well as the normalized effective resistance

ω1 j

max j∈N ω1 j
. We obtain that the

Pearson correlation coefficient ρh between the minimum cost C∗
1 j and the hops h1 j is

equal to ρh = 0.907. For the Pearson correlation coefficient ρω between the minimum
cost C∗

1 j and the effective resistance ω1 j , we obtain ρω = 0.983. This demonstrates that

the effective resistance is a good metric for the cost scaling for a single target node in the
induced spreading.

COST SCALING WITH THE FRACTION OF TARGET NODES

In a linear system, the optimal control energy (cost) C∗
max for targeted controlling in

the worst case [97] has the scaling equation logC∗
max ∼ |S |

N , which implies that the cost

C∗
max increases sharply with the increasing fraction s = |S |

N of target nodes. We will
show that the behavior of energy scaling with the fraction of target nodes in the SIS
process is different. We compute the optimal cost C∗(s) subject to the constraint on

the average infection frequency 1
|S |

∫ t f
t0

∑
i∈S vi (t )d t ≥ 1 of |S| target nodes in the SIS

spreading process. Then, we can obtain the average optimal cost E [C∗(s)] with randomly
selected |S| target nodes in the network for multiple realizations.

In a star network K1,N with an initial central spreader, the infection rate increment
∆β∗

1 (t ) on the central node for a leaf target could steer the viruses to other leaves

simultaneously. Thus, the increasing fraction s = |S |
N of the target leaves influences

little on the required average minimum cost E [C∗(s)], as shown in Fig. 4.9a. Fig. 4.9b
illustrates that the normalized average cost

E [C∗(s)]

E [C∗(1/N )]
∼ η log

|S|
N

(4.18)

in the Erdős-Rényi (ER) random network Gp (N ) with link density p, where η is a
constant. The cost scaling law (4.18) is different from targeting control in linear control
systems [97]. In linear systems, the control input for controlling a target could introduce
perturbances for another target, which leads to more additional effort to control multiple
targets. In the spreading process, the cost allocated on one node always benefit multiple
targets by steering the viruses to them. Further, Fig. 4.9b shows that the constant η in
(4.18) is coupled to the network topology and decreases with the increasing link density
p in the ER random network. More nodes can benefit from the cost allocated on a single
node in a denser network with a higher average degree. Thus, the less additional cost is
required to steer the virus to additional targets, which translates to a smaller η.

4.5.3. COMPARISON BETWEEN THE STATIC AND THE DYNAMIC
Two optimization methods, static and dynamic optimizations, are proposed for the
induced SIS spreading in the network. We now compare their performance in the Karate
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Figure 4.9: (a) The optimal cost C∗(s) as a function of the fraction of leaf targets in the star K1,N with N leaf
nodes. We set the central node as the initial spreader and the leaf nodes as the targets. (b) The normalized

average cost E [C∗(s)]
E [C∗(1/N )] as a function of the fraction of target nodes s = |S|

N in the ER random network Gp (16)

with the link density p. Each average optimal cost E [C∗(s)] is obtained by 20 realizations. The time interval of
controlling is [t0, t f ] with t0 = 0 and t f = 5.

network. We rewrite the constraint (4.6) in the static method as
∑N

i=1 g (∆βi ) ≤ C
t f −t0

where C is also the cost budget in the dynamic method, and both methods have a same
cost budget C in the time interval [t0, t f ]. Then, we compute the payoff in the static

method by B = ∫ t f
t0

∑
i∈S vi (t ) by the NIMFA equation (4.2) with the constant optimal

solution∆β∗(t ) =∆β∗ for any time in the static optimization.
Fig. 4.10a shows that the dynamic method generally outperforms the static method

for different cost budgets C . Specifically, the difference between both methods exhibits
a maximum around C = 10, and then decays slowly with the cost budget C . Fig. 4.10b
shows the optimal infection rate increment ∆β∗(t ) for the target node 25 with the
initial spreader 2, where the optimal control ∆β∗ is time-dependent for the dynamic
optimization and constant for the static optimization. The optimal control vector∆β∗(t )
for the dynamic optimization (solid line) exhibits a metastable state from t = 1 − 4,
and the optimal control ∆β∗ for the static optimization (dash line) approximates the
dynamic control ∆β∗(t ) in the metastable state. Moreover, Fig. 4.10c shows the

normalized cost allocated on the node i.e.,
t f −t0

C g (∆β∗
i ) for the static optimization and

1
C

∫ t f
t0

g (∆β∗
i (t )) for the dynamic, versus the cost budget C . The difference between the

normalized cost in both optimizations also becomes smaller for a larger cost budget C ,
which demonstrates that the dynamic induced strategy approaches the static strategy
with increasing cost budget C . Thus, we suggest to apply the dynamic optimization for
a limited cost budget while the performance of the static optimization is already good
enough for an adequate cost budget.

4.6. RELATED WORK
Virus spread in networks has been deeply studied in recent years [12]. The previ-
ous works on the Susceptible-Infected-Susceptible (SIS) model involve the epidemic
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Figure 4.10: (a) The comparison of the payoff B in the static optimization and the dynamic optimization with
the cost budget C in the Karate network. The initial spreader is node 2 and the target node is node 25. The
time interval of controlling is [0,5]. (b) The optimal control ∆β∗ in the static method (dash lines) and ∆β∗(t )
in the dynamic method (solid lines) with the cost budget C = 10 in the Karate network. (c) The normalized cost

allocated on the node i.e.,
t f −t0

C g (∆β∗i ) for the static optimization and 1
C

∫ t f
t0

g (∆β∗i (t )) as a function of the

cost budget C .

threshold [39][40][84], the average fraction of infection nodes over time [43] and time-
dependent properties in SIS processes [35][42]. The N-intertwined mean-field approx-
imation [26] is a reasonably accurate approximation of the exact SIS epidemics on a
network [27].

Some previous research has investigated epidemics control [78], which aims to stop
the spreading as soon as possible. The static optimization of epidemics control can
be converted to a spectral control problem, where a fixed number of resources must
be optimally allocated to best mitigate the effects of a disease. Preciado et al. [29]
propose the budget-constrained allocation problem and present a solution framework
based on Geometric Programming. Some greedy strategies of link removal based on
the topological properties of links for spectral control are proposed [28][98]. However,
the solution by the greedy strategies may deviate much from the optimum in some
worst cases [99]. The dynamic optimization, i.e., the optimal control, of a deterministic
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epidemic is proposed in [100][101] and solved by using Pontryagin’s maximum principle.
The epidemic processes on a network allow each individual to have its own state, which
makes the control strategy depend on the network topology [102][103].

The problem of influence maximization [16] has a similar goal with the optimal
induced spreading but different control variables. Influence maximization aims to
find the optimal initial state (initial spreader) of a spreading, while the optimal induce
spreading aims to adjust the parameters of the SIS model under the assumption that the
initial spreaders are fixed.

4.7. CHAPTER SUMMARY
In this chapter, we explore the induced SIS spreading on networks, which aims to steer
the viruses to the target nodes as much as possible by adjusting the nodal infection
rates under a limited cost budget. We provide two frameworks for the optimal induced
spreading: the static optimization and the dynamic optimization. We propose the
algorithms for both the optimization problems and further investigate the behavior of
the induced strategy by numerical results on networks with the constraint of a quadratic
cost function.

In the static optimization, the optimal infection rate increment of each node is highly
related to the degree and its average hops to the targets, while the degree dominates the
nodal infection rate increment for a large fraction of targets. In the dynamic optimiza-
tion, we show that the time-dependent optimal infection rate increment exhibits two
periods for a large cost budget: steering the viruses from the initial spreader to the target,
and maintaining the infection probability of the target by its neighbors. For a single
target node, we show that the effective resistance could be a good metric to indicate the
cost scaling. Further, we illustrate that the cost scaling with the fraction of targets has
different behaviors to that of the targeted controlling in linear systems, because the cost
for increasing the infection rate of one node usually benefits the infection probabilities
of multiple targets. Finally, we show that the dynamic induced strategy approximates
the static for a large cost budget.

Some problems of practical significance merit further study. First, the induced SIS
spreading problem can be generalized to guide the infection to some target nodes while
avoiding some other specific nodes as much as possible. We suspect that some results
presented in this chapter, such as the cost scaling with the fraction of the targets, could
change for the generalized problem. Second, the topological properties of the most
efficient spreader [55] with a minimum total cost for the induced spreading is worthy
of study.



5
PREVALENCE EXPANSION IN

NIMFA

The N-Intertwined Mean Field Approximation (NIMFA) is a reasonably accurate approx-
imation of the exact SIS epidemic process on a network. The average fraction of infected
nodes in the NIMFA steady state, also called the steady-state prevalence, in terms of the
effective infection rate can be expanded into a power series around the NIMFA epidemic
threshold. In this chapter, we investigate the convergence of the steady-state prevalence
Taylor expansion. We determine the radius of convergence in some special types of graphs.
We also show that the radius of convergence of the steady-state prevalence expansion
depends upon the network topology, in particular, the average degree of the network and
the spectral gap of the adjacency matrix play a role.

This chapter is based on the published paper [104].
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5.1. INTRODUCTION

E PIDEMIC models can describe virus spreading and information propagation in hu-
man activities [12]. The Susceptible-Infected-Susceptible (SIS) model is an epidemic

model where each infected item can be cured, and becomes susceptible again after
recovering from the infection state [38]. In the SIS epidemics on a network, the ratio
between the infection rate β and the curing rate δ is called the effective infection rate
τ = β/δ. The SIS model features a phase transition [39] around the epidemic threshold
τc . The spreading process can reach the metastable state [35] if the effective infection
rate τ is above the epidemic threshold τc . In the metastable state, the viruses can infect
a sizeable portion of the population on average and stay in the network for a long time
[45]. A first-order mean-field approximation [26] of the epidemic threshold τ(1)

c = 1/λ1,
where λ1 is the spectral radius of the adjacency matrix A, was shown [40] to be a lower
bound for the exact epidemic threshold τc .

The exact Markovian SIS model [26] in the network G with N nodes consists of
2N states, which is intractable to solve for large networks. The N-Intertwined Mean-
Field Approximation [105] was proposed by introducing the network topology into the
deterministic model [106][107], which can approximate the exact SIS epidemics well in
some networks. NIMFA approximates the exact Markovian 2N linear equations into N
non-linear differential equations under the assumption that the states of the nodes are
uncorrelated. The steady-state infection probabilities vi∞(τ) of each node i in NIMFA
can be expanded [108] in a power series in terms of the effective infection rate τ at NIMFA
epidemic threshold τ(1)

c and explicitly repeated in the Appendix C.1. Mathematically,
the radius of convergence of a power series corresponds to the radius of the largest
disk in which the series converges [109], which is of practical significance to validate
a Taylor expansion. Practically, we can faster compute the nodal infection probability of
the NIMFA steady-state by the truncated expansion with enough terms and an effective
infection rate τ within the radius of convergence, instead of numerically solving the
governing equation (5.1). Thus, the radius of convergence of the series, that purely
depends upon the underlying topology, determines the largest effective infection rate
for the Taylor expansion. However, the convergence of the Taylor expansion (C.1) in
Appendix C.1 of the nodal infection probability in NIMFA is still an open question and
has not been studied yet.

In this chapter, we focus on the NIMFA steady-state prevalence, which is defined as
the average fraction of infected nodes in the NIMFA steady state. We numerically inves-
tigate the radius of convergence of the steady-state prevalence expansion and illustrate
that the convergence of the prevalence expansion highly depends on the underlying
topology. Specifically, we investigate the behaviour of the radius of convergence in
some special types of graphs, e.g., regular graph, star graph, path graph, Erdős–Rényi
(ER) random graph and scale-free graph, which helps to estimate the valid range of the
effective infection rate τ for the steady-state NIMFA prevalence expansion (5.4). We also
identify the topological properties that influence the radius of convergence in sparse
networks and clustered networks.

The outline of the chapter is as follows. In Section 5.2, we briefly review the
NIMFA SIS epidemics, provide related notations and describe the method for practical
estimation of the radius of convergence in Section 5.2. Section 5.3 investigates the
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behaviour of the radius of convergence in some special types of graphs. In Section 5.4, we
investigate the topological properties that dominate the radius of convergence. Finally,
we summarize the chapter in Section 5.5.

5.2. EXPANSION OF THE NIMFA STEADY-STATE PREVALENCE

5.2.1. NIMFA PREVALENCE

The probability vi (t ) that node i is infected is given in NIMFA [105] by the following
first-order nonlinear differential equation

d vi (t )

d t
=β

N∑
j=1

ai j v j (t )− vi (t )
(
β

N∑
j=1

ai j v j (t )+δ)
.

where ai j ∈ {0,1} is the entry of the adjacency matrix A of the underlying graph. If ai j = 1,
then there is a link between node i and node j , and otherwise ai j = 0. With the infection
probability vector v (t ) = (v1(t ), v2(t ), . . . , vN (t ))T , the governing equation of NIMFA in
matrix form [38] is

d v (t )

d t
=βAv (t )−diag

(
v (t )

)(
βAv (t )+δu

)
(5.1)

where diag
(
v (t )

)
is a diagonal matrix with the infection probability vector v (t ) and u is

the all-one vector. By solving the governing equation (5.1) with the initial state v (0) =
(v1(0), v2(0), . . . , vN (0))T , we can obtain the NIMFA prevalence, i.e. the average fraction
of infected nodes, as y(t ) = 1

N

∑N
i=1 vi (t ).

We denote the eigenvalues of the adjacency matrix A by λ1 ≥ λ2 ≥ ·· · ≥ λN , and
denote by xk the eigenvector, normalized by xT

k xk = 1, corresponding to eigenvalue
λk . The infection probabilities vi∞ of node i in the steady state are non-zero if the

effective infection rate τ = β
δ is above the NIMFA epidemic threshold τ(1)

c = 1/λ1. For
simplicity without the loss of generality, we set the curing rate equal to δ = 1, and then
the infection rate equals β = τ. In this chapter, we focus on the steady-state prevalence
y∞(τ) = 1

N

∑N
i=1 vi∞(τ) in terms of the effective infection rate τ.

5.2.2. EXPANSION OF THE NIMFA STEADY-STATE PREVALENCE

Before discussing the Taylor expansion of the NIMFA steady-state prevalence y∞(τ), we
note that the Taylor series of the steady-state infection probability vi∞(τ) in terms of
the effective infection rate τ about the epidemic threshold τ(1)

c does not exist in physical
space. The physical space here defines the space of all steady-state infection probability
vi∞(τ) as solution of (5.1) that are possible (i.e. a probability must be non-negative).
Van Mieghem [26] obtains that the steady-state infection probability vi∞(τ) = 0 for any
effective infection rate τ ≤ τ(1)

c . The derivative of the steady-state infection probability
vi∞(τ) with respect to the effective infection rate τ on the left-side of τ(1)

c follows
d vi∞(τ)

dτ

∣∣
τ=(τ(1)

c )− = 0. Invoking the fact [108] that d vi (t ,τ)
dτ

∣∣
τ=(τ(1)

c )+ = λ1
N

(x1)i∑N
i=1(x1)3

i
> 0 for the

effective infection rate τ> τ(1)
c , left and right derivatives are not equal, implying that the

infection probability vi∞(τ) is not an analytic function of the effective infection rate τ at
epidemic threshold τ(1)

c . Consequently, the Taylor series does not exist. In other words,
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the radius of convergence R of the expansion of the NIMFA steady-state prevalence
equals R = 0.

The expansion of the steady-state infection probability with the effective infection
rate τ ↓ τ(1)

c can be derived from

βAv∞(t )−diag
(
v∞(t )

)(
βAv∞(t )+δu

)
= 0 (5.2)

for the effective infection rate τ→ τ(1)
c . Mathematically, we extend the solution of (5.2)

to complex τ. Hence, the steady-state infection probability vi∞(τ) is allowed to be
negative for τ < τ(1)

c , as illustrated in Figure 5.1. Thus, the infection probability vi∞(τ)
in the extended mathematical space is analytic at s = τ−1 = (τ(1)

c )−1 = λ1, where the
mathematical space includes all solutions of Equation (5.2) for vi∞(τ), regarded as a
complex function of τ, ignoring its probabilistic and physical meaning. Although the
negative steady-state infection probability has no physical significance, the Taylor series
of the steady-state infection probability in z = (τ(1)

c )−1 −τ−1 around z = 0 still coincides
with the NIMFA positive infection probability for the effective infection rate τ > τ(1)

c , as
shown in Figure 5.1, by analytic continuation [109, Chap.4].

λ1

vi∞

1/τ

1

0

physical space

mathematical space

Figure 5.1: Illustration of the steady-state infection probability vi∞ of node i as a function of s = τ−1, where
node i is an arbitrary node in the network. The red line represents the steady-state infection probability in the
physical space, and the blue line represents the extended solution of (5.2) in the mathematical space.

The NIMFA steady-state infection probability vector v∞(τ) can be expanded in a
Taylor series around z = 0 as

v∞(τ) =
∞∑

j=1
α j z j =

∞∑
j=1

α j ((τ(1)
c )−1 −τ−1) j . (5.3)

where z := (τ(1)
c )−1 −τ−1. The coefficient vector α j in the expansion equals

α j =
N∑

k=1
c j (k)xk = X c j

where the matrix X contain as columns the eigenvector of the adjacency matrix A,
and c j (k) satisfy [108] the recursions (C.2)-(C.4) in Appendix C.1. We ignore the trivial
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Figure 5.2: Steady-state prevalence expansion y (J )∞ (τ) as a function of order J . The example graph topology is
illustrated in the subplot (a). The red dash lines represent the NIMFA steady-state prevalence y∞(τ) following
the NIMFA equation (5.2).

solution vi∞(τ) = 0 with all-zero coefficients c j (k) and focus on the non-zero infection
probability. The expansion of the steady-state infection probability vi∞(τ) with the
recurrence relation of the coefficients c j (k) are derived in [108] and revisited (C.2)-(C.4)
in Appendix C.1. Thus, the expansion of the NIMFA steady-state prevalence can be
represented by

y∞(τ) = 1

N
uT v∞(τ) =

∞∑
j=1

b j z j (5.4)

where the coefficient b j = 1
N uTα j , and u is the all-one vector.

We define the truncated Taylor series with J terms as

y (J )
∞ (τ) =

J∑
j=1

b j z j (5.5)

and investigate the accuracy and convergence of the expansion y (J )∞ (τ). The steady-state
prevalence expansion y∞(τ) converges, if for every arbitrarily small number ε> 0, there
exists an order Jc such that |y (J )∞ − y∞| < ε for all J > Jc . The radius of convergence R is
a nonnegative real number or ∞ such that the series (5.4) converges if |z| = |(τ(1)

c )−1 −
τ−1| < R and diverges if |z| = |(τ(1)

c )−1−τ−1| > R in the complex z-plane. Figure 5.2 shows
the NIMFA steady-state prevalence expansion y (J )∞ (τ) as a function of J for two different
effective infection rate τ in an example graph. Figure 5.2 illustrates that the prevalence
expansion y (J )∞ (τ) converges to the NIMFA steady-state prevalence y∞(τ) if the effective
infection rate τ is small (e.g., τ< 1.5τ(1)

c ), but diverges if τ is large enough (e.g., τ> 2.5τ(1)
c )

along with a large term z.



5

58 5. PREVALENCE EXPANSION IN NIMFA

5.2.3. ESTIMATION OF THE RADIUS OF CONVERGENCE

For the power series y∞(τ) = ∑∞
j=1 b j z j where z = (τ(1)

c )−1 −τ−1 expanded at z = 0, the
radius of convergence R in the complex z-plane is given by [109]

R−1 = lim
j→∞

∣∣∣b j+1

b j

∣∣∣= lim sup
j→∞

j
√
|b j | (5.6)

Unfortunately, the radius of convergence R of the prevalence expansion in a general
graph is intractable to derive analytically. The method of Domb-Sykes plot and Mercer-
Roberts plots [110], which are usually applied to estimate the radius of convergence of
a series if the sign of the coefficients b j follows a pattern, is also impractical since the
coefficients b j could present an unpredictable sign pattern in a general graph.

In the following sections, we assess the convergence of the expansion numerically.
We regard that the prevalence expansion (5.4) is convergent if the prevalence y (J )∞ with
a large enough order J approximates the NIMFA steady-state prevalence y∗∞ solved by
the equations (5.1), i.e., |y (J )∞ − y∞| < ε for all J > Jc . In the following simulations, we set
Jc = 150 and ε = 0.001y∞. We have numerically verified that the setting of Jc = 150 is
large enough to assess the convergence of the expansions in the following simulations.

5.3. RADIUS OF CONVERGENCE R OF THE EXPANSION IN SOME

SPECIFIC GRAPHS
We first investigate the behaviour of the coefficients b j and the radius of convergence
R of the expansion of the steady-state prevalence in some special types of graphs, e.g.,
complete graphs, regular graphs, star graphs, path graphs, Erdős–Rényi random graphs
and scale-free graphs.

5.3.1. COMPLETE GRAPHS AND REGULAR GRAPHS
In the complete graph KN , the NIMFA steady-state prevalence is

y∞(s) = 1− 1

τ(N −1)
= 1

λ1
((τ(1)

c )−1 − s) (5.7)

where s = τ−1. The prevalence (5.7) is analytic in the whole complex plane. Hence, the

radius of convergence R is infinity. The coefficient b1 =
∑N

i=1(x1)i

N c1(1) = (λ1
∑N

i=1(x1)3
i )−1 =

1
N−1 , and b j = 0 for j > 1, which is consistent with (5.7). Figure 5.3a illustrates that the
exact solutions of the steady-state governing equation (5.2) in a complete graph has two
branches (illustrated in Figure 5.3a), and the branch corresponding to the non-trivial
real solution (red line) is analytic for the reciprocal of any effective infection rate s = τ−1.

In the r -regular graph with the average degree E [D] = r , the steady-state prevalence
is y∞(s) = 1

r ((τ(1)
c )−1 − s), which implies the steady-state prevalence expansion (5.4) also

has an infinite radius of convergence.

5.3.2. STAR GRAPHS K1,N−1
In the star graph K1,N−1 with N − 1 leaf, the NIMFA steady-state infection probability

[49] for the center node equals vc∞ = (N−1)−s2

(N−1)+s and vc∞ = 0, while the NIMFA infection
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Figure 5.3: Exact steady-state prevalence y∗∞ by the solution of the equation (5.2) in the complete graph K7 and
the star graph K1,9.

probability for the leaf node equal vl∞ = (N−1)−s2

(N−1)(s+1) and vl∞ = 0, where s = τ−1. Thus,

the steady-state prevalence follows y∞ = 1
N

(
(N−1)−s2

(N−1)+s + (N−1)−s2

(s+1)

)
, which has nearest

singularity s = −1. The radius of convergence R of the expansion (5.4) equals R =p
N −1+1 in a star graph, which implies the expansion (5.4) converges for any effective

infection rate τ> τ(1)
c . Figure 5.3b illustrates the NIMFA prevalence y∞(τ) in a star graph,

where the non-zero solution corresponds to the expansion (5.2) has the singularity at
s =−1.
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positive coefficients, and the blue markers represent negative. The function |b j | is fitted by the function

ek1 j+k2 . Subplot (b) shows the function log |b j | for small order j .
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Figure 5.5: Radius of convergence R of the steady-state prevalence expansion as a function of network size N
in path graphs PN .

5.3.3. PATH GRAPHS PN
Since the computation of the NIMFA prevalence in a path graph is intractable, we
numerically investigate the radius of convergence of the prevalence expansion. Figure
5.4 shows the function of the absolute coefficients |b j | in the prevalence expansion in
path graphs with different network size N , while the period and the sign pattern of
the coefficients b j is too complicated to predict. Figure 5.4b shows that the absolute
coefficients |b j | resembles an exponential function |b j | ≈ ek1 j+k2 if the order j is larger
than a critical order jc . Hence, the radius of convergence R can be estimated by R ≈
e−k1 , which is almost the same as the radius of convergence estimated in Section 5.2.3.
Further, the NIMFA prevalence with z = (τ(1)

c )−1 −τ−1 < e−k1 can be estimated by

y∗∞(τ) ≈
jc−1∑
j=1

b j z j +
∞∑

j= jc

ek1 j+k2 z j =
jc−1∑
j=1

b j z j +ek2
(ek1 z) jc

1−ek1 z
(5.8)

Figure 5.5 shows that the radius of convergence R decreases with increasing network
size N in path graphs PN but not monotonically, i.e., R reaches the maxima at N = 5.
The radius of convergence R decays as an exponential function of the network size if
N > 8, and tends to be very small in path networks with a large size, which implies that
the effective infection rate τ must be extremely close to the epidemic threshold τ(1)

c to
converge the prevalence expansion (5.4) in large path networks.

5.3.4. ER RANDOM GRAPHS
We first present the behaviour of the coefficient b j in the prevalence expansion in ER
random graphs Gp (N ) with link density p. Figure 5.6 shows that the coefficients b j

can be negative for a small link density p. The coefficients b j are always positive if
the link density p is large enough, which implies that the NIMFA prevalence function
in ER graphs has a dominating positive singularity [111]. The absolute coefficients |b j |
also follow an exponential function |b j | ∼ ek j , and the radius of convergence R can be
estimated by R ≈ e−k . Figure 5.7a shows the distribution of the radius of convergence R
in ER random graph Gp (N ). The distribution type does not differ much for different link
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Figure 5.7: Subplot (a): Histogram of the radius of convergence R in ER random graphs Gp (30) based on 2×104

realizations for each link density p. Subplot (b): Average radius of convergence E [D] in ER random graphs
Gp (N ) as function of link density p for different network size N

density p, while the tail of the distribution becomes a little heavier with the increasing
link density p. A larger link density p implies more regular ER random graphs, which
leads to a higher probability for a large radius of convergence R.

Figure 5.7b shows the average radius of convergence E [R] in ER random graphs
increases with the link density p, and resembles a quadratic function E [R] = a0 +a1p +
a2p2 for a network size N . If the link density is large enough, e.g., p > 0.7 in Gp (70),
the radius of convergence of the prevalence expansion in ER random graphs can be
extremely large with a high probability because the ER graph tends to a regular graph.
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Figure 5.8: Subplot (a): Histogram of the radius of convergence R in scale-free graphs with network size N = 250
based on 2×104 realizations for each average degree E [D]. Subplot (b): Average radius of convergence E [D] in
scale-free graphs as a function of average degree E [D] for different network size N based on 104 realizations.
Average spectral gap E [λ1 −λ2] in scale-free graphs as a function of average degree E [D] for different network
size N based on 2×103 realizations.

5.3.5. SCALE-FREE GRAPHS
Figure 5.8a shows the histogram of the radius of convergence in scale-free networks with
network size N = 250 and different average degree E [D]. The radius of convergence in
scale-free networks resembles a Gaussian distribution for the average degree E [D] > 2.
Figure 5.8b shows the average radius of convergence E [R] increases with the average
degree E [D], which is in line with the analysis in ER random graphs that the denser and
more regular graph usually leads to a higher radius of convergence.

We observe that the network size N almost does not influence the average radius of
convergence E [R], which reminds invariant topological properties with the network size
N in scale-free networks. Figure 5.8b shows that the average spectral gap E [λ1 −λ2] also
differs little with increasing the network size N in scale-free networks, which hints that
the radius of convergence R in scale free graphs may be dominated by the spectral gap
λ1 −λ2.

5.4. EFFECT OF THE TOPOLOGICAL PROPERTIES ON R
In the last section, we illustrate that the prevalence expansion in a dense or regular
network usually has a large radius of convergence R. The prevalence expansion is valid
for any effective infection rate τ if the radius of convergence R > λ1. We investigate the
relatively small radius convergence R < λ1, which often occurs in sparse networks and
clustered networks.

5.4.1. EFFECT OF THE NETWORK TOPOLOGY ON R
Since the radius of convergence R of the steady-state prevalence expansion (5.4) can be
estimated by the inverse of the convergence order of the absolute coefficient |b j |, i.e.,
R = 1

lim j→∞ j
p|b j |

. We first investigate the behavior of the absolute coefficient |b j |.
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Lemma 5.1 The convergence order of the coefficients |b j | = |uTα j | in the prevalence
expansion (5.4) is upper bounded by the convergence order of the norm of coefficients ||α j ||
and the norm of coefficients ||c j ||, i.e.

lim
j→∞

|b j |
1
j ≤ lim

j→∞
||α j ||

1
j = lim

j→∞
||c j ||

1
j (5.9)

where the coefficient vector α j = X c j .

Proof: See Appendix C.2. �
Then we investigate the convergence order of the coefficient |b j |by making use of the

coefficient vector c j . Defining z = (τ(1)
c )−1−τ−1 and substituting the infection probability

vector v∞(τ) =∑∞
j=1α j z j into (5.2), we can obtain that

A
∞∑

j=1
α j z j − (λ1 − z)

∞∑
j=1

α j z j = di ag

( ∞∑
j=1

α j z j

)
A

( ∞∑
j=1

α j z j

)
(5.10)

Equating the coefficients of the term z j for j ≥ 2 yields

λ1α j − Aα j =α j−1 −
j−1∑
k=1

di ag (αk )Aα j−k (5.11)

Invoking the coefficient α j = X c j , we multiplying X T on both sides of (5.11) and arrive

(λ1I −Λ)c j = c j−1 −X T
j−1∑
k=1

di ag (X ck )AX c j−k (5.12)

where the adjacency matrix A = XΛX T , andΛ is the diagonal matrix withΛi i =λi .
For m = 1, we introduce the basis vector em and obtain that

(c j )1 = eT
1

(
X T

j∑
k=1

di ag (αk )Aα j+1−k

)

which yields that

|(c j )1| =
∣∣∣eT

1

(
X T

j∑
k=1

di ag (X ck )AX c j+1−k

)∣∣∣≤ ∣∣∣∣∣∣ j∑
k=1

di ag (ck )Ac j+1−k

∣∣∣∣∣∣
≤λ1

j∑
k=1

||(ck )|| · ||c j+1−k || = 2λ1||c1|| · ||c j ||+λ1

j−1∑
k=2

||ck || · ||c j+1−k || (5.13)

Supposing that lim j→∞ |(c j )1|
1
j = maxi∈N {lim j→∞ |(c j )i |

1
j }, i.e., ||c j || ≤

p
N |(c j )1|, we

arrive at

|(c j )1| ≤
λ1

1−λ1||c1||
p

N

j−1∑
k=2

||(ck )|| · ||c j+1−k || (5.14)
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For m > 1, we similarly obtain that

|(c j )m | = 1

λ1 −λm

∣∣∣eT
m

(
c j−1 −X T

j−1∑
k=1

di ag (X ck )AX c j−k

)∣∣∣
≤ 1

λ1 −λ2
||c j−1||+

1

λ1 −λ2

∣∣∣∣∣∣ j−1∑
k=1

di ag (ck )Ac j−k

∣∣∣∣∣∣
≤ 1

λ1 −λ2
||c j−1||+

λ1

λ1 −λ2

j−1∑
k=1

||ck || · ||c j−k || (5.15)

The recurrence relations (5.14) and (5.15) show that the upper bound of the maximal

convergence order of the coefficient |(c j )m |, i.e. maxi∈N {lim j→∞ |(c j )i |
1
j }, as well as the

upper bound of lim j→∞ |b j |
1
j and the lower bound of the radius of convergence R, are

coupled to the largest eigenvalue λ1 and the spectral gap λ1 −λ2. We further propose
a heuristic lower bound of the radius of convergence of the steady-state prevalence
expansion (5.4) in Appendix C.3.

From the equation of coefficients (5.11), we also obtain the inequality

||λ1I − A|| · ||α j || ≥
∣∣∣∣(λ1I − A)α j || ≥ ||α j−1 −

j−1∑
k=1

di ag (αk )Aα j−1−k
∣∣∣∣ (5.16)

which leads to the recurrence relation

||α j || ≥ 1

λ1 −λN

∣∣∣||α j−1||−
∣∣∣∣ j−1∑

k=1
di ag (αk )Aα j−1−k

∣∣∣∣∣∣∣ (5.17)

The recurrence relation (5.17) implies that the lower bound of the norm coefficient ||α j ||,
as well as the upper bound of the radius of convergence R, is related to the maximal
difference of eigenvalues λ1 −λN .

5.4.2. NUMERICAL TESTS
Since a large number of real-world networks are sparse networks with a small average
degree, we first investigate the radius of convergence R in random sparse networks with
N nodes and L links, which are generated in two steps to guarantee the connectivity.
First, at step 1, we generate a (uniformly chosen) random spanning tree based on a
complete graph with N nodes [112]; and then, at step 2, we add additional L − N + 1
links, randomly and uniformly, on the complementary graph of the spanning tree. Figure
5.9 shows the correlation between the radius of convergence R and the topological
properties, e.g., the largest eigenvalueλ1, the spectral gapλ1−λ2, the maximal difference
of eigenvalues λ1 − λN . The above three topological properties all present a high
correlation with the radius of convergence, while the spectral gap λ1−λ2 has the highest
correlation coefficient.

We present the radius of convergence R in modular ER random graphs G(N ,m, p, pm),
where N is the number of nodes, m is the number of modules, p is the overall link density
and pm is the proportion of links within modules [113][114]. Figure 5.10 shows that
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Figure 5.9: Correlation between the radius of convergence R and the topological properties, e.g., the largest
eigenvalue λ1, the spectral gap λ1 −λ2, the maximal difference of eigenvalues λ1 −λN . The plot is based on
2× 105 realizations of sparse random graphs. The random sparse graph is generated with the network size
uniformly chosen in N ∈ [10,120] and the link density uniformly chosen in p ∈ [ 2

N , 2
N +0.3], i.e., the additional

number of links on the spanning tree is (p − 2
N ) N (N−1)

2 .

the correlation between the spectral gap and the radius of convergence is still high in
modular ER random graphs, while the correlation between the radius of convergence R
and the other properties, e.g., the largest eigenvalue λ1 and the maximal difference of
eigenvalues λ1 −λN , degrades much.

We further explore the relation between the radius of convergence R and the topolog-
ical properties in 10 real-world networks. The topologies of these networks are obtained
from Newman network collection1 and Pajek data sets2. Figure 5.11 shows that the
spectral gap λ1 −λ2 has a stronger correlation than the largest eigenvalue λ1 with the
radius of convergence R. Moreover, the spectral gap λ1 −λ2 can act as an indicator to
estimate the radius of convergence R in sparse networks.

We verify that the spectral gap of the adjacency matrix plays a critical role in the ra-
dius of convergence. The spectral gap is also an indicator of the spectral expansion[115],
which describes the goodness of connectivity and Cheeger constant of a graph [116]. A
larger spectral gap could increase the radius of convergence and improve the validity of
the NIMFA stead-state prevalence expansion, which coincides with the fact that NIMFA
approaches the exact SIS model better in well-connected networks.

5.5. CHAPTER SUMMARY
In this chapter, we investigate the convergence of the NIMFA steady-state prevalence
expansion (5.4) in terms of the effective infection rate at NIMFA epidemic threshold.
The network topology alters the radius of convergence R of the steady-state prevalence
expansion (5.4), which is infinite in regular graphs and becomes finite in irregular
graphs. The average radius of convergence increases with the density (the average

1http://www-personal.umich.edu/mejn/netdata/
2http://vlado.fmf.uni-lj.si/pub/networks/data/
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Figure 5.11: The relation between the radius of convergence R and the topological properties (i.e., the spectral
gap λ1 −λ2 and the largest eigenvalue λ1) in 10 real-world networks. The networks Adjnoun, Dophins, Karate,
Lesmis, Netscience, Polbooks are collected from Newman network collection, and the networks Erdos971,
USAir97, and Yeast are collected from Pajek data sets. We extract the giant component of each network and
regard all links as undirected and unweighted.

degree) in random graphs, e.g., ER random graph and scale-free graphs. The radius of
convergence R is also coupled to the eigenvalues of the adjacency matrix, especially,
a smaller spectral gap λ1 − λ2 usually decreases the radius of convergence in sparse
networks and clustered networks.
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6
TOPOLOGICAL APPROACH TO

MEASURE NETWORK

RECOVERABILITY

Network recoverability refers to the ability of a network to return to a desired performance
level after suffering malicious attacks or random failures. This chapter proposes a general
topological approach and recoverability indicators to measure the network recoverability
in two scenarios: 1) recovery of damaged connections and 2) any disconnected pair of
nodes can be connected to each other. Our approach presents the effect of the random
attack and recovery processes on the network performance by the robustness envelopes of
realizations and the histograms of two recoverability indicators. By applying the effective
graph resistance and the network efficiency as robustness metrics, we employ the proposed
approach to assess 10 real-world communication networks. Numerical results verify that
the network recoverability is coupled to the network topology, the robustness metric and
the recovery strategy. We also show that a greedy recovery strategy could provide a near-
optimal recovery performance for the investigated robustness metrics.

This chapter is based on published papers [117]

69
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6.1. INTRODUCTION

I N communication networks, disaster-based failures and damage to optical fiber ca-
bles can partially overload data delivery, resulting in un-availability of communication

services [118]. The causes for such massive failures include: human errors, malicious
attacks, large-scale disasters, and environmental challenges [119]. Calculating the
performance of networks under such challenges can provide significant insight into the
potential damage they can incur, as well as provide a foundation for creating more robust
infrastructure networks.

Network robustness is interpreted as a measure of the network’s response to pertur-
bations or challenges imposed on the network [17], which has been studied extensively
in recent years. Van Mieghem et al. [17] propose a framework for computing topological
network robustness by considering both a network topology and a service for which the
network is designed. In communication networks, Cholda et al. [120] survey various
robustness frameworks and present a general framework classification, while Pašić et
al. [121] present the FRADIR framework that incorporates reliable network design,
disaster failure modeling and protection routing. A wide range of metrics based on
the underlying topology have been proposed to measure network robustness [122],
and further a structural robustness comparison of several telecommunication networks
under random nodal removal was presented in [123].

In a board sense, network robustness is also related to the ability of a network to
return to a desired performance level after suffering malicious attacks and random
failures [124]. We define such network capability as network recoverability1 in this
chapter. Several recovery mechanisms have been investigated under different cir-
cumstances [125], particularly in complex networks applications. Majdandzic et al.
[21] model cascading failures and spontaneous recovery as a stochastic contiguous
spreading process and exhibit a phase switching phenomenon. The recovery strategies
based on the centrality metrics of network elements (e.g., nodes or links) are investigated
in [124][126], which show that a centrality metric-based strategy may not exist to
improve all the network performance aspects simultaneously. A progressive recovery
approach [127], that consists in choosing the right sequence of links to be restored after
a disaster in communication networks, proposes to maximize the weighted sum of the
total flow over the entire process of recovery [128], as well as to minimize the total cost
of repair under link capacity constraints [129].

Although the above studies [124]–[129] have contributed to this field, a general
framework or methodology for quantifying the recovery capability of a real commu-
nication network is still lacking. In this chapter, we propose a topological approach
and two recoverability indicators to measure the network recoverability in two different
scenarios, link-based Scenario A and energy-based Scenario B. Specifically, Scenario A
assumes that any disconnected pair of nodes can be connected to each other in the
recovery process, which can describe the recovery process for logical networks. Scenario
B restricts the under-repaired links to the damaged links in the attack process, which
describes the recovery process for physical networks.

The proposed approach involves three concepts: the network topology, the robust-

1Sometimes network restoration is used
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ness metric and the recovery strategy. For a communication network G , we apply the
network efficiency EG and the effective graph resistance rG as the robustness metrics
for case studies. The network efficiency EG gives an indication of the efficiency of
information exchange on networks under shortest path routing [130], while the effec-
tive graph resistance determines the overall diffusivity of information spreading in a
communication network [64]. Besides a random recovery strategy and some strategies
based on topological properties, we also consider a greedy recovery strategy. In the
greedy strategy, the damaged element (a node or a link) which improves the network
performance most has the highest priority to be recovered. We test our approach in 10
real telecommunication networks, including logical networks and backbone networks
located in different areas, and verify that the proposed approach and the proposed
recoverability indicators can assess the performance of different recovery strategies and
compare the recoverability of different networks.

The rest of this chapter is organized as follows: Section 6.2 introduces the topological
approach for measuring the network recoverability in two scenarios. Section 6.3 presents
the main concepts in the evaluation of network recoverability. The experimental results
are exhibited in Section 6.4. Section 6.5 concludes the chapter.

6.2. TOPOLOGICAL APPROACH FOR MEASURING NETWORK RE-
COVERABILITY

In this section, we introduce an approach for measuring the network recoverability in
two scenarios.

6.2.1. R-VALUE AND CHALLENGE
We inherit the framework and some definitions proposed for network robustness [17,
131] and extend the methodology for the network recoverability. A given network
determined by a service and an underlying topology is translated into a mathematical
object, defined as the R-value, on which computations can be performed [17]. The
R-value takes the service into account and is normalized to the interval [0,1]. Thus,
R = 1 reflects complete functionality in an unattacked network, and R = 0 corresponds
to absence of performance in a completely destroyed network.

A challenge is an event that changes the network and thus changes the R-value. We
assume that a sequence of elementary changes do not coincide in time. Here, we confine
an elementary challenge to a link removal in an attack process or a link addition in a
recovery process. Since every perturbation has an associated R-value, any realization
consisting of a number M of elementary challenges can be described by a sequence of
R-values denoted {R[k]}1≤k≤M , where k is the sequence number of challenges.

6.2.2. SCENARIO A: RECOVERY OF ANY ALTERNATIVE LINK
We define RG as the robustness metric of the network G(N ,L) with N nodes and L
links. Attacks on a network only consist of link removals in the network by a determined
strategy, which usually degrades the robustness of the network. We remove links, one by
one, until the R-value RGa first reaches or drops below a constant ρ, where ρ ∈ [0,1] is a
prescribed R-threshold for the robustness metric that can be tolerated [17]. The above
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Figure 6.1: Illustration of the attack process and the recovery process in an Erdős-Rényi (ER) random graph
G0.1(100) with link density p = 0.1 and network size N = 100 in one realization. The R-threshold is ρ = 0.8.

process is called the attack or failure process. The number of removed links in the attack
process, i.e., attack challenges, is denoted by Ka .

Then we launch the recovery process from the remaining network Ga(N ,L − Ka).
Scenario A assumes that the recovery links can be established between any two nodes in
the complement of the graph after attacks. The process of one realization is illustrated
in Figure 6.1a. Specifically, we recover the network by adding links, one by one, to
the remaining network Ga by a recovery strategy until the robustness metric R-value
first reaches or excesses RGr = 1. The network after the recovery process is denoted by
Gr (N ,L −Ka +Kr ), where Kr is the number of recovery challenges (adding Kr links). We
define the Link Ratio denoted ηL as the ratio of the number of attack challenges and the
recovery challenges, i.e.,

ηL(G ,ρ) = Ka

Kr
(6.1)

which indicates the efficiency of the recovery process in one realization. A Link Ratio
ηL(G ,ρ) > 1 implies that the network can be recovered by less challenges than the
number Ka of attack challenges. Otherwise, the network is more difficult to recover than
to destroy.

Scenario A can characterize the recovery process in a connection oriented network
with logical connections [132], e.g., a virtual circuit for transporting data or a wireless
backhaul network, where the links in a logical network represent the duplex channel
between two devices. After such networks are attacked by denial-of-service attacks
(DoS) or signal blocking, one should establish several connections or reconfigure several
new channels to maintain the network’s overall performance. In this case, the overhead
cost of the recovery measures mainly depends on the total number of dispatched
connections, which corresponds to the number Kr of recovery challenges in Scenario
A.
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6.2.3. SCENARIO B: RECOVERY OF ATTACKED LINKS

The attack process in Scenario B is the same as in Scenario A. In the recovery process in
Scenario B, we add all the links which are removed in the attack process, one by one, until
the underlying topology returns to the original. Scenario B describes recovery processes
in the physical communication network, e.g., optical backbone networks and power
grids supplying to communication networks. In these networks, the recovery measure
for each connection, e.g., repairing fiber optic cables, usually requires a relatively long
period. During the recovery process, the network still provides services with a degraded
performance. Thus, the network recoverability is related to the network performance (or
the robustness metric) throughout the recovery process.

One realization of the attack and recovery process is illustrated in Figure 6.1b. In
Scenario B, the number of attack challenges and the number of recovery challenges
are the same, i.e., Ka = Kr , and hence, ηL = 1 in (6.1). Therefore, we propose another
recoverability indicator in Scenario B. The robustness energy S(G ,ρ) of a network G is
the sum of the R-value in the attack process S(G ,ρ) = ∑Ka

k=0 R[k], which expresses the
robustness performance of network under successive attacks [131]. Thus, the energy
of attack challenges is computed by Sa(G ,ρ) = ∑Ka

k=0(1 − R[k])), which indicates the
cumulative degradation of network performance due to the attacks. In the recovery
process, the energy of recovery challenges Sr (G ,ρ) = ∑Ka

k=0(R[k] − ρ) represents the
benefit of the network performance by the recovery measures. The Energy Ratio denoted
ηE in Scenario B is defined as the ratio between the energy of recovery challenges Sr and
the energy of attack challenges Sa in each realization for a determined R-threshold ρ,
which follows

ηE (G ,ρ) = Sr

Sa
(6.2)

An Energy Ratio ηE (G ,ρ) > 1 implies the benefit of recovery measures can compensate
the loss of network performance by the attacks, which indicates a high network recovery
capability. Conversely, an Energy Ratio ηE (G ,ρ) < 1 implies a low recoverability.

6.2.4. COMPARISON VIA ENVELOPES AND THE RECOVERABILITY INDICA-
TORS

Any realization of attack and recovery processes can be expressed as a sequence of R-
values denoted {R[k]}. To investigate the recovery behavior, we need to know how many
challenges k are needed to make R-value decrease to a predefined threshold ρ and
increase to its original value, which confines us to investigate the number of challenges
K as a function of a specific R-value r , i.e., {K [r ]}. Thus, each value in {K [r ]} is the
number of challenges that is needed to change R-value to a specific R-value r for each
realization. The envelope is constructed using all sequences {K [r ]} for r ∈ {r1,r2, . . . ,rH },

where r j = ρ+ j (1−ρ)
H is a sampled value and H = 1000 is the total sample number. The

boundaries of the envelope are given by the extreme number of challenges K

Kmin[r ] ∈ {min(K [r1]),min(K [r2]) . . . ,min(K [rH ])} (6.3)

Kmax[r ] ∈ {max(K [r1]),max(K [r2]) . . . ,max(K [rH ])} (6.4)
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which gives the best- and worst-case of robustness metrics for a network after a given
number of recovery challenges. The expected number of challenges K leading the
topological approach r j is

Kav g [r ] ∈ {E(K [r1]),E(K [r2]) . . . ,E(K [rH ])} (6.5)

Since K [r ] defines a probability density function (PDF), we are interested in the
percentiles of K [r ]

Km%[r ] ∈ {Km%[r1],Km%[r2] . . . ,Km%[rH ]} (6.6)

where Km%[r ] are the points at which the cumulative distribution of K [r ] crosses m
100 ,

namely Km%[r ] = t ⇔ Pr[K [r ] ≤ t ] = m
100 .

We apply the envelope to present the behavior of the attack and recovery processes
on a network [17, 131]. The envelope profiles a rough PDF of the random variables of
the number of challenges K , which is the probability of a random variable to fall within
a particular region. The area of the envelope can be regarded as the variation of the
robustness impact of a certain series of challenges, which quantifies the uncertainty or
the amount of risk due to perturbations.

We propose two recoverability indicators, the Link Ratio ηL(G ,ρ) and the Energy
Ratio ηE (G ,ρ), for different scenarios, respectively. Since an attack process and a recov-
ery process could be random under the random strategy, the recoverability indicators
are random variables. We can compare the recoverability of different networks by the
average recoverability indicators for simplicity. For example, the average Link Ratio
E [ηL(G1,ρ)] > E [ηL(G2,ρ)] for two different networks G1 and G2 implies that the network
G1 usually has a better recoverability than G2 in Scenario A for the robustness threshold
ρ.

Besides the average recoverability indicators, we are also concerned about the vari-
ance of the recoverability indicators V ar [η(G ,ρ)], which indicates how likely the recov-
erability is to shift upon the random strategy. A smaller variance of the recoverability
indicators V ar [η(G ,ρ)] implies a narrower uncertainty of the recoverability indicators,
thus a better recoverability.

6.3. ROBUSTNESS METRIC AND RECOVERY STRATEGY
In this section, we introduce the main factors of a specific recovery process, which
involve robustness metrics, recovery strategies and network topologies.

6.3.1. ROBUSTNESS METRICS
A group of topological metrics are proposed to measure the network robustness [122]
and the correlation of some metrics in random graphs and functional brain networks are
investigated in [133]. We select 20 real telecommunication networks in the specialized
databases [134], and show the correlation between metrics. As metrics, we include
the network efficiency EG , the spectral radius of adjacency matrix λ1, the algebraic
connectivity µN−1, the diameter ϕ, the effective graph resistance rG , the ratio µ1/µN−1,
the average hopcount E [H ] among all node pairs, the clustering coefficient cG in
Figure 6.2. Considering services of communication networks, we select 1) the network
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Figure 6.2: Correlation of several topological properties in 20 real telecommunication networks. The Pearson
correlation coefficients ρPearson are marked if the correlation is strong enough, i.e., |ρPearson| > 0.8 (by solid
lines) or weak enough, i.e., |ρPearson| < 0.4 (by dash lines).

efficiency EG and 2) the effective graph resistance rG as the robustness metrics that
characterize the performance of end-to-end transmissions. Figure 6.2 shows that these
two path-based metrics, the network efficiency EG and the effective graph resistance rG ,
are comparatively lowly correlated (i.e., ρPearson(EG ,rG ) =−0.63).

1) Network efficiency EG . We assume that the hopcount h(i , j ), i.e., the number
of links in the shortest path from node i to j , indicates the overhead of data delivery
from end to end. Thus, the reciprocal of the hopcount 1/h(i , j ) implies the amount
of packages for one unit overhead, which can be interpreted as the efficiency of the
communication between two nodes. If there is no path from i to j , h(i , j ) = ∞ and
1/h(i , j ) = 0. For a whole network, the efficiency of a given network can be computed by
the mean of the reciprocals of all the hopcount h(i , j ) in a network, i.e.,

EG =
∑

i 6= j∈G 1/h(i , j )(N
2

) (6.7)

which is defined as network efficiency [130]. Network efficiency quantifies how effi-
cient the exchange of information across the whole network under the shortest-path
routing [135]. The network efficiency of a network monotonically decreases with the
successive link removals.

2) Effective graph resistance rG . The effective graph resistance [64, 136–138] origins
from the field of electric circuit analysis, which is defined as the accumulated effective
resistance between all pairs of nodes. The effective graph resistance refers to the average
power dissipated in a resistor network with random infected currents, which can indi-
cate the overall diffusivity of information spreading in a communication network. Also,
the effective graph resistance rG determines the onset of congestion in a communication
network. Specifically, let δ be the average total input rate of the network. It can be shown
[139] that the maximum acceptable value of δ, which ensures that all links are within
their transmission capacity, is upper bounded by

(N
2

)
r−1

G .
To generalize the impact of attacks on the robustness metrics, we apply the reciprocal

of the effective graph resistance r−1
G as the R-value, which decreases for link removals in

an attack process and increases in a recovery process. In this chapter, we also assume
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that the removed links leading to the network disconnection have the supreme priority
and can be restored instantly. Thus, we numerically exclude the realizations of attack
processes that disconnect the network and lead to r−1

G = 0.

6.3.2. ATTACK AND RECOVERY STRATEGIES

For simplicity and generality, we consider a random attack strategy in attack processes.
The random attack strategy implies that the attacks or failures occur independently on
links randomly and uniformly, which is consistent with the random failure stage in a
product life cycle. The R-value R[k] for a determined number of attack challenges k
is a random variable. We consider three different strategies for recovery measures, i.e.,
random recovery, metric-based recovery and greedy recovery:

1) Random recovery: The random recovery strategy refers to the strategy that the
links are added randomly and uniformly, one by one, in recovery processes, which can
describe a self-repairing process after attacks or recovery measures without scheduling.

2) Metric-based recovery: The metric-based strategy determines the sequence of
adding links by the topological metrics of links. The performance of a network is usually
restricted by its structural “bottleneck”, i.e., the effective graph resistance is related to
the algebraic connectivity and the minimum degree [133]. A good recovery strategy
tends to remedy such bottleneck. Thus, we consider two metrics of links between node
i and j : the minimum product of degree di d j , and the minimum product of eigenvector
centrality ci c j . For each challenge in a recovery process, we select and restore the link
l∗i j with the minimum di d j or ci c j .

3) Greedy recovery: The greedy recovery strategy involves adding the link l∗ that
makes R-value increase most in each challenges, i.e.,

l∗ = argmax
l∈Gc

R(G + l )−R(G) (6.8)

where Gc is the complement of the current network G . The greedy strategy is a
practical and intuitive recovery strategy, where the current optimal link for improving the
performance of the network has the priority to be recovered during a recovery process.

6.3.3. TELECOMMUNICATION NETWORKS

We select 10 real communication networks for case study. The topological properties of
the 10 real telecommunication networks are described in Table 6.1. These 10 telecom-
munication networks include logical networks (representing the IP layer) and backbone
transport networks (connected with optical fiber). This set of networks was selected
in specialized databases [134], covering the telecommunication systems located in
different areas of the world, i.e., DFN (German backbone X-WiN network), Cernet (China
education and research network), Bt_US (Internet provided by BT in the US), GtsCe (GTS
network in central Europe), Cogentco (IP backbone network provided by Cogentco),
TataNld (Tata national long distance network), ATT_US (IP MPLS backbone network
provided by AT&T), Coronet (IP backbone network provided by Cogent), GEANT (IP
backbone network provided by GEANT), Renater (Internet provided by Renater).
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Networks N L E [D] λ1 µN−1 ϕ ρD EG

DFN 58 87 3.00 5.43 0.25 6 -0.11 0.36
Cernet 41 58 2.83 4.78 0.22 5 -0.35 0.40
Bt_US 36 76 4.22 5.85 0.41 6 0.03 0.44
GtsCe 149 193 2.59 3.81 0.01 21 -0.09 0.16
Cogentco 197 243 2.47 3.79 0.01 28 0.03 0.14
TataNld 145 186 2.57 3.27 0.01 28 -0.21 0.15
ATT_US 25 56 4.48 5.76 0.65 5 -0.02 0.51
Coronet 100 136 2.72 3.30 0.05 15 0.04 0.20
GEANT 40 61 3.05 4.32 0.14 8 -0.20 0.36
Renater 43 56 2.60 3.88 0.10 9 -0.15 0.33

Table 6.1: Topological properties, explained in Section 6.3.1, of the 10 real telecommunication networks. The
degree assortativity is denoted by ρD .

6.4. RESULTS AND DISCUSSION
In this section, detailed results and analysis on the real-world network via the proposed
approach for assessing network recoverability are presented. For some evaluation items,
we only present results for a specific network, i.e., DFN. We set the R-threshold as ρ = 0.8
in the following simulations. The approach translates easily to other networks or other
robustness metrics.

6.4.1. ENVELOPE EXAMPLES AND COMPARISON
Each realization of processes consists of an attack process and a following recovery
process. Figure 6.3 exemplifies the envelopes of the challenges in DFN network for two
scenarios and two robustness metrics, r−1

G and EG , respectively, under the random re-
covery strategy. The envelopes for the attack processes are similar in different scenarios
while Scenario A usually needs more challenges to recover the robustness metrics than
Scenario B, if the random recovery strategy is employed. The total number of challenges
Ka +Kr could cover a wide range of values since the number of challenges Ka +Kr is
influenced by two random processes (i.e., attack and recovery).

Figure 6.3a and Figure 6.3c also illustrates that the function R-value of the average
number of challenges R[Kav g ] for the robustness metric r−1

G is almost linear, in both
the attack process and the recovery process. For the robustness metric EG , the function
R[Kav g ] is slightly concave, illustrated in Figure 6.3b and Figure 6.3d. We will show
that the concavity of the function R[Kav g ] could help to explain the behavior of the
recoverability indicators.

6.4.2. COMPARISON OF RECOVERY STRATEGIES
The envelope computation can be applied to compare the performance of different
recovery strategies for a specific realization of attacks. Figure 6.4 shows different recovery
strategies (e.g., random, minimum di d j , minimum ci c j , greedy) for one realization
of attack processes under random attack strategy in DFN network. The envelope of
recovery processes by random recovery for the network efficiency EG covers a larger
surface than that of the inverse of the effective graph resistance r−1

G . This implies that
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Figure 6.3: Envelopes of the challenges for two scenarios and two robustness metrics (i.e., the inverse of the
effective graph resistance r−1

G and the network efficiency EG ) in DFN network, by random recovery strategy.

Each envelope is based on 104 realizations.

the network efficiency EG in different realizations could deviate more from one another
under the random recovery, and the performance of random recovery is more difficult to
be guaranteed. The average challenge sequence {Kav g } under the random recovery can
be a standard to evaluate the performance of other recovery strategies.

Figure 6.4 shows that the performance of metric-based strategies, e.g., minimum de-
gree product and minimum eigenvector centrality product, is not guaranteed. Especially
for the network efficiency EG , the metric-based strategies outperform the average of
random strategy in the initial stage of recovery processes but degrade for more recovery
challenges. Meanwhile, we notice that the greedy recovery usually upper bounds the
random recovery envelopes. The R-value as a function of the number of challenges
k under the greedy strategy is concave in the recovery process, which demonstrates
the diminishing returns property of the recovery measures. Since the optimal recovery
strategy is usually an NP-hard problem, we suspect that the greedy recovery can be a
practical near-optimal recovery strategy for both robustness metrics, i.e., r−1

G and EG .
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Figure 6.4: Comparisons of different recovery strategies for one realization of attacks in DFN network. Two
scenarios and two robustness metrics (i.e., the inverse of the effective graph resistance r−1

G and the network

efficiency EG ) are applied. Each envelope is based on 104 realizations.

6.4.3. OVERVIEW OF THE LINK RATIO AND THE ENERGY RATIO
We employ the proposed approach and the recoverability indicators η (including the
Link Ratio ηL and the Energy Ratio ηE ) to evaluate the 10 real telecommunication
networks. Figure 6.5 shows the recoverability indicators under two different scenarios,
two robustness metrics and two recovery strategies for 10 networks by violin plots. Violin
plots are similar to box plots, except that they show the probability density of the ratios
η at different values, which presents more insights about the ratios η under random
circumstances. Moreover, violin plots can be applied to compare the performance of
any two different strategies, e.g., the random and the greedy.

Figure 6.5 shows that almost all histograms of the ratio η, regardless of the scenarios,
the strategies and the metrics, exhibit heavy-tailed distributions, while the greedy
strategy presents a longer tail. Also, the ratio η has a wider range of values under the
greedy strategy, which implies the greedy strategy has a higher probability to lead to a
large ratio η, as well as a better recovery performance.

For both robustness metrics in Scenario A, DFN, Cernet and Renater have an average
Link Ratio E [ηL] < 1 for the random strategy, which implies a relatively low recovery
capability. By contrast, GTSce, Cogentco and TataNld have a large average Link Ratio
E [ηL] > 1, which outperform other networks much under both the random strategy and
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the greedy strategy. The network with a larger average Link Ratio usually has a larger
diameter ϕ, then the new established links in Scenario A could shorten the diameter ϕ
and increase the topological approach (r−1

G or EG ) more.

The Energy Ratio ηE presents different behaviors of the Link Ratio ηL compared with
Scenario A. The average Energy Ratios E [ηE ] for the robustness metric r−1

G approximate 1
under the random strategy, which can be explained by the fact that the function R[Kav g ]
is almost linear (illustrated in Section 6.4.1), and thus the energy Sa ≈ Sr . Since the
function R[Kav g ] is concave for the robustness metric E−1

G and thus the energy Sa < Sr ,
the average Energy Ratios E [ηE ] for different networks are slightly larger than 1. The
average Energy Ratio E [ηE ] in Scenario B under the greedy strategy is usually located
in the tail of the distribution of the Link Ratio ηL under the random strategy, which
demonstrates that the greedy strategy can update the recoverability of networks much.

6.4.4. RELATION BETWEEN SCENARIO A AND SCENARIO B

To compare the recoverability among different networks, we employ the SA-SB plots to
show the relation of the Link Ratio in Scenario A and the Energy Ratio in Scenario B under
a determined recovery strategy. SA-SB plots are divided as 4 quadrants by the reference
lines of the Link Ratio ηL = 1 and the Energy Ratio ηE = 1 in order to easily assess the
recoverability by the location of the average ratios E [ηL] and E [ηE ]. Figure 6.6 shows the
average ratios E [η] and the standard deviations

√
V ar [η] for the real-world networks in

SA-SB plots.

Figure 6.6 shows that the recoverability under two different scenarios has a weak
correlation, e.g., a Link Ratio ηL in Scenario A does not lead to a higher ηL in Scenario
B. We can also observe that all the average Energy Ratios E [ηE ] are located in the first
and the second quadrant, which demonstrates a good recoverability of tested networks
in Scenario B. However, the average Link Ratios E [ηL] in the second quadrant suggest
the topological improvement for these networks in Scenario A.

For a determined robustness metric, both the average Link Ratio E [ηL] and the En-
ergy Ratio E [ηE ] can be increased by applying the greedy strategy, but the performance
can be different. For example, the average Link Ratio E [ηL] of Cogentco is larger than that
of TataNld under the random strategy but smaller than that of TataNld under the greedy
strategy, which implies that the performance of a recovery strategy strongly depends on
the network topology.

6.4.5. IMPACT OF R-THRESHOLD

Figure 6.7 exemplifies that a larger R-threshold ρ slightly decreases the average Energy
Ratio E [ηE ] in Scenario B, while the average Link Ratio E [ηL] in Scenario A decreases
more with a larger R-threshold ρ (i.e., a lower damage level). This result implies that
the marginal cost (i.e., the number of recovery challenges to increase a same fraction of
R-value) decreases with a higher damage level, which is in line with the concavity of the
function R[Kav g ] under the random strategy (illustrated in Figure 6.3) and the function
R[k] under the greedy strategy (illustrated in Figure 6.4). In these cases, one challenge of
recovery can increase R-value more for a smaller R-value.
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(c) Random recovery: EG
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(d) Greedy recovery: EG

Figure 6.6: SA-SB plots of the Link Ratio ηL and the Energy Ratio ηE for two robustness metrics (i.e., the inverse
of the effective graph resistance r−1

G and the network efficiency EG ). The dark markers represent the average

ratios E [η], and the cross indicates the value range
[
E [η]−√

V ar [η],E [η]+√
V ar [η]

]
.
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Figure 6.7: Average Link Ratio E [ηL ] and average Energy Ratio E [ηE ] as a function of the robustness threshold
ρ in DFN network.

6.5. CHAPTER SUMMARY
This chapter proposes a topological approach for evaluating the network recoverability
in two scenarios, which extends the application of the framework [17] of network
robustness. We assess the recoverability of 10 real communication networks for two
different path-based robustness metrics, i.e., the network efficiency and the effective
graph resistance. In accordance with the results, the network recoverability presents
different behaviors between link-based Scenario A and energy-based Scenario B. All the
telecommunication networks have a healthy recovery capability in Scenario B under
the random recovery strategy, i.e. the average Energy Ratio E [ηE ] > 1, while three
of the networks (DFN, Cernet and Renater) suggest topological improvements for the
recoverability in Scenario A, i.e., the average Link Ratio E [ηL] < 1. The goodness of
the recoverability in Scenario B can be explained by the concavity of the R-value as a
function of the number of challenges. The network recoverability is also strongly related
to the recovery strategy. Comparing the performance of different recovery strategies, the
greedy recovery strategy exhibits a good performance for the investigated robustness
metrics and thus improves the network recoverability.





7
ROBUSTNESS ASSESSMENT OF

MULTIMODAL FREIGHT TRANSPORT

NETWORK

Multimodal freight transport allows switching among different modes of transport to
utilize transport facilities more efficiently. This chapter proposes an approach on network
modeling and robustness assessment for multimodal freight transport networks, where
the nodes represent junctions, terminals and crossings, and the links represent pathways.
The network model captures the features of interconnection and interdependency. Freight
can switch between different modalities at interconnected terminals, while disruption
of a single interdependent node (e.g., bridge, tunnel, railway crossing) affects multiple
modalities. Considering disruptions of infrastructure elements and capacity degradation
of pathways as perturbations, the network robustness is evaluated as the increment of the
total travel time caused by these perturbations. We apply our robustness assessment model
to the Dutch freight transport, taking into account three modalities: inland waterway,
road and railway. The node criticality, defined as the impact of a node removal on the
total travel time, resembles a power-law distribution, independent of different traffic
assignments. This scale-free property implies a relatively robust state of the network
against single random disruptions. Further, we show that the most critical nodes can be
roughly identified by their topological properties. Our research can help to schedule the
maintenance of the infrastructure by assigning priority to the critical infrastructure.
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7.1. INTRODUCTION

T HE European hinterland freight transport sector has aimed at a shift towards multi-
modal transport such as railway, inland waterway and sea transport, in order to alle-

viate the saturation of road systems [140][141]. Intermodal transport and synchromodal
transport are promoted as two promising solutions. Intermodal freight transport allows
moving goods by using various modalities consecutively [142]. Synchromodal transport
aims at real-time and flexible switching among different modes of transport according
to the latest logistic information, so as to utilize all transport facilities more efficiently
[143][144].

Transport networks are prone to suffer from various perturbations, for example
infrastructure failures and temporary closures due to construction work. More severe
perturbations, such as strikes or extreme weather (e.g. droughts, heavy snow, strong
winds), could lead to the partial unavailability of transport networks. Network robust-
ness is interpreted as a measure of the network’s response to perturbations or challenges
imposed on the network [145] [146], which considers both the network topology and the
service for which the network is designed [17]. The robustness of transport networks has
been studied extensively in recent years, mainly based on two variants of perturbations:
connectivity related and capacity related. Connectivity related perturbations [147–149]
regard the failure of infrastructure elements as removed nodes/links from a network.
Capacity-related perturbations [150–153] consider failures of infrastructure elements
as the capacity reduction of parts of the network, as opposed to a complete removal
of parts of the network. Despite that the above assessment approaches have been
applied in different modes of transport, the framework of robustness assessment for
multimodal networks has seldom been studied [154]. The issues including (i) how to
abstract particular infrastructure (e.g. terminals and crossings) of multimodal transport?
(ii) how to assess the network robustness under structural disruptions? (iii) how do
different traffic assignments impact the robustness performance? are still open. This
study aims at addressing the above questions.

Introducing concepts of Network Science to transportation research allows us to
propose a framework of network modeling, robustness assessment and critical structure
identification for multimodal freight transport. An interdependent network in Network
Science is a multi-layer network consisting of different types of networks that depend
upon each other for their functioning [155]. The interdependency in networks has
been applied to measure the robustness of communication networks, that control and
are supported by power grids [156], notably by investigating the impact of cascading
failure [157][158]. The representation of interdependent networks is an excellent proxy
for the structure of multimodal transportation systems. Taking into account several
modalities (e.g. inland waterway, road and railway), the transport infrastructure is
modeled as a multilayered network, where the nodes represent junctions, terminals
and crossings, and the links represent pathways. This network features two properties:
interconnection [159] and interdependency [157]. Specifically, transloading terminals
are facilities where freight can be transferred from one mode of transport to another and
are modeled as interconnections. The crossings, whose functioning influences multiple
modes of transport (e.g. bridges), are interdependent nodes. Thus, the disruption of
a crossing implies a simultaneous unavailability of related pathways in multiple layers
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of the network. Consequently, this macroscopic network model abstracts the intricate
connectivity of multimodal transportation networks, and also characterizes various
types of network perturbations.

Based on the network model, we assess the robustness of multimodal transportation
networks. We regard the total travel time of transporting all the freights as a performance
indicator, which usually increases due to disruption of any infrastructure element [160].
Our framework assumes that the increment of total travel time due to a node removal
reflects the criticality of this node. Then, the robustness of a network can be measured
by considering the time increment arising from every node removal in a statistical way.
Further, we explore the correlation between the time increment due to a node removal
and the topological properties of this node, which helps to identify the critical nodes
faster.

We assess our approach by an extensive case study on the freight transport network
in the Netherlands. The case study is not limited to the traffic assignment of all-or-
nothing (AoN) [161], but also more practical traffic models, including modal split (MS)
[162], user equilibrium (UE) [163] and system optimum (SO) [163]. We investigate the
robustness performance and topological properties of the critical nodes under different
traffic assignments. The assessment under single element disruptions identifies the
critical nodes, whose disruption leads to a relatively high increment of the travel time.
The critical nodes need to be given a higher priority for repairs and maintenance by the
responsible organization. The robustness assessment under the capacity degradation
of pathways can help to evaluate the impact of a large-scale disaster and work out
contingency plans. A general recovery framework for any type of network is presented
in [117], which allows to assess the performance of recovery measures in transport
networks.

The main contribution of this chapter can be summarized as:

1. We introduce the concepts of interconnection and interdependency into modeling
multimodal networks, which fill the gap for evaluating the impact due to disrup-
tions of the terminals and the crossings.

2. The framework of transport network assessment comprehensively considers both
disruptions/degradation of infrastructure and different traffic behavior.

3. The assessment framework develops the method of roughly identifying critical
nodes by nodal topological properties.

This chapter is organized as follows. We introduce the method for modeling a
multimodal transport network in Section 7.2. Section 7.3 proposes a framework of
robustness assessment and defines a robustness indicator. We apply the assessment
method to the Dutch freight transport network in Section 7.4. Section 7.5 summarizes
our findings and concludes this chapter.

7.2. THE SYNCHROMODAL NETWORK MODEL
In this section, we briefly introduce the network model for multimodal transport, which
features multiple layers, interconnection and interdependency.
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(a) OD

Water

(b) Terminal

Road

Water

Interdependent node

Interdependent node

(c) Interdependence

Figure 7.1: Illustration of network modeling. (a) Connections between OD centroid and main roads. Solid
lines represent main roads, and green lines represent small roads. (b) Connections between terminal and
main roads of modalities. Green lines represent small roads. (c) Relation between two modalities with an
interdependent node.

7.2.1. MULTI-LAYER NETWORK

The underlying topology of the multimodal freight transportation can be represented
by an undirected network G(N ,L) with the set N of N nodes and the set L of L links.
The nodes in the network represent transloading terminals, crossings and junctions,
which are connected by the links as different types of pathways. In our network
model (as illustrated in Figure 7.1), we consider three modalities: road (Road), railway
(Rail) and inland waterway (Water), which are the most common modalities in many
European countries. The underlying topology of each modality is represented by a
subgraph Gm(Nm ,Lm) for modality m ∈ {Road ,Rai l ,W ater }. The terminals providing
the interconnection between different modalities are represented by the subgraph GT ,
and the origins and destinations (OD) locating the sources and targets of cargo demands
are defined in the subgraph GOD . The whole transport network is a supergraph which
consists of multiple undirected subgraphs. Thus, the resulting supergraph combining all
infrastructure elements is defined as G(N ,L) with node and link set,

N =NRoad ∪NRai l ∪NW ater ∪NT ∪NOD (7.1)

L=LRoad ∪LRai l ∪LW ater ∪LT ∪LOD (7.2)

7.2.2. ORIGINS AND DESTINATIONS (OD CENTROID)
Centroids of regions are used [154] [164] to model the origins and destinations in each
region, where the centroid of a polygonal area is located at the center of mass of that
polygon. We split the country into several regions, where the centroid of each region
represents the origin and destination of the freight transport demand in that region.
These centroids are represented by the nodes in the subnetwork GOD . We assume that
the centroid is connected to all access points in the road subgraph of this region by small
roads. The small roads are represented by the OD links in the subnetwork GOD . Figure
7.1a illustrates the network model for centroids.

The amount of freight (in tons) that is transported between the origins and desti-
nations is defined in the demand matrix D , where the element Di j defines the average
amount of cargo transported from region i to region j . Freight transported between the
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origin and the destination in the same region is not considered, and thus the diagonal
elements of the demand matrix D are all equal to 0.

7.2.3. INTERCONNECTION

Intermodal transport allows switching among different modes of transport at transload-
ing terminals. At a transloading terminal two or more modalities are interconnected.
Figure 7.1b illustrates the network model for these terminals. Each transloading terminal
is represented by a node in the subgraph GT . The terminal node is connected with links
to nodes of the appropriate modes of transport. This modeling method captures the
feature of disruptions of terminals, i.e. the freight cannot switch to a different mode of
transport if the terminal node is removed.

7.2.4. INTERDEPENDENCY

The three modalities (waterway, road and rail) cross each other regularly (see Figure 7.3
below). At each crossing, a civil engineering structure is needed (e.g. bridge, tunnel,
railway crossing) to efficiently use both modalities. Thus, the disruption of a single civil
engineering structure can affect multiple modalities, which causes the interdependency
between the modalities. For example, the disruption of a bridge can affect both the
road and the waterway simultaneously. Unlike for interconnection, transloading of
freight is not possible at these crossings. Figure 7.1c illustrates the network model of
an interdependent node. We represent each crossing structure as two nodes in the
subgraphs of the two modalities. The relation of interdependency between these two
nodes implies a simultaneous removal due to a disruption, i.e. if either node is removed,
the other node will be removed as well.

7.3. NETWORK ROBUSTNESS ASSESSMENT
Our robustness assessment will be described in detail in this section based upon Figure
7.2. The proposed framework encompasses two aspects: the infrastructure designed by
network operators and traffic behavior determined by drivers, which corresponds to the
fact that the network robustness is related to its underlying topology and services [17].
For the transport network, we can compute the predefined performance indicator of the
fully-functional network based on specific OD-demands and a given traffic assignment.
Both the degradation of the functionality of pathways and the disruptions of transport
elements could change the network performance indicator (i.e. the total travel time). For
the same OD demands and the same traffic assignment, we recompute the performance
indicator in the perturbed network. We then assess the robustness of the whole network
based on the changes of the performance indicator due to the perturbations. The
framework provides the method for exploring the relation between the impact of the
disrupted elements on the performance and several topological properties of these
elements.

7.3.1. LINK ATTRIBUTES

The performance of the transport system is related to the route condition of each
modality, which translates to the link attributes in the network model. Each pathway
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Figure 7.2: Framework of transport network assessment.

segment represented by a link ` in the network has two attributes: the free-flow average
speed v` (in kilometers/hour) and the capacity c` (in tons/hour). The average speed

v` (in kilometers/hour) determines the travel time t` (in hours) on link `, i.e. t` = d`
v`

,
where d` is the length of link ` (in kilometers). Considering the travel time as the cost of
freight transportation, the travel time t` is regarded as the link weight in the network for
computing the shortest path from the origin to the destination.

The average speed v` is a constant for the traffic assignments without capacity
constraint, i.e. the link travel time t` is also constant for any amount of flow x` (in
tons/hour) assigned on the link `. In contrast, the link capacity constraints are included
in the travel time functions considering traffic congestion. A popular form of these
functions that reflects the travel time t`(x`) for each vehicle as a function of the flow
x` (in tons/hour) on link `, proposed by the Bureau of Public Roads (BPR), is given by
[161]:

t`(x`) = t0`

(
1+α

(
x`
c`

)γ)
(7.3)

where c` is the capacity of link ` (in tons/hour), and t0` = d`
v`

is the free flow travel time,
α and γ are the the shape coefficients, for which the value of α = 0.15 and γ = 4 are
generally applied [161]. The travel time t` without considering congestion is consistent
with an infinite link capacity c`→∞.

7.3.2. NETWORK PERTURBATION
Network perturbations refer [117][131] to two scenarios: the disruptions of transport el-
ements and the degradation of capacity, which translate to the changes in the underlying
topology and the link attributes, respectively. For the scenario of node disruptions, the
unavailable nodes are regarded to be removed from the original underlying topology.
In this chapter, we mainly consider disruptions of individual nodes to investigate the
impact of each node on the performance of the network. This analysis may help to
identify the critical infrastructure elements and schedule improvement measures. The



7.3. NETWORK ROBUSTNESS ASSESSMENT

7

91

scenario of node disruptions also includes the case that multiple nodes can be removed
simultaneously, which describes simultaneous accidents or cascading failures [157].
We define a random failure as the failure scenario where a given fraction of multiple
elements are removed from the network uniformly at random [117].

The scenario of capacity degradation refers to the effect of capacity reduction of a
single modality on the performance of the whole network. This scenario aims to describe
the cases of large-scale natural and man-made disasters, e,g. driver strikes and low water
levels in rivers due to droughts.

7.3.3. PERFORMANCE INDICATOR
We denote by z` the total amount of freight (in tons) attempting to use link ` as the flow
rate x` (in tons/hour) within h hours, i.e., z` = x`h. Invoking that the delay time for
each vehicle traveling on link ` is t` specified by (7.3), we apply the total travel time, also
called the total delay time, CG (in tons·hours) of transporting all the freights among all
links to measure the performance of network G , which is defined as

CG = ∑
`∈L

z`t`(x`) (7.4)

The network performance indicator CG usually increases to CG + ∆CG due to node
disruptions and degradation of link attributes. The robustness can be measured by the
normalized increment of the total travel time due to the perturbation on the network,
which defines the robustness indicator ηG as

ηG = CG ′ −CG

CG
= ∆CG

CG
(7.5)

where G ′ is the network after perturbations.
For measuring the impact of a single node disruption on the performance of the

network, we define the node criticality as the normalized increment of the total time
caused by the node removal. The node criticality of node i is the same as the robustness
indicator ηG under the single node disruption, which is

ωi =
CG\{i } −CG

CG
(7.6)

where G\{i } is the graph in which node i is removed as well as all its incident links. The
network robustness under isolated single disruptions can be measured by the average
node criticality E [ω] = 1

N

∑N
i=1ωi among all nodes. In general, a smaller average node

criticality E [ω] implies a more robust network.

7.3.4. TRAFFIC ASSIGNMENT
We investigate four kinds of traffic assignments: all or nothing, modal-split logit model,
user equilibrium and system optimum.

ALL OR NOTHING (AON)
An all-or-nothing (AoN) assignment is commonly applied for traffic assignment in
networks. The AoN assignment in this chapter assigns all demand of each OD pair to the
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route with the lowest route time between the OD pair [154][165], where the link weight is

the free-flow travel time t0` = d`
v`

. Two limits of the AoN algorithm are: (1) the capacities
c` of the pathways are assumed to be infinite; and (2) the diversity of route choices
for each OD pair is not taken into account. Despite the limits of the AoN assignment,
the operational simplicity without extra parameters leads to rapid computation, which
allows to roughly understand traffic behaviors under low-loaded situations. The shortest
routes are computed by the Bellman-Ford algorithm [166] in our framework.

MODAL-SPLIT ASSIGNMENT (MS)
Modal-split assignment also assumes the infinite link capacity c`. The demands between
origins and destinations are distributed over the network by applying a probabilistic
route choice model in modal-split assignment [162]. The freight between the origin and
the destination is distributed over several different routes in the route choice set by using
a multinomial logit regression. Given the routes set Psd with the first |Psd | = K shortest
paths from origin s to destination d , the fraction of freight using the k-th route Psd ,k is
defined as

psd ,k = exp(−βt (Psd ,k ))∑
k∈K exp(−βt (Psd ,k ))

(7.7)

where t (Psd ,k ) is the total time along the route Psd ,k alone and β is the parameter tuning
the drivers’ preference for the route with a lower travel time. The total flow assigned to
link ` follows x` =

∑
s∈N

∑
d∈N

∑
k∈{1,2,...,K } Dsd ·psd ,k ·δ(Psd ,k ,`), where δ(Psd ,k ,`) takes

the value one if link ` is belong to the route Psd ,k and zero otherwise.

USER EQUILIBRIUM (UE)
According to Wardrop’s first principle [167], drivers in a congested network prefer choos-
ing their route selfishly, following a behavior that is captured by the Nash equilibrium of
the underlying non-cooperative game. Assuming that the driver has perfect knowledge
of the travel time on a network and able to choose the best route according to Wardrop’s
first principle [168], the behavioral assumption will lead to a deterministic user equilib-
rium. Using a potential function φ`(x`) = ∫ x`

0 t`(x)d x, this routing behavior minimizes
the sum of the potential functions, which is formulated as a convex optimization
problem:

minimize
x`∀`∈L

∑
`∈L

∫ x`

0
t`(x)d x

subject to
∑
P

f sd
P = D sd

h

x` =
∑

s

∑
d

∑
P

f sd
P δsd (P ,`)

x` ≥ 0, f sd
p ≥ 0.

(7.8)

where x` is the total flow on link `, f sd
P is the flow between origin s and destination d

on route P , and the indicator δsd (P ,`) = 1 if link ` belongs to route P , and δsd (P ,`) =
0 otherwise. The above traffic assignment problem can be solved by the Frank–Wolfe
algorithm [169]. The total travel time in the UE assignment is computed using CG =∑
`∈L x∗

`
h · t`(x∗

`
) where x∗

`
is the solution of problem (7.8).
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SYSTEM OPTIMUM (SO)
System optimum assignment follows Wardrop’s second principle, where drivers cooper-
ate with each other to minimize the total travel cost [163] of the whole transport system.
The flow configuration that results in the optimal total travel time refers to the socially
optimal flows obtained by the problem:

minimize
x`∀`∈L

C = ∑
`∈L

x`h · t`(x`)

subject to constraints in (7.8).
(7.9)

which also can be solved by a modified Frank–Wolfe algorithm. The total travel time
in the SO assignment is computed by CG = ∑

`∈L x∗
`

h · t`(x∗
`

) with the solution x∗
`

of
problem (7.9). Some previous works have discussed the relation between the UE and
the SO [170][171], which propose that a trade-off between the UE and the SO agrees
more with the real-world traffic behaviors. Beyond this chapter, the sensitivity analysis
for the UE and the SO with respect to topological changes may help to compute the flow
on each link in a perturbed network more rapidly [172][173].

7.4. CASE STUDY: THE DUTCH CONTAINER FREIGHT TRANS-
PORT NETWORK

7.4.1. NETWORK MODEL AND CONFIGURATION

UNDERLYING TOPOLOGY

We apply the NWB (Nationaal Wegenbestand) database to construct the transport net-
work. The NWB is made by Rijkswaterstaat and defines the section and intersections
for all public roads1, waterways2 and railways3 in the Netherlands. For each mode of
transport a subset of the network is used. Only the large waterways, the railways that
are regularly used for freight transport and the national roads are considered for the
network. The terminal nodes are defined in the Rijkswaterstaat documents4,5,6, while
the interdependent crossings are located manually according to Google map. One can
refer to our previous work [174] for the details about the infrastructure considered and
the network modeling. Figure 7.3 illustrates the transport network of the Netherlands.

The Netherlands is divided into 40 regions (NUTS-3 used by Eurostat) based on
BasGoed7, each of which is represented by a centroid node. Figure 7.4 illustrates the
amount of containers transported from and towards all regions in the Netherlands,
which determines the OD demand matrix D . We assume that all the freights enter the

1Rijkswaterstaat, “Nwb-wegen [roads]”, 2017. URL: https://www.pdok.nl/nl/ service/wfs-nwb-wegen-
nationaal-wegen-bestand.

2Rijkswaterstaat, “Nwb-vaarwegen [waterways]”, 2017. URL: https://www.pdok.nl/nl/service/wfs-nwb-
wegen-nationaal-vaarwegen-bestand.

3Rijkswaterstaat, “Nwb-spoorwegen [railways]”, 2017. URL: https://www.pdok.nl/nl/service/wfs-nwb-
spoorwegen-nationaal-wegen-bestand.

4ECORYS Nederland BV. “Intermodal links - planner”, 2017. URL: https://intermodallinks.com/Planner/.
5Port of Rotterdam. “Inlandlinks”, 2017. URL:https://www.inlandlinks.eu/nl/terminals/filter.
6Rijkswaterstaat. “Synchromodaal transport Nederland kaart [synchromodal transport Netherland map]”,

2017. Internal document.
7Rijkswaterstaat, “Basgoed [model for freight transport],” Internal model, 2017.
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Figure 7.3: Illustration of underlying topology of the freight transport network in the Netherlands. (a) Multi-
layered network with three modes of transport. (b) Map of main infrastructure elements. (c) Location of the
interdependent nodes.

traffic system in the peak period within one hour, i.e., h = 1. The Dutch freight transport
network consists of 1457 nodes, 44 terminals, 40 centroids, 1897 main-pathway links,
101 terminal links and 692 OD links.
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Figure 7.4: Demand matrix D for the amount of containers (in tons per business day) transported in the
Netherlands (domestic transport only). The data is from BasGoed.

LINK ATTRIBUTES CONFIGURATION

Different modalities yield different configurations of link attributes in each layer of the
network in Figure 7.3a, which define the parameters (i.e., the parameterα,γ, the average
speed v`, the capacity c`) in the BPR function (7.3) for each link. Table 7.1 presents the
link attributes used. The small roads between OD/terminals have a lower average speed
than the main roads. Compared with the Road and the Water, the travel time for the Rail
depends more on the capacity of the railway, as the maximum number of trains on a
railway is predetermined. Therefore, we set a large γ for the Rail. This means the travel
time t` per unit of freight increases little with the freight amount below the capacity, but
increases a lot for the amount above the capacity. The information about the average
speed and the capacity of each modality is provided in the reports8,9,10.

Modality α γ v` c`
Road (main) 0.15 4 60 2300(vehicle/hour)×2(tons/vehicle)
Road (small) 0.15 4 30 2300(vehicles/hour)×2(tons/vehicle)

Rail 0.15 8 90 2200(tons/train)×2(trains/hour)
Water 0.15 4 15 1200(tons/ship)×5(ships/hour)

Table 7.1: The configuration of the links attributes, including the parameters α and γ, the average speed v` (in
kilometers/hour), and the capacity c` (in tons/hour).

8CBS, “Transport of goods in the Netherlands hits new record,” 2016. URL: https://www.cbs.nl/en-
gb/news/2016/25/ transport-of-goods-in-the-netherlands-hits-new-record.

9ProRail, “Network statement 2019,” report T20160098-1656408669-827, p. 196, 2017.
10Statline, “Traffic intensity; national roads,” 2018. URL: https://opendata.cbs.nl/statline/CBS/nl/dataset/82855NED.



7

96 7. ROBUSTNESS ASSESSMENT OF MULTIMODAL FREIGHT TRANSPORT NETWORK

7.4.2. ROBUSTNESS ASSESSMENT UNDER RANDOM FAILURES
We next investigate the robustness performance of the network under random failures.
Under the scenario of random failure, we remove a fraction of nodes uniformly at
random from the network, then compute the increment of the total travel time ∆CG

due to the removals. The ratio of the increment travel time and the original travel
time referring to (7.5), i.e., ηG = ∆CG

CG
, is used to measure the robustness of a transport

network. Figure 7.5 shows the average indicator E [ηG ] among all realizations of random
node removals under the AoN assignment. The interconnection of multiple modalities
can decrease the average normalized increment of the total travel time E [ηG ], thus
improves the robustness for transport services against random failures. Meanwhile,
the interdependency effect of the crossing nodes between different modalities could
degrade the robustness indicator E [ηG ] sightly, which is due to the fact that the failure of
an interdependent node impacts two modalities simultaneously. Thus, we observe from
Figure 7.5 that the interconnection improves the robustness and the interdependency
degrades the robustness under random failures.
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Figure 7.5: The average robustness indicator E [ηG ] under random failures as a function of the fraction of
removed nodes. We compare four cases: (1) the Road, (2) the Road interconnected with the Rail, (3) three
interconnected modalities without the interdependent nodes, (4) the whole network. Each data point is based
on 100 realizations.

7.4.3. ROBUSTNESS ASSESSMENT VIA NODE CRITICALITY
Next, we investigate the distribution of the node criticality ω for all nodes and the
interdependent nodes. Figure 7.6 shows the probability density function (PDF) fω(w)
of the node criticality ω as random variables on log-log scale. We fit the distribution of
the node criticality ωi by a power-law PDF that fω(w) ∼ w−k . We observe from Figure
7.6 that the node criticality resembles a power-law distribution, where different traffic
assignment models, i.e., the AoN, the MS2 (i.e. the modal split assignment with K = 2
routes), the UE and the SO, have little influence on this scale-free property of robustness.
The power-law distribution of the node criticality ωi implies that the removal of most
nodes yields a small increment of the total travel time ∆CG , while the removal of some
critical nodes can increases the travel time CG significantly. Interestingly, the real-
world transport network already tends to be robust against individual failures, which



7.4. CASE STUDY: THE DUTCH CONTAINER FREIGHT TRANSPORT NETWORK

7

97

 !
!

 !
 

 !
"

 !
#

$ %
&'

(

) * +

 !
,#

" # - ) * +

 !
,"

" # - ) * +

 !
, 

'

./00.12345.

.........6.7. 8*+9.:;%<7"8!+= !
,#

.>1?4@34A41341?.12345

.........6.7. 8-+9.:;%<7"8#B= !
,#

(a) AoN

 !
!

"

#

$

 !
 

"

#

$

 !
"

"

#

$

% &
'(

)

*

 !
+,

" , # - $ *

 !
+"

" , # - $ *

 !
+ 

(

./00.12345

.......6.7. 8#9:.;<&=7"8,9> !
+,

.?1@4A34B41341@.12345

.......6.7. 8,C:.;<&=7-8$#> !
+,

(b) MS2

 

!

"#
#

$

 

!

"#
"

$

 

!

"#
$

$

% &
'(

)

$ *  + ! ,

"#
-$

$ *  + ! ,

"#
-"

$ *  

(

./00.12345

.........6.7."8  9.:;&<7+8#"="#
-*

.>1?4@34A41341?.12345

.........6.7."8#,9.:;&<7B8+,="#
-*

(c) UE

 !
!

 !
 

 !
"

# $
%&

'

 !
()

" ) * + ,

 !
("

" ) * + ,

 !
( 

" ) *

&

-.//-01234

---------5-6- 7,*8-9:$;6*7<"= !
()

->0?3@23A30230?-01234

---------5-6- 7 <8-9:$;6B7C = !
()

(d) SO

Figure 7.6: Distribution of the node criticality ω for both all nodes and the interdependent nodes. The PDF is
fitted by the function fω(w) ∼ w−k . Both the x-axis and y-axis are on log scales.

may be caused by the topological evolution [175] and traffic optimization during the
development of the network.

A larger slope k in the PDF fω(w) ∼ w−k implies a better robustness indicated by the
node criticality ω of network. Comparing the traffic assignment AoN and the MS2, both
with an infinity capacity, the AoN surprisingly presents a better performance against
single failures with a larger slope k than the MS2. The AoN employs fewer nodes than
the MS2, so that some removed nodes have little influence on the increment of the
total travel time ∆CG . Comparing the UE and the SO, the robustness indicated by the
distribution of the node criticality ω under the SO outperforms the UE for disruptions
among both all nodes and the interdependent nodes. This implies that a centralized
and information-sharing schedule could lead to both a lower total travel time CG and
a better robustness E [ω]. In addition, Figure 7.6 shows that the interdependent nodes
usually have a higher node criticality amonge all nodes. Thus the maintenance of the
interdependent nodes should be of a higher priority.
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Figure 7.7: Bar plots show the modal load versus the fraction of the original capacity of a determined modality
(the Road, the Rail or the Waterway) and a given traffic assignment (the UE or the SO). The purple lines show
the total travel time CG as a function of the fraction of the original capacity

7.4.4. ROBUSTNESS ASSESSMENT UNDER CAPACITY DEGRADATION

We further investigate the robustness of networks under capacity degradation. First, we
define the modal load χm as the total flow

∑
`∈Lm x` on all the links in this modality

divided by the number of links Lm of this modality, i.e. χm =
∑
`∈Lm x`

Lm
, which reflects

the usage of each modality. Figure 7.7 shows the modal load χm and the total travel
time CG versus the degradation of the capacity of each modality. The degradation of the
capacity of a modality decreases the modal load of this modality, while the load shifts
to the other two modalities. For the Rail and the Waterway, the total time CG presents a
linear function of the fraction of the original capacity, while the degradation of the Road
capacity increases the total travel time CG sharply. The high sensitivity of the total travel
time CG with the capacity degradation of the Road may be due to the fact that the Road is
the dominating modality, and the other two fail to balance the loads if the availability of
the Road decreases too much. Figure 7.7 also shows that the SO presents a lower travel
time CG than the UE due to the difference in the usage of Waterway, i.e., the SO has a
higher modal load of the Waterway than the UE. This result hints a possible optimization
for transportation by making full use of the Waterway.

We consider the single node disruption under capacity degradation of each modality.
Figure 7.8 shows the average node criticality E [ω] as a function of the fraction of
the original capacity for each modality, which measures the robustness against single
disruption under degradation of capacity. The average node criticality E [ω] increases
with degradation of the capacity of the Road and the Railway and more sensitive to
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degradation of the Road capacity. By contrast, the average node criticality E [ω] presents
different behaviors for the degradation of the Rail capacity, which more or less presents
a Braess’s paradox [176], i.e. the robustness degrades for a higher capacity of the Rail.
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Figure 7.8: The average node criticality E [ω] as a function of the fraction of the original capacity for each
modality under the UE and the SO.

7.4.5. TOPOLOGICAL PROPERTIES OF CRITICAL NODES
We investigate the relation between the nodal topological properties and the node
criticality in order to identify the most vulnerable and critical nodes faster [55]. A larger
absolute correlation coefficient implies a better nodal metric to identify the critical node.
The metric of the unweighted degree is the number of links incident to a node, and
the other metrics (i.e. degree, closeness [38], node betweenness [38] and the diagonal
element of the pseudo-inverse matrix [64] of the weighted Laplacian matrix Q†

i i ) are

computed in the weighted network with the link weight a` = t0` = d`
v`

. The element Q†
i i

is calculated by the Laplacian matrix Q̃ of the weighted adjacency matrix Ã with entry
ã` = 1

a`
for each link `. Figure 7.9 shows that the betweenness has the highest rank

correlation with the node criticality, but the correlation degrades under the MS2, the
UE and the SO assignments. Considering that the UE and the SO are more practical in
real-world, this degradation implies that the identification of the critical nodes could be
difficult if the effect of capacity is taken into account under the UE and the SO.

We define the flow network as the network with the link weight a` = x` and denote
the corresponding metrics by (*). The flow network reflects the usage of each link under
a specific traffic assignment. The unweighted degree* in the flow network is the number
of non-empty links (i.e. x` 6= 0) incident to a node. The other metrics are computed
in the weighted flow network. The degree* in the flow network is actually the total
amount of freight passing this node, which becomes the best indicator of the critical
nodes. However, the rank correlation also degrades in the MS2, the UE and the SO, which
implies that the critical nodes do not entirely depend on the local traffic flow.

We also investigate the topological properties of critical interdependent nodes. Since
the closeness* is calculated as the reciprocal of the sum of the length of the shortest paths



7

100 7. ROBUSTNESS ASSESSMENT OF MULTIMODAL FREIGHT TRANSPORT NETWORK

between the node and all other nodes in the flow network [38], the important nodes
nearby the links with a high link weight a` = x` usually have a smaller closeness*, which
leads to the negative correlations between the node criticality and the closeness*. Figure
7.9 shows that the interdependent nodes present similar behaviour of the topological
properties with all nodes, but have a higher correlation with the closeness*. The strong
correlation allows us to identify the most critical interdependent nodes by using the
degree* and the closeness* in combination.
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Figure 7.9: The Spearman’s rank correlation coefficients between the node criticality and the topological
metrics in the structural network (with a` = t0`) and the flow network (with a` = x`) under different traffic
assignments. The coefficients for (a) all nodes and (b) the interdependent nodes are shown in the subgraphs,

respectively. We neglect the element Q†∗
i i in the flow network since the weighted adjacency matrix Ã is not

applicable for the network with zero-weighted links a` = x` = 0.

7.5. CHAPTER SUMMARY
Multimodal transport opens a new door for mitigating congestion in road transport and
for reducing transportation costs. This chapter addresses the approaches to both the
network modeling and the robustness assessment of multimodal transport networks.
The consideration of the interdependent property of multimodal networks fills the gap
for modeling the disruptions of the crossings. Although the interdependency degrades
the robustness of the network slightly, the interconnection of multiple modalities ben-
efits the total travel time and outweighs the negative effect of interdependency on the
robustness performance. The robustness is assessed by both element disruptions and
capacity degradation. The case study of the Dutch transport network provides several
new insights. First, the power-law-like distribution of the node criticality implies a
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good robustness of the real-world network. The dynamics of self-evolution and overall
planning leading to this robust state could be an open question beyond this chapter
[177]. Second, we observe that the capacity degradation of the Road could exert
a disastrous growth of the total travel time, while shifting more loads to the inland
waterways can decrease the total travel time. Lastly, the node criticality is strongly
correlated to the amount of freight passing this node. The most critical interdependent
node can be identified by the degree and the closeness of nodes in the flow networks.
This study can support network planners in tactical and operational decisions for
improving the performance of multimodal transport networks.

The proposed framework can be employed to a general transport system, but some
details merit further improvements. A better experimental formula for the travel time
in terms of the freight flow on links in railway and inland waterways, instead of the BPR
function as (7.3), can characterize more features of different modalities. In addition, we
employed the total travel time as travel cost for this case study, while different definitions
of costs, e.g., CO2 emissions [154], could exhibit different results.





8
OPTIMIZATION OF CONVERGENCE

RATE VIA ALGEBRAIC

CONNECTIVITY

The algebraic connectivity of a network characterizes the lower-bound of the exponential
convergence rate of consensus processes. This chapter investigates the problem of accel-
erating the convergence of consensus processes by adding links to the network. Based
on a perturbation formula of the algebraic connectivity, we propose a greedy strategy for
undirected networks and give a lower bound of its performance through an approxima-
tion of submodularity. We further extend our investigation to directed networks, where
the second smallest real part among all the eigenvalues of the non-Hermitian Laplacian
matrix, i.e., the generalized algebraic connectivity, indicates the expected convergence
rate. We propose the metrics to evaluate the impact of an adding subgraph on the
generalized algebraic connectivity, and apply a modified greedy strategy to optimize the
generalized algebraic connectivity. Numerical results in empirical networks exhibit that
our proposed methods outperform some other methods based on traditional topological
metrics. Our research also verifies the dramatic differences between the optimization in
undirected networks and that in directed networks.
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8.1. INTRODUCTION

A Large number of collective dynamic processes, e.g., the Markovian process [38], the
network diffusion [178], the fluid flow in tank systems [32], the electric network

[64], has a similar objective that all nodes reach an agreement regarding a certain
quantity of interest by exchanging the nodal states with their neighboring nodes. These
dynamics can be generally described by the consensus model in networks [179, 180].
The convergence rate of a consensus process on a network indicates the speed that
each node tends to its final steady state (assuming that the steady state exists), which
characterizes the behavior of an autonomous system and can be an important metric of
the performance (e.g. robustness or efficiency) for networked control systems.

The behavior of the consensus model can be featured by the eigensystem of the
Laplacian matrix of the adjacency matrix, where the algebraic connectivity of the undi-
rected network indicates a lower-bound of the exponential convergence rate [179].
Thus, the problem of convergence acceleration of a process reduces to increasing
the algebraic connectivity of the undirected network by topological adjustments. If
the variables of interconnections are continues-valued, i.e., the links are weighted,
maximizing the algebraic connectivity constrained by a total budget of link weights
reduces to a semi-definite programming [181], which can be solved by a subgradient
method [182, 183]. For maximizing the algebraic connectivity by adding links in un-
weighted networks, different heuristic methods based on the topological metrics (e.g.,
degree, eigenvector centrality, and betweenness) are proposed to approach this NP-hard
integer-optimization problem [184–187]. However, the above topological metrics-based
approaches cannot theoretically evaluate the performance. It is of practical significance
to propose a strategy in undirected networks whose performance can be guaranteed,
which is the first issue that we will study in this chapter.

Moreover, several flow processes, e.g., the impedance circuit, the liquid flow, the
traffic flow, yields the fact that the interactions between nodes are directed instead of
bidirected. The convergence rate to consensus in a directed network depends on both
the topology of the network and its initial state vector [188]. The expected convergence
rate (ECR) is defined to measure the speed of convergence for random initial state
vectors in directed networks [189]. Notwithstanding the importance and generality of
the expected convergence rate in directed networks, the method of maximizing the
ECR in directed networks by topological adjustments, to the best of our knowledge,
has seldom been investigated. Unfortunately, the methods for undirected networks are
mostly infeasible for directed networks, which motivates us to design an algorithm to
maximize the ECR in directed networks. It is the second issue that we will explore in this
chapter.

In this chapter, we investigate the impact of the network perturbation on the con-
vergence rate of dynamics via the algebraic connectivity both in undirected and directed
networks, which are confined to unweighted networks. For undirected networks, we
present a perturbation formula of the algebraic connectivity for an adding subgraph,
which shows the impact of multiple adding links on the algebraic connectivity, as well as
demonstrates that the algebraic connectivity resembles an approximately submodular
function with respect to the adding subgraphs. Based on the metric for the impact of
an individual link, the greedy strategy to maximize the algebraic connectivity by adding
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links one by one could have a constant performance.
For directed networks, we confine ourselves to the strongly connected network

without self-loops to ensure the existence of the non-trivial steady state [180]. We show
that the second smallest real part among all the eigenvalues of the Laplacian matrix
indicates the lower bound of the expected convergence rate in directed networks, which
is defined as the generalized algebraic connectivity [189]. Based on the bounds of the
generalized algebraic connectivity perturbation with respect to the adding subgraph,
we propose the metrics to measure the impact of an individual link and heuristically
apply the greedy strategy to maximize the generalized algebraic connectivity. Further,
we compare the performance of the proposed methods with other heuristic methods
based on traditional nodal centrality, and discuss the difference between the strategies
for increasing the convergence rate between undirected and directed networks.

The main contribution of this chapter can be summarized as:

1. We propose the greedy strategy to maximize the algebraic connectivity µ in undi-
rected networks, which guarantees a constant performance.

2. We propose the heuristic greedy strategy to maximize the generalized algebraic
connectivity ℜ(µ) in directed networks.

3. Numerical tests in real-world networks show the superiority of our proposed
methods compared with some other heuristics.

The remainder of this chapter is organized as follows. The physical significance of the
algebraic connectivity and the definition of the generalized algebraic connectivity are
introduced in Section 8.2. Section 8.3 provides a perturbation formula of the algebraic
connectivity and propose the greedy algorithm in undirected networks. We extend the
optimization problem and propose some heuristic strategies for directed networks in
Section 8.4. We evaluate the proposed methods in Section 8.5 and conclude this chapter
in Section 8.6.

8.2. ALGEBRAIC CONNECTIVITY FOR CONSENSUS PROCESSES

IN NETWORKS

8.2.1. CONSENSUS PROCESSES IN UNDIRECTED NETWORKS
We consider that an undirected and unweighted network G(N ,L) consisting of set N
with N nodes and set L with L links is represented by the adjacency matrix A. The
entry of the adjacency matrix ai j = 1 if there is a link between node i and node j ,
and otherwise ai j = 0. Let vi (t ) denotes the state of node i at time t , the consensus

model follows d vi (t )
d t = ∑N

j=1 ai j (vi (t )− v j (t )), and the vector form for the state vector

v (t ) = (v1(t ), v2(t ), . . . , vN (t ))T follows

d v

d t
=−(∆− A)v (t ) =−Qv (t ) (8.1)

where ∆ = diag(d1,d2, . . . ,dN ) is the diagonal degree matrix (e.g., di denotes the degree
of node i ), and Q is the Laplacian matrix of A.

We assuming that all the eigenvalues λk of Q are distinct, i.e., λ1 < λ2 < ·· · < λN ,
associated with the eigenvector x1, x2, . . . , xN . The state vector v (t ) can be written
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as v (t ) = e−Qt v (0) with the initial state vector v (0). The smallest eigenvalue in the
symmetric matrix Q is equal to λN (Q) = 0, which corresponds to the steady-state
eigenvector π= xN = uT . Thus, the state vector can be written by

v (t ) =π+
N∑

k=2
e−λk t xk xT

k v (0) (8.2)

which implies that the state vi (t ) of each node exponentially converges to the steady
state. The relation

− lim
t→∞

log |vi (t )−πi |
t

≥ min
k≤N−1

{λk } (8.3)

implies that the second smallest eigenvalue λN−1 of the Laplacian matrix Q, i.e., the al-
gebraic connectivity, indicates a lower-bound of the expected exponential convergence
rate for each nodal state with a random initial state.

8.2.2. CONSENSUS PROCESSES IN DIRECTED NETWORKS

We further consider the dynamic processes in the directed network G(N ,L) with N
nodes and L directed links. The entry ai j = 1 in the asymmetric adjacency matrix A
represents a directed link with source node i and target node j . In the consensus process,
the existence of link ` j i represents the communication from node i to node j . Thus, the

consensus model follows d vi (t )
d t =∑N

j=1 a j i (v j (t )− vi (t )), and the state vector follows

d v (t )

d t
=−(∆i n − AT )v (t ) (8.4)

where ∆i n is the diagonal nodal in-degree matrix. We define the operator Q = ∆i n − AT

as the generalized Laplacian matrix in directed network1. If the network is strongly
connected [179], i.e., there exists a path from one node to another for any two nodes,
the smallest eigenvalue λN of Q is equal to 0, and the system can reach a steady state
π. Assuming that the generalized Laplacian matrix has distinct eigenvalues λk and
corresponding right- and left- eigenvectors xk and yk , the state vector can be generalized
as

v (t ) =π+
N∑

k=2
e−λk t xk yT

k v (0) (8.5)

Since the complex eigenvalue for the non-Hermitian matrix Q can be written by λk =
ℜ(λk )+ iℑ(λk ) with non-negative real parts ℜ(λk ), we rewrite the state vector by v (t ) =
π+∑N

k=2 e−ℜ(λk )t−iℑ(λk )t xk yT
k v (0). Denoting ei the basis vector, the difference between

1Some researchers [179] prefer applying link ` j i to represent communication from node i to node j , then the
generalized Laplacian matrix is Q =∆out − A with the diagonal nodal out-degree matrix ∆out . Our definition
in this chapter has no difference with the previous work for system analysis, but can be more intuitive for
topological changing.
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the nodal state vi (t ) and its steady state πi follows

|vi (t )−πi | = ei

∣∣∣ N∑
k=2

e−ℜ(λk )t−iℑ(λk )t xk yT
k v (0)

∣∣∣
≤

N∑
k=2

e−ℜ(λk )t |ei xk yT
k v (0)| (8.6)

which yields that the expected exponential convergence rate has a lower bound

− lim
t→∞

log |xi (t )−πi |
t

≥ min
k≤N−1

{ℜ(λk )} (8.7)

For brevity, we write the algebraic connectivity as µ = λN−1 in undirected networks,
and define the generalized algebraic connectivity ℜ(µ) = mini<N ℜ(λi ) as the second
smallest real part among all the eigenvalues of the Laplacian matrix in directed networks.

8.3. ALGEBRAIC CONNECTIVITY IN UNDIRECTED NETWORKS
In this section, we derive an approximation of the algebraic connectivity for the topo-
logical perturbation in undirected networks. Further, we propose a greedy method to
maximize the algebraic connectivity by adding links or subgraphs.

8.3.1. TOPOLOGICAL PERTURBATION FOR THE ALGEBRAIC CONNECTIVITY

We denote by A the adjacency matrix of the original undirected network G(N ,L), and
by A +∆A the adjacent matrix of the network under perturbation ∆A. The N × N
perturbation matrix ∆A is also symmetric, which is positive-definite for the adding
subgraph, and negative-definite for deleting a subgraph. The N × N Laplacian matrix
∆Q corresponding to ∆A is the perturbation to the original Laplacian matrix Q, which is
symmetric and positive-definite for an adding subgraph (negative-definite for a delated
subgraph). According to the eigenvalue perturbation theorem [190, 191], the perturba-
tion of the algebraic connectivity follows

∆µ= xT
N−1∆QxN−1 +

N∑
k 6=N−1

(xT
k ∆QxN−1)2

λN−1 −λk
+O(‖∆Q‖3

F ) (8.8)

where xN−1 is the Fiedler vector and ‖ · ‖F is the Frobenius norm. However, estimating
the algebraic connectivity perturbation ∆µ by (8.8) requires all the eigenvalues and the
eigenvectors, whose computational complexity is usually high for large networks, i.e.
O(N 3) by QR decomposition.

We hereby present an approximate of the algebraic connectivity for the topological
perturbation∆A. The Laplacian matrix of a network can be convert into a row-stochastic
and non-negative matrix S, by using the transformation S = IN − εQ, where IN is the
identity matrix and ε > 0 is a sufficiently small number. The matrix S is irreducible
if the network G is connected when the parameter ε < 1

dmax
ensures S is non-negative

[179]. We denote by γ1 the left eigenvector of S corresponding to its largest eigenvalue 1.

Then, we can construct the matrix R = S − γ1γ
T
1

‖γ1‖2 , and denote by z the left eigenvector of
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R corresponding to the largest eigenvalue λ1(R). The algebraic connectivity µ of Q shifts
to the largest eigenvalue of R, and can be computed [192, 193] by

µ(Q) = 1

ε
(1−λ2(S)) = 1

ε
(1−λ1(R)) (8.9)

We suppose that the algebraic connectivity µ becomes µ̃ = µ+∆µ if the Laplacian
matrix of a network Q becomes Q +∆Q. The matrix S after perturbation is S +∆S
with ∆S = −ε∆Q. The eigenvector γ1 corresponding to λ1(S) normalized by ‖γ1‖2 = 1
is equal to the eigenvector of Q corresponding to λN (Q) = 0, i.e., γ1(S) = xN (Q) =
( 1p

N
, 1p

N
, . . . , 1p

N
)T . Thus, the eigenvector γ1 does not change for the perturbation, i.e.,

γ1(S +∆S) = γ1(S), which yields the perturbation ∆R =∆S.
Denoting z the principle eigenvector of the matrix

R = IN −εQ − 1

N
J (8.10)

where J is an unit matrix, we further estimate the eigenvector z +∆z for a small
perturbation ‖∆R‖2 ¿‖R‖2 by means of one further iteration of the power method [194]
as

z +∆z ≈ (R +∆R)z

‖(R +∆R)z‖2
= λ1(R)z +∆Rz

‖λ1(R)z +∆Rz‖2
= λ1(R)z +∆Rz√

λ2
1(R)+2λ1(R)zT ∆Rz + zT ∆RT ∆Rz

≈ z + 1

λ1(R)
∆Rz = z − ε

λ1(R)
∆Qz (8.11)

We apply a second-order perturbation result as ∆λ1(R) ≈ ∆λ(1)
1 (R) +∆λ(2)

1 (R) in

discrete calculus. The first term λ(1)
1 (R) can be obtained by the first-order eigenvalue

perturbation [191], i.e., ∆λ(1)
1 (R) = zT∆Rz. The second term ∆λ(2)

1 (R) following the
Taylor theorem equals

∆λ(2)
1 (R) = 1

2
∆2λ(1)

1 (R) = 1

2

(
∆λ(1)

1 (R +∆R)−∆λ(1)
1 (R)

)
where the term ∆λ(1)

1 (R +∆R) can be approximated by

∆λ(1)
1 (R +∆R) = (z +∆z)T ∆R(z +∆z)

(z +∆z)T (z +∆z)
≈ zT ∆Rz + zT ∆R∆z +∆zT ∆Rz

= zT (−ε∆Q)z + zT (−ε∆Q)(− ε

λ1(R)
∆Qz)+ (− ε

λ1(R)
∆Qz)T (−ε∆Q)z

=−εzT ∆Qz + 2

λ1(R)
zT (ε∆Q)2z (8.12)

Therefore, we can obtain that the exact perturbation ∆µ of the algebraic connectivity
approximates

∆µ=−1

ε
∆λ1(R) ≈ zT ∆Qz − ε

λ1(R)
zT (∆Q)2z (8.13)
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and the algebraic connectivity µ̃(∆Q) after a perturbation ∆Q is

µ̃(∆Q) ≈µ+ zT ∆Qz − ε

λ1(R)
zT (∆Q)2z (8.14)

According to the perturbation formula (8.14), we can apply the power iteration
method to compute the largest eigenvalue λ1(R) and the principle eigenvector z, and
further estimate the algebraic connectivity µ̃ for the perturbation ∆Q, which reduces
the computational complexity to O(N 2). Compared with the first-order perturbation
∆µ ≈ zT∆Qz = ∑

i , j∈N ∆ai j (zi − z j )2 proposed in [181], the second term in the derived
approximation (8.13) exhibits an additional penalized term. Specifically, the second
term

zT (∆Q)2z =2
∑

i , j∈N
∆ai j (zi − z j )2 +2

∑
i , j ,k∈N

∆ai j∆a j k (zi − z j )(zk − z j ) (8.15)

implies the effect of multiple links incident to a same node in a perturbation subgraph.

8.3.2. MAXIMIZE THE ALGEBRAIC CONNECTIVITY BY ADDING LINKS
We then consider the problem of maximizing the algebraic connectivity by adding sub-
graphs or links. Ghosh and Boyd [181] show that maximizing the algebraic connectivity
µ in undirected networks by allocating the continues-valued links weights w` ∈ [0,1] is
a convex problem. However, the combinatorial optimization problem that maximizing
the algebraic connectivity by adding K unweighted links, i.e., w` ∈ {0,1} is a NP-hard

problem, whose computational complexity is O
(( 1

2 N (N−1)−L
K

)
N 3

)
by a brute force. An

intuitive and straight way is to apply the greedy strategy to adding links for increasing
the algebraic connectivity as Algorithm 8.1, which selects the link that increases the
algebraic connectivity most in each iteration.

Algorithm 8.1 Original Greedy Method

1: Inputs:
the undirected network G and the number of links K

2: Initialization:
Set the solution S as an empty link set

3: while |S| ≤ K do
4: `i j = argmax`∉G {µ(G ∪ {`i j })}
5: S = S ∪ {`i j }, G =G ∪ {`i j }
6: end while
7: Return S

Definition 8.1 (Submodularity [195]): A set function f is submodular if for all subsets
A ⊂ B ⊆V and all elements s ∉ B, it holds that

f (A∪ {s})− f (A) ≥ f (B ∪ {s})− f (B) (8.16)

Physically, submodularity is a diminishing returns property where adding an element
to a smaller set gives a larger gain than adding one to a larger set. Greedy strategy
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is a suggested method of operational simplicity to approach the near-optima for a
monotone submodular maximization [196]. A celebrated results by Nemhauser et al.
[197] proves that the greedy method provides a good approximation to the optimal
solution of the NP-hard optimization problem. Defining the impact of an adding
subgraph with the Laplacian matrix ∆Q on the algebraic connectivity as

E(∆Q) = zT∆Qz −θzT (∆Q)2z (8.17)

where the constant θ := ε
λ1(R) depends on the original network, we now investigate the

property of the impact function E(∆Q).
In the following analysis, we assume that the impact function E(∆Q) approximates

the algebraic connectivity ∆µ well, thus the maximzation of E(∆Q) and ∆µ are consis-
tent. Further, computing the exact algebraic connectivity µ(G ∪ {`i j }) in Algorithm 8.1
for all candidate links `i j in each iteration still requires high computational cost for
large scale networks. According to the impact E(∆Q) of a subgraph, the impact of an
individual link `i j can be measured by the metricΩ(`i j ) = |zi −z j |, which can be applied
to faster select the best link `i j = argmaxl∉G {|zi −z j |} for each iteration in Algorithm 8.2.
Coincidentally, the impact (8.15) validates that the second term zT (∆Q)2z suggests the
same metric |zi − z j | for the importance of an individual link. We also mention that the
improved perturbation function (8.17) with the second term (8.15) can be applied for
more general applications, e.g., adding a subgraph with multiple links in each iteration,
or batched greedy optimization [198].

The feasibility of the greedy algorithm 8.2 is an open question. Although the alge-
braic connectivity is a concave function of continuous-valued link weights, Remark 8.1
shows that the approximated increment of the algebraic connectivity E(∆Q) by adding
unweighted subgraphs is unfortunately non-submodular. For conciseness, we notate
both the link set and the corresponding Laplacian matrix Q of the graph composed of
these links by the same notation Q.

Algorithm 8.2 Heuristic Greedy Method for µ

1: Inputs:
the undirected network G and the integer K

2: Initialization:
Set the solution S as an empty link set

3: while |S| ≤ K do
4: Compute the eigenvector z of R by Q
5: `i j = argmax`∉G {|zi − z j |}
6: S = S ∪ {`i j }, G =G ∪ {`i j }
7: end while
8: Return S

Remark 8.1 Given the perturbation of the Laplacian matrix Q +∆Q, the function E(∆Q)
as (8.17) is non-submodular with respect to the set ∆Q of adding subgraphs (links).

Proof: We define the Laplacian matrix for the perturbation subgraphs I , J ,U ,V ,W
following the relation that I ≤ J , V = I +U , W = J +U and Y = J − I , where the symbol
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(+) denotes the union of link sets and (-) indicates the relative complement. We have the
relations:

E(V )−E(I ) = zT (I +U )z − ε

λ1(R)
zT (I +U )2z −

(
zT I z − ε

λ1(R)
zT I 2z

)
= zT Uz − ε

λ1(R)
zT U 2z + ε

λ1(R)
zT (IU +U I )z

= E(U )− ε

λ1(R)
zT (IU +U I )z (8.18)

E(W )−E(J ) = E(U )− ε

λ1(R)
zT (JU +U J )z (8.19)

Thus, we can obtain that

(E(V )−E(I ))− (E(W )−E(J )) = ε

λ1(R)
zT (Y U +U Y )z (8.20)

which is always positive only if the matrix U and Y are commuting. Thus, the submod-
ularity of the impact function E(∆Q) is not guaranteed. �

We then show that the impact function E(∆Q) is approximately submodular.

Lemma 8.1 The largest eigenvalue of the Laplacian matrix ∆Q of a graph with K links is
upper bounded by K +1.

Proof: The largest Laplacian eigenvalue is upper bounded by the sum of the largest
nodal degree and the second largest nodal degree [199]. Thus, the largest Laplacian
eigenvalue of a graph with K links has the upper bound K + 1, which occurs in a star
graph. �

Lemma 8.2 Assuming that the adding subgraph with the Laplacian matrix ∆Q consists
of K links. The function E(∆Q) is bounded by

δzT∆Qz ≤ E(∆Q) ≤ zT∆Qz (8.21)

where the constant δ := 1− ε
λ1(R) (K +1).

Proof: We define the constant δ> 0 such that

δ= min
zT ∆Qz − ε

λ1(R) zT (∆Q)2z

zT ∆Qz
= 1−max

ε

λ1(R)

zT (∆Q)2z

zT ∆Qz
(8.22)

The term zT (∆Q)2z obey the relation

|zT (∆Q)2z| ≤ ||∆Q|| · |zT∆Qz| ≤λ1(∆Q)zT∆Qz (8.23)

Invoking the upper-bound of λ1(∆Q) ≤ K +1 in Lemma 8.1, we can obtain that δ = 1−
ε

λ1(R) (K +1) and δzT∆Qz ≤ E(∆Q).

The right inequality can be verified by the fact that ε
λ1(R) zT (∆Q)2z ≥ 0 for the positive

semi-definite matrix (∆Q)2. �
Usually, the perturbed subgraph are a small amount of links separately located in a

large network, so the eigenvalue λ1(∆Q) is relatively small, which practically leads to the
constant 0 < δ< 1.
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Theorem 8.1 The greedy algorithm 8.2 for maximizing the impact function E(∆Q) by
adding K links (that compose a graph with the Laplacian matrix ∆Q), can guarantee the
performance

E(∆Q) ≥ 1

1+ K (1−δ2)
δ2

(
1−δ2K

(
1− 1

K

)K
)
EOPT(∆Q∗) (8.24)

if 1−δ
1+δ ≤ 1

K , where EOPT(∆Q∗) is the optimal impact with the optimal solution set ∆Q∗.

Proof: Lemma 8.2 implies that the impact E(∆Q) is a δ−approximately submodular
function [200] which approximates the (sub)modular function g (∆Q) = zT∆Qz. In-
voking the performance bound in Theorem 8 proposed in [201], we can arrive that the

performance constant is 1

1+ K (1−δ2)
δ2

(
1−δ2K

(
1− 1

K

)K
)
. �

The near optimal solution of the exact increment ∆µ∗ can be approached by Algo-
rithm 8.2 in some networks. Theorem 8.1 shows that the performance of the greedy
algorithm is related to the topological property of the original network indicated by the
constant θ, i.e., a smaller θ = ε

λ1(R) leading a larger δ yields a larger performance con-
stant. Specifically, the impact E(∆Q) approximates to the modular(additive) function
g (∆Q) for a smaller θ, which implies a better performance for the greedy algorithm.
The performance constant also degrades with the increasing number of adding links K .
In addition, the computational complexity of Algorithm 8.1 is O(K L̄N 2), while the
computational complexity of Algorithm 8.2 reduces to O(K (L̄ +N 2)), where L̄ = (N

2

)−L
is the number of links in the complement of G .

8.4. GENERALIZED ALGEBRAIC CONNECTIVITY IN DIRECTED

NETWORKS
This section extends our investigation to directed networks. We define ℜ(µ) as the
second smallest real part among all the eigenvalues of the generalized Laplacian matrix
Q =∆i n − AT in directed networks without self-loops. The properties of the generalized
algebraic connectivity ℜ(µ) in directed networks is more complicated than those in
undirected networks. For example, the generalized algebraic connectivity ℜ(µ) is even
not monotonic with the number of adding links, and an additional directed link could
decrease the generalized algebraic connectivity (see an example in Figure 8.1).

1

4

3

2

1

4

3

2

1

4

3

2

Re(μ)=2.00 Re(μ)=1.38Re(μ)=1.50

Figure 8.1: Example of the non-monotonicity of the generalized algebraic connectivity ℜ(µ) by adding links.

The algebraic connectivity in a directed network for a real perturbation of Laplacian

matrix ∆Q is given by ∆µ = y H∆Qx
y H x

+O(‖∆Q‖2
F ), where x and y are right- and left-
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eigenvectors belonging to µ normalized so that ‖x‖2 = ‖y‖2 = 1 and y H x = |y H x|. For
the complex eigenvalue and eigenvectors, we have the perturbation formula

ℜ(∆µ) = yT
R ∆QxR + yT

I ∆QxI

yT
R xR + yT

I xI
+O(‖∆Q‖2

F ) (8.25)

where x = xR + i xI and y = yR + i yI . Although the perturbation formula (8.25) provides
an estimation of ℜ(∆µ), the computational cost of x and y is very high in large networks.
Moreover, the change of the real part of a determined eigenvalue ℜ(∆µ) could not equal
the change of the generalized algebraic connectivity ∆ℜ(µ).

8.4.1. BOUNDS OF THE GENERALIZED ALGEBRAIC CONNECTIVITY PERTUR-
BATION

Unfortunately, the complex algebraic connectivity µ of a non-Hermitian Laplacian
matrix does not obey the power iteration method, which leads that the generalized
algebraic connectivity ℜ(µ) perturbation difficult to derive in a similar form with (8.14).
Thus, we consider a lower-bound and an upper-bound of the generalized algebraic
connectivity ∆ℜ(µ) under topological perturbation.

Lemma 8.3 Given the generalized Laplacian matrix Q = ∆i n − AT , the matrix Q +QT is
positive semi-definite if the network is strongly connected.

Proof: By the Gershgorin Disk Theorem [202], all the eigenvalues are located in
the union of the disks centered at Q j j +QT

j j =
∑N

i=1 ai j +∑N
i=1 a j i with the radius r j =∑N

i=1 ai j +∑N
i=1 a j i for j ∈ N . Thus, all the eigenvalues are located in the right plane,

which yields that the symmetric matrix Q +QT is positive semi-definite. �

Theorem 8.2 Given a network with the generalized Laplacian matrix Q, the increment
of the generalized algebraic connectivity ∆ℜ(µ(∆Q)) by adding a subgraph with the gen-
eralized Laplacian matrix ∆Q can be lower-bounded by an approximately submodular
function, i.e.,

∆ℜ(µ(∆Q)) ≥ 1

2
zT∆Q∗z − ε

4λ1(H)
zT (∆Q∗)2z (8.26)

where ∆Q∗ = ∆Q +∆QT , z is the principle eigenvector of H = 1
2 (R +RT ), R and ε are

defined in (8.10).

Proof: According to Section 9.3.1, we have the shift relation that λi (Q) = 1
ε (1−λN−i (R))

for the matrix R = IN −εQ − 1
N J . Similarly, we can obtain that

ℜ(µ(Q)) = 1

ε

(
1−max

i≥2
ℜ(λi−1(R))

)
(8.27)

We then introduce the Bendixson theorem [203] that: let H = 1
2 (R+RT ) be the Hermitian

part of R, we have λN (H) ≤ ℜ(λ(R)) ≤ λ1(H). For the perturbation Q +∆Q, we have
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∆R =−ε∆Q, which yields ∆H =− ε
2 (∆Q +∆QT ) =− ε

2∆Q∗, where ∆Q∗ is positive semi-
definite due to Lemma 8.3. Invoking the eigenvalue perturbation in (8.14), we arrive at

ℜ(λi−1(R +∆R)) ≤λ1(H +∆H)

≈λ1(H)− ε

2
zT∆Q∗z + ε2

4λ1(H)
zT (∆Q∗)2z (8.28)

where z is the left eigenvector of the matrix H corresponding to the largest eigenvalue
λ1(H) normalized by ‖z‖2 = 1. We can obtain the lower bound of the increment of the
general algebraic connectivity ∆ℜ(µ(∆Q)) follows

∆ℜ(µ(∆Q)) =ℜ(µ(Q +∆Q))−ℜ(µ(Q))

≥ 1

2
zT∆Q∗z − ε

4λ1(H)
zT (∆Q∗)2z (8.29)

Since the matrix ∆Q∗ is positive definite and Hermitian, the function on the right side
of (8.26) is an approximately submodular function (similar with Lemma 8.2), which
completes the proof. �.

We also present an upper-bound of the generalized algebraic connectivity perturba-
tion ∆ℜ(µ) based on Lemma 8.4.

Lemma 8.4 [189] Defining the matrix for a directed network as R = e IN−αQ − exN xT
N ,

where xN is the right eigenvector of the Laplacian matrix Q associated with its zero
eigenvalue, and 0 < α < d max

i n , the generalized algebraic connectivity holds ℜ(µ(Q)) =
1
α (1− log(maxi∈N |λi (R)|)).

According to Lemma 8.4, computing the generalized algebraic connectivity ℜ(µ) can
be reduced to computing the maximum absolute eigenvalue of the matrix R by an
exponential operator. Then, the generalized algebraic connectivity ℜ(µ) in large scale
networks can be computed by a general power iteration method by Krylov subspace
[204].

Theorem 8.3 The increment of the generalized algebraic connectivity ∆ℜ(µ(∆Q)) by
adding a subgraph with the generalized Laplacian matrix ∆Q can be upper-bounded by
the function

∆ℜ(µ(∆Q)) ≤ 1

α
log

λ̂(R)

λ̂(R)−κ(Z )‖α∆Qe IN−αQ‖p
(8.30)

where α and R are defined in Lemma 8.4, κ(Z ) is the condition number of the matrix Z
composed by the eigenvector of R, and λ̂(R) = maxi∈N |λi (R)|.

Proof: We have the perturbation of the matrix

R +∆R = e IN−α(Q+∆Q) −exN xT
N ≈ (IN −α∆Q)e IN−αQ −exN xT

N

which yields ∆R ≈ −α∆Qe IN−αQ for a small α. According to Lemma 8.4, the problem
of maximizing the general algebraic connectivity is equal to minimizing the largest
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absolute eigenvalue of R. Invoking the Bauer-Fike theorem [205] and the reverse triangle
inequality, we can obtain that

|λ(R)|− |λ(R +∆R)| ≤ |λ(R)−λ(R +∆R)| ≤ κ(Z )‖∆R‖p (8.31)

where κ(Z ) = ‖Z‖p‖Z−1‖p is the condition number [206] of the matrix Z composed by
the eigenvector of R.

Denoting the maximum absolute eigenvalue maxi∈N |λi (R)| by λ̂(R), we have

∆ℜ(µ(∆Q)) = 1

α
(1− log λ̂(R +∆R))− 1

α
(1− log λ̂(R)) ≤ 1

α
log

λ̂(R)

λ̂(R)−κ(X )‖∆R‖p

= 1

α
log

λ̂(R)

λ̂(R)−κ(X )‖α∆Qe IN−αQ‖p
(8.32)

which completes the proof. �

8.4.2. MAXIMIZE THE GENERALIZED ALGEBRAIC CONNECTIVITY BY ADDING

LINKS
We then consider the problem of maximizing the generalized algebraic connectivity
by adding K links in directed networks. Assuming that we apply the greedy strategy
to adding the links one by one, a simple and intuitive method to select the link in
each iteration follows two steps: 1. obtain the best undirected link regarding the
network as undirected; 2. randomly determine the direction of this link. However, the
performance of this method is not guaranteed since the effect of the link direction is
ignored. The bounds of the perturbation indicate the impact of topological perturbation
in two different aspects: the lower bound (8.26) implies that the increment of the
generalized algebraic connectivity is related to the connections between nodes with
different eigenvector centrality, while the exponential norm of the perturbation ‖∆R‖
influences the upper bound (8.30).

Further, Theorem 8.2 demonstrates that the maximal impact of an individual addi-
tional link on the lower bound of the increment of the general algebraic connectivity
∆ℜ(µ(∆Q)) can be measured by

Ω(`i j ) = 1

2
z j (z j − zi )− ε

4λ1(H)

(
(2z j − zi )2 + z2

j

)
(8.33)

which is different from the impact Ω(`i j ) = |zi − z j | in undirected networks. The
dominating first term 1

2 z j (z j − zi ) in (8.33) implies that the best link `i j tends to be
located in two different communities to maximize the difference z j − zi . Meanwhile,
for the directed links between the same two nodes, i.e., `i j and ` j i , the target of the
additional link tends to be the node with a higher value z j to increase the generalized
algebraic connectivity. Theorem 8.3 demonstrates that the impact of the subgraph
depends on ‖∆R‖p . Defining the matrix W = e IN−εQ ≈ 2IN − εQ + 1

2 (IN − εQ)2 and
applying norm-1 for computational simplicity, we can obtain another metric to measure
the importance of an individual link `i j on the generalized algebraic connectivity, i.e.,

Ω(`i j ) = ‖∆Qe IN−εQ‖1 = max
k∈N

|Wi k −W j k | (8.34)
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We assume that the impact of an adding link on the bounds of ∆ℜ(µ) has similar
behaviors with the exact generalized algebraic connectivity. By adding the link with
the largest impact in each iteration, we heuristically propose the greedy method as
Algorithm 8.3 to approach the near-optimal solution.

Algorithm 8.3 Heuristic Greedy Method for ℜ(µ)

1: Inputs:
the undirected network G and the integer k

2: Initialization:
Set the solution S as an empty link set

3: while |S| ≤ k do
4: Compute matrix R by the Laplacian matrix Q
5: `i j = argmaxl∉GΩ(`i j ) or `i j = argmaxl∉GΩ(`i j )
6: S = S ∪ {`i j }, G =G ∪ {`i j }
7: end while
8: Return S

8.5. NUMERICAL EVALUATIONS
In this section, we present some numerical tests to evaluate the performance of the
perturbation formula and our proposed methods. The topological properties of the
investigated networks are summarized in Table 8.1. We extract the giant component
from the undirected networks and extract the largest strongly connected component
from the directed networks.

N L λ1 ℜ(µ) Type
Karate [94] 34 78 6.73 0.469 undirected
Les Misérables [71] 77 254 12.00 0.205 undirected
NetScience [73] 379 914 10.38 0.015 undirected
Illinois friendship [207] 67 359 5.780 0.115 directed
Berlin traffic [208] 216 514 3.35 0.022 directed
Neural network [209] 239 1912 9.15 0.364 directed

Table 8.1: The topological properties of the giant component or the largest strongly connected component of
several experimental networks

8.5.1. UNDIRECTED NETWORKS
We first evaluate the perturbation formula (8.14) of the algebraic connectivity by con-
tinuously adding links in undirected networks. In each step, we randomly select one
node and randomly adding two new links incident to this node. Figure 8.2 shows
the exact algebraic connectivity as a function of the number of the adding links K ,
which is compared with the perturbation formula with one term, i.e., µ̃ ≈ µ+ zT∆Qz
and the perturbation formula (8.14) with two terms µ̃ ≈ µ+∆µ. We observe that the
algebraic connectivity estimated by the perturbation formula (8.14) usually provides an
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upper-bound of the exact algebraic connectivity µ, but deviates more from the exact
algebraic connectivity µ with the increasing number of adding links, which implies that
the performance of the perturbation formula could degrade with the increasing size of
the adding subgraphs. The proposed perturbation formula (8.14) can provide a better
estimation for the exact algebraic connectivity µ, especially for the spare network with
a small maximum degree (e.g., circle networks). The proposed approximation (8.14)
exhibits a similar behavior with the perturbation with one term in a dense network since
the small ε< 1

dmax
of (8.14) reduces the impact of the second term.
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Figure 8.2: The functions of (i) the exact algebraic connectivity, (ii) the approximation with one term µ̃ ≈ µ+
zT ∆Qz and (iii) the approximation (8.14) with two terms with respected to the number of adding links K .

We then compare the performance of different strategies to maximize the algebraic
connectivity, which includes the strategies for selecting a link in each iteration:

(1) Alg. 1: selecting the link `i j to maximize µ greedy;
(2) Alg. 2: selecting the link `i j with max{|zi − z j |};
(3) Selecting the link `i j between the nodes with the smallest degree product di d j ;
(4) Selecting the link `i j between the nodes with the smallest eigenvector centrality

product;
(5) Selecting the link `i j between the nodes with the smallest node betweenness

product.

Figure 8.3 shows the exact algebraic connectivity µ as a function of the number of
adding links K via different greedy strategies in three empirical undirected networks.
Figure 8.3 shows that the algebraic connectivity µ via Algorithm 8.1 exhibits a concave-
like function with respect to the number of adding links K , and has the best performance
for a small number of adding links (e.g., K ≈ 5). The proposed heuristic method
Algorithm 8.2 approaches the performance of Algorithm 8.1 best, and even outperforms
Algorithm 8.1 when the number of adding links K is large. We also observe that the other
heuristic greedy strategies based on the topological metrics (e.g., degree, eigenvector
centrality and betweenness) usually cannot guarantee the performance for maximizing
the algebraic connectivity.
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Figure 8.3: The exact algebraic connectivity µ as a function of the number of adding links K via different greedy
strategies in three empirical undirected networks, e.g, Karate, Les Misérables and Netscience.

8.5.2. DIRECTED NETWORKS
We further evaluate the performance of the heuristic metrics proposed in Section 9.4.3
in directed networks. We consider the following metrics to select the individual link in
each iteration in the greedy strategy:

(1) Maximize ℜ(µ): the link that maximizes the generalized algebraic connectivity
ℜ(µ);

(2) MaximizeΩ(`i j ): the link with the maximumΩ(`i j );
(3) MaximizeΩ(`i j ) with inverse direction: the inverse directed link of the link via (2);

(4) MaximizeΩ(`i j ): the link with the maximumΩ(`i j );
(5) Undirected handling: first select the undirected link with the maximum Ω(`i j )

by regarding the network is undirected, and then randomly determine the link
direction.

Figure 8.4 shows that the method “maximize ℜ(µ)" presents the best performance for a
small number of adding links K although the submodularity of the function ∆ℜ(µ) in
directed networks is not guaranteed. However, the generalized algebraic connectivity
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ℜ(µ) via the method “maximize ℜ(µ)" tends to increase monotonically but very slowly
when the number of adding links is large, which implies that the original greedy method
of “maximize ℜ(µ)" could lead to the local optima in directed networks. The method “
maximizeΩ(`i j ) " is the best heuristic method to approach the method “maximize ℜ(µ)"
for a small fraction of adding links, and performs better for a large fraction of adding
links.

We observe that the generalized algebraic connectivity ∆ℜ(µ) via the method “maxi-
mizeΩ(`i j )" as a function of the number of adding links K does not smoothly monoton-
ically increase, which may instead help the solution to avoid local optimum possibly due
to the inheritance of stochastic optimization (e.g., the principle of “simulated annealing"
algorithm and extremal optimization [210]). Also, the method “maximize Ω(`i j ) " can
also avoid the local optimum and leads to a good solution, while the performance could
degrade much in very sparse networks (e.g., Berlin traffic network with the average
degree E [D] ≈ 2.29).

Figure 8.4 also shows the difference of performance between the method “maximize
Ω(`i j ) " and the same link with inverse direction, which demonstrates that the link
direction is influential to the generalized algebraic connectivity ℜ(µ). Furthermore, the
unsatisfied performance of the method “undirected handling” hints the difference of
the optimization between directed and undirected networks, as well as the fact that the
strategy for undirected networks may be infeasible for directed networks.

8.6. CHAPTER SUMMARY
The (generalized) algebraic connectivity indicates the lower-bound of the exponential
convergence rate for consensus processes on networks. This chapter investigated the
strategy to maximize the (generalized) algebraic connectivity by adding links in both
directed and undirected networks. The approximate submodularity of the derived
perturbation of the algebraic connectivity validates that the greedy strategy could guar-
antee a constant performance in some undirected networks. For directed networks,
we proposed the heuristic metrics for selecting the best directed links in the greedy
algorithm based on the bounds of the generalized algebraic connectivity perturbation.
Numerical tests show that the original greedy strategy based on the exact algebraic
connectivity performs best for a small number of adding links, while the greedy strategy
based on the proposed metrics could outperform others when the number of adding
links is large as well as requires less computational cost. This chapter conveys the insight
into the difference on the optimization in directed and undirected networks. Beyond this
chapter, the similarities and differences of the behavior of dynamic processes in directed
and undirected network merit further study, which is also of practical significance to the
community detection for dynamics [211].
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Figure 8.4: The exact generalized algebraic connectivity ℜ(µ) as a function of the number of adding links K
via different greedy strategies in four empirical undirected networks, e.g., bi-directed Karate, Neural network,
Illinois friendship and Berlin traffic network.



9
CONCLUSION

“Was Vernünftig ist, das ist Wirklich; und was Wirklich ist, das ist Vernünftig.”

— Grundlinien der Philosophie des Rechts 1820

9.1. MAIN CONTRIBUTIONS
This thesis contributes the original frameworks, the new insights and the optimization
approaches on the performances of complex networks, encompassing the efficiency of
spread and the robustness of transport. We are devoted to a better understanding on
how the interplay of underlying topology and overlying dynamics affects the behavior
of processes and services in networks via both theoretical analysis and case study. The
network optimization is a multi-dimensional and multi-objective problem. Structural
properties of networks, time-dependent behavior of dynamics, optimization strategy,
performance assessment, all need to be taken into account for designing a better net-
work. Revisiting the research questions mentioned in Chapter 1, the main contributions
of each chapter are as follows:

We explore time-dependent behaviors of epidemics by the defined spreading time
in Chapter 2. The spreading time indicates the time when a spreading process reaches
the metastable state and features the velocity of a spread during the outbreak period.
We observe that the spreading time in SIS epidemics resembles a lognormal-like dis-
tribution with different deep tails, which is exhibited both in the Markovian and the
non-Markovian infection process. The deep tail in the distribution of the spreading time
implies that the transient increasing period of an epidemic process could be very long.
The average spreading time is not necessarily monotonous with the effective infection
rate but exhibits a maximum, which means that a higher effective infection rate may not
lead to a shorter average spreading time.

121
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Chapter 3 addresses the research question of identifying the fastest initial spreader
with the shortest average spreading time for an efficient spreading. With the increasing
effective infection rate, the fastest spreader changes from the node with the largest
degree to the node with the shortest flooding time. This fact implies that the fastest
spreader is coupled to not only the underlying graph but also the dynamic process.
Further, we propose the spreading efficiency as a metric to identify the fastest spreaders
by considering the expansion and the largest eigenvalue of the subgraph around the
spreader.

Chapter 4 introduces the induced SIS spreading in networks, which aims to steer
the viruses to the target nodes as much as possible by allocating spreading resources
on nodes optimally. We provide two frameworks for the optimal induced spreading:
the static optimization and the dynamic optimization. In the static optimization, the
optimal infection rate increment of each node is highly related to the degree as well as its
average hops to the targets. In the dynamic optimization, the time-dependent optimal
infection rate increment exhibits two periods for a large cost budget: steering the viruses
from the initial spreader to the target, and maintaining the infection probability of the
target by its neighbors. The advantage of the dynamic optimization over the static
optimization under a small budget of resources is verified. Also, the differential evolution
algorithm presents promising feasibility in high-dimensional network optimizations.
We also illustrate that the cost scaling with the fraction of targets has different behaviors
compared to that of the targeted controlling in linear systems, because the cost for
increasing the infection rate of one node usually benefits the infection probabilities of
multiple targets.

The NIMFA steady-state prevalence can be represented by a Taylor series in terms of
the effective infection rate at the NIMFA epidemic threshold. Chapter 5 shows that the
network topology alters the radius of convergence of the prevalence expansion, which is
infinite in regular graphs and becomes finite in irregular graphs. The average radius of
convergence increases with the density (the average degree) in random graphs, e.g., ER
random graphs and scale-free graphs. The radius of convergence is also coupled to the
eigenvalues of the adjacency matrix. Especially, a smaller spectral gap usually decreases
the radius of convergence in sparse networks and clustered networks.

Chapter 6 addresses the problem of how to access network recoverability. We pro-
pose a topological approach for evaluating the network recoverability in two scenarios,
link-based Scenario A and energy-based Scenario B, which extends the application
of the framework [17] of network robustness. We assess the recoverability of 10 real
communication networks for two different path-based robustness metrics, i.e. the
network efficiency and the effective graph resistance. Compared with other metric-
based recovery strategies, the greedy recovery strategy exhibits superior performance for
the investigated robustness metrics and thus improves the network recoverability more
effectively.

Chapter 7 addresses the approaches on both the network modeling and the robust-
ness assessment of multimodal transport networks. The concepts of interconnection
and interdependency in network science are introduced to abstract multimodal trans-
port systems as network models better. The consideration of the interdependent effect
fills the gap for modeling the disruptions of the crossings. The framework allows us
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to evaluate the network robustness by simulating link removals and calculating travel
cost increments. The results in the case study on the Dutch transport network present
the power-law-like distribution of the node criticality, which implies the scale-free
robustness against disruptions in the real-world network. The node criticality is strongly
correlated to the amount of freight passing this node. The most critical interdependent
nodes can be identified by the degree and the closeness in the overlying flow networks.

Chapter 8 demonstrates that the (generalized) algebraic connectivity determines the
convergence rate of consensus processes in undirected (or directed) networks. In order
to improve the convergence rate of consensus processes, we propose the strategy to
maximize the (generalized) algebraic connectivity by adding links in both directed and
undirected networks. The approximate submodularity of the derived perturbation of
the algebraic connectivity validates that the greedy strategy could guarantee a constant
performance in some undirected networks. In directed networks, the greedy algorithm,
which selects the directed link based on the proposed heuristic metric in each step,
exhibits the advantage over other topological metric-based strategies.

9.2. DIRECTIONS FOR FUTURE WORK
The research questions of this thesis and the above insights obtained from the results
open doors to a few future research directions.

Despite the fact that epidemic models have been studied in recent decades, the
time-dependent behavior of epidemics in networks still lacks extensive investigations.
Chapter 2 demonstrates that the spreading time resembles a lognomal-like distribution,
which is due to the interplay between the exponential reproduction of viruses and the
Gaussian-distributed viral density in the metastable state. The lognormal distribution
commonly appears in the temporal properties of universal human behavior and social
activities, such as interactivity time on online social networking [212], duration of strikes
[213] and Sartwell’s incubation period [214]. Some previous research [215][216] has
already tried to explain the incubation time by some dynamic processes. If we interpret
the viral density in the metastable state as the threshold of symptom, the similarity
between the spreading time and the incubation period may imply the behaviors of
viruses spread in individuals. We expect that the analysis and optimization approaches
can be applied further if the spreading behaviors in individuals are verified.

Chapter 3 and Chapter 8 provide some insights into optimization approaches for
dynamics in networks. Due to the large size of complex networks, the network opti-
mization problems are usually extremely high dimensional. Greedy strategy, with a low
computing cost and an operational simplicity, could guarantee a constant performance
based on the submodularity theory. Summars et al. [217] summarized some submodular
indicators for network controllability. An exhaustive investigation on the (approximated)
submodularity of the network properties is needed in order to verify the feasibility of
greedy strategy in more general cases. Besides the greedy algorithm, a better heuristic
algorithm for optimization in large networks is still an open question, though the
differential evolution algorithm seems promising, as shown in Chapter 3. Further,
considering time-dependent processes on networks, a faster dynamic optimization for
networks is also necessary, which can benefit the adaptive dynamic programming for
network control [218], as well as the reinforcement learning in neural networks [219].
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Nonlinearity and non-Markov property characterize more generic individual be-
haviors and collective dynamics in the real world, which meanwhile complicates the
analysis of processes on networks. Topological heterogeneity, interplaying with the
nonlinearity and the non-Markov property, has been shown to induce novel behavior
in non-equilibrium dynamics on networks, e.g., the Griffiths phases in contact process
[220] and the localization in fracture processes [221]. In addition, we usually assume
the constant infection rates and curing rates in epidemic models. However, the practical
infection could be time-dependent, state-dependent (e.g. adaptive spreading models
[222]), or even history-dependent (with memory effect). In these cases, the behaviors
of these models could be dramatically different. Thus, we encourage more efforts on
network performances with nonlinearity and non-Markov property in future work.
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A
APPENDIX FOR CHAPTER 2

A.1. DETERMINATION OF THE METASTABLE STATE AND THE

STABILITY TIME
We define a Bernoulli random variable Xi (t ) ∈ {0,1} as the infectious state of node i ,
where Xi (t ) = 1 indicates that node i is infected and Xi (t ) = 0 indicates that node i is
susceptible at time t . The prevalence y(t ) = 1

N E [I (t )] of an SIS process is the expected

fraction of infected nodes at time t , where I (t ) = ∑N
i=1 Xi (t ) is the number of infected

nodes. We present several definitions of the metastable state in the SIS process on finite
graphs derived from the prevalence y(t ) in this section.

Definition 1(a): In an epidemic process, the metastable state is reached at the

stability time ts , which is the smallest time obeying d y(t )
d t

∣∣
t=ts

= 0.
It seems reasonable to define the start of the metastable state when the prevalence

y(t ) reaches its first extremum. However, the SIS prevalence y(t ), started from multiple
initial spreaders, may pass multiple extrema in the transient regime in a specific network,
which demonstrates that Definition 1(a) is not precise. In addition, as shown in Figure
A.1, the prevalence y(t ) may monotonically decreases when the average number of
infected nodes in the metastable state is smaller than the number of the initially infected
nodes. Therefore, this definition may not be adequate for the computation of the
spreading, starting from multiple initially infected nodes.

Definition 1(b): In an epidemic process, the metastable state is reached at the

stability time ts , which is the smallest time obeying d y(t )
d t

∣∣
t=ts

= 0, and |y(t )− y(ts )| ≤ ε

for ∀t > ts +αE [Tabsor bi ng ], where 0 <α< 1. The positive real numbers α and ε need to
be agreed upon.

To remedy the defect of Definition 1(a), we try to bound the prevalence y(t ) in an
interval around the the fraction y(ts ) of infected node at the stability time ts . However,
the prevalence y(t ) will inevitably exceed the bound because the prevalence will reach
an absorbing state y(t ) = 0 finally. Therefore, it is hard to determine the two parameters
ε and α that allows |y(t )− y(ts )| ≤ ε for ∀t > ts +αE [Tabsor bi ng ].
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Definition 1(c): In an epidemic process, the metastable state is reached at the
stability time ts , which is the smallest time obeying y(ts |i ) = y(ts |N ).

Because we cannot bound the prevalence y(t ) in the metastable state, we consider
to use the prevalence y(t |N ) started from I0 = N initial nodes as a reference curve
and locate the start of the metastable state as the intersection point in time with the
prevalence y(t |I0 = i ), where the prevalence y(t |N ) with all initial spreaders converges
fastest to the metastable state.

Figure A.1 shows that there exists a gap between the prevalences y(t |1) and y(t |N ) in
the metastable state due to the different probability of extinction, which means that the
prevalence started from a different number of initial nodes will not intersect before the
absorbing state. Figure A.1 also shows that the difference between the two prevalences
y(t |1) and y(t |N ) becomes narrower with the time, which implies that the decreasing
rate of the prevalence is also influenced by the initial infection condition. We expect that
all the prevalences y(t |I0) with I0 ∈ (1,2, . . . , N ) initially infected nodes will meet only in
the absorbing state, which demonstrates the infeasibility to locate the metastable state
by the intersection of the prevalence curves.

Definition 1(d): In an epidemic process, the metastable state is reached at the

stability time ts , which is the first time obeying d y(t )
d t

∣∣
t>ts

< 0.
Definition 1(d) means that the last extremum of the prevalence y(t ) is located as the

start of the metastable state, and the average fraction of infected nodes monotonically
decreases after the stability time ts . The prevalence y(t ) is the average fraction of in-
fected nodes, which includes the realizations that die out early as well as the realizations
that reach the metastable state, thus

y(t ) = y(t )
∣∣

I (t )>0 Pr[I (t ) > 0]+ y(t )
∣∣

I (t )=0 Pr[I (t ) = 0] (A.1)

The fraction y(t )
∣∣

I (t )>0 approximates gradually the fraction y(t ) with the decreasing
extinction probability Pr[I (t ) = 0]. However, the extinction probability Pr[I (t ) = 0] is
hard to estimate in a general network mathematically.

Definition 1(e): In an epidemic process, the metastable state is reached at the

stability time ts , which is the smallest time obeying d y(t )
d t

∣∣
t>ts

< ε, where the average

fraction of infected nodes is y(t ) = 1
N E [I (t )], with I (t ) ≥ 1 is the number of infected nodes

at time t , and ε is a small positive real number that needs to be agreed upon.
In the above definition, we introduce the prevalence

y(t ) = y(t )
∣∣

I (t )>0 =
y(t )

1−Pr[I (t ) = 0]
(A.2)

subject to the condition that the process does not die out, where Pr[I (t ) = 0] is the
extinction probability. The prevalence y(t ) excluding early extinction, as illustrated in
Figure A.1, tends to stay almost constant instead of decaying as the prevalence y(t )
after reaching the extremum. We consider that the metastable state starts when the
prevalence y(t ) stays almost constant. Actually, the prevalence y(t ) excluding early
extinction is a monotonically increasing function, which only stays constant when t →
∞, as follows from general Markov theory [38]. The prescribed stringent parameter ε can
be determined as a small value. Definition 1(e) is also consistent with the definition of
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Figure A.1: The exact prevalences y(t |1) started from one infected node and the exact prevalence y(t |8) started
from all infected nodes in a complete graph K8 with the effective infection rate τ= 0.5. The red line represents
the difference between the two prevalences y(t |1) and y(t |8). The green dash line represents the prevalence
y(t |1) excluding early extinction probability.

the quasi-stationary state, which leads to the almost steady average number of infected
nodes without extinction realizations.

In summary, we choose Definition 1(e) as our preferred definition of the metastable
state and the stability time ts in this paper.

A.2. SIMULATION FOR A SIS PROCESS ON NETWORKS
There are two kinds of events in the SIS process which are infection events and curing
events. All the events are marked on a same timeline and are handled by the order of
their time after the beginning of the simulation. We denote by Ωn,1(t ) the infection
event that node n becomes infected at time t , and Ωn,0(t ) the curing event that node n
becomes cured at time t . The process of SSIS (Simulation for SIS epidemics) is described
by Algorithm 1.1.

We set the parameter ε = 0.01 in Definition 1(e) and run the SSIS repeat for an
unaltered graph, a fixed effective infection rate τ and the same initial condition. The
prevalence can be obtained by y(t ) = 1

N E [I (t )], where the random variable I (t ) denotes
the number of infected nodes i (t ) in all realizations. Then we determine the stability

time ts as the first time when y(ts+∆t )−y(ts )
∆t < ε, where the time sample interval ∆t = 0.01

in our simulations.
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A.3. THE GENERATING FUNCTION OF THE HITTING TIME
We consider the hitting time when the process first reaches the state with n infected
nodes starting from one initial spreader. Let Qn be the infinitesimal generator of the
modified Markovian SIS as

Qn =


−q1;1 q1;2 0 · · · 0
q2;1 −q2;2 q2;3 · · · 0

...
...

...
. . .

...
0 · · · qn−1;n−2 −qn−1;n−1 qn−1;n

0 0 0 · · · 0

 .

We define Q̃i as the sub-matrix of the first i rows and first i column of Qn , and define Ĩi

as the i × i unit matrix. We denote by Ti ,i+ j the hitting time of state i + j starting from
state i . The Laplace transform of Ti ,i+ j isϕi ,i+ j (z) = E [e−zTi ,i+ j ]. The sojourn time Ti ,i in
the state i follows an exponential with rate qi ;i , and its corresponding Laplace transform
is ϕi ,i (z) = qi ;i

qi ;i+z .

In the continuous Markov chain, the process stays state i for a sojourn time, then
jumps to i +1 with probability

qi ;i+1
qi ;i

, to i −1 with probability
qi ;i−1

qi ;i
, (2 ≤ i < n). Thus, the

probability of the hitting time for each jump follows

Pr[Ti ,i+1 < t ] = qi ;i+1

qi ;i
Pr[Ti ,i < t ]+ qi ;i−1

qi ;i
Pr[Ti ,i +Ti−1,i+1 < t ] (A.3)

The Laplace transform of the above equation (A.3) reads

ϕi ,i+1(z) = qi ;i

qi ;i + z

qi ;i+1

qi ;i
+ qi ;i

qi ;i + z

qi ;i−1

qi ;i
ϕi−1,i+1(z) (A.4)

Since T1, j and T j ,i are independent random variables, we have ϕ1,i (z) = ϕ1, j (z)ϕ j ,i (z)
for 1 < j < i . Then, dividing (A.4) by ϕ1,i+1(z) on both sides gives

qi ;i + z

ϕ1,i (z)
= qi ;i+1

ϕ1,i+1(z)
+ qi ;i−1

ϕ1,i−1(z)
(A.5)

We further define

g1,1(z) = 1; g1,i (z) =
∏i−1

j=1 q j , j+1

ϕ1,i (z)
,2 ≤ j ≤ i −1

Substituting g1,i (z) to (A.5) yields

g1,i+1(z) = (qi ;i + z)g1,i (z)−qi ;i−1qi−1;i g1,i−1(z) (A.6)

From (A.6), the induction reads

g1,2 =
q1,2

ϕ1,2(z)
= z +q1,1 = det |z Ĩ1 −Q̃1|

g1,3 = (q2;2 + z)g1,2(z)−q2;1q1;2g1,1(z) = det |z Ĩ2 −Q̃2|
. . .

g1,n = det |z Ĩn−1 −Q̃n−1|
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Meanwhile, let ηi be the eigenvalues of −Q̃n−1. For z = 0, we have ϕ1,i (0) = 1 and

n−1∏
i=1

qi ,i+1 = g1,n(1)ϕ1,n(0) = det |−Q̃n−1| =
n−1∏
i=1

ηi

Since that det |z Ĩn − (−Qn)| = (−1)n+n z det |z Ĩn−1 − (−Q̃n−1)| = z
∏n−1

i=1 (z −ηi ), the eigen-
values ηi are also the non-zero eigenvalues of −Qn .

Therefore, we can obtain the conclusion that the generating function of the hitting
time follows

ϕ1,n(z) =
∏n−1

i=1 qi ,i+1

g1,n(z)
=

∏n−1
i=1 ηi

det(z Ĩn−1 −Q̃n−1)
=

n−1∏
i=1

ηi

ηi + z
, (A.7)

where ηi are the non-zero eigenvalues of −Qn .
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Algorithm 1.1 Simulation for SIS epidemics

1: Inputs:
GN : the network with N nodes;
I0: the initial spreader(s);
β: the infection rate; δ: the curing rate;
tl i mi t : the time limit; tcur r ent : the current time;

2: Outputs:
i (t ): the number of infected nodes at time t ;

3: Initialization:
tcur r ent ← 0;
Insert the eventsΩn,1(0) for the initially infected nodes on the
timeline;

4: while tcur r ent < tl i mi t do
5: Find the earliest un-handled eventΩn(t ) on the timeline;
6: tcur r ent ← t ;
7: ifΩn(t ) is an infection event then
8: if Node n is susceptible then
9: Node n becomes infected;

10: i (t ) ← i (t )+1;
11: Insert the eventΩn,0(t ′), where t

′ ← t + r and(1/δ) and r and(1/δ) is an
exponentially distributed random time interval with mean 1/δ;

12: for each neighbor m of node n do
13: Generate t

′′ ← t + r and(1/β), where r and(1/β) is an exponentially
distributed random time interval with mean 1/β;

14: if t
′′ < t

′
then

15: Insert the eventΩm,1(t
′′

);
16: end if
17: end for
18: end if
19: else ifΩn(t ) is a curring event then
20: Node n is cured;
21: i (t ) ← i (t )−1;
22: end if
23: end while



B
APPENDIX FOR CHAPTER 4

B.1. PROOFS OF LEMMA AND THEOREM

B.1.1. PROOF FOR LEMMA 4.1
Proof: According to the NIMFA equation (4.2), we have the steady-state equation(

diag(1− vi∞)Adiag(β j )− I
)
v∞ = 0 (B.1)

By differentiation with respect to β j , we obtain

N∑
k=1

ai kβk
∂vk

∂βi
− 1

(1− vi∞)2

∂vi∞
∂βi

= 0 if i = j

N∑
k=1

a j kβk
∂vk

∂βi
− 1

(1− v j∞)2

∂v j∞
∂βi

+a j i vi∞ = 0 if i 6= j

Written in matrix form, we have(
Adiag(βi )−diag

(
(1− vi∞)−2

))
T1 + Adiag(v∞) = 0 (B.2)

where the element of the matrix T1 in the k-th row and the q-th column is T1(kq) = ∂vk∞
∂βq

.

For the matrix M1 := Adiag(βi )−diag
(
(1− vi∞)−2

)
, it has been proved that all entries in

M−1
1 are non-positive [84], which implies that all entries in T1 = M−1

1 (−Adiag(v∞)) are
non-negative. �

B.1.2. PROOF FOR THEOREM 4.1
Proof: By differentiation of (B.2) with respect to β j , we obtain

N∑
k=1

ai kβk
∂2vk

∂βi
2
− 1

(1− vi∞)2

∂2vi∞
∂βi

2
− 2

(1− vi∞)3

(
∂vi∞
∂βi

)2
= 0 if i = j

N∑
k=1

a j kβk
∂2vk

∂βi
2
− 1

(1− v j∞)2

∂2v j∞
∂βi

2
− 2

(1− v j∞)3

(
∂v j∞
∂βi

)2

+2a j i
∂vi∞
∂βi

= 0 if i 6= j
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Figure B.1: The infection probability v (3)
1∞ and its second order partial derivative ∂2v (3)

1∞/∂∆β2
2 as the function

of ∆β2 with different original infection rate β̂ in the example network G6.

Written in matrix form, we have(
Adiag(βi )−diag

1

(1− vi∞)2

)
T2 +2Adiag

(
∂vi∞
∂βi

)
−2diag

(
(1− vi∞)−3

)
T (2)

1 = 0 (B.3)

where the element of the matrix T2 in the k-th row and the q-th column is T2(kq) =
∂2vk∞
∂βq

2 , and T (2)
1(kq) =

(
∂vk∞
∂βq

)2
for the matrix T (2)

1 . In the matrix M2 := 2Adiag
(
∂vi∞
∂βi

)
−

2diag
(
(1− vi∞)(−3)

)
T (2)

1 , the entries follows

M2(i j ) = 2
∂vi∞
∂β j

(
ai j − (1− vi∞)−3 ∂vi∞

∂β j

)
. (B.4)

Invoking that ∂vi∞
∂βi

is always non-negative, the entries M2(i j ) in M2 could be non-positive

only when ai j = 0. Unfortunately, the sign of ∂2vi∞
∂β j

2 cannot be determined and could be

positive. Therefore, the infection probability vi∞ is not always concave toβ j . We present
a counterexample in Fig. B.1. �

B.2. DIFFERENTIAL EVOLUTION ALGORITHM
We propose the Differential Evolution algorithm to solve the static induced SIS spreading
problem. The implementation is as follow.

Population generation: The j th vector of the population at the kth generation is
denoted as∆β j (k) = {∆β1, j (k),∆β2, j (k), . . . ,∆βN , j (k)}. The initial population vectors are
generated considering the constraints on the variables. We choose the initial generation
as ∆βi , j (1) = κ∆βi , where κ is a uniformly distributed random number on interval [0,1].

Mutation: Mutation is a change or perturbation with a random element. We choose
three different vectors with indices r1,r2,r3 ∈ {1,2, . . . , Np } and construct the mutated
vector∆β j (k+1) at the (k+1)th generation as∆β j (k+1) =∆βr1 (k)+F (∆βr2 (k)−βr3 (k)),
where F is a uniformly distributed random number on interval [Fmi n ,Fmax ].



B.2. DIFFERENTIAL EVOLUTION ALGORITHM

B

151

Crossover: Crossover is to enhance the potential diversity of the population, which
obeys

∆βi , j (k +1) =
{
∆βi , j (k +1) if κ≤ R

∆βi , j (k) otherwise

where R is the crossover rate, which is a prescribe parameter of the algorithm.
Selection: DE uses the greedy strategy to choose the better vector to be the population

in the next generation. The selection operation is described as

∆β j (k +1) =
{
∆β j (k +1) if J (∆β j (k +1)) ≤ J (∆β j (k))

∆β j (k) otherwise

The process of the Differential Evolution algorithm for the static induced spreading
problem is presented in Algorithm 2.1.

Algorithm 2.1 Differential Evolution algorithm

1: Inputs:
A, β, M , K , ε

2: Initialization:
Set k ← 1
Generate initial populations∆β j (1), j ∈ {1,2, . . . , NP }

3: for k = 1 to K do
4: for j = 1 to NP do
5: Select randomly r1 6= r2 6= r3 with r1,r2,r3 ∈ {1,2, . . . , NP } : jr and = r andi nt (1, N )
6: for i = 1 to N do
7: if r and j (0,1) < R or j = jr and then
8: ∆βi , j (k +1) =∆βi ,r1 (k)+F (∆βi ,r2 (k)−∆βi ,r3 (k))
9: else

10: ∆βi , j (k +1) =∆βi , j (k)
11: end if
12: end for
13: if J (∆β j (k +1)) ≤ J (∆β j (k)) then
14: ∆β j (k +1) ←∆β j (k +1)
15: else
16: ∆β j (k +1) ←∆β j (k)
17: end if
18: end for
19: k ← k +1

20: end for
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C.1. RECURRENCE OF THE COEFFICIENTS c j (k) IN THE EXPAN-
SION OF vi∞(τ)

The steady-state infection probability vi∞(τ) of node i in SIS epidemics with the effective
infection rate τ ↓ τ(1)

c follows

vi∞(τ) =
∞∑

j=1

N∑
k=1

c j (k)(xk )i ((τ(1)
c )−1 −τ−1) j (C.1)

where all coefficients c j (k) for the non-trivial solution vi∞(τ) are determined in a
recursive way as follows [108].

Defining T (m, l ,k) =∑N
q=1(xm)q (xl )q (xk )q , the coefficients c j (m) obey, for m > 1 and

j > 2, the recursion

c j (m) =
c j−1(m)

λ1 −λm
{1− c1(1)(λ1 +λm )T (m,m,1)}− c1(1)

λ1 −λm

N∑
k=1;k 6=m

(λ1 +λk )c j−1(k)T (m,k,1)

− 1

λ1 −λm

j−2∑
n=2

N∑
l=1

N∑
k=1

c j−n (l )cn (k)λk T (m, l ,k) (C.2)

while, for j = 2 and m > 1,

c2(m) =− 1

λ1 −λm

T (m,1,1)

λ1T 2(1,1,1)
(C.3)

and c1(m) = 0. For m = 1, there holds that c1(1) = (λ1
∑N

j=1(x1)3
j )−1 and for j = 1, the

coefficients c j (1) satisfy the recursion

c j (1) =− 1

λ1T (1,1,1)

N∑
k=2

(λ1 +λk )c j (k)T (1,1,k)−
j−1∑
n=2

N∑
l=1

N∑
k=1

c j+1−n (l )cn (k)λk T (1, l ,k) (C.4)
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C.2. PROOF FOR LEMMA 5.1
Proof: Without loss of generality, we assume that the convergence order of the elements
|(α j )i | for i = 1, . . . , N are different, and the coefficient |(α j )k | has the maximum con-

vergence order, i.e., lim j→∞ |(α j )k |
1
j = maxi∈N {lim j→∞ |(α j )i |

1
j }. Then there exists a

critical order jc such that |(α j )k | = maxi∈N |(α j )i | for j > jc . The absolute coefficients
|b j | follows

lim
j→∞

|b j |
1
j = lim

j→∞

∣∣∣ 1

N
uTα j

∣∣∣ 1
j ≤ lim

j→∞

(
1

N

N∑
i=1

|(α j )i |
) 1

j

= lim
j→∞

|(α j )k |
1
j

(
1

N
+ 1

N

N∑
i=1,i 6=k

|(α j )i |
|(α j )k |

) 1
j

= lim
j→∞

|(α j )k |
1
j (C.5)

Meanwhile, the norm of the coefficients ||α j || follows

lim
j→∞

||α j ||
1
j = lim

j→∞
|(α j )k |

1
j

(
1+

N∑
i=1,i 6=k

|(α j )i |2
|(α j )k |2

) 1
2 j

= lim
j→∞

|(α j )k |
1
j (C.6)

Hence, we obtain the relation that lim j→∞ |b j |
1
j ≤ lim j→∞ ||α j ||

1
j .

Invoking that the coefficient α j = X c j and supposing

lim
j→∞

|(c j )m | 1
j = max

i∈N
{ lim

j→∞
|(c j )i |

1
j }

, we can obtain that

lim
j→∞

||α j ||
1
j = lim

j→∞
||c j ||

1
j = lim

j→∞
|(c j )m | 1

j = lim
j→∞

|(α j )k |
1
j (C.7)

which implies that ||α j || and ||c j || have the same convergence order. �

C.3. A LOWER BOUND OF THE RADIUS OF CONVERGENCE R
We hereby heuristically propose a lower bound of the radius of convergence R. We
rewrite (5.12) as

(λ1I −Λ)c j = X Tα j−1 −X T
j−1∑
k=1

di ag (αk )Aα j−1−k (C.8)

and define the vector c̃ j with (c̃ j )1 = 0 and (c̃ j )m = (c j )m for m > 2 and j > 2. We suppose
that the norm of the coefficients ||c̃ j || approximates ||c j || well for a large network size N .
Further denoting the matrix S := di ag (0, 1

λ1−λ2
, . . . , 1

λ1−λN
) and invoking ||α j || = ||c j ||, we
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can obtain the norm of coefficients ||α j || follows

||α j || ≈ ||c̃ j || = ||SX Tα j−1 −SX T
j−1∑
k=1

di ag (αk )Aα j−1−k ||

≤ ||Sα j−1||+ ||S
j−1∑
k=1

di ag (αk )Aα j−1−k ||

≤ ||S|| · ||α j−1||+ ||S||
j−1∑
k=1

||di ag (αk )|| · ||A|| · ||α j−1−k ||

≤ 1

λ1 −λ2
||α j−1||+

λ1

λ1 −λ2

j−1∑
k=1

||αk || · ||α j−1−k || (C.9)

Defining q j as the upper bound of ||α j ||, we have a new recurrence formula of q j for
j > 2 as

q j = hq j−1 + g
j∑

k=0
qk q j−k (C.10)

with q0 = 0, q1 = ||α1|| and q2 = ||α2||, where h := 1
λ1−λ2

and g := λ1
λ1−λ2

. Further defining

the generating function G(z) = ∑∞
j=0 q j z j , we can derive that the generating function

G(z) follows

gG2(z) = (1−hz)G(z)+ (g q2
1 +hq1 −d2)z2 −q1z (C.11)

We define the functional equation F (z,G) = gG2(z) − (1 − hz)G(x) − (g d 2
1 + hd1 −

d2)z2 + d1z. Bender [223] shows that if there exist real positive numbers r > 0 such
that the function equation F (r,G(r )) = 0 and ∂F (z,G(z))

∂G

∣∣
z=r = 0, the convergence order

of positive coefficients q j follows lim j→∞ j
p

q j = r−1. In our case, we can compute that

r = h+2g d1−2
p

g d2

h2+4hg d1+4g 2d 2
1−4g d2

. According to Lemma 5.1, the radius of convergence for the

prevalence expansion follows

R = 1

lim j→∞ j
√

|b j |
≥ 1

lim j→∞ j
√||α j ||

≥ 1

lim j→∞ j
p

q j
= r (C.12)

Thus, we can obtain a lower bound of the radius of convergence for the prevalence
expansion

Rlb = h +2g d1 −2
√

g d2

h2 +4hg d1 +4g 2d 2
1 −4g d2

(C.13)

Figure C.1 shows the radius of convergence R and the proposed lower bound Rlb

of (C.13) in more than 4.5 × 104 realizations in random sparse graphs. The radius of
convergence R and the lower bound Rlb present similar behaviours, but the proposed
Rlb only provides a loose lower bound for the radius of convergence R, which hints that
the precise radius of convergence R cannot be inferred only by the eigenvalues of the
adjacency matrix.
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Figure C.1: Radius of convergence R for 4.5×104 realizations of connected ER random graphs sorted by the
estimated lower bound Rlb . The red line represents the proposed lower bound of the radius of convergence
Rlb . The ER random graph Gp (N ) is generated with the network size uniformly chosen in N ∈ [10,120] and the

link density uniformly chosen in p ∈ [0.05, 2
N +0.3].
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