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Summary 

The ground source heat pump (GSHP) system is a well-established technology that 
utilizes a renewable energy source for heating and cooling of buildings. This technology 
is attractive because it relies on energy gain from shallow depths which are available 
nearly everywhere. Furthermore, it produces minimal CO2 emissions into the atmosphere. 
Accordingly, this technology is thriving, and currently adopted in many countries all over 
the world. Nevertheless, due to the lack of accurate and efficient computational models, 
the design of GSHP systems is not yet optimal and requires further development, which 
constitutes the main goal of this thesis.  

Over the years, several computational models have been developed to simulate the heat 
flow in GSHP systems. These models vary from detailed numerical 3D analyses to 
analytical solutions. Due to the peculiarity of the involved geometry, which constitutes 
highly slender borehole heat exchangers embedded in a vast soil mass, and the convection 
heat flow mechanism, the numerical models require extensive memory and CPU time. 
The analytical models, on the other hand, are computationally efficient, but their accuracy 
suffers from the over-simplified description of geometry and initial and boundary 
conditions. This thesis aims to bridge the gap between the numerical models in their 
generality, and the analytical models in their computational efficiency. 

This thesis introduces a comprehensive and computationally efficient semi-analytical 
model based on the spectral element method and the superposition principle. The spectral 
element method is an elegant semi-analytical (semi-numerical) technique for solving 
linear partial differential equations based on the eigenfunction expansion and the fast 
Fourier transform. It requires one element to describe a homogeneous medium (single 
layer domain), and elements equal in number to the number of the layers to describe a 
nonhomogeneous medium (multilayers domain). The spectral element method is utilized 
to simulate heat flow in multilayer systems, and the superposition principle is utilized to 
simulate multiple borehole heat exchangers and their thermal interaction. Accordingly, 
the model can simulate heat flow in effectively 3D GSHP systems constituting multiple 
borehole heat exchangers embedded in multilayer soil mass using minimal memory and 
CPU time. In this thesis, both forward and inverse models are formulated, implement and 
tested against experimental and numerical results.  

The forward model has the following features:    

a) It can simulate heat flow in GSHP system constituting a single borehole heat
exchanger embedded in a multilayer soil mass. The spectral element method is
utilized for this purpose. The computational model describing this feature is
presented in Chapter 2.
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b) It can simulate any arbitrarily configured borehole heat exchangers and their thermal 
interaction. The superposition principle is utilized for this purpose. The
computational model describing this feature is presented in Chapter 3.

c) Based on the above two computational models, the forward model is made to
simulate heat flow in effectively 3D GSHP systems. The spectral element method
and the superposition principle are coupled for this purpose. The computational
model describing this feature is presented in Chapter 4.

d) The model can provide results from seconds to years simultaneously in a single run.
The calculation can be conducted using prescribed heat flux derived from the heat
pump power. The computational model describing this feature is presented in
Chapter 5.

e) It can simulate the effect of friction heat gain in GSHP systems due to fluid flow in
pipes. The computational model describing this feature is presented in Chapter 6.

The inverse model, on the other hand, is formulated based on the forward model and an 
iterative optimization algorithm. It has the following features:  

a) It can estimate effective and detailed thermal parameters of GSHP systems

b) It can handle multilayer systems.

c) It can handle fluctuating heat pump power.

d) It can interpret data obtained from multiple heat extraction or injection pulses.

e) It can interpret data obtained at any spatial point in the GSHP system, including the
surrounding soil mass.

f) It can produce accurate backcalculation for short and long duration experiments.

g) It is accurate, computationally efficient, stable and has a high convergence rate.

The inverse model is presented in Chapter 7.

Chapter 1 gives a brief introduction on the GSHP technology and the delineation of this 
thesis, and Chapter 8 gives conclusions and outlook.   
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Samenvatting 

Het ondergrondse warmtepomp systeem (GSHP systeem, oftewel de aardwarmtepomp) 
is een sterk theoretisch gefundeerde technologie waarbij een duurzame energiebron wordt 
gebruikt voor het verwarmen en koelen van gebouwen. Deze technologie is aantrekkelijk, 
omdat hij afhankelijk is van energiewinning uit de ondiepe ondergrond die vrijwel overal 
bereikbaar is. Bovendien is er sprake van een minimale CO₂ uitstoot de dampkring in. 
Daarom floreert deze technologie en wordt deze momenteel in veel landen over de hele 
wereld toegepast. Toch is het ontwerp van GSHP systemen nog niet optimaal door een 
gebrek aan nauwkeurige en efficiënte computersimulatiemodellen. Er is verdere 
ontwikkeling nodig, wat het algemene doel is van dit proefschrift. 

Door de jaren heen zijn er verschillende computersimulatiemodellen ontwikkeld om de 
warmtestroom in GSHP systemen te simuleren. Deze modellen variëren van 
gedetailleerde numerieke 3D technieken tot analytische oplossingen. Door de bijzondere 
bijbehorende geometrie, van bijzonder hoge maar smalle boorgat hitte uitwisselaars 
(borehole heat exchangers, BHE) die verankerd zijn in grootschalige aardmassa en door 
de convectiestromen, hebben de numerieke modellen bijzonder veel geheugen en CPU-
tijd nodig. Aan de andere kant zijn de analytische modellen numeriek veel efficienter, 
maar lijdt hierbij de nauwkeurigheid onder de over-gesimplificeerde geometrie en begin- 
en randvoorwaarden. Het doel van dit proefschrift is om het gat te overbruggen tussen de 
algemeenheid van de numerieke modellen, en de numerieke efficiëntie van de analytische 
modellen. 

Dit proefschrift introduceert een uitgebreid en numeriek efficient semi-analytisch model, 
dat gebaseerd is op de spectrale elementenmethode en het superpositie principe. De 
spectrale elementenmethode is een elegante semi-analytische (semi-numerieke) techniek 
voor het oplossen van lineaire partiële differentiaalvergelijkingen, gebaseerd op de 
methode van eigenfunctie-expansie en de snelle Fourier-transformatie. Het vereist één 
element om een homogeen medium te beschrijven (een enkellaags domein), en een gelijk 
aantal elementen aan het aantal media om een niet-homogeen medium te beschrijven 
(meerlaagse domeinen). De spectrale elementenmethode is gebruikt om de 
warmtestromen in meerlaagse systemen te simuleren, en het superpositie principe is 
gebruik om meerdere BHE’s en hun thermische interactie te simuleren. Derhalve kan het 
model warmtestromen simuleren in effectief 3D GSHP systemen, bestaande uit meerdere 
BHE’s welke zich bevinden in meerlaagse aardmassa, waarbij minimaal geheugen en 
CPU-tijd wordt vereist. In dit proefschrift formuleren we zowel voorwaartse als 
achterwaartse modellen, welke ook zijn geimplementeerd en getest met experimentele en 
numerieke data. 
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Het voorwaartse model heeft de volgende eigenschappen: 

a) Het kan warmtestromen simuleren in GSHP systemen bestaande uit een enkele BHE
die zich bevindt in meerlaagse aardmassa. Hiervoor is de spectrale
elementenmethode gebruikt. Het numerieke model dat deze functie beschrijft is
toegelicht in hoofdstuk 2.

b) Het kan willekeurige opgestelde BHE’s en hun thermische interactie simuleren.
Hiervoor is het superpositie principe gebruikt. Het numerieke model dat deze functie
beschrijft is toegelicht in hoofdstuk 3.

c) Op basis van bovenstaande twee eigenschappen kan het voorwaartse model
warmtestromen simuleren in effectief 3D GSHP systemen. Hiervoor zijn de
spectrale elementenmethode en het superpositie principe gebruikt. Het numerieke
model dat deze functie beschrijft is toegelicht in hoofdstuk 4.

d) Het model kan resultaten in seconden en jaren combineren in één enkele berekening.
Deze berekening kan worden uitgevoerd gebruikmakend van voorgeschreven
warmtestroomdichtheid, welke is afgeleid van het vermogen van de warmtepomp.
Het numerieke model dat deze functie beschrijft is toegelicht in hoofdstuk 5.

e) Het kan de effecten simuleren van warmtetoename door wrijvingswarmte
resulterend uit de stroming van vloeistoffen door de pijpen. Het numerieke model
dat deze functie beschrijft is toegelicht in hoofdstuk 6.

Het achterwaartse model is gebaseerd op het voorwaartse model en iteratieve optimisatie 
algoritmes. Het heeft de volgende eigenschappen: 

a) Het kan effectief en gedetailleerd thermische parameters van GSHP systemen
bepalen

b) Het kan omgaan met meerlaagse systemen

c) Het kan omgaan met fluctuerend vermogen van warmtepompen

d) Het kan data interpreteren vanuit meerdere warmte extractie- of injectiepulsen

e) Het kan data interpreteren afkomstig uit elk ruimtelijk punt in het GSHP systeem,
inclusief de omringende aardmassa.

f) Het kan accurate projectie produceren voor experimenten van zowel korte als lange
duur

g) Het is nauwkeurig, numeriek efficient, stabiel en heeft een hoge convergentiewaarde

Het achterwaartse model is gepresenteerd in hoofdstuk 7.

Hoofdstuk 1 omvat een beknopte introductie in GSHP technologie en de afbakening van 
dit proefschrift, en hoofdstuk 8 omvat de conclusie en aanbevelingen. 
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Introduction 

The ground source heat pump (GSHP) system is a well-established technology that 
utilizes the vastly available shallow geothermal energy for heating and cooling of 
buildings. The GSHP systems have many advantages, including low CO2 emissions, long 
lifetime (typically up to tens of years) and low costs for operation and maintenance. Even 
though the GSHP industry is relatively matured and efficient in extracting the shallow 
geothermal energy, accurate and efficient computational modelling of GSHP systems is 
still lagging. The design of this system is not yet optimal and requires further development. 
Developing a comprehensive and computationally efficient model that overcomes the 
current computational shortcomings constitutes the main objective of this thesis. 
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Objectives 

The main objective of this thesis is to develop a detailed and accurate semi-analytical 
model for transient heat flow in ground source heat pump (GSHP) systems that is suitable 
for engineering practice. The model is comprehensive in describing the physics of the 
problem and efficient in its computations. It can simulate heat flow in an effectively 3D 
GSHP system constituting multiple borehole heat exchangers embedded in multilayer soil 
mass, and subjected to varying temperatures or heat pump power signals. The model 
possesses the exactness and computational efficiency of the analytical models, and (to a 
great extent) also the generality of numerical techniques in describing the geometry as 
well as initial and boundary conditions. As a consequence, the model is suitable for 
forward and inverse calculations. The forward calculation is appropriate for GSHP heat 
flow analysis and system design. The inverse calculation, on the other hand, is appropriate 
for GSHP thermal parameters identification.  

Ground Source Heat Pumps (GSHP) 

According to the Energy department of the European Commission, heating and cooling 
consumes around half of the EU’s energy and much of it is wasted (European 
Commission 2016). The major share of heating and cooling is still generated from fossil 
fuels (mainly natural gas). Accordingly, researchers are actively investigating the 
deployment of different green and renewable energy sources with heat pumps for heating 
and cooling of buildings.  

Heat pumps are mechanical systems that can extract (or reject) heat from (or to) energy 
sources. Different types of energy sources have been utilized with heat pumps for heating 
and cooling of buildings. The most known heating/cooling system is the one that extract 
heat from or reject heat to the ambient air using an air-source heat pump (ASHP) system. 
The main advantage of the ASHP system is the relatively low installation cost. 
Nevertheless, the ASHP system produces noise emissions and its energy efficiency is 
relatively low and dependent on the ambient air temperature (Rees 2016). The GSHP 
system, on the other hand, is a renewable energy system that employs the vastly available 
shallow geothermal energy for heating and cooling of buildings. It has many advantages 
including low in CO2 emissions, long lifetime (typically up to tens years) and low cost 
for operation and maintenance. Furthermore, GSHP systems are energy efficient: for each 
input unit of conventional energy, a GSHP can produce on average 4 output units of 
renewable energy (Al-Khoury 2012b).  

A GSHP system, as shown in Figure 1.1, works by circulating fluid (usually water with 
an antifreeze solution) through a closed loop of polyethylene U-tube pipe that is inserted 
in a borehole in a soil mass. The borehole is filled with grout (also referred to as 
backfilling) to fix the polyethylene pipe and to ensure a good thermal interaction with the 
soil. The circulating fluid in the U-tube collects heat from the surrounding soil mass via 
convection-conduction heat flow mechanism.  



1.3 Modelling approach 

3 

Over the years, several computational models have been developed to simulate the heat 
flow in GSHP systems. These models vary from detailed numerical 3D analyses to 
analytical solutions. Due to the peculiarity of the involved geometry, which constitutes 
highly slender borehole heat exchangers embedded in a vast nonhomogeneous soil mass, 
and the convection heat flow mechanism, the numerical models require extensive 
memory and CPU time. The analytical models, on the other hand, are computationally 
efficient, but their accuracy suffers from the over-simplified description of geometry and 
initial and boundary conditions. This thesis aims to bridge the gap between the numerical 
models in their generality, and the analytical models in their computational efficiency. 

Figure 1.1: A schematic representation of a GSHP system 

Modelling approach 

Al-Khoury (2010, 2012a and 2012b) has formulated a computational model describing 
heat flow in a borehole heat exchanger (BHE) embedded in a semi-infinite homogeneous 
soil mass. The BHE is modelled as 1D with its axis coinciding on the vertical z-axis. The 
1D assumption is valid because of the extreme slenderness of the borehole that makes the 
temperature gradient in the radial direction negligible. The BHE components (pipe-in, 
pipe-out and grout) coincide geometrically on each other, but they are thermally 
interacting via their surface areas. The soil mass is modelled as a semi-infinite, axial 
symmetric domain with its axis of symmetry coinciding with the centreline of the 
borehole heat exchanger (𝑧𝑧-axis), Figure 1.2. The spectral analysis is utilized to solve the 
governing equations on the basis of the fast Fourier transform (FFT). The BHE heat 
equations are solved using the eigenfunction expansion, and the soil mass heat equation 
is solved using the Bessel function. 
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In this thesis, the spectral analysis approach of Al-Khoury has been adopted to formulate 
a semi-analytical model for simulating effectively 3D heat flow in GSHP systems 
constituting multiple borehole heat exchangers embedded in multilayer soil mass. The 
spectral element method is utilized to simulate heat flow in a multilayer system, and the 
superposition principle is utilized to simulate multiple borehole heat exchangers and their 
thermal interaction. 

Figure 1.2: A schematic representation of an axial symmetric shallow geothermal 
system.  

Due to the linearity of the system, the 3D geometry is decomposed into two sub-systems, 
Figure 1.3. Sub-system 1 represents a single BHE embedded in a multilayer system; and 
Sub-system 2 represents a soil mass subjected to multiple heat sources.   

Sub-system 1: 

This sub-system represents a BHE embedded in a multilayer domain. The heat flow is 
formulated based on the spectral element method (SEM) (Doyle1997). SEM is utilized to 
extend the spectral analysis model of Al-Khoury (Al-Khoury 2012a and 2012b) to 
incorporate multiple layers with different thermal properties. The spectral element 
method is a semi-numerical (semi-analytical) technique which combines the spectral 
analysis method, basically the discrete Fourier transform, with the finite element method. 
One of the important features of this method is that its solution to the governing partial 
differential equations leads to a set of algebraic equations (𝑨𝑨𝑨𝑨 = 𝒃𝒃), similar to those of 
the conventional finite element method. The fundamental difference, however, is that the 
spectral element stiffness matrix is exact and frequency dependent. Due to the exact 
formulation of the system, one element is sufficient to describe a whole homogenous 
domain. For a nonhomogeneous domain consisting of several layers, the number of the 
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spectral elements is equal to the number of the involved layers. This feature significantly 
reduces the size of the problem and rendering this method computationally very efficient. 

Modelling heat flow in this sub-system is presented in Chapter 2. 

Figure 1.3:  A schematic representation of the modelling approach. 

Sub-system 2: 

This sub-system is a manifestation of multiple borehole heat exchangers embedded in a 
half space. The heat flow is formulated based on the superposition principle. The 
superposition principle indicates that, for a linear system, the total heat flow in a medium 
caused by multiple heat sources is the sum of heat flow that is caused by every individual 
heat source. Thus, this principle is typically applicable to heat sources with Neumann 
boundary conditions (prescribed heat flux). For heat sources with Dirichlet boundary 
conditions (prescribed temperature), the superposition cannot be applied directly and 
requires a special treatment. In this thesis, heat sources with Dirichlet boundary 
conditions are coupled using a matrix technique. 

Heat sources with both Neumann and Dirichlet boundary conditions are treated in 
Chapter 3.   
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3D GSHP system: 

The models in Sub-system 1 and Sub-system 2 are coupled to formulate heat flow in an 
effectively 3D GSHP system.  Details of the coupling is given in Chapter 4. The term 
“effectively 3D” in this thesis indicates that the geometry is basically three-dimensional 
constituting multiple borehole heat exchangers embedded in a multilayer soil mass. 
However, the layers are horizontal and go from −∞ to +∞.  Even though heat flow in a 
single BHE and its surrounding soil mass is considered axial symmetric, the use of the 
superposition principle results into a non-symmetrical heat flow. As it will be discussed 
in-detail in Chapter 5, modelling a 2 x 2 BHE layout configuration (see Figure 5.6) would, 
upon thermal interaction, result to a non-symmetric temperature distribution in the system. 
Figure 1.4 shows the evolution of temperature in this system with time. It clearly shows 
that before thermal interaction between the boreholes takes place, the temperature is axial-
symmetric, but with time, this symmetric behaviour around the borehole becomes 
gradually non-symmetric.   

Figure 1.4: The 3D soil temperature distribution for the GSHP system presented in 
Figure 5.6, at different operation’s time.  
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The key for obtaining such an exact, computationally efficient and practically general 
model is the unique mix between the conceptual model, the mathematical formulation 
and the solution technique:  

1. The conceptual model includes coupling a 1D domain (representing the borehole heat
exchanger) to an axial symmetric 2D domain (representing a homogeneous soil layer)
and a 3D domain (representing multiple borehole heat exchangers embedded in
multilayers soil mass). This coupling makes the model computationally more
efficient compared to detailed numerical 3D models.

2. The mathematical formulation is designed to describe heat flow in all GSHP
components, including the detailed heat equations of the individual borehole heat
exchangers components and the soil mass (as well as their thermal interactions).  This
formulation results to a comprehensive description of the involved physical features
of the system.

3. The solution technique is designed to be accurate and computationally efficient. The
use of the spectral element method for modelling multilayer systems together with
the superposition technique for modelling multiple borehole heat exchangers makes
the solution technique fit for this problem. It enables the simulation of heat flow in
effectively 3D GSHP systems subjected to any arbitrary time dependant boundary
condition. It gives accurate computation of the governing equations and makes the
model suitable for forward and inverse calculations.

Parameter Identification of GSHP system 
Proficient design of a GSHP system depends mainly on the accuracy of the thermal and 
physical parameters of its components. Thermal parameters of the BHE components are 
usually known a priori, but thermal parameters of the soil mass are not readily known and 
need to be determined. Estimating the thermal parameters of the soil mass requires an 
innovative interplay between a forward model, to simulate heat flow in the GSHP system, 
and an inverse model, to estimate the thermal parameter based on the forward model and 
the measured data.  

The measured data is usually collected using the in-situ Thermal Response Test (TRT). 
A typical TRT consists of a vertical borehole heat exchanger embedded in which a single 
U-tube. The device is equipped with thermometers to measure the fluid temperatures at
the inlet and outlet of the U-tube, though modern TRT devices are equipped with fibre
optics to measure the temperature along the BHE.

In this thesis, a new parameter identification (PI) algorithm capable of estimating 
effective and detailed thermal parameters of GSHP systems is introduced. The PI 
algorithm comprises an iterative scheme, coupling the proposed 3D GSHP semi-
analytical forward model to an inverse model. Figure 1.5 presents schematically the 
iterative procedure of the proposed PI algorithm. The procedure starts with an initial guess 
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of the GSHP thermal parameters (𝐱𝐱0, not presented in Figure 1.5), and based on the 
measured inlet temperature (𝑇𝑇in in Figure 1.5), temperature distributions are calculated at 
points of interest in the system. Then, the measured and calculated temperatures are 
combined to formulate the objective function of the system.  

The objective function is expressed as the Euclidean distance (norm 2) between the 
measured, 𝑇𝑇�m (𝜔𝜔𝑛𝑛 , 𝑧𝑧) , and theoretical, 𝑇𝑇�th (𝜔𝜔𝑛𝑛 , 𝑧𝑧, 𝐱𝐱) , temperatures, described in the 
frequency domain. Theoretically, 𝑇𝑇�m (𝜔𝜔𝑛𝑛, 𝑧𝑧) and 𝑇𝑇�th (𝜔𝜔𝑛𝑛 , 𝑧𝑧, 𝐱𝐱) can be at any frequency, 
𝜔𝜔𝑛𝑛, at any depth, 𝑧𝑧, and for any component of the GSHP system, including the soil mass. 

The objective function is minimized using an optimization algorithm capable of 
systematically choosing input parameters from within an allowed set to be forwarded to 
the forward model to re-compute the values of the function. This process is repeated 
iteratively until the objective function satisfies a predefined tolerance 𝜀𝜀. The obtained 
values of the parameters are considered to be a good representation of the material 
parameters in site.  

Figure 1.5:  A schematic representation of the iterative process of GSHP 
parameter identification. 
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Thesis delineation 

This thesis consists of mainly two parts; Part I: heat flow in GSHP systems: Forward 
calculations, and Part II: Parameter identification of GSHP systems: Inverse calculations. 

Part I introduces five computational models. These models utilize the spectral analysis, 
the spectral element method and the superposition principle to describe heat flow in 
GSHP systems.  

Chapter 2 introduces a comprehensive spectral element formulation for the simulation of 
transient conduction–convection heat flow in an axisymmetric shallow geothermal 
system consisting of a single U-tube borehole heat exchanger embedded in a layered soil 
mass.  

Chapter 3 introduces analytical solutions based on the superposition principle for 
transient heat conduction in an infinite solid mass subjected to multiple cylindrical heat 
sources. The solutions are formulated for two types of boundary conditions: Neumann 
boundary condition, and Dirichlet boundary condition.  

Chapter 4 introduces a comprehensive and computationally efficient semi-analytical 
model for heat flow in effectively 3D GSHP systems. The two aforementioned 
computational models were elaborated and put together to formulate this model. The 
model can simulate transient heat flow in an effectively 3D GSHP systems constituting 
multiple borehole heat exchanger embedded in a multilayer soil mass. 

Chapter 5 introduces two engineering features to the semi-analytical model. First, the 
calculation can be conducted from seconds to years simultaneously in a single run using 
tailored, multiple time stepping fast Fourier transform (FFT) algorithm. Second, the 
calculation can be conducted using prescribed heat flux derived from the heat pump 
power. 

Chapter 6 investigates the effect of friction heat gain on the heat flow in GSHP systems 
due to the fluid flow in U-tube pipes. A spectral model for the simulation of transient heat 
transfer with friction heat gain in a single U-tube BHE is introduced.  

Part II introduces a detailed parameter identification algorithm for GSHP systems using 
TRT measured data. 

Chapter 7 introduces a new parameter identification (PI) algorithm for estimating 
effective and detailed thermal parameters of GSHP systems. The PI is implemented in an 
iterative algorithm, coupling the forward model to an inverse model. The proposed PI 
algorithm can handle fluctuating heat pump power, interpret data obtained from multiple 
heat injection or extraction pulses, produce accurate backcalculation for short and long 
duration experiments and handle multilayer systems.  

Chapter 8 highlights the conclusions and provides an outlook for possible improvements.





Part I 
Heat flow in GSHP systems: 

Forward Calculations





A spectral element model for heat flow in layered shallow 
geothermal systems 

This chapter introduces a comprehensive spectral element formulation for 
nonhomogeneous heat flow in a shallow geothermal system consisting of a borehole heat 
exchanger embedded in a multilayer soil mass. The spectral element method is utilized to 
solve the governing heat equations in the borehole heat exchanger and the soil mass 
simultaneously using the fast Fourier transform, the eigenfunction expansion, the Fourier 
Bessel series and the complex Fourier series, together with the finite element method. 
Only one spectral element is necessary to describe heat flow in a homogeneous domain. 
For a nonhomogeneous multilayer system, the number of spectral elements is equal to the 
number of layers. The proposed spectral element model combines the exactness of the 
analytical methods with an important extent of generality in describing the geometry and 
boundary conditions of the numerical methods. Verification examples illustrating the 
model accuracy, and numerical examples illustrating its capability to simulate multilayer 
systems are given. Despite the apparent rigor of the proposed model, it is robust, 
computationally efficient and easy to implement in computer codes. 

This chapter is based on BniLam N. and Al-Khoury R. (2017). A spectral element model for 
nonhomogeneous heat flow in shallow geothermal systems. International Journal of Heat and Mass 
Transfer Volume 104, Pages 703-717. 
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Introduction 

Heat flow in nonhomogeneous domains consisting of components with different physical 
properties is central among numerous engineering applications. Heat flow in pipes, heat 
exchangers, solids and layered domains are only few examples of such applications. 
Solution of the involved heat equations vary between analytical, semi-analytical and 
numerical, depending on the complexity of the problem. In this chapter, we present a 
semi-analytical methodology for solving transient conductive-convective heat flow in 
nonhomogeneous domains, which might consist of multiple components with different 
geometrical and physical properties. The proposed methodology is applicable to a wide 
range of engineering applications, but the focus here is on shallow geothermal systems.   

A shallow geothermal system, known as geothermal heat pump (GHP) or ground source 
heat pump (GSHP), is a source of renewable energy that utilizes the earth heat energy 
from shallow depths for heating and cooling of buildings. It works by circulating a fluid, 
mostly water with antifreeze solution, through a closed loop of polyethylene U-tube pipe 
that is inserted in a borehole in a soil mass. The borehole is filled with grout to fix the 
polyethylene pipe and to ensure a good thermal interaction with the soil. 

The borehole heat exchanger is a slender heat pipe with dimensions of the order of 30 
mm in diameter for the U-tube, and 150 mm in diameter and 100 m in length for the 
borehole. The circulating fluid in the U-tube extract or reject heat from the surrounding 
soil mass via convection-conduction heat flow mechanisms. Physically, the heat flow 
mechanism in such a system is well understood, but computationally, and in spite of the 
bulk of existing models, still creeping due to the combination of the slenderness of the 
boreholes heat exchangers and the involved thermal convection. This combination of 
geometry and physics constitutes the main source of computational challenges in this field. 
Consequently, several geometrical and physical simplifications have been introduced in 
order to circumvent this problem and obtain feasible solutions. 

All known solution techniques, such as analytical, semi-analytical and numerical, have 
been utilized for this purpose. Nevertheless, in spite of the versatility of the numerical 
methods, analytical and semi-analytical solutions are yet preferable because of their 
comparatively little demands on computational power and ease of use in engineering 
practice. 

Most of the current analytical and semi-analytical models for heat flow in geothermal 
heat pumps are based on the work of Carslaw and Jaeger (1959) for modelling heat flow 
in finite, semi-infinite and infinite domains subjected to point, line, plane and cylindrical 
heat sources. In these models, the BHE detailed composition and heat transfer 
mechanisms are totally ignored and considered as a constant heat source. Gu and O’Neal 
(1995) introduced an analytical model simulating transient heat flow in a composite 
domain subjected to a constant heat source, resembling U-tubes surrounded by grout, and 
a soil mass bounded by a far field boundary. They utilized the eigenfunction expansion 
to solve the governing partial differential equation. Based on Gu and O’Neal’s approach, 
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Lamarche and Beauchamp (2007) solved the composite domain problem using Laplace 
transform. They solved both forward and inverse Laplace transforms analytically. 
Bandyopadhyay et al. (2008) solved the same problem using dimensionless equations, 
and employed the Gaver–Stehfest numerical algorithm for solving the inverse Laplace 
transform. 

Eskilson and Claesson (1988) diverged from the Carslaw and Jaeger solutions and 
introduced a semi-analytical model for ground source heat pumps that approximates heat 
flow in the borehole heat exchangers by two interacting channels conveying a circulating 
fluid in the vertical axis and embedded in an axisymmetric soil mass. Heat flow in the 
channels is assumed steady state convective, and in the soil, transient conductive. They 
utilized Laplace transform to solve the heat equations of the channels, and the explicit 
forward difference method to solve the heat equations of the soil mass. Zeng et al. (2003) 
solved the same problem but using dimensionless heat equations for the channels.   

Marcotte and Pasquier (2008a) introduced a semi-analytical model for a transient pseudo 
convection using the fast Fourier transform for discretizing the time domain, and the cubic 
spline for interpolating results obtained at selected spatial samples. They utilized the 
principle of superposition to simulate the response to multiple heat fluxes. Javed and 
Claesson (2011) solved Gu and O’Neal’s problem using a similar pseudo convective 
approach. 

Recently, notable attempts have been introduced to account for the inevitable presence of 
multiple soil layers in shallow geothermal systems. Raymond and Lamarche (2013) 
analyzed the effect of multiple layers in determining the thermal parameters from the 
thermal response test (TRT) results. They adopted an analytical computer code for 
transient well flow in layered aquifer systems to describe conductive heat transfer in 
shallow geothermal systems constituting multiple layers and subjected to a variable heat 
injection rate. The Laplace transform is utilized to solve the system of partial differential 
equations describing heat flow in the layered system. Abdelaziz et al. (2014) extended 
the finite line heat source solution to a multiple segment finite line heat source resembling 
a layered soil profile. The temperature of the heterogeneous domain is obtained by 
summing up the temperature of the typical homogeneous domain with that obtained due 
to the presence of other layers. The latter is calculated by assuming a composite system 
constituting smeared thermal parameters, described as a function of the relative distances 
of the layers from the point of interest. 

Despite the appeal of these endeavors, current analytical and semi-analytical models are 
in general limited in describing the geometry and physics of heat flow in shallow 
geothermal systems. The main shortcomings are twofold: (1) Not all the details of heat 
transfer mechanisms in the BHE are taken into consideration. The BHE is considered as 
a line or cylindrical heat source, ignoring the heat flow in its components and their thermal 
interactions. (2) The soil mass is in general considered infinite or semi-infinite. Even if a 
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multilayer system is adopted, the BHE is assumed a line or a cylindrical heat source with 
a constant or a variable heat flux. Here, these two shortcomings are treated. 

In a previous work, Al-Khoury (2012 a, b) introduced a semi-analytical model for 
transient conductive-convective heat flow in shallow geothermal systems based on the 
spectral analysis. The model is valid for a semi-infinite domain, where the system can 
extend to infinity in the vertical and the radial directions. No soil layers with different 
physical parameters are permitted. However, it is likely that the soil mass surrounding the 
BHE consists of several layers with different thermal interaction effects. To tackle this, 
here, the spectral element method is utilized to formulate a semi-analytical model for 
shallow geothermal systems consisting of a single U-tube borehole heat exchanger 
embedded in a layered soil mass. 

The spectral element method (SEM) is a semi-numerical (semi-analytical) technique 
which combines the spectral analysis method, basically the discrete Fourier transform, 
with the finite element method. In the literature, the spectral element method corresponds 
to two different techniques. The first corresponds to the work introduced by Patera (1984), 
and the second corresponds to the work introduced by Doyle (1997). Patera’s spectral 
element method deals mainly with spectral formulations in the spatial domain. In this, the 
domain is discretized into a number of elements, and the field variable in each element is 
represented by a high-order Lagrangian interpolation through Chebyshev collocation 
points. It is thus a finite element method with high degree piecewise polynomial basis 
functions capable of producing high order accuracy. 

Doyle’s spectral element method, on the other hand, deals mainly with a spectral 
formulation in the temporal domain. It is a combination of the spectral analysis method, 
the dynamic stiffness method and the finite element method. In this work, we adopt the 
temporal SEM of Doyle. For more account of the historical and theoretical background 
of the spectral element method, see Lee (2009).  

The spectral element method is an elegant technique used mainly for solving wave 
propagation problems. One of the important features of this method is that its formulation 
leads to a set of equations, similar to that of the conventional finite element method. The 
fundamental difference, however, is that the spectral element stiffness matrix is exact and 
frequency dependent. Due to the exact formulation of the system, one element is sufficient 
to describe a whole homogenous domain. For a nonhomogeneous domain consisting of 
several layers or members, the number of the spectral elements is equal to the number of 
the involved layers or members. This feature significantly reduces the size of the problem, 
and rendering this method computationally very efficient. 

The spectral element method discretizes a space–time field variable into a frequency 
domain and an eigenmode domain. The discretization of the time domain to the frequency 
domain is done using the fast Fourier transform (FFT) algorithm, and the discretization 
of the spatial domain to the eigenmode domain is done using the eigenfunction expansion. 
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The general solution of the system can be obtained by summing over all significant 
frequencies and eigenvalues.  

In this chapter, we formulate a two-node spectral element for transient conduction–
convection heat flow in a single U-tube borehole heat exchanger embedded in a layered 
soil mass. A detailed modelling approach is given hereafter. 

Modelling approach 

A shallow geothermal system, particularly a geothermal heat pump, consists basically of 
two thermally interacting domains: the borehole heat exchanger and the soil mass.  

Upon operating the geothermal heat pump, the temperature in the soil mass changes as a 
result of the thermal interaction with the borehole heat exchanger. The temperature in 
borehole heat exchanger, on the other hand, changes as a result of the inlet fluid 
temperature coming from a heat pump, and the thermal interaction with the soil mass.  

For a geothermal system consisting of one borehole heat exchanger embedded in a soil 
mass, the geometry can be described by an axial-symmetric coordinate system. We 
assume that the borehole heat exchanger is one-dimensional with its axis coincides on the 
vertical z-axis. This assumption is valid because of the extreme slenderness of the 
borehole that makes the temperature gradient in the radial direction minimal. The vertical 
axis of the borehole heat exchanger coincides with the axis of symmetry of the soil mass, 
as shown in Figure (2.1a) (Al-Khoury 2012 b).     

The borehole heat exchanger is modelled as a single U-tube, representing pipe-in and 
pipe-out, surrounded by a grout and a thin film of soil, Figure (2.1b). This thin soil film 
is added to the borehole heat exchanger model for two reasons: 1) to accurately model 
the thermal interaction between the BHE and soil mass, and 2) as it will be apparent later, 
to formulate one spectral element describing heat flow in the BHE and its surrounding 
soil layer simultaneously. The computed thin soil film temperature within the BHE model 
acts as an amplitude to the radial soil mass temperature.  

The soil mass is modelled as an axial-symmetric domain, where the axis of symmetry 
coincides with the centerline of the borehole heat exchanger. The soil mass is in thermal 
contact with the BHE thin soil film. It can consist of many layers with different physical 
properties, such as different thermal conductivity, mass density and specific heat capacity. 
This entails that different parts of the soil mass can have different effects on the borehole 
heat exchanger.  

Solving heat flow in a such nonhomogeneous geometry typically requires the use of a 
numerical solution method, such as the finite element, the finite volume or the finite 
difference. However, these methods, and due to the above described complicated 
geometry and physical processes, require significant memory and CPU time. To avoid 
this, here, the spectral element method is utilized. A new spectral element for heat flow 
in an axial-symmetric domain consisting of a borehole heat exchanger and a soil layer is 
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formulated. The spectral element is designed to calculate a propagating heat flow in the 
vertical z-direction, along the borehole heat exchanger, and a diffusive heat flow in the 
radial r-direction, through the soil layer. Temperature distributions in all shallow 
geothermal components: pipe-in, pipe-out, grout and soil, are calculated simultaneously. 

(a) 

  (b) 

Figure 2.1: BHE Modelling approach. (a) A schematic representation of an axial 
symmetric shallow geothermal system. (b) A schematic representation of a single 

U-tube BHE and its surrounding soil mass
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Governing equations 

Heat flow in a single U-tube borehole heat exchanger, consisting of four components 
(pipe-in, pipe-out, grout, and a thin soil film) in contact with a soil mass can be described 
as 
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Soil film 
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Soil mass 
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where the subscripts 𝑖𝑖, 𝑜𝑜, g  and 𝑠𝑠  represent pipe-in, pipe-out, grout and soil film, 
respectively, and 𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖(𝑧𝑧, 𝑡𝑡),  𝑇𝑇𝑜𝑜  = 𝑇𝑇𝑜𝑜(𝑧𝑧, 𝑡𝑡),  𝑇𝑇g = 𝑇𝑇g(𝑧𝑧, 𝑡𝑡), 𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑠𝑠(𝑧𝑧, 𝑡𝑡)  are their 
corresponding temperatures; and 𝑇𝑇soil = 𝑇𝑇soil(𝑟𝑟, 𝑡𝑡) is the temperature in the soil mass. 𝜆𝜆, 
𝜆𝜆g and 𝜆𝜆𝑠𝑠 (W mK⁄ ) are the thermal conductivity of the circulating fluid, grout and soil 
film, respectively; u (m/s) is the circulating fluid velocity; 𝑏𝑏𝑖𝑖g, 𝑏𝑏𝑜𝑜g, 𝑏𝑏gs, 𝑏𝑏𝑠𝑠𝑠𝑠 (W/m2K) 
are the thermal interaction coefficients between pipe in-grout, pipe out-grout, grout-soil 
film, and soil film-soil mass, respectively;  𝜌𝜌𝜌𝜌 (J/m3K) is the volume heat capacity, with 
𝑐𝑐 (J/kg K) the specific heat capacity and 𝜌𝜌 (kg/m3) the mass density; 𝑑𝑑𝑑𝑑𝑖𝑖 , 𝑑𝑑𝑑𝑑𝑜𝑜 , 𝑑𝑑𝑑𝑑g , 𝑑𝑑𝑑𝑑𝑠𝑠 
(m3) are the control volumes of pipe-in, pipe-out, grout and soil film, respectively, and 
𝑑𝑑𝑑𝑑𝑖𝑖g, 𝑑𝑑𝑑𝑑𝑜𝑜g, 𝑑𝑑𝑑𝑑gs, 𝑑𝑑𝑑𝑑𝑠𝑠  (m2) are their associated surface areas; and 𝛼𝛼 (m2/s) is the thermal 
diffusivity of the soil, described as  
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The associated initial and boundary conditions are: 
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where, initially, the temperature distribution in the BHE components is equal to that of 
the steady state condition of the soil mass before heating/cooling operation starts; 𝑇𝑇in is 
the fluid temperature at z = 0, coming from the heat pump. At the bottom of the BHE,    
(z = L) the fluid temperature in pipe-in is equal to that in pipe-out, neglecting the elbow 
part since it is too small compared to the BHE length. Eq. (2.10) implies that the 
temperature of the soil film acts as the amplitude of the soil mass temperature in the radial 
direction. In Eq.(2.11), we utilized the concept of region-of-interest (Al-Khoury 2012a 
and 2012b), where R represents a fictitious homogeneous boundary, far away from the 
borehole heat exchanger, where it is known, intuitively or analytically, that heat flux from 
the BHE vanishes. This choice, as it will be apparent later, results to an algebraic 
summation over Fourier-Bessel series, alleviating the need to solve semi-infinite integrals 
of oscillatory transcendental functions. 

The thermal interaction coefficient for pipe-in - grout is described as 

1
ig

i
b

R
   (2.12) 
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in which ir and or  are the inner and outer radius of pipe-in, respectively; p is the

thermal conductivity of pipe-in material; and Nuh D  is the convective heat 
transfer coefficient, where D is the inner diameter of the pipe. Nu is the Nusselt Number 
and can be expressed as (Al-Khoury 2012b): 
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Nu 4.36       for laminar                 (2.14) 

0.8Nu=0.023Re Prn  for turbulent                    (2.15) 

where Pr is the Prandtl number and Re is the Reynolds number, defined as: 

Pr c
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   (2.16) 

Re uD
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     (2.17) 

in which 𝜇𝜇 is the dynamic viscosity and where n=0.4 for heating, and n=0.3 for cooling. 

A similar formulation is valid for pipe-out-grout, 𝑏𝑏𝑜𝑜g. 

The thermal interaction coefficient for grout –soil film can be expressed as  
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in which br  is the radius of the grout (borehole), and 2 2
in out2eqr r r   with inr  the

pipe-in inner radius and outr  the pipe-out inner radius.

The thermal interaction coefficient for the soil film-soil mass can be expressed as 
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in which fr is the radius of the soil film.

Note that the above formulation of the thermal interaction coefficients have been 
modified following an intensive verifications with detailed numerical analysis and they 
are somewhat different than the coefficients presented in BniLam and al Khoury (2017).  
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 Two-node spectral element formulation 

The spectral element method is utilized to formulate an axial-symmetric spectral element 
for heat flow in a coupled borehole heat exchanger and a soil mass. The element consists 
of two nodes located at its boundaries, and denoting two parallel circular planes within 
which the heat is constrained to flow, Figure 2.2. In the vertical  z-direction, the element 
extends to cover a whole layer depth, ℎ, and in the radial direction, the element is assumed 
to extend to a fictitious finite boundary, 𝑅𝑅, where the BHE heat flux is known a priori to 
vanish. The response at any point within the element is described as a superposition of an 
incident flux from one boundary node and a reflected flux, if occurs, from the other 
boundary node.   

The procedure for formulating a spectral element starts by the Fourier transform of the 
governing partial differential equations, to convert them from the time domain to the 
frequency domain. Then, an eigenfunction expansion is employed on the homogeneous 
part of the equations, to obtain the eigenvalues. This is followed by discretizing the 
resulting equations into the nodal values, to formulate an algebraic spectral element 
equation, similar to that of the force-displacement finite element method. This equation 
is complex and frequency dependent.     

 
 Figure 2.2: Two-node spectral element 

Eqs. (2.1)-(2.4) are functions of z only, and act as a source to the soil mass. While Eq.(2.5) 
is a function of r and z, and acts as a source to the borehole heat exchanger. These 
equations are solved simultaneously, using the eigenfunction expansion, to solve Eqs. 
(2.1)-(2.4); and the separation of variables and the Fourier-Bessel series expansion, to 
solve Eq.(2.5). Eq. (2.4) is nonhomogeneous due to the presence of 𝑇𝑇soil. To make it 
homogeneous, 𝑇𝑇soil needs to be given in terms of 𝑇𝑇s.  

In the following, we first solve the soil heat equation, Eq.(2.5), followed by solving 
Eqs.(2.1)-(2.4) for the borehole heat exchanger. Then, a two-node spectral element is 
formulated. But first, a brief description of the spectral analysis is given. 
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2.4.1 Spectral analysis 
Using the discrete Fourier transform, the temperature, which is a function of time and 
space, can be discretized as 

1ˆ ˆ( , ) ( , ) , ( , ) ( , )i t i tn m n m
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in which N is the number of the discrete samples, where, in the fast Fourier transform, it 

is usually made 2 2,4,8, , 2048,N     . For a real signal, such as the one treated in 
this work, the transform is symmetric about a middle frequency, referred to as the Nyquist 
frequency. This means that N real points are transformed into N/2 complex points.  

The spectral representation of the time derivative is given by 

ˆ ˆ ˆi t i tn n
n n n

T T e i T e i T
t t

  
 

  
     (2.23) 

and of the spatial derivative is given by 
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For clarity of notation, the summation, the exponential term and the subscripts are ignored, 

and the transform is represented as ˆT T .

2.4.2  Solution of soil heat equation 
Fourier transform of Eq. (2.5), gives 

2 2
soil soil soil

soil 2 2

ˆ ˆ ˆ1ˆ 0T T Ti T
r rr z




  
   

 
  (2.25) 

The general solution of the soil heat equations in the frequency domain can be expressed 
as (Al-Khoury 2012 a, b) 

soil
ˆ ( , , ) ( ) i zm

m mm
T r z A J r e 

   (2.26) 

where 

2 2 1 2( )m m

m
m

i

R

  

  




  





  (2.27) 
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in which m is the roots of the Bessel function of the first kind, J . Note that the solution 

of Eq. (2.25) in the radial direction is the Bessel functions J  and Y  of the first and
second kind of order zero. Since the temperature at the origin, 0r  , is finite, and since 
Y  is infinite at this point, the Y  solution is discarded (Al-Khoury 2012a and 2012b).

Relating the soil mass temperature, 𝑇𝑇soil, to the soil film temperature, 𝑇𝑇s, in Eq.(2.4) can 
be done by substituting Eq.(2.26) into Eq.(2.10), giving 

ˆi zm
m

m
sA e T    (2.28) 

This equation is a typical complex Fourier series, and its coefficient can be expressed as 

0

1 ˆ
h

i zm
m sA T e dz

h
     (2.29) 

where ℎ is the height of the element. Solving for the integral, it yields 

  ˆ1i hm

m
m

se T
A

i h





 



  (2.30) 

Substituting Eq.(2.30) into Eq.(2.26), gives  

soil 0
ˆ ˆ ( )m m

m
sT T A J r             (2.31) 

where 

 1i hm

m
m

e
A

i h





 



   (2.32) 

It can be noticed that the exponential term over 𝑧𝑧  in Eq.(2.26) has disappeared in 
Eq.(2.31), because it is included in 𝑇𝑇�𝑠𝑠, as it is apparent in Eq.(2.38), given below. 

At the boundary between the soil film and the soil mass, Eq. (2.31) yields 

soil 0
ˆ ˆ

mr
m

sT T A


   (2.33) 

2.4.3  Solution of BHE heat equation 
Applying Eq. (2.22) to Eqs. (2.1)-(2.4) and substituting Eq. (2.33) into Eq. (2.4), gives 
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 
2

2

ˆ ˆ ˆ ˆ 0i i
i i i ig ig i ig g ig

d T dTdV cu dV i cdV b dS T b T dS
dzdz

          (2.34) 

 
2

2

ˆ ˆ ˆ ˆ 0o i
i o o og og o og g og

d T dTdV cu dV i cdV b dS T b T dS
dzdz

           (2.35) 

 
2

2

ˆ
ˆ

ˆ ˆ ˆ 0

g
g g g g g ig ig og og gs gs g

ig ig i og og o gs gs s

d T
dV i c dV b dS b dS b dS T

dz
b dS T b dS T b dS T

     

   

 (2.36) 

2

2

ˆ ˆ ˆ1 0s
s s s s s gs gs ss s m s gs gs g

m

d T dV i c dV b dS b dS A T b dS T
dz

 
                


(2.37) 

which forms a homogeneous set of equations that can be solved using the eigenfunction 
expansion.  

The utilization of the spectral analysis has reduced the partial differential equations, 
Eqs.(2.1)-(2.4), into ordinary differential equations, Eqs.(2.34)-(2.37). However, the 
resulting equations are frequency dependent and need to be solved for every frequency

n .

2.4.3.1 Eigenfunction expansion 
The solution of the primary variables in Eqs.(2.34)-(2.37) can be given by: 

ˆ ˆ ˆ ˆ, , ,ikz ikz ikz ikz
i i o o g g s sT A e T A e T A e T A e         (2.38) 

in which , ,i o gA A A and sA are the integral constants, which are related to ˆ ˆ ˆ, ,i o gT T T

and ŝT , respectively; and k denotes the system eigenvalues, which need to be determined.

Substituting Eq.(2.38) into Eqs.(2.34)-(2.37), gives  

 2

0

ikz ikz ikz
i i i i i ig ig i

ikz
ig ig g

k dV A e ik cudV A e i cdV b dS A e

b dS A e

    



  

 
 (2.39) 

 2

0

ikz ikz ikz
i o o i o og og o

ikz
og og g

k dV A e ik cudV A e i cdV b dS A e

b dS A e

    



  

 
  (2.40) 
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 2

0

ikz ikz
g g g g g g ig ig og og gs gs g

ikz ikz ikz
ig ig i og og o gs gs s

k dV A e i c dV b dS b dS b dS A e

b dS A e b dS A e b dS A e

  

  

   

   
       (2.41) 

2 1

0

ikz ikz
s s s s s s gs gs ss s m s

m

ikz
gs gs g

k dV A e i c dV b dS b dS A A e

b dS A e

  



             

 


     (2.42) 

Dividing Eqs.(2.39)-(2.42) by 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, rearranging and putting it in a matrix form, gives 

11 13

22 23

31 32 33 34

43 44

0 0
0 0

0

0 0

i

o

g

s

Aa a
Aa a
Aa a a a

a a A

                      

                                                                 (2.43) 

where 

2
11

13

i i i ig ig

ig ig

a k dV ik cudV i cdV b dS

a b dS

     



2
22

23

o o o og og

og og

a k dV ik cudV i cdV b dS

a b dS

     


 

31

32

2
33

34

ig ig

og og

g g g g g ig ig og og gs gs

gs gs

a b dS

a b dS

a k dV i c dV b dS b dS b dS

a b dS

 





    



 

43

2
44 1

gs gs

s s s s s gs gs ss s m
m

a b dS

a k dV i c dV b dS b dS A 



         


 

Since ˆ ˆ ˆ, ,i g oT T T  and ŝT are coupled, the constants, , ,i o gA A A  and sA are related to each 

other. Using Eqs.(2.39) -(2.43), the following relationships exist: 
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Pipe in-grout 

2

ig
i g

ig igig

i i i ig ig

A Y A

b dS
Y

k dV ik cudV i cdV b dS  




 

                                                (2.44) 

Pipe out-grout 

2

og
o g

og ogog

o o o og og

A Y A

b dS
Y

k dV ik cudV i cdV b dS  




  

                                            (2.45) 

Soil film-grout 

2 1

sg
s g

gs gssg

s s s s s gs gs ss s m
m

A Y A

b dS
Y

k dV i c dV b dS b dS A 




        


                          (2.46) 

For each k there is a corresponding ,ig ogY Y  and sgY , i.e. there are 1 1 1, ,ig og sgY Y Y  for 
k1, etc. (Doyle, 1988). 

The ∓ signs in Eq.(2.44) and Eq.(2.45) refer to the fluid velocity direction at the nod. The 
fluid velocity in pipe-in at nod 1 is (– ), while it is (+) at nod 2. For pipe-out, the signs 
are opposite. 

Non-trivial solution of Eq. (2.43) can only be obtained by letting the determinate equal to 
zero, giving a complex eight degree polynomial of the form: 

8 7 6 5 4 3 2
8 7 6 5 4 3 2 1 0 0a k a k a k a k a k a k a k a k a                            (2.47) 

This polynomial represents the eigenfunction of the single U-tube BHE system with 𝑘𝑘 
denoting its set of eigenvalues, which can be obtained by solving for the roots of Eq.(2.47). 
Only for this set of eigenvalues do the eigenfunction exist that satisfy the boundary 
conditions of the problem. Eight eigenvalues in two groups of four, differ in sign, are 
obtained from Eq.(2.47). The first group is related to the positive fluid velocity, and the 
second to the negative fluid velocity. The exact forms of the coefficients of Eq. (2.47) are 
given in BniLam and Al-Khoury (2017). They are obtained using MAPLE software 
(Maple 2019). 
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2.4.3.2 Spectral element formulation in z-direction  
Consider a one-dimensional heat flow in an element of length h bounded by two nodes: 
node 1 and node 2, Figure 2.2. At each node, there are four degrees of freedom, 
representing the temperatures in pipe-in, pipe-out, grout and soil film. Using Eq.(2.38), 
the temperatures at any point along the element are calculated by the superposition of an 
incident flux, from node 1, and a reflective flux, from node 2, as  

       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

ˆ ik zik z ik z ik z
i i i i i

ik h z ik h z ik h z ik h z
i i i i

T A e B e C e D e

A e B e C e D e

  

       

   

   
                       (2.48) 

       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

ˆ ik zik z ik z ik z
o o o o o

ik h z ik h z ik h z ik h z
o o o o

T A e B e C e D e

A e B e C e D e

  

       

   

   
                  (2.49) 

       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

ˆ ik zik z ik z ik z
g g g g g

ik h z ik h z ik h z ik h z
g g g g

T A e B e C e D e

A e B e C e D e

  

       

   

   
                (2.50) 

       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

ˆ ik zik z ik z ik z
s s s s s

ik h z ik h z ik h z ik h z
s s s s

T A e B e C e D e

A e B e C e D e

  

       

   

   
                    (2.51) 

As for the finite element method, the governing equations are solved in terms of the nodal 
values.  

At node 1, z = 0, substituting Eqs. (2.44)-(2.45) into Eqs.(2.48), (2.49) and (2.51), the 
nodal temperatures become 

1 1 1 1 2 1 3 1 4

5 6 7 8
2 5 2 6 2 7 2 8

1 1 1 1 2 1 3 1 4

5 6 7 8
2 5 2 6 2 7 2 8

1 1 1 1

ˆ

ˆ

ˆ

ig ig ig ig
i g g g g

ik ik ik ikig ig ig ig
g g g g

og og og og
o g g g g

ik ik ik ikog og og og
g g g g

g g g g

h h h h

h h h h

T A Y B Y C Y D Y

A Y e B Y e C Y e D Y e

T A Y B Y C Y D Y

A Y e B Y e C Y e D Y e

T A B C

   

   

   

   

   

   

   1

5 6 7 8
2 2 2 2

1 1 1 1 2 1 3 1 4

5 6 7 8
2 5 2 6 2 7 2 8

ˆ

g

ik ik ik ik
g g g g

sg sg sg sg
s g g g g

ik ik ik iksg sg sg sg
g g g g

h h h h

h h h h

D

A e B e C e D e

T A Y B Y C Y D Y

A Y e B Y e C Y e D Y e

   

   



   

   

   

                  (2.52) 

At node 2, z = h, and similarly, upon substituting Eqs. (2.44)-(2.45) into Eqs.(2.48), (2.49) 
and (2.51), the nodal temperatures become 
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31 2 4
2 1 1 1 11 2 3 4

2 2 2 25 76 8

31 2 4
2 1 1 1 11 2 3 4

2 2 2 25 76 8

1
2 1

ˆ

ˆ

ˆ

ik hik h ik h ik hig ig ig ig
i g g g g

ig ig ig ig
g g g g

ik hik h ik h ik hog og og og
o g g g g

og og og og
g g g g

ik h
g g

T A Y e B Y e C Y e D Y e

A Y B Y C Y D Y

T A Y e B Y e C Y e D Y e

A Y B Y C Y D Y

T A e B

  

  



   

   

   

   

  32 4
1 1 1

2 2 2 2

31 2 4
2 1 1 1 11 2 3 4

2 2 2 25 76 8

ˆ

ik hik h ik h
g g g

g g g g

ik hik h ik h ik hsg sg sg sg
s g g g g

sg sg sg sg
g g g g

e C e D e

A B C D

T A Y e B Y e C Y e D Y e

A Y B Y C Y D Y

 

  

 

   

   

   

                   (2.53) 

In a matrix form, Eq.(2.52) and eq.(2.53) can be presented as    

1
11 12 13 14 15 16 17 18

1
21 22 23 24 25 26 27 28

1 31 32 33 34 35 36 37 38

1 41 42 43 44 45 46 47 48

512

2

2

2

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

i

o

g

s

i

g

o

s

T
h h h h h h h h

T h h h h h h h h
T h h h h h h h h
T h h h h h h h h

hT

T

T

T

                               

1

1

1

1

52 53 54 55 56 57 58 2

61 62 63 64 65 66 67 68 2

71 72 73 74 75 76 77 78 2
81 82 83 84 85 86 87 88

2

g

g

g

g

g

g

g

g

A

B

C

D

h h h h h h h A
h h h h h h h h B
h h h h h h h h C
h h h h h h h h D

                           


       

                            (2.54) 

Where  

11 12 13 141 2 3 4

5 6 7 8
15 16 17 185 76 8

, , ,

, , ,

ig ig ig ig

ik h ik h ik h ik hig ig ig ig

h Y h Y h Y h Y

h Y e h Y e h Y e h Y e   

   

   
 

21 22 23 241 2 3 4

5 6 7 8
25 26 27 285 76 8

, , ,

, , ,

og og og og

ik h ik h ik h ik hog og og og

h Y h Y h Y h Y

h Y e h Y e h Y e h Y e   

   

   
 

31 32 33 34

5 6 7 8
35 36 37 38

1, 1, 1, 1

, , ,ik h ik h ik h ik h

h h h h

h e h e h e h e   

   

   
 



Chapter 2 

30 

41 42 43 441 2 3 4

5 6 7 8
45 46 47 485 76 8

, , ,

, , ,

sg sg sg sg

ik h ik h ik h ik hsg sg sg sg

h Y h Y h Y h Y

h Y e h Y e h Y e h Y e   

   

   
 

31 2 4
51 52 53 541 2 3 4

55 56 57 585 76 8

, , ,

, , ,

ik hik h ik h ik hig ig ig ig

ig ig ig ig

h Y e h Y e h Y e h Y e

h Y h Y h Y h Y

     

   
 

31 2 4
61 62 63 641 2 3 4

65 66 67 685 76 8

, , ,

, , ,

ik hik h ik h ik hog og og og

og og og og

h Y e h Y e h Y e h Y e

h Y h Y h Y h Y

     

   
 

31 2 4
71 72 73 74

75 76 77 78

, , ,
1, 1, 1, 1

ik hik h ik h ik hh e h e h e h e
h h h h

     

   
 

31 2 4
81 82 83 841 2 3 4

85 86 87 885 76 8

, , ,

, , ,

ik hik h ik h ik hsg sg sg sg

sg sg sg sg

h Y e h Y e h Y e h Y e

h Y h Y h Y h Y

     

   
 

Eq.(2.54) indicates that the temperatures of pipe-in, pipe-out and soil film are represented 
in terms of the grout coefficients. This equation can be written as 

 node
ˆ , nk T H A                                                                                                (2.55) 

Solving for A , gives 

  1
node

ˆ, nk  A H T                                                                                            (2.56) 

The next step is to relate the heat flux to the temperature at the nodes. The heat fluxes for 
the BHE components are  

,

,

i o
i i o o

g s
g g g s s s

T Tq dA q dA
z z

T Tq dA q dA
z z

 

 

 
 

 
 

 
 

 

 

                                                    (2.57) 

where 𝑑𝑑𝐴𝐴𝑖𝑖, 𝑑𝑑𝑑𝑑𝑜𝑜, 𝑑𝑑𝑑𝑑g and 𝑑𝑑𝐴𝐴𝑠𝑠 are the cross sectional areas of pipe-in, pip-out, grout and 
soil film respectively. The ∓ sign refers to the direction of the heat flux: the heat flux at 
node 1 is (– ) while at node 2, it is (+). 

Substituting Eqs. (2.44)-(2.46) and Eqs.(2.48) -(2.51) into Eq. (2.57) gives 
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   

   

1 2
1 1 2 11 2

3 4
3 1 4 13 4

5 6
5 2 6 25 6

7 8
7 2 8 27 8

ik z ik zig ig
g g

ik z ik zig ig
g g

i i ik h z ik h zig ig
g g

ik h z ik h zig ig
g g

ik A Y e ik B Y e

ik C Y e ik D Y e
q dA

ik A Y e ik B Y e

ik C Y e ik D Y e



 

 

   

   

                     

                               (2.58) 

 

 

   

   

1 2
1 1 2 11 2

3 4
3 1 4 13 4

5 6
5 2 6 25 6

7 8
7 2 8 27 8

ik z ik zog og
g g

ik z ik zog og
g g

o o ik h z ik h zog og
g g

ik h z ik h zog og
g g

ik A Y e ik B Y e

ik C Y e ik D Y e
q dA

ik A Y e ik B Y e

ik C Y e ik D Y e



 

 

   

   

                     

                             (2.59) 

 

 

   

   

1 2
1 1 2 1

3 4
3 1 4 1

5 6
5 2 6 2

7 8
7 2 8 2

ik z ik z
g g

ik z ik z
g g

g g g ik h z ik h z
g g

ik h z ik h z
g g

ik A e ik B e

ik C e ik D e
q dA

ik A e ik B e

ik C e ik D e



 

 

   

   

                     



   

                                 (2.60)  

 

 

   

   

1 2
1 1 2 11 2

3 4
3 1 4 13 4

5 6
5 2 6 25 6

7 8
7 2 8 27 8

ik z ik zsg sg
g g

ik z ik zsg sg
g g

s s s ik h z ik h zsg sg
g g

ik h z ik h zsg sg
g g

ik A Y e ik B Y e

ik C Y e ik D Y e
q dA

ik A Y e ik B Y e

ik C Y e ik D Y e



 

 

   

   

                     

                           (2.61) 

 

At the element nodes, Eq. (2.58)-(2.61) becomes: 
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At node 1, z = 0:  

1 1 2 1 3 11 2 3

5 6
1 4 1 5 2 6 254 6

7 8
7 2 8 27 8

1 1 2 1 3 11 2 3

1 4 1 4

ig ig ig
g g g

ik h ik hig ig ig
i i g g g

ik h ik hig ig
g g

og og og
g g g

og
o o g

ik A Y ik B Y ik C Y

q dA ik D Y ik A Y e ik B Y e

ik C Y e ik D Y e

ik A Y ik B Y ik C Y

q dA ik D Y





 

 

                   

  

  5 6
5 2 6 25 6

7 8
7 2 8 27 8

5
1 1 2 1 3 1 4 1 5 2

1 6 7 8
6 2 7 2 8 2

ik h ik hog og
g g

ik h ik hog og
g g

ik h
g g g g g

g g g ik h ik h ik h
g g g

ik A Y e ik B Y e

ik C Y e ik D Y e

ik A ik B ik C ik D ik A e
q dA

ik B e ik C e ik D e


 

 



  

               

               

1 1 2 1 3 11 2 3

5 6
1 4 1 5 2 6 254 6

7 8
7 2 8 27 8

sg sg sg
g g g

ik h ik hsg sg sg
s s s g g g

ik h ik hsg sg
g g

ik A Y ik B Y ik C Y

q dA ik D Y ik A Y e ik B Y e

ik C Y e ik D Y e

  

 

                   

              (2.62) 

At node 2, z = h: 
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1 1 2 1 3 11 2 3

4
2 4 1 5 2 6 254 6

7 2 8 27 8

1 2
1 1 2 1 3 11 2 3

2

ik hik h ik hig ig ig
g g g

ik hig ig ig
i i g g g

ig ig
g g

ik h ik hog og og
g g g

o o

ik A Y e ik B Y e ik C Y e

q dA ik D Y e ik A Y ik B Y

ik C Y ik D Y

ik A Y e ik B Y e ik C Y e

q dA





 



 

                   

  



3

4
4 1 5 2 6 254 6

7 2 8 27 8

31 2
1 1 2 1 3 1

2 4
4 1 5 2 6 2 7 2 8 2

2

ik h

ik hog og og
g g g

og og
g g

ik hik h ik h
g g g

g g g ik h
g g g g g

s

ik D Y e ik A Y ik B Y

ik C Y ik D Y

ik A e ik B e ik C e
q dA

ik D e ik A ik B ik C ik D

q







 



               

               

31 2
1 1 2 1 3 11 2 3

4
4 1 5 2 6 254 6

7 2 8 27 8

ik hik h ik hsg sg sg
g g g

ik hsg sg sg
s s g g g

sg sg
g g

ik A Y e ik B Y e ik C Y e

dA ik D Y e ik A Y ik B Y

ik C Y ik D Y



 



                   

                 (2.63) 
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In a matrix form: 

 nodeˆ , nk q M A                                                                                               (2.64) 

Substituting Eq.(2.56) into Eq.(2.64), yields 

 node node
ˆˆ , nk q K T                                                                                          (2.65) 

in which      1, , ,n n nk k k  K M H , representing the spectral element 
stiffness matrix, in resemblance to that of the finite element method. However, the 
spectral element matrix is exact and frequency-dependent. 

The matrix components of Eq. (2.64) are  

 

1

1

1

1

2

2

2

2

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57

i

o

g

s

i

o

g

s

b b b b b b b bq

b b b b b b b bq

b b b b b b b bq

b b b b b b b bq

b b b b b b b bq

q

q

q



                          

1

1

1

1

2

2

2

2

58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

88 82 83 84 85 86 87 88

g

g

g

g

g

g

g

g

A

B

C

D

b b b b b b b b

b b b b b b b b

b b b b b b b b

A
B
C
D

                                 



                                (2.66) 

where  

11 1 12 2 13 3 14 41 2 3 4

5 6 7 8
15 5 16 6 17 7 18 85 76 8

, , ,

, , ,

ig ig ig ig

ik h ik h ik h ik hig ig ig ig

b ik Y b ik Y b ik Y b ik Y

b ik Y e b ik Y e b ik Y e b ik Y e   

   

   
     

21 1 22 2 23 3 24 41 2 3 4

5 6 7 8
25 5 26 6 27 7 28 85 76 8

, , ,

, , ,

og og og og

ik h ik h ik h ik hog og og og

b ik Y b ik Y b ik Y b ik Y

b ik Y e b ik Y e b ik Y e b ik Y e   

   

   
 

31 1 32 2 33 3 34 4

5 6 7 8
35 5 36 6 37 7 38 8

, , ,

, , ,ik h ik h ik h ik h

b ik b ik b ik b ik

b ik e b ik e b ik e b ik e   

   

   
          

41 1 42 2 43 3 44 41 2 3 4

5 6 7 8
45 5 46 6 47 7 48 85 76 8

, , ,

, , ,

sg sg sg sg

ik h ik h ik h ik hsg sg sg sg

b ik Y b ik Y b ik Y b ik Y

b ik Y e b ik Y e b ik Y e b ik Y e   

   

   
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31 2 4
51 1 52 2 53 3 54 41 2 3 4

55 5 56 6 57 7 58 85 76 8

, , ,

, , ,

ik hik h ik h ik hig ig ig ig

ig ig ig ig

b ik Y e b ik Y e b ik Y e b ik Y e

b ik Y b ik Y b ik Y b ik Y

     

   
 

31 2 4
61 1 62 2 63 3 64 41 2 3 4

65 5 66 6 67 7 68 85 76 8

, , ,

, , ,

ik hik h ik h ik hog og og og

og og og og

b ik Y e b ik Y e b ik Y e b ik Y e

b ik Y b ik Y b ik Y b ik Y

     

   
 

31 2 4
71 1 72 2 73 3 74 4

75 5 76 6 77 7 78 8

, , ,
, , ,

ik hik h ik h ik hb ik e b ik e b ik e b ik e
b ik b ik b ik b ik

     

   
               

31 2 4
81 1 82 2 83 3 84 41 2 3 4

85 5 86 6 87 7 88 85 76 8

, , ,

, , ,

ik hik h ik h ik hsg sg sg sg

sg sg sg sg

b ik Y e b ik Y e b ik Y e b ik Y e

b ik Y b ik Y b ik Y b ik Y

     

   
 

 

2.4.3.3 General solution BHE heat equations  
Having determined the eigenvalues and the integration constants, the general solution of 
the single U-tube BHE system of equations can then be obtained by summing over all 
eigenfunctions (corresponding to 1k , 2k , …, 8k ) and frequencies, as           

       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

( , )
ik zik z ik z ik z

i tn
n ik L z ik L z ik L z ik L z

e e e e
z t e

e e e e


  

       

            


A B C D
T

A B C D
 

(2.67) 

where 𝐓𝐓(𝑧𝑧, 𝑡𝑡) represents 𝑇𝑇𝑖𝑖 , 𝑇𝑇𝑜𝑜, 𝑇𝑇g and  𝑇𝑇𝑠𝑠.    

 

 Spectral element mesh assembly and solution  

Eqs.(2.31) and (2.67) solve the temperature distributions in all BHE components and the 
surrounding soil layer. For a multilayer system, assembly of the global system of 
equations is necessary. For this, the finite element techniques for element numbering, 
node numbering and mesh assembly are utilized (Fagan, 1992). The solution of the global 
system of equations is conducted using the IMSL mathematical library subroutine, 
lin_sol_gen, which solves a general system of linear equations 𝑨𝑨𝑥𝑥 = 𝒃𝒃, (IMSL 2019). 
Eq.(2.47) is solved using the IMSL subroutine, DZPOCC, which solves for the roots of a 
polynomial with complex coefficients. The reconstruction of the time domain is carried 
out using the inverse FFT algorithm.  
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 Model Verification 

Exact solution describing heat flow in a single U-tube BHE embedded in a multilayer soil 
mass has not been introduced before. Accordingly, verification of the proposed model is 
done by comparing its computational results with those obtained from analytical solutions 
of simplified cases. The BHE model is verified against the van Genuchten and Alves 
(1982) solution of a one-dimensional advective-dispersive solute transport equation. The 
soil mass model is verified against the Carslaw and Jaeger (1959) solution of an infinite 
line source embedded in a semi-infinite solid. 

2.6.1 Verification against van Genuchten and Alves solution  
van Genuchten and Alves provided an analytical solution to a one-dimension advective-
diffusive partial differential equation of the form: 

2

2 0c c cR D F c
t zz

 
  

    
 

                                                                   (2.68) 

The initial and boundary conditions are:    

   
 

 

2
int

in

,0

0
0,

0

( , ) 0

F u
z

D

o

o

c z A z C e

C t t
c t

t t
c t
z

 
 

        

   


 


                                                            (2.69) 

where , , , andR D F   are constants, and 𝑢𝑢 = 𝐹𝐹�1 + 4𝜇𝜇𝜇𝜇
𝐹𝐹2

 . The initial value, 𝐴𝐴(𝑧𝑧) in 

Eq.(2.69), is determined by solving the steady state condition of Eq.(2.68).  

Their solution is:    

     

 

 

 

 
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

                                          

              (2.70) 

and  
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0t t

         

   

(2.71) 

The van Genuchten and Alves model and the proposed spectral element model are 
employed to solve heat flow in a heat pipe embedded in a constant temperature 
environment. The geometry and material parameters are: 

Pipe length   = 100m 
Pipe radius, ir           = 0.016 m 
Fluid c    = 4.1298E6 J/m3 K 
Fluid    = 0.56 W/m K  
Fluid velocity, u                = 0.1 and 1 m/s 
𝑏𝑏ig                                      =12 W/m2 K 

The initial steady state temperature, and the temperature at the pipe inlet are: 
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                                                              (2.72) 

In the spectral element model, 𝑇𝑇in is equal to 𝑇𝑇𝑠𝑠𝑠𝑠 + ∆𝑇𝑇in, where, in this case, ∆𝑇𝑇in = 10 ºC. 

To compare between the two models, the van Genuchten and Alves parameters need to 
be adjusted to match the physical parameters of the spectral element model. Comparing 
Eq. (2.1) to Eq.(2.68), yields: 
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                                                       (2.73) 

Also, and as the proposed model is general and applicable to a multiple component 
domain, the following adjustments are necessary: 

a) The thermal interaction coefficient, 𝑏𝑏𝑜𝑜g, is made relatively small (0.01 W/m2K) to 
insure insulation, such that there is no heat flow between pipe-in and pipe-out.  
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b) The thermal interaction coefficients of the grout-soil film and the soil film-soil 
mass are made relatively high (𝑏𝑏gs = 𝑏𝑏𝑠𝑠𝑠𝑠 = 1000 W/m2K) so insure a full contact.  

c) The soil mass temperature is made constant, by setting mA  in Eq.(2.32), equal to 
zero. 

 
 

 
(a)              

                                                       

 
 (b) 

Figure 2.3:  Spectral element model vs. van Genuchten and Alves solution: (a) with 
time, (b) along the pipe 

 

𝑢𝑢 = 1 𝑚𝑚/𝑠𝑠 

𝑢𝑢 = 0.1 𝑚𝑚/𝑠𝑠 

 

𝑢𝑢 = 0.1 𝑚𝑚/𝑠𝑠 

𝑢𝑢 = 1 𝑚𝑚/𝑠𝑠 
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Using the spectral element model, two analyses were conducted: one using one spectral 
element only, with element length equal to 100 m; and another using 5 elements, with an 
element length equal to 20 m. Two fluid velocities were analyzed: 0.1 m/s and 1 m/s. 

The input temperature time histories of 𝑇𝑇𝑖𝑖𝑖𝑖  and 𝑇𝑇𝑠𝑠𝑠𝑠  were transformed to the frequency 
domain using the forward FFT. 16384 samples, with a sample rate of 1s, were used, giving 
a time window of 16384s.    

Figure 2.3a, shows the temperature distributions versus time at 𝑧𝑧 =  100 𝑚𝑚, obtained 
from the van Genuchten and Alves solution and the spectral element model, for both mesh 
sizes and fluid velocities. Figure 2.3b, shows the temperature distributions along the depth 
of the BHE, at time 𝑡𝑡 =  500 𝑠𝑠 , obtained from both models. Apparently, the 
computational results are nearly identical.    

2.6.2 Verification against Carslaw and Jaeger infinite line source 
(ILS) model 

Carslaw and Jaeger (1959) provided an analytical solution to heat flow in a semi-infinite 
solid, subjected to a constant heat flow from an infinite line source. In such a domain, 
only radial heat flow exists, and the temperature distribution is described as  
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with r is the radial distance from the source, t is the time,  is the soil heat conductivity, 
  is the mass density, c is the heat capacity, 𝑇𝑇𝑠𝑠𝑠𝑠  is the initial soil temperature, and q is 
the heat flux per meter length of the line source (pipe). Solution for this semi-infinite 
upper limit integral is available in exact form for 0.2 , and in tables, for larger values 

of  . For 0.2 , the solution to the integrand of Eq. (2.74) is: 

 
2 41ln 0.2886

2 8
I  



      (2.76) 

The tabulated values 3.1  are available in Ingersoll et al. (1954). 



2.6  Model Verification 

39 

In such a domain, it is assumed that there is a full contact between the heat source and the 
medium. To simulate such a domain, the temperature along the pipe must be constant. 
This can be done by assuming a high flow rate, generated by the circulating fluid.   

The ILS model and the proposed spectral element model are employed to solve heat flow 
in a soil mass consisting of two layers, and subjected to a constant line heat source equal 
to 0 ºC. The initial temperature, 𝑇𝑇𝑠𝑠𝑠𝑠  , is assumed 10 ºC. The material and geometrical 
parameter of the system are shown in Table 2.1, and illustrated in Figure 2.4. 

The ILS model does not recognize the layers, and hence the temperature distributions are 
obtained for each layer, regardless of the other layer. In the spectral element model, 
however, this is possible, but requires two spectral elements.  

 

Table 2.1. Material and geometrical parameters 

Parameter Value Parameter Value 
Borehole:  Grout:  

Borehole length 100 m Density, 𝜌𝜌g 1420 kg/m3 

Borehole diameter 0.12 m Specific thermal 
capacity, 𝑐𝑐g 

1197 J/(kg.K) 

Pipe external 
diameter 0.026 m Thermal 

conductivity, 𝜆𝜆g 
0.62 W/(m.K) 

Pipe roughness 3 E-6 Soil:  

Pipe thermal 
conductivity, 𝜆𝜆𝑝𝑝 0.42 W/(mK) Film thickness 0.5 cm 

Fluid:  density ,  𝜌𝜌s 1680 kg/m3 

Density, 𝜌𝜌 1000 kg/m3 Specific thermal 
capacity , 𝑐𝑐𝑠𝑠 

400 J/(kg.K) 

Specific thermal 
capacity, 𝑐𝑐 4186 J/(kg.K) 

Thermal 
conductivity, 𝜆𝜆s at 
𝑧𝑧 ≥  −50𝑚𝑚 

2.5 W/(m.K) 

Thermal 
conductivity, 𝜆𝜆 0.56 W/(mK) 

Thermal 
conductivity, 𝜆𝜆𝑠𝑠 at 
𝑧𝑧 ≤  −50𝑚𝑚 

5 W/(m.K) 

Dynamic viscosity, 
𝜇𝜇 0.001 Pa.s   

 

In the spectral model, the inlet temperature, 𝑇𝑇in, is equal to 0 ºC, and the fluid velocity, 𝑢𝑢, 
is equal to 5 m/s, a relatively high velocity to insure a constant 0 ºC along the whole length 
of the BHE. The thermal interaction coefficients, 𝑏𝑏𝑖𝑖g , 𝑏𝑏𝑜𝑜g , 𝑏𝑏g𝑠𝑠  and 𝑏𝑏𝑠𝑠𝑠𝑠 , are calculated 
using Eq.(2.12)-(2.21). The homogeneous fictitious boundary of the soil layer, R, is 
calculated by:   

6R t                                                                                                                (2.77) 
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where 𝛼𝛼 is the thermal diffusivity of the soil and t is the time when the temperature at 
point R reaches its maximum (Carslaw and Jaeger 1959).  

The number of FFT samples is 16384, with a sample rate of 1 hr, giving a time window 
of 16384 hr. The number of the Fourier-Bessel series terms is 500. Four calculations with 
different transient times of 5 days, 25 days, 50 days and 100 days were conducted. 

Figure 2.5 shows the computational results at 𝑧𝑧 = 49𝑚𝑚  (top layer) and at 𝑧𝑧 = 51𝑚𝑚 
(bottom layer), along the radial direction, obtained from both models. The radial distances 
from the line heat source are chosen such that they are solvable by Eq.(2.76), or available 
in the Carslaw and Jaeger tables. Apparently, the two results are nearly identical.    

Note that as the ILS model adopts a Neumann boundary condition with constant heat flux 
and our model adopts a time dependent Dirichlet boundary condition, we compared the 
results by first running our model with a prescribed 𝑇𝑇in at the inlet of pipe-in. Then we 
calculate the resulting heat flux at a certain time and depth along the BHE as a post 
processing. This heat flux is applied to the ILS model to calculate the soil temperature. 

 

 

 

Figure 2.4: A schematic representation of a semi-infinite solid subjected to a 
constant heat source 

 Numerical examples  

To illustrate the model computational capabilities, a numerical example illustrating the 
behavior of a shallow geothermal system subjected to a varying temperature signal is 
introduced. A 100 m single U-tube BHE embedded in a soil mass consisting of 5 layers 
with different physical properties, Figure 2.6, is studied. The material and geometrical 
properties are given in Table 2.2. Relatively short and long terms were studied.  
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For the short term, the initial and boundary conditions are:  
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                                                                   (2.78) 

where it can be seen that the BHE has a 2 hours off after every 5 hours of operation. 

 

 
                                         (a)                                                           (b) 

 
                                        (c)                                                           (d) 

Figure 2.5:  SE model vs. ILS model. (a) 5 days, (b) 25 days, (c) 50 days,                
(d) 100 days 
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The frequency discretization of 𝑇𝑇in was conducted using 16,384 (214) FFT samples with 
a sample rate of 10 seconds, giving a time window of approximately 45.5 hours. The 
thermal coefficients 𝑏𝑏𝑖𝑖g , 𝑏𝑏𝑜𝑜g  , 𝑏𝑏gs  and 𝑏𝑏ss  are determined using Eq.(2.12)-(2.21). The 
domain is discretized using 5 spectral elements, one for each layer.   

Figure 2.6: A schematic representation of a 5 layers shallow geothermal system 

Table 2.2: Material and geometrical parameters 

Parameter Value Parameter Value 
Borehole: Soil: 

Borehole length 100 m Film thickness 0.5 cm 
Borehole diameter 0.126 m Density , 𝜌𝜌𝑠𝑠 1680 kg/m3 
Pipe external diameter 0.032 m Specific thermal capacity , 𝑐𝑐𝑠𝑠 400 J/(kg.K) 
Pipe roughness 3 E-6 

Pipe thermal conductivity 0.42 W/(mK) 0 ≥ 𝑧𝑧 ≥ −20𝑚𝑚 

Fluid: 
Thermal conductivity, 𝜆𝜆𝑠𝑠 2.5 W/(m.K) 

Density, 𝜌𝜌 1000 kg/m3 −20 ≥ 𝑧𝑧 ≥ −40𝑚𝑚
Specific thermal capacity, 𝑐𝑐 4186 J/(kg.K) Thermal conductivity, 𝜆𝜆𝑠𝑠 1 W/(m.K) 
Thermal conductivity, 𝜆𝜆 0.56 W/(mK) −40 ≥ 𝑧𝑧 ≥ −60𝑚𝑚
Dynamic viscosity, 𝜇𝜇 0.001 Pa.s Thermal conductivity, 𝜆𝜆𝑠𝑠 4 W/(m.K) 
Velocity, 𝑢𝑢 0.5 m/s −60 ≥ 𝑧𝑧 ≥ −80𝑚𝑚

Grout: 
Thermal conductivity, 𝜆𝜆𝑠𝑠 0.5 W/(m.K) 

Density, 𝜌𝜌g 1420 kg/m3 −80 ≥ 𝑧𝑧 ≥ −100𝑚𝑚

Specific thermal capacity, 𝑐𝑐g 1197 J/(kg.K) Thermal conductivity, 𝜆𝜆𝑠𝑠 3 W/(m.K) 

Thermal conductivity, 𝜆𝜆g  0.62 W/(m.K)  
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(a) 

 
(b) 

 
(c) 

Figure 2.7 : 𝑻𝑻𝒊𝒊, 𝑻𝑻𝒐𝒐, 𝑻𝑻𝐠𝐠 and  𝑻𝑻𝒔𝒔 at (a) 𝒛𝒛 = 𝟎𝟎 𝒎𝒎 , (b) 𝒛𝒛 = 𝟓𝟓𝟓𝟓 𝒎𝒎,  (c) 𝒛𝒛 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒎𝒎 
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Figure 2.7 shows the temperature distributions versus time for pipe-in (𝑇𝑇𝑖𝑖), pipe-out (𝑇𝑇𝑜𝑜), 
grout (𝑇𝑇g) and soil film (𝑇𝑇𝑠𝑠) at different depths: 𝑧𝑧 = 0, 50 and 100 m. The figure shows 
that, although not verified quantitatively, the response signals are smooth and exhibit 
thermal dissipation with distance.   

For the relatively long term, the inlet temperature varies as 

 in
20 15000 hours
10 15000 hours

t
T

t
  

                                                              (2.79) 

The frequency discretization of 𝑇𝑇in was conducted using 32,768 (215) FFT samples with 
a sample rate of 1 hour, giving a time window of approximately 3.5 years.  

 

 
(a) (b) 

   
            (c)                                                         (d) 

Figure 2.8 : 𝑻𝑻𝒊𝒊, 𝑻𝑻𝒐𝒐, 𝑻𝑻𝐠𝐠 and  𝑻𝑻𝒔𝒔 along the BHE at (a) 1 hour , (b) 1 day ,                      
(c) 1 month, (d) 1 year 
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Figure 2.8 shows the temperature distributions along the BHE in z direction for pipe-in 
(𝑇𝑇𝑖𝑖), pipe-out (𝑇𝑇𝑜𝑜), grout (𝑇𝑇g) and soil film temperature (𝑇𝑇𝑠𝑠) at different times: 1 hour, 1 
day, 1 month and 1 year. It can be seen that at the first hour, the effect of the different 
thermal parameters of the surrounding soil layers was not apparent, but became 
significant with increasing time.  

This example shows that the model is capable of calculating heat flow in a relatively 
complicated geometry, consisting of multiple layers, and subjected to a complicated 
boundary conditions consisting of multiple pulses. The CPU time of conducting this 
example was on average less than 1 minute for 100 output values in z domain, and 30 
output values in r domain, using Intel core 2.66 GHz processor.   

 

 Conclusion  

In this chapter, a spectral element model for the simulation of transient conduction–
convection heat flow in an axisymmetric shallow geothermal system consisting of a single 
U-tube borehole heat exchanger embedded in a layered soil mass is introduced. A new 
two-node spectral element is formulated. For a homogeneous domain, the heat equations 
are solved analytically. For a multiple nonhomogeneous domain with different physical 
properties, the finite element technique is utilized to assemble an algebraic system of 
linear equations, x A b , which can be solved using standard solvers. One element is 
sufficient to describe heat flow in all BHE components and its surrounding soil layer. For 
a multilayer system, the number of elements is equal to the number of layers, making the 
model highly efficient. 

Despite the apparent rigor of the model, it is relatively easy to implement in computer 
codes. Standard MAPLE commands and IMSL subroutines can be utilized to solve the 
eigenfunction and the global system of equations. As a result of the model accuracy and 
computationally efficiency, it can be utilized directly for forward analysis, or in an 
iterative scheme for parameter identification of system thermal parameters. Also, it is 
generic and can be utilized for modelling a wide range of engineering mechanics 
applications involving linear heat flow or other diffusive-advective processes occurring 
in relatively complicated geometries. 

   



 

 



 

 

 

   
A superposition model for heat flow in an infinite medium 
subjected to multiple Cylindrical Heat Sources 

This chapter introduces analytical solutions for transient heat conduction in an infinite 
solid mass subjected to a varying single or multiple cylindrical heat sources. The solutions 
are formulated for two types of boundary conditions: a time-dependent Neumann 
boundary condition, and a time-dependent Dirichlet boundary condition. The initial and 
boundary value problem have been solved for a single heat source using the modified 
Bessel function, for the spatial domain, and the fast Fourier transform, for the temporal 
domain. For multiple heat sources, the superposition principle has been applied directly 
for the Neumann boundary condition, but for the Dirichlet boundary condition, an 
analytical coupling was conducted, which allows for the exact thermal interaction 
between all involved heat sources. The heat sources can exhibit different time-dependent 
signals and can have any distribution in space. The solutions are verified against the 
analytical solution given by Carslaw and Jaeger for a constant Neumann boundary 
condition, and the finite element solution for both types of boundary conditions. 
Compared to these two solutions, the proposed solutions are exact at all radial distances, 
highly elegant, robust and easy to implement. 

 

 

This chapter is based on BniLam N. and Al-Khoury R. (2016). Transient heat conduction 
in an infinite medium subjected to multiple cylindrical heat sources: An application to 
shallow geothermal systems. Renewable Energy, Volume 97, Pages 145-154. 
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 Introduction 

Most of the currently utilized analytical solutions for heat equations in solid domains are 
based on the work provided by Carslaw and Jaeger (1959), who seem to be the first to 
introduce a comprehensive treatment of heat conduction in solids subjected to different 
combinations of initial and boundary conditions. They introduced solutions to heat flow 
in finite, semi-infinite and infinite domains subjected to point, line, plane, spherical and 
cylindrical heat sources. In this chapter, the focus is placed on heat flow in an infinite 
domain subjected to cylindrical heat sources, a topic which is central in many engineering 
applications, mainly in modelling shallow geothermal systems (Deerman and  Kavanaugh 
1991,  Gu and O’Neal 1995, Kavanaugh and Rafferty 1997, Zanchini and Pulvirenti 2013).  

A shallow geothermal system, known as geothermal heat pump (GHP), and also ground 
source heat pump (GSHP), is a source of renewable energy that utilizes the earth heat 
energy from shallow depths for heating and cooling of buildings. It works by circulating 
a fluid in a borehole heat exchanger (BHE) which ensures a good thermal interaction with 
the surrounding soil mass. In many of the currently available models for shallow 
geothermal systems, the BHE is considered as a constant heat source.  

Usually, shallow geothermal systems consist of multiple borehole heat exchangers. 
Modelling such a system typically requires numerical methods, such as the finite 
difference (Yavuzturk et al 1999, Lee and Lam 2008), finite volume (Nabi and Al-Khoury 
2012a and 2012b), or finite element (Diersch et al. 2011a and 2011b, Al-Khoury 2012b). 
Nevertheless, some limited number of analytical and semi-analytical models has been 
introduced, notably those given by Eskilson and Claesson (1988), Pasquier and Marcotte 
(2013) and Erol et al (2015). The basic idea behind the possibility of utilizing analytical 
methods for solving multiple heat sources problems is the use of the superposition 
principle.  

Eskilson and Claesson (1988) introduced a semi-analytical model for heat flow in a 1D 
finite line heat source embedded in an axisymmetric solid mass. They utilized the 
principle of superposition to account for multiple heat sources. They introduced what they 
termed “error” to approximate the difference between heat flow due to a single heat 
source and that of multiple heat sources. The approximation is made using the Fourier 
expansion to the first order of the thermal interaction between the heat sources. Their 
solution is effective for symmetric heat sources distribution, and necessitates separation 
between heat sources at the corners of the geometry and those in the middle.     

Pasquier and Marcotte (2013) introduced a semi-analytical model for heat flow in a solid 
mass subjected to multiple heat sources with time-varying heat fluxes and temperatures. 
The model allows for the imposition of heat sources with different heat fluxes or 
temperatures. They applied the fast Fourier transform for the temporal domain and the 
superposition principle for the spatial domain. The multiple heat sources system is solved 
using an iterative algorithm, which couples the thermal interaction between the involved 
heat sources. The algorithm has been applied to the infinite line source model, but can be 



3.2  Single heat source in a solid mass 

49 

extended to any model that can be decomposed into an incremental heat flux function, 
and the involved integral can be evaluated for a unit rectangular heat pulse, such as the 
finite line source and the infinite cylindrical line source. 

Erol et al. (2015) introduced a modified Green's function for heat flow in a porous domain 
subjected to a constant line heat source with a finite length. The prescribed heat flux is 
discontinuous, described by a rectangular pulses function. The convolution theory in time 
domain is utilized to solve the initial and boundary value problem for a single heat source. 
For the multiple heat sources, they utilized the superposition principle by summing up the 
temporal convolved functions of the heat sources. 

In this chapter, we elaborate on these models and introduce analytical solutions for 
transient heat flow in an infinite solid mass subjected to a varying single or multiple 
cylindrical heat sources. Solutions for two types of boundary conditions are introduced: 
a prescribed heat flux (Neumann boundary condition), and a prescribed temperature 
(Dirichlet boundary condition). We solve the initial and boundary value problem using 
the modified Bessel series and the fast Fourier transform. For multiple heat sources, we 
apply directly the superposition principle for the Neumann boundary condition. For the 
Dirichlet boundary condition, an analytical coupling allowing for the thermal interaction 
between all involved heat sources, is conducted. The heat sources can exhibit different 
time-dependent signals, and can have any distribution in space.    

 Single heat source in a solid mass 

Heat conduction in an infinite cylinder constituting a homogeneous, isotropic solid is 
described as  

2

2
1 1 0T T T

t r rr
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  
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                                                       (3.1) 

where 𝑇𝑇 = 𝑇𝑇(𝑟𝑟, 𝑡𝑡)  is the temperature of the solid mass; 𝑟𝑟  is the radial distance; and 
𝛼𝛼 (m2/s) is its thermal diffusivity, defined as 

 
c





                                                                                                                       (3.2) 

in which  (W/mK) is the thermal conductivity;  𝜌𝜌 (kg/m3) is the mass density; and            
𝑐𝑐  (J/kg.K) is the specific heat capacity.  

The initial condition is: 

 , 0 stT r t T                                                                                               (3.3) 

in which 𝑇𝑇𝑠𝑠𝑠𝑠  is the initial steady state temperature before operating the heat sources. 

The boundary condition at infinity is: 
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, , 0str t r tT T T                                                                                     (3.4)                                   

which implies that the heat source effect vanishes at far distances. 

The boundary condition at the sources might be any of two types:  

Neumann boundary condition:  

 s
r rs

dT q t
dr




                                                                                             (3.5) 

Dirichlet boundary condition:                                                                                              

  sr rs
T T t                                                                                                           (3.6) 

where 𝑞𝑞𝑠𝑠(𝑡𝑡) is the heat source flux (W/m); 𝑇𝑇𝑠𝑠(𝑡𝑡) is the heat source temperature; and  𝑟𝑟𝑠𝑠 is 
the radius of the heat source (for a line source, 𝑟𝑟𝑠𝑠 approaches zero).  

Applying Fourier transform of Eq. (3.1), gives (Al-Khoury 2012b):  
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
                                                                             (3.7) 

where T̂ is the temperature frequency response. Eq. (3.7) is a complex ordinary 
differential equation, describing a modified Bessel equation. The solution of this equation 
can be expressed as                  

   ˆ( , ) o oT r AK k r BI k r                                                                                 (3.8) 

where   

ik 


                                                                                                                     (3.9) 

and 𝐼𝐼𝑜𝑜 and 𝐾𝐾𝑜𝑜 are the first and second kind of modified Bessel functions.  

Applying the boundary condition, Eq.(3.4), to Eq.(3.8), leads to  

   ˆ 0o or
T AK BI


                                                                          (3.10) 

As   0oK    and  oI   , it implies that 𝐵𝐵 = 0, yielding  

 ˆ( , ) oT r AK k r                                                                                                  (3.11) 

Applying the prescribed heat flux boundary condition, Eq.(3.5), to Eq.(3.11), leads to  
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Substituting this equation into Eq. (3.11), gives  

 
   

 1

ˆˆ , s o

s

q K k r
T r

k K k r





                                                                                      (3.13) 

Applying the prescribed temperature boundary condition, Eq. (3.6), to Eq. (3.11), leads 
to  
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ˆ ( )s
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                                                                                                           (3.14) 

Substituting this equation into Eq. (3.11), gives  
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Eqs. (3.13) and (3.15) are the spectral solutions to the heat conduction equation in an 
infinite solid domain subjected to a single cylindrical heat source, describing a prescribed 
heat flux and a prescribed temperature, respectively.  

Applying the inverse fast Fourier transform to these equations gives: 

Prescribed heat source flux: 

 
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Prescribed heat source temperature: 

   
 
 

ˆ, o i tn
s nn

o s

K k r
T r t T e

K k r
                                                              (3.17) 

Compared to the solution given by Carslaw and Jaeger (1959) using the Laplace transform 
(see Section 3.4.1), two advantages can be deduced from the proposed solutions. First, 
the solution using the Fourier transform is elegant and straightforward. Second, the heat 
source, whether prescribed temperature or heat flux, can be constant or time-dependent. 
These advantages make the proposed solutions more general and easy to implement in 
computer codes or commercial software’s, such as (MATLAB 2019), (COMSOL 2019),  
(Maple 2019), etc...        
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 Multiple heat sources in a solid mass 

Eqs. (3.16) and (3.17) describe the temperature distribution in an infinite solid subjected 
to a cylindrical heat source for a Neumann boundary condition and a Dirichlet boundary 
condition, respectively. Here, we extend these solutions to multiple heat sources.  

The geometry of a multiple heat sources system can have any distribution, but for the 
sake of description, the heat sources are distributed on a plane to form a matrix of heat 
sources in a polar coordinate system, as shown in Figure 3.1. The radial distance between 
heat source 𝑆𝑆𝑖𝑖 and source 𝑆𝑆𝑗𝑗 is calculated as  

2 2
ij ij ijr x y                                                                                                          (3.18) 

in which 𝑥𝑥𝑖𝑖𝑖𝑖  and 𝑦𝑦𝑖𝑖𝑖𝑖 are the rectangular displacements of the two sources in the planar 
array. 

 

 
Figure 3.1: Heat sources geometry 

3.3.1 Multiple heat sources with prescribed heat flux 
As the system of equations governing heat conduction in an infinite solid is linear, the 
superposition principle applies. This simply implies summing the temperatures exerted 
by all involved heat sources on a point in space, as  

 
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                                                                                 (3.19)        

Applying the inverse fast Fourier transform to Eq. (19) yields the general solution in the 
time domain, as 
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3.3.2 Multiple heat sources with prescribed temperature 
In the prescribed temperature boundary condition case, the superposition principle is not 
directly applicable. The superposition in this case would algebraically add the 
temperatures exerted by the sources, giving rise to an unphysical increase or decrease of 
temperature. For instance, if a point in space with an initial temperature equal to zero is 
subjected to two equally distanced heat sources, with each prescribed by 10 °C, and if we 
assume that its distance to any of the sources implies raising its temperature by 8 °C, the 
superposition in this case would imply 16 °C, which is clearly not correct. Therefore, to 
solve this problem, coupling between the sources is carried out to modify their 
temperature amplitudes by considering the effect of the thermal interaction between them. 
The thermal interaction between the sources is described by the exact solution given in 
Eq. (3.15).   

Eq. (3.15), for a single heat source, can be written as 

   ˆ , oT r AK k r                                                                                                 (3.21) 

where 𝐴𝐴 = 𝐴𝐴(𝑟𝑟𝑠𝑠,𝜔𝜔) = 𝑇𝑇�𝑠𝑠(𝜔𝜔) 𝐾𝐾𝜊𝜊(𝑘𝑘 𝑟𝑟𝑠𝑠)⁄  represents the temperature amplitude at the heat 
source, and 𝐾𝐾𝜊𝜊(𝑘𝑘 𝑟𝑟) represents the dissipation of temperature at 𝑟𝑟 away from the source.  

For multiple heat sources, the temperature at a point in the system is described as   

       1 1 2 2
ˆ , o o M o MT r A K k r A K k r A K k r                                      (3.22) 

where 𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟𝑀𝑀 are the radial distance between a reference point and the heat sources 
𝑠𝑠1, 𝑠𝑠2, … 𝑠𝑠𝑀𝑀 respectively, and 𝐴𝐴1,𝐴𝐴2, … 𝐴𝐴𝑀𝑀 are their amplitudes. 

Solving Eq.(3.22) at the heat sources, yields 
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                       (3.23) 

which implies that the temperature at a heat source is a superposition of its temperature 
amplitude, 𝐴𝐴, and temperatures raised by the other sources; not solely its prescribed value. 
𝑟𝑟12, for instance, indicates the distance between heat source 1 and heat source 2, described 
by Eq. (3.18) 
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In a matrix format, Eq. (3.23) becomes  
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    (3.24) 

Solving for 𝐴𝐴′𝑠𝑠, yields 
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      (3.25) 

Substituting these temperature amplitudes into Eq. (3.22), and applying the inverse fast 
Fourier transform, yields the general solution in the time domain, as 

   , i tn
m o mn m

T r t A K k r e     (3.26) 

The temperature at any point in the system can be obtained. With this coupling technique, 
there is no need for distinguishing between corner or central heat sources. Also, the 
coupling is made analytically, alleviating the need for an iterative scheme. 

Model verification 

Three verification examples are studied: 

1) The prescribed heat flux solution for a single cylindrical heat source is verified
against the solution given by Carslaw and Jaeger (1959).

2) The prescribed temperature solution for a single cylindrical heat source is verified
against the solution given by the finite element package COMSOL Multiphysics
(COMSOL 2019).

3) Both, the prescribed heat flux and the prescribed temperature solutions for multiple
cylindrical heat sources are verified against the solutions given by COMSOL
Multiphysics.
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3.4.1 Verification against Carslaw and Jaeger infinite cylindrical 
heat source solution 

The prescribed heat flux solution for a single cylindrical heat source, Eq. (3.16), is 
verified against the solution given by Carslaw and Jaeger (1959) using the Laplace 
transform.  

Using the Laplace transform, the forward solution to Eq. (3.1), leads to 
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in which 𝑠𝑠 is the Laplace parameter. The inverse Laplace transform of this equation can 
be obtained using the Bromwich integral, which gives 
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Using contour integration, Carslaw and Jaeger (1959) provided a solution to this integral 
for a constant heat flux, of the form, 
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in which 

s                                                                                                          (3.30) 

where 𝐽𝐽𝜊𝜊, 𝐽𝐽1 ,𝑌𝑌𝜊𝜊  and 𝑌𝑌1 are the Bessel functions of the order 0 and 1, of the first and second 
kind respectively, and 𝑞𝑞𝑜𝑜 is a constant cylindrical heat flux per meter length.  

Exact solution of the integral in Eq. (3.29) is, if possible, complicated. Carslaw and Jaeger 
provided approximate solutions for short and long time scales. For the long time scale, 
the approximated solution is:  
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   (3.31) 

in which ln 0.57722C     

This solution has been intensively utilized for analyzing heat flow in shallow geothermal 
systems, and commonly known as the infinite cylindrical source model (ICS).  
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The ICS model and the proposed spectral model are employed to solve heat flow in a 
solid mass, subjected to a constant cylindrical heat flux source,    𝑞𝑞0 = −20 (W/m). The 
cylinder radius, 𝑟𝑟𝑠𝑠 = 10 cm, and the initial temperature, 𝑇𝑇𝑠𝑠𝑠𝑠 = 10  °C. The thermal 
parameters of the medium are:  =2.5 (W/mK),  𝜌𝜌 = 1680  (kg/m3), and                            
 𝑐𝑐 = 400 (J/kg.K).  

 

 

 

Figure 3.2:  Spectral model vs. Carslaw and Jaeger infinte cylindrical source 
model. 

In the spectral model, the number of the FFT samples is 16384, with two sample rates: 
1hr and 1 day, giving time windows of 16384 hours and 16384 days, respectively. Two 
calculations for different physical times were conducted: 1 month, and 1 year. 

Figure 3.2 shows the computational results obtained from both models. Apparently, the 
two results are nearly identical, especially at relatively short distances from the source. 
The ICS model exceeds the initial steady state temperature at larger distances, which is 
physically incorrect. Apparently, the use of three terms in the approximation solution in 
Eq. (3.31) is not sufficient at larger radial distances.    

3.4.2 Verification against the finite element method for a single 
heat source 

The prescribed temperature solution for a single cylindrical heat source, Eq.(3.17), is 
verified against the solution given by the finite element package COMSOL Multiphysics.  

The physical system is assumed to consist of a solid cylinder, 100 m in diameter, with an 
initial temperature 𝑇𝑇𝑠𝑠𝑠𝑠 = 10 °C subjected to a constant temperature heat source, 𝑇𝑇𝑠𝑠 =
0 °C, 10 cm in diameter, going through its central vertical axis. The material parameters 
of the medium are:  =1.5 (W/mK),  𝜌𝜌 = 1800 (kg/m3) , and 𝑐𝑐 = 600 (J/kg.K). 
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As the problem deals with an infinite domain, the finite element analysis is conducted 
using a two-dimensional mesh. The finite element mesh consists of 230,861 linear 
triangular elements. This, relatively fine mesh is utilized to ensure high accuracy in the 
numerical solution.    

Figure 3.3 shows the computational results obtained from both calculations. Apparently, 
the two results are nearly identical.  

 

 

 
Figure 3.3: Spectral model vs. COMSOL constant temperature single cylinder heat 

source model. 

 

3.4.3 Verification against the finite element method for multiple 
heat sources 

The prescribed heat flux and the prescribed temperature solutions for multiple cylindrical 
heat sources, Eqs. (3.20) and (3.26), respectively, are verified against the finite element 
solutions given by COMSOL Multiphysics. 

A. Prescribed heat flux analysis 

Heat flow due to nine heat sources, each 3 cm in radius, and inducing a constant heat flux 
𝑞𝑞𝑠𝑠 = 100 (W/m), distributed in a 3 × 3 symmetric matrix, is studied, Figure 3.4a. The 
initial temperature, 𝑇𝑇𝑠𝑠𝑠𝑠 = 10 °C and the material parameters of the medium are:  =2 
(W/m.K),  𝜌𝜌 = 2000 (kg/m3) , and 𝑐𝑐 = 1000 (J/kg.K). 

The finite element calculation is conducted for a 100 m in diameter solid mass, using a 
2D finite element mesh, consisting of 269,431 linear triangular elements, Figure 3.4b.  
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        (a)                                                                                (b) 

Figure 3.4: (a) heat sources geometry, (b) finite element mesh 

Figure 3.5: Prescribed heat flux spectral model vs. COMSOL finite element model, 
for the 1’st  observation line 
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Figures 3.5 and 3.6 show the computational results obtained from the proposed spectral 
model and the finite element model. They show the temperature distribution along the 
first observation line at 𝑦𝑦=2.5m, and the second observation line at 𝑦𝑦=5m, after 1 month, 
6 months, 1 year and 6 years, respectively. Apparently, the two results are nearly identical. 
Figure 3.6 demonstrates the significant effect of the individual heat sources on the 
temperature distribution. This effect is less pronounced in the first observation line 
(Figure 3.5), which exhibits some ripples near the heat sources in the first 6 months and 
disappears later on. The temperature in the region near the heat sources exhibits a 
significant increase, but further away, it is in the first year at its initial value                    
(𝑇𝑇𝑠𝑠𝑠𝑠 = 10 °C), but after 6 years, it exceeds this value. This entails that the effect of the 
heat sources has reached, in this example, to 50m from the left edge of the geometry.  

 

 

 

 

Figure 3.6: Prescribed heat flux spectral model vs. COMSOL finite element model, 
for the 2’nd observation line 
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B. Prescribed temperature analysis 

A similar analysis as the one conducted in the previous verification example has been 
conducted, but now the heat sources induce a constant temperature, 𝑇𝑇𝑠𝑠 = 20°C for each.  

Figures 3.7 and 3.8 show the computational results obtained from the proposed spectral 
and the COMSOL models, for the first and second observation lines, respectively. 
Apparently, the two results are nearly identical. A similar observation for the temperature 
distribution in both observation lines as that in the previous example is applied here. 
However, the temperature at the heat sources locations is fixed to the prescribed value.   

 

 

 

 

Figure 3.7: Prescribed temperature spectral model vs. COMSOL finite element 
model, for the 1’st observation line 
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Figure 3.8: Prescribed temperature spectral model vs. COMSOL finite element 
model, for the 2’nd observation line 

 Numerical Examples 

Two numerical examples are given here, describing two important features of the model: 
non-identical heat sources, and time varying heat signals.  

A. Non-identical heat sources  

The physical system is assumed to consist of three heat sources inducing temperatures: 
𝑇𝑇𝑠𝑠 = 20, 30 and 15 °C Figure 3.9. The cylindrical sources radius is 7 cm. The initial 
temperature, 𝑇𝑇𝑠𝑠𝑠𝑠 = 10 °C. The material parameters of the medium are:  =2.5 (W/m 
K),  𝜌𝜌 = 1680 (kg/m3) , and 𝑐𝑐 = 400 (J/kg K). 

Figure 3.10 shows the temperature radial distribution for 1 day, 1 month, 1 year and 20 
years operation time. The figure shows that after 1 day, there are three peak temperatures, 
clearly representing the prescribed values at the heat sources. The temperature in the 
regions immediately surrounding the heat sources has increased but further away, it is 
just above the initial temperature. After 1 month, the three peak values are observable but 
less obvious for the first and third heat sources. After 1 year, the first two heat sources 
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exhibit peaks, but the third exhibits a dip. The heat source in the middle tempt to increase 
the temperature in the region on the right side, but the prescribed temperature on the right 
side heat source brings it to its prescribed value. After 20 years, the temperature seems to 
reach its equilibrium. We observe one peak and one dip, and the regions in between had 
reached their steady states.      

The CPU time for the spectral analysis was 45 seconds for 100 observation points using 
Intel core 2.66 GHz processor. Using the same PC, it took 1 hour of CPU time for the 
finite element calculation for 20 years of operation with 1 day sampling rate.    

 

 

Figure 3.9: Heat sources geometry and their prescribed temperatures 

 

 

Figure 3.10: Radial temperature distribution for 3 heat sources with different 
prescribed temperatures 
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B. Time varying signals  

The physical system is assumed to consist of ten heat sources as shown in Figure 3.11. 
The initial temperature and the material thermal parameters of the medium are similar to 
those of the previous numerical example. The temperature variation with time is given by  

20 0 100 day
10 100 150 day
25 200 day
10 250 300 day
15 300 400 day
10 400 500 day

in

t
t

t
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t
t
t

           

                                                                              (3.32) 

which is depicted in Figure 3.12.   

 

 
Figure 3.11: Heat sources geometry 

 

 

.  

Figure 3.12: Temperature signal 
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This numerical example is introduced to illustrate the capability of the model to tackle 
complicated time varying boundary conditions. Figure 3.13 shows the temperature 
variation with time at the two observation points (see Figure 3.11). The figure shows that 
the observation point in the middle exhibits higher temperature than that at the edge. It 
also shows that the rectangular pulse signals show dissipation on their unloading parts, 
while that for the triangular signal, it shows a bell shape.     

 

 

 

Figure 3.13: Time varying temperature response for two observation points 

 

 Conclusions 

In this chapter, analytical solutions for transient heat conduction in an infinite solid mass 
subjected to a varying single or multiple cylindrical heat sources have been introduced. 
The solutions are formulated for two types of boundary conditions: a time-dependent 
Neumann boundary condition, and a time-dependent Dirichlet boundary condition. The 
governing heat equation for a single heat source is solved using the modified Bessel 
function, for the spatial domain, and the fast Fourier transform, for the temporal domain. 
For multiple heat sources, we apply directly the superposition principle for the Neumann 
boundary condition, but for the Dirichlet boundary condition, we conduct an analytical 
coupling, which allows for the exact thermal interaction between all involved heat sources.  

There are several features distinguishing the proposed solutions from others.  Compared 
to the Carslaw and Jaeger analytical solution, the proposed analytical solution, using the 
modified Bessel function and the fast Fourier transform, is exact at all radial points, highly 
elegant, robust and easy to implement in computer codes.  
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Compared to the finite element solution, the proposed analytical solution is exact and 
computationally very efficient. The CPU time for the three heat sources case given in 
Section 3.5, for instance, was 1 hour for the finite element calculation, while for the 
proposed solution, using the same PC, it was 45 seconds.   

Compared to Eskilson and Claesson and Pasquier and Marcotte, the superposition for the 
Dirichlet boundary condition is analytical. Eskilson and Claesson used an approximate 
function to simulate the thermal interaction between the heat sources, and Pasquier and 
Marcotte applied an iterative scheme to simulate this interaction.  

The heat sources can exhibit different time-dependent signals, and can have any 
distribution in space. Eskilson and Claesson model needs to differentiate between heat 
sources at the corners and those in the middle.  

As a consequence, the proposed analytical solution is suitable for implementation in 
computer codes, which can be utilized for forward heat flow analysis and design of 
geothermal borehole heat exchangers. And also, it can be utilized for inverse calculation 
of material parameters. 

 

 

 

 



 

 

 

 



 

 

 

  
A coupled spectral element – superposition model for 
detailed 3D heat flow in GSHP Systems 

This chapter introduces a semi-analytical model for simulating transient conductive-
convective heat flow in a three-dimensional shallow geothermal system consisting of 
multiple borehole heat exchangers (BHE) embedded in a multilayer soil mass. The model 
is formulated in three steps, starting from an axial symmetric system and ending in a 3D 
multilayer, multiple BHE system. In step 1, the model is formulated as a single BHE 
embedded in an axial symmetric homogeneous soil layer, and the governing heat 
equations are solved analytically using the fast Fourier transform, the eigenfunction 
expansion and the modified Bessel function. In step 2, the model is extended to 
incorporate multiple layers using the spectral element method. And in step 3, the model 
is extended to incorporate multiple borehole heat exchangers using a superposition 
technique suitable for Dirichlet boundary conditions. The ensuing computational model 
solves detailed three-dimensional heat flow using minimal CPU time and capacity. The 
number of the required spectral elements is equal to the number of soil layers embedded 
in which any number of borehole heat exchangers with any configuration. A verification 
example illustrating the model accuracy and numerical examples illustrating its 
computational capabilities are given. Despite the apparent rigor of the proposed model, 
its high accuracy and computational efficiency make it suitable for engineering practice. 

 

 

 

 

This chapter is based on BniLam N., Al-Khoury R., Shiri A. and Sluys L.J. (2018).  A 
semi-analytical model for detailed 3D heat flow in shallow geothermal systems. 
International Journal of Heat and Mass Transfer Volume 123, Pages 911-927. 
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 Introduction 

Extracting thermal energy from relatively shallow depths has become an established 
technology, and shallow geothermal systems known as geothermal heat pumps (GHP), 
ground source heat pumps (GSHP) or borehole heat exchangers (BHE) are in use all over 
the world. A BHE works by circulating a fluid, mostly water with antifreeze, through a 
closed loop of polyethylene pipe that is inserted in a borehole embedded in a soil mass. 
The borehole is filled with grout to fix the polyethylene pipe and to ensure a good thermal 
interaction with the soil. Several types of BHE are available in practice. In this work, the 
BHE is assumed to consist of a vertical single U-tube filled with circulating water and 
embedded in grout.  

The borehole heat exchanger is a slender heat pipe with dimensions of the order of 30 
mm in diameter for the U-tube, and 150 mm in diameter and 100 m in length for the 
borehole. The U-tube carries a circulating fluid that collects heat (or rejects heat) from 
(or to) the surrounding soil via convection-conduction heat transfer mechanisms.  

In practice, shallow geothermal systems consist of multiple borehole heat exchangers 
embedded in a multilayer soil mass. Computational modelling of such a system, in spite 
of the bulk of existing models, is state of the art due to the combination of the extreme 
slenderness of the boreholes heat exchangers, the presence of multiple components with 
different thermal properties and the involved heat convection. Consequently, several 
theoretical and computational assumptions and approximations have been introduced in 
order to circumvent this computationally challenging combination and obtain feasible 
solutions. All known solution techniques, such as analytical, semi-analytical and 
numerical, have been utilized for this purpose. Nevertheless, in spite of the versatility of 
the numerical methods, analytical and semi-analytical solutions are yet preferable 
because of their comparatively little demands on computational power and ease of use in 
engineering practice. In Al-Khoury (2012b) a thorough review of models utilized in this 
field is given. In this chapter, focus is placed on models based on the semi-analytical 
solution technique.  

Eskilson and Claesson (1988) introduced a semi-analytical model for heat flow in a 
borehole heat exchanger constituting two fluid channels and a borehole wall, embedded 
in an axial symmetric soil mass. The governing heat equations of the two fluid channels 
are solved using the Laplace transform and that for the soil mass using the finite difference 
method. They extended the model to 3D by use of the principle of superposition to 
account for multiple heat sources. Their solution is effective for relatively long term 
analyses and for a symmetric heat sources configuration.    

Pasquier and Marcotte (2013) introduced a semi-analytical model for heat flow in a solid 
mass subjected to multiple infinite line heat sources with time-varying heat fluxes and 
temperatures. They applied the fast Fourier transform for the temporal domain and the 
superposition principle for the spatial domain. The thermal interaction between the 
involved heat sources is solved using an iterative algorithm.  
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Erol et al (2015) introduced a modified Green's function for heat flow in a porous domain 
subjected to a constant line heat source with a finite length. The convolution theory is 
utilized to solve the initial and boundary value problem for a single heat source. For 
multiple heat sources, they utilized the superposition principle by summing up the 
temporal convolved functions of the heat sources.  

Raymond and Lamarche (2013) analyzed the effect of multiple layers in determining the 
thermal parameters from the thermal response test (TRT) results. They adopted an 
analytical computer code (MLU), which was originally developed for transient water flow 
in layered aquifers, to describe conductive heat transfer in shallow geothermal systems 
constituting multiple layers and subjected to a variable heat injection rate. The Laplace 
transform is utilized to solve the system of partial differential equations describing heat 
flow in the layered system.  

Abdelaziz et al. (2014) extended the finite line heat source solution to a multiple segment 
finite line heat source resembling a layered soil profile. The temperature of the 
heterogeneous domain is obtained by summing up the temperature in a typical 
homogeneous domain with that obtained due to the presence of other layers. The latter is 
calculated by assuming a composite system constituting smeared thermal parameters, 
described as a function of the relative distances of the layers from the point of interest.  

Apparently, semi-analytical solutions for heat flow in multiple heat sources embedded in 
a homogeneous soil mass exist. Also, semi-analytical solutions for a single heat source 
embedded in a multilayer system exist. However, semi-analytical solutions for multiple 
heat sources embedded in a multilayer soil mass do not exist. This constitutes the 
objective of this chapter.   

In a previous work, BniLam and Al-Khoury (2016) introduced an analytical model for 
transient heat flow in an infinite soil mass subjected to multiple cylindrical heat sources. 
In a later work, BniLam and Al-Khoury (2017) introduced an axial-symmetric spectral 
element model for heat flow in a borehole heat exchanger embedded in a multilayer 
system. In this chapter, these two models are elaborated and put together to formulate a 
detailed three-dimensional shallow geothermal system with any arbitrary layout 
configuration. The multiple infinite cylindrical heat sources of the first model are replaced 
by multiple finite borehole heat exchangers, and are incorporated in the multilayer system 
of the second model. This entails establishing a tailored thermal interaction between the 
borehole and the surrounding soil mass, and between the boreholes themselves. The 
superposition principle for Dirichlet boundary conditions, introduced in BniLam and Al-
Khoury (2016), is tailored to the multiple BHE case. By this, the soil temperature 
amplitudes at the borehole locations are coupled to the temperatures in the BHE 
components, then coupling all involved boreholes via a matrix technique. Additionally, 
in this chapter, we modified the formulation of the 2-noded spectral element. In BniLam 
and Al-Khoury (2017), the spectral element was formulated based on the first kind Bessel 
function 𝐽𝐽𝑜𝑜, which is suitable for a line source case where the borehole and the soil mass 



Chapter 4 

70 

share and coincide on the axis of symmetry. Here, the solution is modified to lead to the 
use of the modified Bessel function 𝐾𝐾𝑜𝑜, which is suitable for a cylindrical source case 
where the borehole and the soil mass share the axis of symmetry, but the soil mass starts 
at the radius of the borehole. The latter function is more physical in representing the 
cylindrical nature of the BHE-soil interaction, and it has no roots to be determined and 
summed over. Details of the modelling approach are given hereafter. 

 Modelling approach 

A shallow geothermal system, particularly a geothermal heat pump, consists basically of 
two thermally interacting domains: the borehole heat exchanger and the soil mass. In 
practice, the system consists of several borehole heat exchangers embedded in a 
multilayer layer soil mass. Solving heat flow in such a three-dimensional, 
nonhomogeneous geometry typically requires the use of a numerical method, such as the 
finite element, the finite volume or the finite difference method. However, these methods, 
and due to the disproportionate geometry of the system and the presence of the convective 
heat transfer mechanism, might require significant CPU time and capacity. To avoid this, 
here, a semi-analytical solution is proposed. The heat flow in this system is modelled in 
three steps, starting from an axial symmetric system and ending in a 3D multilayer, 
multiple BHE system, as outlined hereafter.  

Step 1: The model is first formulated as a single BHE embedded in a semi-infinite 
homogeneous soil mass. The borehole heat exchanger is modelled as 1D with its axis 
coinciding on the vertical z-axis. The 1D assumption is reasonably valid because of the 
extreme slenderness of the borehole that makes the temperature gradient in the radial 
direction of the BHE components negligible. A single U-tube consisting of pipe-in, pipe-
out and grout is considered in this study, but extension to other BHE types is 
straightforward. The BHE components coincide geometrically on each other, but 
thermally interacting with each other.  

The soil mass, on the other hand, is modelled as a semi-infinite, axial symmetric domain 
with its axis of symmetry coinciding with the centerline of the borehole heat exchanger 
(𝑧𝑧-axis). In principle, the heat equation for this domain must be formulated in the 𝑟𝑟, 𝑧𝑧- 
coordinate system. Solving this equation analytically would require an extra separation 
of variables and the determination of an additional Fourier coefficient. To circumvent this, 
we introduced a soil film connecting the BHE to the soil mass, as shown in Figure 4.1. 
The soil film has the soil mass properties, and its heat equation describes the temperature 
distribution in the soil mass along the 𝑧𝑧 direction, which acts as the amplitude to the radial 
direction (𝑟𝑟-coordinate). By this, the soil mass heat equation can be formulated in the 
radial direction only, making it relatively easy to solve. However, adding a soil film 
entails assigning a thickness, which is apparently hypothetical (see Figure 4.2). As the 
soil film temperature acts as the amplitude to the soil mass temperature, the choice of its 
thickness can affect the temperature distributions in the soil mass and the BHE 
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components. To tackle this issue, a thorough study has been conducted and it was found 
that with the use of a proper thermal interaction coefficient at the BHE-soil interface, the 
temperature distributions in the BHE components and the soil mass become effectively 
independent of the soil film thickness. In Section 4.10, a numerical example highlighting 
this independency is given.        

The spectral analysis is utilized to solve the governing equations on the basis of the fast 
Fourier transform (FFT). The BHE heat equations are solved using the eigenfunction 
expansion, and the soil mass heat equation is solved using the modified Bessel function. 
See Sections 4.4 and 4.5.   

 

Figure 4.1: A schematic representation of a single U-tube BHE and its surrounding 
soil mass (recall from Chapter 2) 

 

 

Figure 4.2: The boundary between the BHE and the soil film, and the hypothetical 
boundary between the soil film and the soil mass 
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Step 2: The model in Step 1 is extended to incorporate multiple layers exhibiting different 
thermal properties using the spectral element method. The spectral element method is an 
elegant technique combining analytical solutions of a homogeneous domain to the finite 
element solution of nonhomogeneous domains. Here, the spectral analysis of the BHE-
soil domain of Step 1 is discretized into a 2-node spectral element (see Figure 4.3). Each 
soil layer is described by a single spectral element, and a soil mass constituting several 
layers is described by spectral elements equal in number to the soil layers. The assembly 
of the spectral element matrices is done similar to the finite element method. See     
Section 4.6.   

 

 

Figure 4.3: Two-node spectral element (recall from chapter 2) 

 

Step 3: The model in Step 2 is extended to incorporate multiple borehole heat exchangers 
using a superposition technique. The superposition principle is typically applicable to heat 
sources with Neumann boundary conditions. For Dirichlet boundary conditions, as for 
the case in this chapter, the superposition can only be applied by modifying the 
temperature amplitude at each heat source by considering the thermal interaction with 
other heat sources. Using the superposition technique makes the model three-dimensional. 
See Section 4.7.   

 Governing equations  

The governing equations for the GSHP system are given in detail in Chapter 2 but for 
completeness they are re-stated here.  

Heat equations of a shallow geothermal system consisting of a single U-tube borehole 
heat exchanger, made of pipe-in, pipe-out, grout, and a soil film, embedded in a soil mass 
can be described as: 
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Pipe-in 
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Pipe-out       
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Grout  
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Soil film      
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Soil mass 
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where the subscripts 𝑖𝑖, 𝑜𝑜,𝑔𝑔  and 𝑠𝑠  represent pipe-in, pipe-out, grout and soil film, 
respectively; and 𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖(𝑧𝑧, 𝑡𝑡),  𝑇𝑇𝑜𝑜  = 𝑇𝑇𝑜𝑜(𝑧𝑧, 𝑡𝑡),  𝑇𝑇g = 𝑇𝑇g(𝑧𝑧, 𝑡𝑡), 𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑠𝑠(𝑧𝑧, 𝑡𝑡)  and 𝑇𝑇soil =
𝑇𝑇soil(𝑟𝑟, 𝑡𝑡)  are the temperatures in pipe-in, pipe-out, grout, soil film and soil mass, 
respectively. 𝜆𝜆, 𝜆𝜆g and 𝜆𝜆𝑠𝑠 (W mK⁄ ) are the thermal conductivity of the circulating fluid, 
grout and soil film, respectively; u (m/s) is the circulating fluid velocity; 𝑏𝑏𝑖𝑖g, 𝑏𝑏𝑜𝑜g, 𝑏𝑏gs, 
𝑏𝑏𝑠𝑠𝑠𝑠 (W/m2K) are the reciprocal of the thermal resistance between pipe-in-grout, pipe-
out-grout, grout-soil film, and soil film-soil mass, respectively (see Section 2.3 for their 
determination);  𝜌𝜌𝜌𝜌 (J/m3K) is the volume heat capacity, with 𝑐𝑐 (J/kg K) the specific heat 
and 𝜌𝜌 (kg/m3) the mass density; 𝑑𝑑𝑑𝑑𝑖𝑖  , 𝑑𝑑𝑑𝑑𝑜𝑜  , 𝑑𝑑𝑑𝑑g , 𝑑𝑑𝑑𝑑𝑠𝑠 (m3) are the control volumes of 
pipe-in, pipe-out, grout and soil film, respectively; 𝑑𝑑𝑑𝑑𝑖𝑖g , 𝑑𝑑𝑑𝑑𝑜𝑜g , 𝑑𝑑𝑑𝑑gs , 𝑑𝑑𝑑𝑑𝑠𝑠  (m2) are the 
surface areas of the control volumes of pipe-in, pipe-out, grout and soil film, respectively; 
𝑟𝑟f is the soil film radius, describing the location of a hypothetical boundary between the 
soil film and the soil mass (see Figure 4.2); and 𝛼𝛼(m2/s) is the thermal diffusivity of the 
soil, described as   
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Eq. (4.4) is a nonhomogeneous partial differential equation due to the presence of 
𝑇𝑇soil|𝑟𝑟=𝑟𝑟f . As it will be shown later, this equation will be converted to a homogeneous 
equation by relating 𝑇𝑇soil to 𝑇𝑇𝑠𝑠 .  

The initial condition is                                                   

soil( ,0) ( ,0) ( ,0) ( ,0) ( ,0)i o g sT z T z T z T z T r                                                  (4.7) 

where initially the temperature distribution in the BHE components is equal to that of the 
steady state condition of the soil mass before the heating/cooling operation has been 
started.  

The boundary conditions in the BHE are 

in(0, ) ( )iT t T t                                                                                                          (4.8) 

( , ) ( , )i oT L t T L t                                                                                                      (4.9) 

where 𝑇𝑇in is the fluid temperature at 𝑧𝑧 = 0, coming from the heat pump. It can have any 
arbitrary shape in time. Eq. (4.9) implies that at the bottom of the BHE, 𝑧𝑧 = 𝐿𝐿 , the 
temperature of the fluid in pipe-in is equal to the temperature of the fluid in pipe-out.  

The boundary conditions in the soil mass are 

soil b sr rT T
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 soil , 0T r t                                                                                                     (4.11) 

where Eq. (4.10) indicates that the soil mass physically includes the soil film and its 
temperature is equal to the soil film temperature at the boundary with the borehole         
(𝑟𝑟 = 𝑟𝑟b). However, as the soil film has a thickness, the soil mass is hypothetically in 
contact with the soil film at  𝑟𝑟 = 𝑟𝑟f , as shown in Figure 4.2, and mathematically indicated 
in Eq. (4.4). In what follows it will be shown how these two boundaries will be utilized 
for the determination of the integration constants. Eq.(4.11) implies that the temperature 
variation in the soil mass at an infinitely far distance is zero.   

 Solution of soil heat equation 

Fourier transform of Eq.(4.5) gives 
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                                                                             (4.12) 
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in which T̂ represents the temperature in the frequency domain, and

s
ik 


       (4.13) 

is the eigenvalue of the soil mass.  

Assume 𝑆𝑆 = 𝑘𝑘𝑠𝑠 𝑟𝑟, from which the following identities can be derived: 
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Substituting these identities into Eq.(4.12) gives 
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This equation is a standard modified Bessel function with a general solution expressed as 
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where 𝐼𝐼𝑜𝑜 and 𝐾𝐾𝑜𝑜 are the modified Bessel functions of the first and second kind.  

Applying the boundary condition in Eq. (4.11) to Eq. (4.16) leads to  
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but since 𝐼𝐼𝑜𝑜(∞) = ∞, 𝐴𝐴 in Eq. (4.17) must be 0, giving: 
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At 𝑟𝑟 = 𝑟𝑟b, Eq. (4.18) becomes 
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Applying the boundary condition in Eq.(4.10)  to Eq.(4.19) yields 
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Substituting Eq.(4.20) into Eq. (4.18), the soil temperature at any radial point can be 
calculated as 
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At the hypothetical boundary between the soil film and the soil mass, 𝑟𝑟 = 𝑟𝑟f, Eq. (4.21) 
gives 
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or, equivalently 
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with 
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which can be substituted into the transformed form of Eq. (4.4). 

Solution of BHE heat equations 

Applying Fourier transform to Eqs. (1)-(4), and substituting Eq.(4.23) into the 
transformed form of Eq. (4), gives 
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which forms a set of homogeneous equations that can be solved using the eigenfunction 
expansion. This set of homogeneous equations was obtained by converting Eq. (4.4) from 
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a nonhomogeneous differential equation, due to the presence of the 𝑇𝑇soil|𝑟𝑟=𝑟𝑟f  to a 
homogeneous equation by incorporating Eq.(4.23) into Eq.(4.28).  

The solutions to Eqs. (4.25)-(4.28) can be expressed as (Doyle 1997) 
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in which , ,i o gA A A and sA are the integral constants, and k denotes the system 

eigenvalues, which need to be determined.  

Substituting Eq. (4.29) into Eqs. (4.25)-(4.28), gives  
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Dividing Eqs. (4.30)-(4.33) by ikze , rearranging and putting it in a matrix form, gives  
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where 

2
11

13

i i i ig ig

ig ig

a k dV ik cudV i cdV b dS

a b dS

     



2
22

23

o o o og og

og og

a k dV ik cudV i cdV b dS

a b dS

     


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31

32

ig ig

og og

a b dS

a b dS





2
33

34

g g g g g ig ig og og gs gs

gs gs

a k dV i c dV b dS b dS b dS

a b dS

     



 
43

2
44 1

gs gs

s s s s s gs gs ss s f

a b dS

a k dV i c dV b dS b dS A 



    

Since îT , ĝT , ôT  and ŝT   are coupled, the constants, , ,i o gA A A and sA are related to

each other. Using Eqs. (4.30)-(4.33), the following relationships exist: 

Pipe-in-grout        

2

ig
i g

ig igig

i i i ig ig

A Y A

b dS
Y

k dV ik cudV i cdV b dS  




 

  (4.35)  

Pipe-out-grout 

2

og
o g

og ogog

o o o og og

A Y A

b dS
Y

k dV ik cudV i cdV b dS  




  

    (4.36)   

Soil film-grout 

 2 1

sg
s g

gs gssg

s s s s s gs gs ss s f

A Y A

b dS
Y

k dV i c dV b dS b dS A 




   

     (4.37)   

For each k there is a corresponding igY , ogY and sgY , i.e. there are 1
igY , 1

ogY , 1
sgY  for

k1, etc. (Doyle, 1988). 

The ∓ signs in Eqs. (4.35) and (4.36) refer to the fluid velocity direction at the nod. The 
fluid velocity in pipe-in at nod 1 is (– ), while it is (+) at nod 2 (see Figure 4.2). For pipe-
out, the signs are opposite. 

Non-trivial solution of Eq. (4.34) can only be obtained by letting the determinate equal to 
zero, giving a complex eight degree polynomial of the form: 
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2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 0a a k a k a k a k a k a k a k a k                     (4.38) 

This polynomial represents the eigenfunction of a single U-tube BHE, with k  denoting 
its set of eigenvalues determined by solving for the roots of Eq. (4.38). Only for this set 
of eigenvalues do the eigenfunction exist and satisfy the boundary conditions of the 
problem. Eight eigenvalues in two groups of four conjugates are obtained from Eq. (4.38). 
The first group is related to the positive heat flow, and the second to the negative heat 
flow. The exact form of the coefficients of Eq. (4.38) are given by BniLam and Al-
Khoury (2017), noting that the term ∑ 𝐴̅𝐴𝑚𝑚 should be exchanged by 𝐴𝐴𝑓𝑓. Though, the exact 
form of the coefficients can be obtained easily using MAPLE software (Maple 2019).  

 Modelling multilayer system: the spectral element formulation 

To clarify, the spectral element formulation that given in Chapter 2 is presented below. 

The spectral element method is utilized to extend the model from a single borehole heat 
exchanger embedded in a homogenous soil layer to a multilayer system constituting 
layers with different physical parameters.  

The spectral element method is utilized to formulate an axial symmetric spectral element 
for heat flow in a coupled borehole heat exchanger and a soil mass. The element consists 
of two nodes located at its boundaries, and denoting two parallel circular planes within 
which the heat is constrained to flow, Figure 4.3. In the vertical direction, the element 
extends to cover a whole layer depth, ℎ, and in the radial direction, the element is assumed 
to extend to infinity.  

Consider a one-dimensional heat flow in an element of length ℎ bounded by two nodes: 
node 1 and node 2. At each node, there are four degrees of freedom, representing the 
temperatures in pipe-in, pipe-out, grout and soil film. Using Eq. (4.29) and the eight 
eigenvalues obtained from solving Eq.(4.38), the temperatures at any point along the 
element can be calculated by the superposition of an incident flux from node 1 and a 
reflective flux from node 2, as  

       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

ˆ ik zik z ik z ik z
i i i i i

ik h z ik h z ik h z ik h z
i i i i

T A e B e C e D e

A e B e C e D e

  

       

   

   
                 (4.39) 

       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

ˆ ik zik z ik z ik z
o o o o o

ik h z ik h z ik h z ik h z
o o o o

T A e B e C e D e

A e B e C e D e

  

       

   

   
              (4.40) 

       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

ˆ ik zik z ik z ik z
g g g g g

ik h z ik h z ik h z ik h z
g g g g

T A e B e C e D e

A e B e C e D e

  

       

   

   
            (4.41) 
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       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

ˆ ik zik z ik z ik z
s s s s s

ik h z ik h z ik h z ik h z
s s s s

T A e B e C e D e

A e B e C e D e

  

       

   

   
  (4.42) 

As for the finite element method, the governing equations are solved in terms of the nodal 
values.  

At node 1, z = 0, substituting Eqs. (4.35)- (4.37) into Eqs.(4.39), (4.40) and (4.42), the 
nodal temperatures become 

1 1 1 1 2 1 3 1 4

5 6 7 8
2 5 2 6 2 7 2 8

1 1 1 1 2 1 3 1 4

5 6 7 8
2 5 2 6 2 7 2 8

1 1 1 1

ˆ

ˆ

ˆ

ig ig ig ig
i g g g g

ik ik ik ikig ig ig ig
g g g g

og og og og
o g g g g

ik ik ik ikog og og og
g g g g

g g g g

h h h h

h h h h

T A Y B Y C Y D Y

A Y e B Y e C Y e D Y e

T A Y B Y C Y D Y

A Y e B Y e C Y e D Y e

T A B C

   

   

   

   

   

   

   1

5 6 7 8
2 2 2 2

1 1 1 1 2 1 3 1 4

5 6 7 8
2 5 2 6 2 7 2 8

ˆ

g

ik ik ik ik
g g g g

sg sg sg sg
s g g g g

ik ik ik iksg sg sg sg
g g g g

h h h h

h h h h

D

A e B e C e D e

T A Y B Y C Y D Y

A Y e B Y e C Y e D Y e

   

   



   

   

   

   (4.43) 

At node 2, z = h, and similarly, upon substituting Eqs. (4.35)- (4.37) into Eqs.(4.39), (4.40) 
and (4.42), the nodal temperatures become 

31 2 4
2 1 1 1 11 2 3 4

2 2 2 25 76 8

31 2 4
2 1 1 1 11 2 3 4

2 2 2 25 76 8

1
2 1

ˆ

ˆ

ˆ

ik hik h ik h ik hig ig ig ig
i g g g g

ig ig ig ig
g g g g

ik hik h ik h ik hog og og og
o g g g g

og og og og
g g g g

ik h
g g

T A Y e B Y e C Y e D Y e

A Y B Y C Y D Y

T A Y e B Y e C Y e D Y e

A Y B Y C Y D Y

T A e B

  

  



   

   

   

   

  32 4
1 1 1

2 2 2 2

31 2 4
2 1 1 1 11 2 3 4

2 2 2 25 76 8

ˆ

ik hik h ik h
g g g

g g g g

ik hik h ik h ik hsg sg sg sg
s g g g g

sg sg sg sg
g g g g

e C e D e

A B C D

T A Y e B Y e C Y e D Y e

A Y B Y C Y D Y

 

  

 

   

   

   

     (4.44) 
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In a matrix form, Eqs. (4.43) and (4.44) can be presented as    

1
11 12 13 14 15 16 17 18

1
21 22 23 24 25 26 27 28

1 31 32 33 34 35 36 37 38

1 41 42 43 44 45 46 47 48

512

2

2

2

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

i

o

g

s

i

g

o

s

T
h h h h h h h h

T h h h h h h h h
T h h h h h h h h
T h h h h h h h h

hT

T

T

T

                               

1

1

1

1

52 53 54 55 56 57 58 2

61 62 63 64 65 66 67 68 2

71 72 73 74 75 76 77 78 2
81 82 83 84 85 86 87 88

2

g

g

g

g

g

g

g

g

A

B

C

D

h h h h h h h A
h h h h h h h h B
h h h h h h h h C
h h h h h h h h D

                           


       

                            (4.45) 

Where  

11 12 13 141 2 3 4

5 6 7 8
15 16 17 185 76 8

, , ,

, , ,

ig ig ig ig

ik h ik h ik h ik hig ig ig ig

h Y h Y h Y h Y

h Y e h Y e h Y e h Y e   

   

   
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5 6 7 8
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31 32 33 34
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31 2 4
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71 72 73 74
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ik hik h ik h ik hh e h e h e h e
h h h h

     

   
 



Chapter 4 

82 

31 2 4
81 82 83 841 2 3 4

85 86 87 885 76 8

, , ,

, , ,

ik hik h ik h ik hsg sg sg sg

sg sg sg sg

h Y e h Y e h Y e h Y e

h Y h Y h Y h Y

     

   
 

Eq.(4.45) indicates that the temperatures of pipe-in, pipe-out and soil film are represented 
in terms of the grout coefficients. This equation can be written as 

 node
ˆ , nk T H A                                                                                                 (4.46) 

Solving for A , gives  

  1
node

ˆ, nk  A H T                                                                                            (4.47) 

The next step is to relate the heat flux to the temperature at the nodes. The heat fluxes for 
the BHE components are  

,

,

i o
i i o o

g s
g g g s s s

T Tq dA q dA
z z

T Tq dA q dA
z z

 

 

 
 

 
 

 
 

 

 

                                                            (4.48) 

where 𝑑𝑑𝑑𝑑𝑖𝑖, 𝑑𝑑𝑑𝑑𝑜𝑜, 𝑑𝑑𝑑𝑑g and 𝑑𝑑𝐴𝐴𝑠𝑠 are the cross sectional areas of pipe-in, pip-out, grout and 
soil film respectively. The ∓ sign refers to the direction of the heat flux: the heat flux at 
node 1 is (– ) while at node 2, it is (+). 

Substituting Eqs. (4.35)- (4.37) into Eqs.(4.39), (4.40) and (4.42), gives 

 

   

   
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                     

                               (4.49) 
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 
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   

                     

                             (4.50) 
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   
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                     



   

                                  (4.51) 
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   

   

                     

                            (4.52) 

 

At the element nodes, Eqs. (4.49)-(4.52) become: 

At node 1, z = 0:  

1 1 2 1 3 11 2 3

5 6
1 4 1 5 2 6 254 6

7 8
7 2 8 27 8
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                   

                 (4.53) 
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At node 2, z = h: 
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   (4.54) 

In a matrix form: 
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

 (4.55) 

where 
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Eq.(4.55) can be described as 

 nodeˆ , nk q M A  (4.56) 

Substituting Eq.(4.47) into Eq.(4.56), yields 

  node node
ˆ ˆ, nk  K T q          (4.57)  

in which       1, , ,n n nk k k   K M H , representing the spectral element stiffness 
matrix, in resemblance to that of the finite element method. However, the spectral element 
matrix is exact and frequency-dependent. 

For a multilayer system, each layer is described by a spectral element. The assembly of 
the global matrix is done following the finite element method, in which matrices assembly 
is dictated by the elements and nodes numbers. In this assembly process, the way the 
nodes are numbered determines the locations of the coefficients in the global stiffness 
matrix.  
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Consider a borehole heat exchanger embedded in a two layer system shown schematically 
in Figure 4.4. The system is described by two spectral elements and three nodes, 
numbered as shown in the figure. Each node has four degrees of freedom, describing the 
temperatures in pipe-in, 𝑇𝑇�i, pipe-out, 𝑇𝑇�𝑜𝑜, grout, 𝑇𝑇�g, and soil film, 𝑇𝑇�s. The stiffness matrix 
for each element is described by Eq.(4.57). Using the finite element method, the global 
spectral element equation can then be described as 

1 1
11 12 1 1
1 1 2 2
21 22 11 12 2 2

2 2
3321 22

ˆ ˆ
ˆ ˆ
ˆ ˆ

K K

K K K K

K K

                                    

T q
T q

qT

                                                                     (4.58) 

in which the matrix on the left-hand side of the equation is the global stiffness matrix, 
with the superscript indices indicating the layer (element) number. The vector on the left-
hand side is the degrees of freedom vector, indicating the nodal temperatures that need to 
be determined; and the vector on the right-hand side is the force vector, indicating the 
corresponding nodal heat fluxes.  

The solution of the global system of equations is conducted using the IMSL mathematical 
library subroutine, lin_sol_gen, which solves a general system of linear equations        
𝑨𝑨𝑥𝑥 = 𝒃𝒃, (IMSL 2019). Eq. (4.38) is solved using the IMSL subroutine, DZPOCC, which 
solves for the roots of a polynomial with complex coefficients. The reconstruction of the 
time domain is carried out using the inverse FFT algorithm.  

Upon solving the nodal values, the temperature anywhere within the element can be 
determined by the inverse fast Fourier transform, as : 

 
       

31 2 4
1 1 1 1

5 6 7 8
2 2 2 2

,
ik zik z ik z ik z

i tn
n ik L z ik L z ik L z ik L z

e e e e
z t e

e e e e


  

       

            


A B C D
T

A B C D
     

 (4.59) 

where 𝐓𝐓(𝑧𝑧, 𝑡𝑡) represents 𝑇𝑇𝑖𝑖(𝑧𝑧, 𝑡𝑡), 𝑇𝑇𝑜𝑜(𝑧𝑧, 𝑡𝑡), 𝑇𝑇g(𝑧𝑧, 𝑡𝑡) or 𝑇𝑇𝑠𝑠(𝑧𝑧, 𝑡𝑡) in the time domain. The 
integration constants in Eq. (4.59) are determined from Eq.(4.47).  

Upon solving the temperatures in the BHE, the temperature in the time domain in the soil 
mass can be determined using Eq. (4.21), as   

   
 
 soil

b

ˆ, , , o s i tn
sn

o s

K k r
T r z t T z e

K k r
                                                             (4.60) 
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 Modelling multiple borehole heat exchangers: a superposition 
technique  

A superposition technique for Dirichlet boundary conditions is developed to extend the 
model from a single BHE embedded in an axial symmetric, multilayer domain to multiple 
borehole heat exchangers embedded in a three-dimensional domain.   

Eq. (4.21) is the solution of the soil heat equation due to a single BHE. Here, we extend 
this solution to multiple borehole heat exchangers.  

 

 
Figure 4.4: Two-layer system and its spectral element discretization 

 

 
Figure 4.5: Multiple borehole heat exchangers configuration 
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Figure 4.5 shows a network of 𝑛𝑛 × 𝑚𝑚  borehole heat exchangers. The radial distance 
between BHE𝑖𝑖 at (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) and BHE𝑗𝑗 at (𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗)  is calculated as  

2 2
ij ij ijd x y                                                                                                         (4.61) 

in which 𝑥𝑥𝑖𝑖𝑖𝑖 = �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� and 𝑦𝑦𝑖𝑖𝑖𝑖 = �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�.  

As Eq. (4.21) imposes Dirichlet boundary condition at the boundary between the soil 
mass and the BHE, the superposition principle is not directly applicable. The 
superposition principle works directly for Neumann boundary conditions, and the 
temperature anywhere in the domain is calculated simply by the algebraic sum of 
temperatures aroused by heat fluxes from all heat sources. At steady state, the temperature 
will reach equilibrium and the heat fluxes become constant. For Dirichlet boundary 
conditions, however, the superposition works on condition that the prescribed 
temperature at a borehole must be made equal to the sum of temperatures aroused at its 
boundary by all boreholes, including itself. This entails modifying the temperature 
amplitudes at the boreholes and coupling them via a matrix technique, as described 
hereafter.   

The temperature of a soil point at distance 𝑟𝑟  from a BHE can be calculated using    
Eq.(4.21), which can be written in a general form as 

   soil
ˆ

o sT r B K k r                                                                                              (4.62) 

For multiple borehole heat exchangers, and following the superposition principle, the 
temperature of a soil point at distances 𝑟𝑟1 … 𝑟𝑟𝑁𝑁  from 𝑁𝑁 borehole heat exchangers can be 
described as   

       soil 1 1 2 2
ˆ

o s o s N o s NT r B K k r B K k r B K k r                                     (4.63) 

As mentioned above, the temperature amplitudes ( 𝐵𝐵1 …𝐵𝐵𝑁𝑁 ) at the borehole heat 
exchangers need to be modified to take into consideration the effect of all involved 
boreholes. Solving Eq. (4.63) at the BHE locations, and upon imposing the boundary 
condition in Eq.(4.10), it yields   

     
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1 1 2 12 1

2 1 21 2 2

1 1 2 2

ˆ

ˆ
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s o s o s b N o s N

sN o s N o s N N o s b

T B K k r B K k d B K k d

T B K k d B K k r B K k d

T B K k d B K k d B K k r

   

   

   





  



                    (4.64) 

in which 𝑑𝑑12 is the distance between BHE1 and BHE2, etc., as shown in Figure 4.5.  

In a matrix format, Eq. (4.64) becomes   
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     
     

     
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ˆ
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



   





                             (4.65) 

This equation states that the prescribed temperature at the borehole, 𝑇𝑇�𝑠𝑠1 for instant, is 
equal to its temperature plus temperatures generated by all other boreholes at its boundary. 
Its temperature, 𝐵𝐵1 in this case, is not its prescribed value, but has to be determined by 
solving Eq. (4.65).  

Eq. (4.65) can be expressed as  

ˆ
s T G B                                                                                                                  (4.66) 

Solving for 𝐁𝐁, gives  

ˆ
s

-1B = G T                                                                                                                (4.67) 

Upon substituting Eq. (4.67) into Eq.(4.63), the temperature at any radial point in the soil 
mass can be calculated.   

 Model verification 

Analytical solution describing heat flow in multiple borehole heat exchangers embedded 
in a multilayer soil mass has not been introduced before. Accordingly, verification of the 
proposed model is done by comparing its computational results with those obtained from 
a detailed finite element model. The finite element package COMSOL Multiphysics 
(COMSOL 2019) is utilized. To reduce the CPU time of the finite element analysis, a 
relatively small geometry has been designed for this purpose.  

A shallow geothermal system constituting four borehole heat exchangers embedded in a 
soil mass consisting of two soil layers with different thermal conductivity is modelled. 
The borehole heat exchangers are assumed 10 m long, constituting a single U-tube and 
grout. The soil mass is 10 m in depth and consisting of two layers, each 5 m in depth. It 
radially extends to infinity.   

The borehole heat exchangers are configured as shown in Figure 4.6. Details of the 
material and geometrical parameters are given in Table 4.1. The initial temperature in all 
components is assumed 0 °C, and the temperature at the inlets of pipe-in (𝑇𝑇in) of the four 
borehole heat exchangers is prescribed to 20 °C.  

The spectral element mesh consists of two, 2-node spectral elements. The use of two 
spectral elements is necessary because the geometry involves two soil layers with 
different physical parameters. The number of the borehole heat exchangers does not 
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influence the required number of spectral elements, as they are simulated by the 
superposition technique introduced in Section 4.7.  

The finite element mesh, on the other hand, is made 60 m x 60 m x 10 m, and it consists 
of 494012, 3D tetrahedral elements, where along the BHE and in the surrounding soil 
mass, the mesh is made relatively fine. Figure 4.7 shows the finite element mesh and the 
top view at the boreholes region.  

 

Table 4.1: Material and geometrical parameters of the verification example 

Parameter Value 

Borehole:  

Borehole length 10 m 

Borehole diameter 0.10 m 

U-tube external diameter 0.03 m 

U-tube thermal conductivity, 𝜆𝜆𝑝𝑝        0.42 W/(mK) 

Fluid:  

Density, 𝜌𝜌  1000 kg/m3 

Specific thermal capacity, 𝑐𝑐 4186 J/(kg.K) 

Thermal conductivity, 𝜆𝜆      0.56 W/(mK) 

Dynamic viscosity, 𝜇𝜇 0.001 Pa.s 

Grout:  

Density, 𝜌𝜌g 1420 kg/m3 

Specific thermal capacity, 𝑐𝑐g 1197 J/(kg.K) 

Thermal conductivity, 𝜆𝜆g 0.65 W/(m.K) 

Soil:     

Film thickness  2 cm 

density,  𝜌𝜌s 1680 kg/m3 

Specific thermal capacity, 𝑐𝑐𝑠𝑠 400 J/(kg.K) 

Thermal conductivity, 𝜆𝜆s at 𝑧𝑧 ≥  −5𝑚𝑚 1 W/(m.K) 

Thermal conductivity, 𝜆𝜆𝑠𝑠 at 𝑧𝑧 ≤  −5𝑚𝑚 2 W/(m.K) 
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Figure 4.8 shows the temperature distributions in pipe-in, pipe-out and grout of one of the 
boreholes as obtained from the spectral element model and the finite element model, for 
short and long terms of operation. The figure shows a good match between the two results, 
though a deviation of less than 0.5 °C exists around the outlet of pipe-out. This deviation 
can be explained as a combination between the inaccuracy of the spectral element model 
due to the negligence of the radial dimension of the grout, and the typical inaccuracy of 
the finite element model due to the mesh size effect. Nevertheless, this deviation is 
relatively small and diminishes as time evolves.   

 

 

 

Figure 4.6: 4 borehole heat exchangers embedded in a two-layers soil mass 

 

 

 

Figure 4.7: The finite element mesh 
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Physically, the figure shows a jump at the boundary between the upper and the lower soil 
layers due to the difference in their thermal conductivities. This demonstrates the 
capabilities of both computational techniques for simulating such a phenomenon.  

Figures 4.9 and 4.10 show the radial soil temperature profile along Observation line 1 
(see Figure 4.6), for the upper and lower soil layers, respectively. Similarly, Figures 4.11 
and 4.12 show the radial soil temperature profile along Observation line 2. The figures 
show a good match between the two computational results. The small deviation between 
the results can be attributed to the finite element mesh size, which is relatively coarse in 
the radial direction. Nevertheless, this deviation is relatively small and diminishes as time 
evolves.    

Physically, the figures show that the temperature profile along Observation line 1 exhibits 
a clear jump at BHE1 and BHE2 locations. This is not apparent along Observation line 2 
because it is relatively far from the boreholes. Both models capture this behaviour 
properly.  

 

 

 
 

 

Figure 4.8: Temperature profile for pipe-in, pipe-out and grout for one of the 4 
BHE’s at different times 
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Figure 4.9: Radial temperature profile along Observation line1 for the top soil 
layer 

 

 

Figure 4.10: Radial temperature profile along Observation line 1 for the bottom 
soil layer 
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Figure 4.11: Radial temperature profile along Observation line 2 for the top soil 
layer 

 

 

Figure 4.12: Radial temperature profile along Observation line 2 for the bottom 
soil layer 



4.9  Numerical examples 

95 

 Numerical examples  

To demonstrate the model computational capabilities in simulating complicated 
geometries, a numerical example illustrating heat flow in a 3D shallow geothermal system 
is introduced. The geothermal system is assumed to consist of 9, 100 m in length, borehole 
heat exchangers embedded in 5 soil layers with highly contrasted thermal properties. The 
soil thickness is 20 m for each.  

A 3 x 3 BHE configuration as shown in Figure 4.13 is assumed. The material and 
geometrical parameters of the geothermal system are given in Table 4.2 and Figure 4.14. 
The initial temperature in all components is assumed 10 °C, and the temperature at the 
inlets of pipe-in of the 9 borehole heat exchangers is prescribed to 30 °C. The geometry 
is simulated using 5, 2-node spectral elements.  

The proposed model allows the calculation of temperature distributions in all borehole 
heat exchangers without differentiation between inner, side and corner boreholes. Here, 
we present the computational results at the central BHE (BHE5) and two soil points, 
indicated as observation points in Figure 4.13.  

 

 

Figure 4.13: Borehole heat exchangers configuration 

Figure 4.15 shows the temperature distributions in pipe-in, pipe-out and grout of BHE5 
on short and long terms of operation. The first figure shows that after 100 seconds, the 
fluid has travelled 50 m in pipe-in, giving rise to thermal interaction with the soil via the 
grout. As a result, the fluid in pipe-in cools down while the grout temperature rises up. 
Additionally, this figure shows an interesting increase in temperature in pipe-out despite 
the fact that the fluid hasn’t reached it yet. This increase in temperature is due to heat 
conduction occurring as a result of its direct contact with the grout. At latter times, Figure 
4.15 shows the effect of the layers thermal conductivities on the temperature distribution 
in the grout and its influence on pipe-in and pipe-out.  
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Table 4.2. Material and geometrical parameters of the numerical example 
 

 

 

 

Figure 4.14: A schematic representation of the geometry of the numerical example 

Parameter Value Parameter Value 

Borehole:  Soil:     

Borehole length 100 m Film thickness  0.02 m 

Borehole diameter 0.1  m Density , 𝜌𝜌𝑠𝑠 1680 kg/m3 

Pipe external diameter 0.03 m Specific thermal capacity , 𝑐𝑐𝑠𝑠 400 J/(kg.K) 

Pipe thermal conductivity     0.42 W/(mK)   

Fluid:  𝟎𝟎 ≥ 𝒛𝒛 ≥ −𝟐𝟐𝟐𝟐𝒎𝒎  

Density, 𝜌𝜌  1000 kg/m3 Thermal conductivity, 𝜆𝜆𝑠𝑠    2.5 W/(m.K) 

Specific thermal capacity, 𝑐𝑐 4186 J/(kg.K) −𝟐𝟐𝟐𝟐 ≥ 𝒛𝒛 ≥ −𝟒𝟒𝟒𝟒𝒎𝒎  

Thermal conductivity, 𝜆𝜆      0.56 W/(mK) Thermal conductivity, 𝜆𝜆𝑠𝑠    1 W/(m.K) 

Dynamic viscosity, 𝜇𝜇 0.001 Pa.s −𝟒𝟒𝟒𝟒 ≥ 𝒛𝒛 ≥ −𝟔𝟔𝟔𝟔𝒎𝒎  

Velocity, 𝑢𝑢 0.5 m/s Thermal conductivity, 𝜆𝜆𝑠𝑠    4 W/(m.K) 

Grout:  −𝟔𝟔𝟔𝟔 ≥ 𝒛𝒛 ≥ −𝟖𝟖𝟖𝟖𝒎𝒎  

Density, 𝜌𝜌g 1420 kg/m3 Thermal conductivity, 𝜆𝜆𝑠𝑠      0.5 W/(m.K) 

Specific thermal capacity, 𝑐𝑐g 1197 J/(kg.K) −𝟖𝟖𝟖𝟖 ≥ 𝒛𝒛 ≥ −𝟏𝟏𝟏𝟏𝟏𝟏𝒎𝒎  

Thermal conductivity, 𝜆𝜆g    0.62 W/(m.K) Thermal conductivity, 𝜆𝜆𝑠𝑠    3 W/(m.K) 
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Figure 4.15: Temperature in pipe-in, pipe-out and grout for BHE5 at different 
times 

Figure 4.16 shows the vertical temperature profile in the soil mass at Observation Points 
1 and 2, for short and long terms. The figure shows clearly the jumps in temperatures at 
the boundaries between layers. The figure also shows an interesting flip in the direction 
of the temperature jumps at longer terms. In the short term, layers with relatively higher 
thermal conductivities exhibit faster heat flow, as manifested by the advancing 
temperature fronts in layers 1, 3 and 5 (see 100 hours and 50 days profiles). In the long 
term, layers with lower thermal conductivities exhibit advancing temperature fronts (see 
50 months and 10 years profiles for layers 2 and 4). The reason for this flip is that layers 
with relatively high thermal conductivities exhibit, at the beginning, faster heat flow, but, 
later on, faster thermal dissipation. In the contrary, layers with relatively low thermal 
conductivities exhibit slower heat flow at the beginning and slower thermal dissipation 
later on. This phenomenon has also been captured and discussed by Abdelaziz et al, 
(2014).      
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Capturing these physical phenomena exhibits clearly the capability of the model to 
describe the complex nature of heat flow in multiple borehole heat exchangers embedded 
in multilayer systems.  

 

 

Figure 4.16: Vertical soil temperature profiles at different times at observation 
points 1 and 2 

 Soil-film thickness 

In this section, we highlight the independence of the temperature distributions in the BHE 
components and the soil mass on the soil film thickness. 

To minimize the effect of the soil film thickness on the temperature distributions, the 
thermal interaction coefficients must be appropriately formulated. In pursuit of this, the 
thermal interaction coefficients given in Section 2.3 are proved to be the most appropriate. 
Using these coefficients, we here demonstrate the model-independency on the soil film 
via a numerical example. The geometry and material properties, together with the initial 
and boundary conditions, are as for the numerical example given in Section 4.9.  

Figure 4.17 shows the temperature distributions in pipe-in, pipe-out, grout and soil film 
for a single BHE at 0.5 hour, 5 hours, 5 days and 5 months, using 1 mm, 10 mm, 20 mm 
and 30 mm soil film thicknesses. The figure clearly shows that the soil film thickness has 
practically no effect on the temperature distributions except at 0.5 hour where there is a 
deviation of around 1 - 2 °C between 1 mm and 30 mm, mainly in the lower thermal 
conductivity layers.   

Figure 4.18 shows the corresponding temperature distributions in the soil mass in the third 
layer. Obviously, the temperature distribution in the soil mass has not been affected by 
the soil film thickness, except at 0.5 hour where there is little deviation between 1 mm 
and 30 mm soil film thicknesses.   
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 Conclusions 

In this chapter, a spectral element model for the simulation of transient conduction-
convection heat flow in a three-dimensional shallow geothermal system consisting of 
multiple borehole heat exchangers embedded in a multilayer soil mass is introduced. The 
model shares the exactness and computational efficiency of the analytical models, and a 
great extent of generality in describing the geometry and initial and boundary conditions 
of the numerical techniques. It can describe heat flow is any number of borehole heat 
exchangers with any layout configuration, embedded in any number of soil layers using 
minimal CPU time and capacity.  

 

 

 
 

 

Figure 4.17: Pipe-in, pipe-out, grout and soil film temperature distributions using 
different soil film thicknesses at different times  
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The key for obtaining such an exact, computationally efficient and practically general 
model is the innovative mix between the conceptual model, the mathematical model and 
the solution technique. The link between 1D domain (for the borehole), axial symmetric 
2D domain (for a homogeneous soil layer) and 3D domain (for multiple layers), together 
with the use of the soil film, makes the conceptual model mathematically feasible. 
Changing the BHE-soil non-homogeneous differential equations to homogenous 
differential equations (see Eqs. (4.4) and (4.23)) together with the matrix formulation for 
coupling the boreholes (see Eq. (4.63)), makes the mathematical model solvable. The use 
of the spectral element method for modelling multilayer systems together with the 
superposition technique for modelling multiple borehole heat exchangers makes the 
solution technique fit to the physics of the problem and computationally efficient.   

 

 

 

Figure 4.18: Soil radial temperature distribution in the third layer using different 
soil film thickness at different times 



 

 

 

  
Analysis of short-to-long term heat flow in GSHP systems 
based on heat pump power 

This chapter introduces a semi-analytical model based on the spectral element method for 
three-dimensional, short-to-long term heat flow in multiple borehole, multilayer ground 
source heat pump systems. The model is distinguished by its computational technique for 
expressing the input signal at the boundary of the borehole heat exchanger, giving rise to 
two important engineering features. First, the calculation can be conducted from seconds 
to years in a single run. This is achieved by discretizing the input signal at the inlet 
boundary of the borehole heat exchanger using a tailored fast Fourier transform with 
multiple time-stepping algorithm. Second, the calculation can be conducted using a 
Neumann boundary condition, instead of the commonly utilized Dirichlet boundary 
condition. This is achieved by mathematically relating the heat pump power to the heat 
flux at the inlet of the borehole heat exchanger, allowing direct use of the heat pump 
power signal as input instead of the inlet temperature. These features make the model 
computationally efficient that can readily be utilized for system design and included in 
inverse calculations. The two features are discussed in detail, verified against 
experimental measurements, and their functionality is highlighted by numerical examples. 

 

 

 

 

 

This chapter is based on BniLam N., Al-Khoury R.  (2019). Analysis of short-to-long term 
heat flow in GSHP systems based on heat pump power. Applied Thermal Engineering.  
Available online 19 October 2019, 114561 
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 Introduction 

The ground source heat pump (GSHP) technology can play an important role in boosting 
the economy and improving the environment. It relies on energy gain from shallow depths, 
which are available nearly everywhere, and its operation produces minimal CO2 emission 
into the atmosphere. As a result, this technology is booming, and geothermal engineers 
are endeavouring to make it more efficient and economic. Several European projects are 
specifically designed to develop more accurate and reliable computational models aiming 
to optimize the efficiency of this technology; see for example Horizon Projects (2010). 

Presently, there are a considerable number of computational models describing heat flow 
in GSHP systems using different solution methods and adopting a wide range of physical 
and geometrical complexities. Cui et. al. (2018) gave a comprehensive review on the 
available computational models for GSHP systems. Nevertheless, despite the presence of 
a large number of models and softwares, there are yet two important engineering features 
that need to be addressed in a more effective way: short-to-long term analysis of system 
performance, and analysis directly based on the heat pump power. This chapter addresses 
these two features by introducing a computational technique enabling their 
implementation within the spectral element framework. Hereafter, we highlight the 
significance of these two features and how they are treated in this work.   

Feature 1: Short-to-long term analysis is important to evaluate the system performance 
at different times of the days and years. Heating and cooling of buildings includes periods 
of switching ON and OFF, and during the GSHP lifetime, hourly, daily and seasonal 
periods of switching ON and OFF take place intensely. This operational requirement 
severely restricts the calculations such that if detailed transient analysis is sought, the long 
term performance of the system will be difficult to pursue, but if the global lifetime 
analysis is sought, the short term performance will be overlooked. As a consequence, the 
calculations are usually conducted for either short term or long term. This problem is in 
particular manifested in the numerical models and tools. COMSOL Multiphysics 
(COMSOL 2019), FEFLOW finite element package (FEFLOW 2019), and, to a lesser 
extent, ABAQUS finite element package (ABAQUS 2019) and TOUGH2 finite 
difference code (Pruess et al, 1999), are the most commonly utilized numerical tools for 
this purpose. These tools can provide advanced numerical facilities, but are severely 
restricted in conducting detailed short-to-long term analysis. The demand for a fine mesh 
due to the geometrical disproportionality of the system and the need for small time steps 
for the short term analysis make the CPU demands unrealistic for analysing the long term 
performance of the system, especially if the analysis is intended for daily engineering 
practice.  

Analytical and semi-analytical models are not exemption, and the majority of models are 
mainly suitable for either short term analysis or long term. Attempts to model short-to-
long term performance of GSHP systems rely either on the Fast Fourier Transform (FFT) 
or the step response functions. Marcotte and Pasquier (2008a), and Zhang et. al. (2018) 
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introduced, among others, semi-analytical models based on FFT. The FFT algorithm is 
rather efficient and employing it enables studying the performance of the system for as 
many time steps as required. However, the standard FFT is formulated for constant time 
stepping schemes. Depending on the size of the time step, the analysis can go for any 
desirable time span, yet, only one time step size is allowed: seconds, minutes, hours, days, 
months or years; not a combination of them. This characteristic restricts the standard FFT 
from utilization for short-to-long terms analysis; rather for either short term or long term.  

Claesson and Javed (2011), and Li et al. (2014) introduced analytical models to calculate 
the temperature distribution in the system from minutes to decades. Claesson and Javed 
(2011) adopted a two-step solution. For the short term (the first 100 hours) they solve the 
conductive axial-symmetric heat equation analytically using Laplace transform; and for 
the long term, they use the line source solution. Li et al. (2014), on other hand, developed 
a temperature response function that combines the composite-medium line-source 
solution and the conventional ILS and FLS solutions using the matched asymptotic 
expansion technique. More details on both models can be found in Li and Fang (2016). 
Despite the effectiveness of these models, they are formulated based on the line heat 
source models which do not take the detailed conduction-convection heat flow in the 
borehole heat exchanger. 

In this Chapter, we address detailed heat flow in an effectively 3D GSHP systems for 
short-to-long terms by tailoring the Fast Fourier Transform (FFT) algorithm to allow for 
the use of multiple time-stepping schemes. This feature facilitates the calculation of heat 
flow for any desired details, ranging from one second to years, done in a single run. 

 

 

Figure 5.1: A schematic representation of a GSHP system (recall from Chapter 1) 
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Feature 2: Analysis based directly on the heat pump power is physically more realistic 
than that based on a prescribed temperature at the inlet of pipe-in. This temperature is a 
result of the heat pump operation; i.e. not known a priori. In engineering practice, the heat 
pump power is prescribed as a heat flux in models solely solving the heat flow in infinite 
and semi-infinite domains, such as the line and cylindrical heat source models. For 
instance, the heat pump power can directly be prescribed as a constant heat flow rate per 
unit length, q, in the well-known infinite line source model (Carslaw and Jaegar 1959): 

  0 2
4, ln

4 s

q tT r t T
r





     
                                                                            (5.1) 

in which 𝑇𝑇(𝑟𝑟, 𝑡𝑡) is the temperature of the medium at radial distance 𝑟𝑟 from the heat line 
source, 𝜆𝜆𝑠𝑠  (W (m K))⁄  is the solid domain thermal conductivity, α(m2 s⁄ )  is thermal 
diffusivity and    𝛾𝛾 = 0.5772, Euler's constant.  

Models which calculate heat flow in the borehole hole exchanger (BHE), the heat pump 
power cannot directly be prescribed. Instead, the temperature of the circulating fluid 
coming out of the heat pump and entering the inlet of pipe-in is prescribed. This 
temperature is calculated using the power equation:   

 outin
p pP mc T T                                                                                                    (5.2) 

in which 𝑃𝑃(W) is the mean power of the heat pump, 𝑚̇𝑚(kg/𝑠𝑠) is the mass flow rate of the 
circulating fluid, 𝑐𝑐(J/(kg K)) is its specific heat capacity, 𝑇𝑇in

𝑝𝑝(K) is the fluid temperature 
entering the heat pump and 𝑇𝑇out

𝑝𝑝 (K) is the fluid temperature leaving the heat pump. 𝑇𝑇in
𝑝𝑝  is 

considered equal to the temperature 𝑇𝑇out coming out of pipe-out of the BHE; and  𝑇𝑇out
𝑝𝑝  is 

considered equal to the temperature 𝑇𝑇in entering pipe-in of the BHE, see Figure 5.1. 𝑇𝑇in 
is utilized as the Dirichlet boundary condition to the inlet of pipe-in from which the 
temperature distribution in the GSHP system is calculated. The procedure to calculate 𝑇𝑇in 
from the heat pump power is given in Algorithm 5.1. 

This algorithm has been implemented in several numerical tools, see for example Al-
Khoury et al. (2010), Ozudogru et al. (2014) and Rui et al. (2018). A similar algorithm is 
utilized in semi-analytical tools such as EED (EED 2019, Eskilson 1987) and GLHEPRO 
(GLHEPRO 2019, Spitler, 2000). Despite the practical use of this algorithm, it suffers the 
shortcomings of the step response function in terms of its computational inefficiency and 
the overlooking of the details within the time steps.  

In this chapter we address the use of heat pump power as a Neumann boundary condition 
by formulating a mathematical equation relating the heat pump power to the heat flux at 
the inlet of pipe-in. This feature allows the direct use of heating and cooling design 
specifications to calculate the temperature distribution in the system. In this case, 
𝑇𝑇in becomes unknown and needs to be computed, similar to 𝑇𝑇out  and all other 
temperatures at any geometrical point in the system.   
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 Theoretical background of the model 

The above mentioned two engineering features, short-to-long term analysis and analysis 
based on the heat pump power, are implemented in the computer code STAND, which 
stands for Shallow geoThermal Analysis aNd Design. This code constitutes a semi-
analytical spectral element model capable of computing detailed heat flow in effectively 
three-dimensional GSHPs constituting multiple BHEs embedded in multilayer systems, 
subjected to arbitrary temporal Neumann or Dirichlet boundary conditions. The 
background theory of this model has been thoroughly presented Chapter 4.  

The governing heat equations and initial conditions of a ground source heat pump 
consisting of a single U-tube borehole heat exchanger embedded in a soil mass, Figure 
4.1, are presented in Section 4.3. The boundary condition, on the other hand, at the inlet 
of pipe-in might be any of two types:  

a Neumann boundary condition:  

   in0, i
i i

dTq t q t dA
dz

                                                                                   (5.3) 

or a Dirichlet boundary condition:                                                                                              

   in0,iT t T t                                                                                                  (5.4) 

where 𝑞𝑞in is the heat flux and  𝑇𝑇in is the prescribed inlet temperature, that might have any 
arbitrary distribution in time.  

Algorithm 5.1: Prescribing 𝑻𝑻𝐢𝐢𝐢𝐢 based on heat pump power  

1: DO     𝑛𝑛 =  1 to 𝑁𝑁     (𝑛𝑛 : the time step)  

2: Read 1n P  ;  𝑚̇𝑚;  𝑐𝑐 
3: Calculate 1

out
n PT  from Eq. (5.2) such that 

 1 1
outin

pn n n pP mc T T    ,  (where in
pnT  is known from the             

previous time step)                                                                                                                                                                                                                                                                                                   
4: 1 1

in out
n n PT T      

5: Calculate GSHP temperature using 1
in

n T  as a prescribed 
temperature 

6: Calculate 1
out

n T  
7: 1 1

in out
n P nT T   

8: END DO 
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This initial and boundary value problem is solved using the spectral element method 
(Doyle 1997, Al-Khoury 2012b). This method combines the analytical solution for a 
homogeneous domain to the finite element matrix assembly technique for a 
heterogeneous domain. The resulting spectral element equation is similar to the algebraic 
finite element equation, such that  

  ˆ ˆn K T q                                                                                                              (5.5) 

in which 𝐊𝐊(𝜔𝜔𝑛𝑛) represents the spectral element matrix, in resemblance to that of the finite 
element stiffness matrix, but here it is exact and frequency-dependent; 𝑻𝑻� is the nodal 
temperature vector and 𝒒𝒒� is the nodal heat flux vector.  

 

 

 

Figure 5.2: A three-layer system and its spectral element discretization 

 

For a multilayer system, each layer is described by a spectral element. The assembly of 
the global matrix is done following the finite element method. If, for example, we have a 
borehole heat exchanger embedded in a three layer soil mass, shown schematically in 
Figure 5.2, the system is discretized by three spectral elements and four nodes. Each node 
has four degrees of freedom, describing the temperatures in pipe-in, 𝑇𝑇�i, pipe-out, 𝑇𝑇�𝑜𝑜, grout, 
𝑇𝑇�g, and soil film, 𝑇𝑇�s. The stiffness matrix for each element is described by Eq.(5.5). Using 
the finite element mesh assembling technique, the global spectral element equation can 
then be described as 



5.3  Tailored Fast Fourier Transform 

107 

1 1
11 12 1 1
1 1 2 2
21 22 11 12 2 2

2 2 3 3
3321 22 11 12

3 3 4421 22

ˆ ˆ
ˆ ˆ
ˆ ˆ

ˆˆ

K K

K K K K

K K K K

K K

                                             

T q
T q

qT
qT

                                                 (5.6) 

in which the matrix on the left-hand side is the global stiffness matrix, with the superscript 
indices indicating the element (layer) number. The vector on the left-hand side is the 
degrees of freedom vector, indicating the nodal temperatures that need to be determined; 
and the vector on the right-hand side is the corresponding nodal heat fluxes.    

 Tailored Fast Fourier Transform  

The fast Fourier transform (FFT) entails transforming a given function in its original time 
(space) domain to a frequency (wave number) domain and reversing it back. It computes 
the discrete Fourier transform (DFT) in an exceptionally efficient manner and saves 
significant CPU time and capacity.  

For a given data function 𝐹𝐹(𝑡𝑡𝑛𝑛) with 𝑁𝑁 samples, the DFT can be expressed as: 

Forward:  
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in which nt is the discrete time sample, 2k k N  is the discrete angular frequency 

and 1,2..., 1k N  . 

Inverse: 
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Standard FFT requires 𝑁𝑁 to be a power of 2 and the sampling rate (time step) constant for 
the whole signal period. The latter constraint is adequate in many applications in 
engineering, but for solving heat transfer problems in GSHP systems, it can be restrictive. 
In this kind of systems, the designer is interested in the detailed thermal response of the 
GSHP at certain periods of switching ON and OFF the system, while at the same time 
needs to know its life time performance. If a detailed analysis with a sampling rate of one 
second is conducted for the life time of the system, which is typically 20 years, it would 
require more than 6.3 × 108  samples, which is practically unrealistic and can cause 
typical FFT numerical nuisances. If, on the other hand, an averaged analysis with a 
sampling rate of weeks or months is conducted, many important details on the hourly, 
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daily and seasonal performance would be missing, making such analysis not 
representative of the real system. As such, the standard FFT can be useful to GSHP 
systems for either detailed analysis of relatively short periods, or averaged analysis of 
relatively long periods; not both at the same time.  

The short time Fourier transform (STFT) is an elegant extension to the FFT, such that it 
enables dividing a time signal with a non-uniform frequency spectrum into segments, 
followed by computing the FFT for each segment separately, Mertins (1999).  

The STFT, for segment 𝑗𝑗, can be expressed as: 
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Inverse:  
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Standard STFT requires equal interval segments and constant sampling rate to all 
segments. These requirements are adequate in communication and audio processing 
(Mertins 1999), but for GSHP systems, it is likewise restrictive.  

To tackle this issue, we make use of the STFT idea to divide the time signal into segments, 
but tailor it to analyze segments with different time intervals and different sampling rates. 
Basically, we divide the signal into segments, use FFT with different time stepping rates 
(starting from small to large time steps), solve the system, and then link the reconstructed 
time domain of these segments via the Heaviside function, as illustrated hereafter.  

The tailored FFT is expressed as: 

Forward:  
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where jN  is the number of samples for segment 𝑗𝑗 with time step j
nt , and j

k  is the 
discrete angular sampling frequency of segment j , expressed as: 

 
2j

k j j
n

k
N t


                                                                                                            (5.12) 
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Inverse:  
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Using the Heaviside function, the reconstructed time domain of the signal is described as  

     j j j
n n n nj

F t H t t F t                                                                            (5.14) 

This equation expresses the time domain of a signal composed of  ∑ 𝑁𝑁𝑗𝑗
𝑗𝑗  segments, put 

together. The algorithm of the tailored FFT can be summarized in Algorithm 5.2.  

 

Algorithm 5.2: Tailored FFT 

1: DO  𝑗𝑗 =  1 to 𝐽𝐽       (𝑗𝑗 : the time segment) 

2: Prescribe  𝑁𝑁𝑗𝑗,  𝑡𝑡𝑛𝑛
𝑗𝑗  

3: Apply Forward tailored FFT, Eq.(5.11) 

4: Conduct STAND calculations 

5: Apply Inverse tailored FFT, Eq.(5.13) 

6: Aggregate the results with j-1 segment, Eq.(5.14)  

7: END DO 
 

The tailored FFT will be applied in the numerical example given in Section 5.6 to 
highlight the capability of the model to tackle the short-to-long time problems. 

 Heat flow analysis based on heat pump power 

As indicated earlier, the heat pump power cannot directly be prescribed as a heat flux to 
models which simulate heat flow in the U-tubes. Here, we derive an equation relating the 
heat pump power to the prescribed heat flux at the inlet of pipe-in, Eq.(5.3).   

The power gained (lost) by the U-tube is expressed as 

idP mc dT                                                                                                           (5.15) 

Considering m uA  with A is the U-tube cross sectional area, Eq. (5.15) can be 
written as 
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i
1dT dP
cuA

                                                                                           (5.16) 

The Neumann boundary condition at the inlet of pipe-in, Eq.(5.3), is 

i
in

dTq A
dz

                                                                                           (5.17) 

where 𝜆𝜆 (W (m K)⁄ ) is the thermal conductivity of the circulating fluid. Substituting 𝑑𝑑𝑇𝑇𝑖𝑖 
of Eq. (5.16) into Eq. (5.17), and re-arranging, gives 

inq dz dP
cu



                                                                                           (5.18) 

This equation entails that whether convective heat flux or conductive, the temperature at 
the inlet of the U-tube must be unique  

Integrating the left-hand side of this equation for a definite integral 0 → 2𝐿𝐿 (with 𝐿𝐿 being 
the BHE length, and 2𝐿𝐿  denoting the length of U-tube), and the right-hand side for         
0 → 𝑃𝑃, leads to 

2in
Pq

cu L



                                                                                           (5.19) 

which expresses the amount of heat transfer rate at the boundary of the U-tube when 
subjected to a heat pump power.     

The interplay between Eq. (5.15) and (5.17) to produce Eq. (5.19) states that, in an 
adiabatic domain, the power gained by the U-tube (as a whole) is generated by a heat flux 
prescribed at the inlet of the U-tube. The heat flux at the boundary can be generated by 
any heat source, such as an electric heater or a heat pump. 

As indicated above, Eq. (5.15) is valid for adiabatic processes, which occur without heat 
transfer between a thermodynamic system and its surrounding. Naturally, this is not the 
case for BHE, as it is composed of multiple components and is in thermal contact with its 
surrounding soil mass. In mechanical engineering, the power of complex heat exchangers, 
such as those involving multiple tubes and shell passes, is calculated using a correction 
factor that implicitly incorporate the thermal interactions among the heat exchanger 
components. Correction factors for several common configurations of mechanical heat 
exchangers are given in literature, see for example Pitts and Sissom (1997). Here, we 
apply a similar approach, by introducing a correction factor to Eq. (5.15), such that 

idP mc dT                                                                                                           (5.20) 
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where is a correction factor reflecting the non-adiabatic process of the GSHP, and can 
serve to cover any anomalies in measured data and description of physics. This implies 
that the inlet heat flux, Eq. (5.19), must be modified to read: 

2in
Pq

cu L



                                                                                           (5.21) 

Normally, the heat pump power is not constant and varies with time due to electric voltage 
fluctuation and/or variation in its coefficient of performance (COP) (Al-Khoury 2012b), 
leading to: 

( )( )
2in

P tq t
cu L



                                                                            (5.22) 

This time dependent heat flux signal is implemented in the spectral analysis by first 
transforming it to the frequency domain and the resulted signal is applied to 𝑞𝑞�1 on node 
1 (Figure 5.2) on the right-hand side of Eq.(5.6).   

To account for different BHE configurations, soil types and heat pumps, we determine 
the GSHP correction factor numerically, by calibrating the thermal power using 
Algorithm 5.3. 

In Section 5.5 we validate this approach with experimental results and in Section 5.6 we 
utilize it in numerical examples. 

 Model verification 

Beier et. al. (2011) presented a well-instrumented and documented experimental test set-
up for a prototype ground source heat pump. They introduced experimental results and 
provided digital data for heat and fluid flow in a single U-tube, representing a borehole 
heat exchanger, embedded in a horizontal 1.8 m x 1.8 m x 18 m sandbox. The borehole 
is 18 m long, centered along the length of the box, Figure 5.3. They used an electric heater 
as a heat source. A fluid circulates through the closed loop and its temperature is measured 
at the inlet and outlet of the loop every 1 minute. A flow meter is used to measure the 
fluid flow rate through the loop. Details of the experimental test set-up can be found in 
their paper, referenced above. Table 5.1 lists the involved sandbox and borehole 
parameters. 

Two experiments were conducted: a continuous heat pump operation; and an interrupted 
heat pump operation, in which the heat pump is switched OFF after 9 hours for 2 hours, 
followed by switching ON till the end of the experiment. Both experiments ran for about 
50 hours. Using the provided digital data, we reproduced the experimental results by 
applying two calculation approaches: calculation based on prescribed 𝑇𝑇in, and calculation 
based on prescribed heat pump power.  
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5.5.1 Calculation based on prescribed 𝑻𝑻𝐢𝐢𝐢𝐢 
Prescribing the temperature at the inlet of pipe-in is a common practice in analysing heat 
flow in GSHP systems (see for example Marcotte and Bernier 2019). In this calculation 
approach we set the measured temperature at the inlet of pipe-in as a prescribed 𝑇𝑇𝑖𝑖𝑖𝑖 in the 
model, Eq. (5.4). Then, the temperature distributions along pipe-in, pipe-out and grout 
are calculated together with the temperature distribution in the surrounding soil mass. 
Figure 5.4 shows the measured temperature at the inlet of pipe-in and the computed and 
measured temperatures at the outlet of pipe-out, for both experiments. The two plots in 
the figure show an excellent match between the experimental and computed results. 
Equally, Figure 5.4b demonstrates the capability of the model to simulate accurately the 
switching OFF and ON the system in the interrupted operation experiment.  

 

Algorithm 5.3: Tailored FFT & heat pump power prescription  

1: DO   𝑗𝑗 =  1 to 𝐽𝐽     (𝑗𝑗 : the time segment)                                     

2: Prescribe  𝑁𝑁𝑗𝑗,  𝑡𝑡𝑛𝑛
𝑗𝑗  

3: Transform the adiabatic form of the heat flux, Eq.(5.19), into 
the frequency domain and prescribe its magnitudes on node 1 
in Eq.(5.6). 

4: Conduct STAND calculations 

5: Apply Inverse tailored FFT, Eq.(5.13) 

6: Compute the power from Eq.(5.2) 

7: Compare the specified heat pump power to the computed 
power, and calculate the correction factor, as 

Computed power
Input power

                                                  (5.23) 

8: Insert the correction factor   into Eq. (5.22) 

9: Transform Eq. (5.22), into the frequency domain and prescribe 
its magnitudes on node 1 in Eq.(5.6). 

10: Re-conduct the spectral analysis using STAND.         

11: Apply the inverse tailored FFT, Eq.(5.13). 

12: Aggregate the results with 𝑗𝑗 − 1 segment, Eq.(5.14) 

13: END DO 
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It can be noted that the model could also detect the drop of the inlet temperature in the 
interrupted operation experiment, occurred between 1 and 5 hours, see the zoomed image 
in Figure 5.4b. The model properly captured its effect on the output temperature, but it is 
not clear why this drop in temperature has not been reflected in the measured data.   

 

 
Figure 5.3: A scheme of the prototype GSHP experiment, conducted by             

Beier et.al (2011) 

 

 

Figure 5.4: Measured and computed temperature variations in time based on 
prescribed inlet temperature 
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5.5.2 Calculation based on heat pump power 
Calculation based on the heat pump power is conducted using the Algorithm 5.3, given 
in Section 5.4. Using this calculation approach the temperature distribution in the whole 
system is calculated, including 𝑇𝑇in.  

 

Table 5.1. Parameters of the prototype GSHP experiment (Beier et.al., 2011) 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 5.5: Measured and computed temperature variations in time based on heat 

pump power 

 

Parameter Value 

Borehole length 18.3 m 

Borehole diameter 0.126  m 

Pipe outer diameter 0.0668 m 

Pipe inner diameter 0.0547 m 

Pipe thermal conductivity   0.39 W/(mK) 

Soil thermal conductivity     2.82 W/(mK) 

Grout thermal conductivity     0.73 W/(mK) 

Average fluid volumetric flow rate 0.197 L/s 

Average heat input rate 1056 W 
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Figure 5.5 shows the measured temperatures at the inlet of pipe-in and outlet of pipe-out, 
and their corresponding computed values for both experiments. The figure shows a good 
match between the experimental and computed results. Though, a closer look at the 
interrupted experiment reveals that the computed results overestimate ∆𝑇𝑇 (𝑇𝑇in − 𝑇𝑇out) by 
a maximum 0.3℃ compared to the measured. This difference can be attributed to the error 
which might be introduced in calculating 𝑞𝑞in in Eq.(5.22). Any variations in the measured 
fluid mass flow rate or deviations in the fluid density, specific heat and thermal 
conductivity can be reflected on the accuracy of 𝑞𝑞in  and hence on the computed 
temperature. Nevertheless, the correction factor accurately estimated the anomalies in 
measured data and uncertainties in several parameters that resulted to good agreement 
between the experimental data and the computed temperatures at all stages: the transient 
at the beginning, the interrupted and the steady state.   

 Numerical examples 

To demonstrate the model computational capability in simulating realistic cases, a 
numerical example illustrating heat flow in a typical ground source heat pump is 
introduced. A 2 × 2 BHE layout configuration constituting boreholes, 100 m in length, 
embedded in three soil layers exhibiting different thermal conductivities is simulated, 
Figure 5.6. We studied three cases (Figure 5.7):  

Case 1: one active BHE;  
Case 2: four active BHEs, 5 m ×  5 m configuration (denoted as 𝑑𝑑 = 5 m); 
Case 3: four active BHEs, 8 m ×  8 m configuration (denoted as 𝑑𝑑 = 8 m).  

The material and geometrical parameters of the system are given in Table 5.2. The initial 
temperature in all components is assumed 12 °C.  

The heat pump works with varying power, depending on hourly, days and nights, and 
seasonal demands. Figure 5.8a a shows the power demand over the year, where it is 
assumed that this power represents the thermal energy gained from the heat pump, 
without the additional power usually gained from the compressor, neither the variations 
due to the COP of the heat pump.  

The day starts at 6:00 (6 am) and ends at 22:00 (10 pm) and the night starts at 22:00 and 
ends at 6:00. Within these, the system is operating ON for 60 minutes and OFF for 20 
minutes. Figure 5.8b shows an example of the daily heat pump power for January. The 
year is divided into cold and warm months with varying thermal power demands. January 
till May, and October till December require heating; June requires neither heating nor 
cooling; and July till September are treated in two ways: with cooling (i.e. switching ON 
the heat pump in summer) and without cooling (i.e. switching OFF the heat pump for 
whole summer). The system is assumed to operate for 20 years. Any other operating 
scheme can also be considered. 
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Table 5.2. Material and geometrical parameters 
 

 

 

 
Figure 5.6: A scheme of GSHP consisting of 4 BHEs embedded in 3 soil layers 

Parameter Value Parameter Value 

Borehole:  Soil:     

Borehole length 100m Film thickness  0.02m 

Borehole diameter 0.126m Layer 1: 0 ≥ 𝑧𝑧 ≥ −30𝑚𝑚  

Pipe external diameter 0.0547m Density , 𝜌𝜌𝑠𝑠 1100kg/m3 

Pipe thermal conductivity     0.38W/(mK) Specific thermal capacity , 𝑐𝑐𝑠𝑠 1000J/(kg.K) 

Fluid:   Thermal conductivity, 𝜆𝜆𝑠𝑠    1. W/(m.K) 

Density, 𝜌𝜌  1050kg/m3   

Specific thermal capacity, 𝑐𝑐 3795J/(kg.K) Layer 2: −30 > 𝑧𝑧 ≥ −60𝑚𝑚  

Thermal conductivity, 𝜆𝜆      0.5W/(m.K) Density , 𝜌𝜌𝑠𝑠 1500kg/m3 

Dynamic viscosity, 𝜇𝜇 0.0049Pa.s Specific thermal capacity , 𝑐𝑐𝑠𝑠 1100J/(kg.K) 

Velocity, 𝑢𝑢  0.5  m/s Thermal conductivity, 𝜆𝜆𝑠𝑠    2.5 W/(m.K) 

Grout:    

Density, 𝜌𝜌g 1200 kg/m3 Layer 3: −60 > 𝑧𝑧 ≥ −100𝑚𝑚  

Specific thermal capacity, 𝑐𝑐g 2000J/(kg.K) Density , 𝜌𝜌𝑠𝑠 1700kg/m3 

Thermal conductivity, 𝜆𝜆g    1. W/(m.K) Specific thermal capacity , 𝑐𝑐𝑠𝑠 1200J/(kg.K) 

  Thermal conductivity, 𝜆𝜆𝑠𝑠    4. W/(m.K) 
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Figure 5.7: Case 1: one active BHE;  Case 2: four active BHEs, 𝟓𝟓 𝐦𝐦 ×  𝟓𝟓 𝐦𝐦;  Case 

3: four active BHEs, 𝟖𝟖 𝐦𝐦 ×  𝟖𝟖 𝐦𝐦 

The geometry is discretized using 3, 2-node spectral elements as schematically shown in 
Figure 5.2. The calculation is conducted using the tailored FFT with a multiple time 
stepping scheme, as the following: 

Day 1:                                  time step = 1 second.  
Day  2 – end of Year 1:       time step = 5 minutes.  
Year 2 – end of Year 20:     time step = 24 hours. 

This scheme entails a very detailed analysis in the first day, a detailed analysis in the first 
year and a daily-averaged analysis for the rest. Other schemes can also be conducted, 
depending on the required details.  

As indicated earlier, the model is capable of calculating the temperature distributions in 
all BHE components and in the soil mass in an effectively 3D space. Using the heat pump 
power option, even the temperature at the inlet of pipe-in, 𝑇𝑇in, is calculated.  

Figure 5.9 shows the soil temperature distributions for the 3 cases: 

Case 1: One BHE is operating (Figure 5.7) in two options: cooling ON in summer, and 
cooling OFF in summer. The temperature is computed at a1 (0.1, 0.1), b1 (2.5, 
2.5) and c1 (4, 4). The computed results for these three points are shown in Figure 
5.9a, Figure 5.9b, and Figure 5.9c, respectively.  
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Case 2: Four BHEs with 5 m ×  5 m layout configuration (i.e. 𝑑𝑑 = 5 m , Figures 5.6 and 
5.7) in two options: cooling ON in summer, and cooling OFF in summer. The 
temperature is computed at a2 (0.1, 0,1) and b2 (2.5, 2.5). The computed results 
for these two points are shown in Figure 5.9a and Figure 5.9b, respectively.  

Case 3: Four BHEs with 8 m ×  8 m layout configuration (i.e. d= 8 m , Figures 5.6 and 
5.7) in two options: cooling ON in summer, and cooling OFF in summer. The 
temperature is computed at a3 (0.1, 0,1) and c3 (4, 4). The computed results for 
these two points are shown in Figure 5.9a and Figure 5.9b, respectively. 

 

 

Figure 5.8: Power demand from the earth 
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Figure 5.9 clearly shows the effect of boreholes interactions on the soil temperature. At a 
short distance from the boreholes (a1, a2 and a3) the soil temperature in the three cases is 
nearly the same for the cooling ON option, but for the cooling OFF, Cases 2 and 3 have 
clearly been affected. The soil temperature in these two cases is 3 °C lower than if only 
one BHE is operating after 20 years of operation.  

 

 

Figure 5.9 : Soil temperature at 𝒛𝒛 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝐦𝐦 for Case1, Case 2 and Case 3 
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At relatively far distances from the BHE, b1, b2, c1 and c3, the effect of the borehole 
interactions are obvious. For Case 2, at point b2, the temperature difference after 20 years 
of operation between a single BHE and 4 BHEs is 4.3 °C for the cooling ON option, and 
7.0 °C for the cooling OFF. For Case 3, at point c3, the temperatures were  3.3 °C and 5.4 
°C, respectively.  

Figure 5.9 also shows that the space between BHEs in a grid of neighbouring boreholes 
has a significant impact on the soil temperature. Likewise, cooling in summer is important 
for the soil mass to recover its thermal storage capacity. 

 

 

Figure 5.10 : Inlet and outlet temperatures for Case 2. 
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Figure 5.10 shows the computed temperature variations for Case 2 at the inlet of pipe-in 
(𝑇𝑇in) and outlet of pipe-out (𝑇𝑇out) for two options: cooling ON in summer; and cooling 
OFF in summer. The figure shows the computed results for 20 years, together with the 
zoomed results for the first year and first day. These results demonstrate the 
computational capability of the model to calculate the detailed performance of the system 
for short periods, and its performance for long period, all done in a single run.  

Figure 5.10 also shows an important physical observation. Operating the geothermal 
system for cooling in summer helps the ground to recover its heat and thus makes the 
system more sustainable. This observation has been discussed in detail by Zhao et al. 
2018.  In this specific case, the decline of temperature between year 1 and year 20 for the 
cooling ON is 1.8 °C, but for the cooling OFF, it is 4.9 °C.  

 

 
Figure 11: Vertical temperature distributions in pipe-in, pipe-out, grout and soil 

for Case 2 
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Figure 5.11 shows the vertical temperature distributions for Case 2 in pipe-in, pipe-out, 
grout and soil at a2 and b2 in February and August of year 1, and those in year 20. The 
summer cooling is ON. The figure shows the model capability to simulate the detailed 
effects of the soil thermal conductivity on the thermal propagation and contraction at 
different months of the year.  

 

 

Figure 12: Soil temperature snapshots at 𝒛𝒛 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝐦𝐦 for Case 2 
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Figure 5.12 shows the soil temperature snapshots at a 10 m ×  10 m cross-sectional area 
surrounding the bottom of the boreholes (𝑧𝑧 = 100 m) on the last day of the month, in the 
first 12 months of operation. The figure clearly shows the thermal interaction between 
boreholes and their effects on the soil mass at different times of the year.  

It is worth mentioning here that although the model for a single borehole is axisymmetric, 
the use of the superposition principle has produced a significant spatial imbalance in the 
soil temperature distribution. However, by definition, the 2 x 2 BHE layout produces 
symmetric heat extraction rate for all BHEs. Any other layout such as 3 x 3 BHE or 
random distribution would produce unsymmetrical heat extraction rates. Kurevija et al. 
2012, Gultekin et al. 2016 and You et al. 2018 have discussed this issue in detail. This 
topic will be the focus of a coming publication.    

 Conclusions 

This chapter introduces a semi-analytical model for simulating heat flow in ground source 
heat pump systems, with emphasis on simulating short-to-long term heat flow using the 
heat pump power as input. The essential features of the model are: 

1) It solves heat flow in effectively 3D geometries for any required temporal details. 
Detailed system operation from seconds to years can be handled in a single run. 
Hourly, daily and seasonally switching ON and OFF can be considered in the 
calculation. 

2) It solves the system of equations using the heat pump power directly. Although in 
literature there are several models making use of the heat pump power to solve the 
system, they end up prescribing the Dirichlet boundary condition (𝑇𝑇in) at the inlet of 
the U-tube. Here, we prescribe the Neumann boundary condition (𝑞𝑞in), derived from 
the heat pump power. The Neumann boundary condition allows using the heat pump 
power directly, but would be realistic if the COP and the compressor effect are taken 
into consideration. This subject will be the focus of a future work. 

Physically, the numerical example demonstrates that operating the heat pump in summer 
(i.e. cooling ON mode) helps the earth to recover its temperature, and hence increases the 
GSHP thermal efficiency. 

 



 

 

 

 

 

 



 

 

 

 

  
A spectral model for heat flow with friction heat gain in 
geothermal borehole heat exchangers 

This chapter introduces a semi-analytical model for the simulation of transient heat 
transfer with friction heat gain in a single U-tube geothermal borehole heat exchanger 
subjected to an arbitrary heat flux signal. The friction effect appears as a 
nonhomogeneous term in the governing equations, which constitutes a set of coupled 
partial differential equations describing heat flow in the three components of the borehole; 
pipe-in, pipe-out and grout. The spectral analysis has been utilized for discretizing the 
time domain, and the eigenfunction expansion for discretizing the spatial domain to solve 
the governing initial and boundary value problem. The proposed model combines the 
exactness of the analytical methods with an important extent of generality in describing 
the geometry and boundary conditions of the numerical methods. The model is verified 
analytically against a simplified one-dimensional solution. A numerical example is given 
to illustrate the effect of friction on heat transfer in the borehole heat exchanger for 
different fluid velocities and viscosities. The analysis shows; for the geometry, materials 
fluid velocities and viscosities, typically utilized in shallow geothermal systems; the 
friction is not really significant. However, the main advantage of this work is on the 
solution technique that can be useful for many other applications, including fluid flow in 
narrow pipes, high fluid velocities, high fluid viscosities, and pipes made of composite 
materials and of complex geometry. Also, the method can be useful for solving other 
nonhomogeneous coupled partial differential equations.  

 

This chapter is based on BniLam N. and Al-Khoury R (2016).  A spectral model for heat 
transfer with friction heat gain in geothermal borehole heat exchangers. Applied 
Mathematical Modelling Volume 40, Issues 15–16, Pages 7410-7421. 
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 Introduction 

Friction heat gain due to fluid flow in a pipe arises from the energy loss, which might be 
the result of the viscous force generated at the contact area between the fluid and the inner 
surface of the pipe. Friction energy loss can be significant in many engineering 
applications dealing with fluid flow in pipes, and has been given a significant attention, 
especially to those related to mechanical engineering. For geothermal engineering, 
however, this effect has not been considered. Two factors have motivated us to explore 
the effect of heat gain due to friction in shallow geothermal systems. First, shallow 
geothermal systems make use of the relatively low temperatures in shallow ground depths 
to generate heat. In this technology, every degree Celsius counts and made useful. Second, 
the friction is a function of length, which is particular in geothermal systems. The fluid 
in most U-tube borehole heat exchangers travels 200 m at every cycle.  

Geothermal engineering is a relatively new field of physical sciences dealing with mining 
heat from shallow and deep earth formations. The borehole heat exchanger (BHE) is an 
important technology in this field that makes use of the widely available geothermal 
energy in shallow layers for heating and cooling of buildings and other facilities. It works 
by circulating a fluid, mostly water with antifreeze solution, through a U-tube (or a co-
axial) polyethylene pipe that is inserted in a borehole. The borehole is filled with some 
grouted materials to fix the pipe and to ensure a good thermal interaction with the 
surrounding soil mass.  

In shallow geothermal systems, in heating modes, gain of only few degrees centigrade 
from the ground is considered significant. This can make heat gain due to friction 
appealing and needs to be studied. Such a study might lead to improving the BHE 
technology, not merely the involved materials and the operation techniques. This 
constitutes the core subject of this work, which aims at studying the possible gain of heat 
from friction between the circulating fluid and the pipe. 

Several computational models have been developed to simulate the thermal behavior of 
the BHE and the surrounding soil mass. These models vary from detailed numerical 3-D 
analysis to analytical solutions of simplified geometry and initial and boundary conditions. 
Due to the peculiarity of the involved geometry; which constitutes highly slender 
borehole heat exchangers embedded in a vast soil mass, and the presence of convection 
heat flow; the numerical models require extensive computational capacity and CPU time. 
Many numerical models have been introduced, such as those given in Yavuzturk et al. 
(1999), Al-Khoury and Bonnier (2006), He et al. (2011). Nevertheless, none of these 
models considered the friction heat gain due to fluid flow in the borehole heat exchanger. 

In contrast, the analytical models require smaller computational capacity and much less 
CPU time. Several analytical and semi-analytical models with different complexity have 
been introduced, including those given in Carslaw and Jaeger (1947), Eskilson (1987), 
Gu and O’Neal (1995), Kavanaugh and Rafferty (1997), Zeng et al. (2002), Sutton et al. 
(2003),  Diao et al. (2004), Al-Khoury (2010) and (2012a), Marcotte et al. (2010),  
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Molina-Giraldo et al. (2011), Pasquier and Marcotte (2013), Zanchini and Pulvirenti 
(2013), Erol et al. (2015). As for the numerical models, none of these models considered 
friction heat gain. 

There is a large number of researches done on head loss due to friction in fluid flow in 
pipes. References Moody (1944), Brown (2002), Romeo et al. (2002), Imbrahim (2005), 
Siedel et al. (2015), are only few examples of research works in this field. However, it 
seems that there are only few computational models dealing explicitly with friction heat 
gain in pipes. In geothermal engineering, for instance, Ozudorgu et al (2014) have 
included heat gain into their governing equations, but did not explicitly study the effect 
of friction on heat flow. Saeid et al (2015) studied the effect of friction in heat flow in a 
low enthalpy deep wellbore, and found, for the studied flow rate and pipe roughness, 
insignificant gain of heat due to friction. In both works, the finite element method was 
utilized to solve the problem. No analytical solutions have been introduced for heat flow 
with friction, though, solutions of nonhomogeneous advective-diffusive transport 
equations, such as the one provided by Weigand (2004) or van Genuchten and Alves 
(1982), can be tailored and utilized to study friction heat gain. However, these solutions 
are designed for a one-dimensional object subjected to a mostly step force signal, and 
does not take into consideration the particular geometry of the pipe.  

In this chapter, a semi-analytical solution for transient heat flow with friction heat gain in 
a single U-tube borehole heat exchanger, subjected to an arbitrary heat flux signal, is 
introduced. We utilize the spectral analysis and the eigenfunction expansion to solve the 
problem. The friction effect appears as a nonhomogeneous term in the governing 
equations, which constitutes a set of coupled partial differential equations. We make use 
of the solution provided in Al-Khoury (2010) and (2012a) to solve the homogeneous part 
of the solution, and extend it to solve the particular part of the solution.    

 Governing equations 

Heat flow with friction heat gain in a single U-tube borehole heat exchanger, consisting 
of pipe-in, denoted as i; pipe-out, denoted as o; and grout, denoted as g, can be described 
as 

Pipe-in 

2

2 ( )i i i
r i r i r i ig i g ig f

T T Tc V V c u V b T T S Q
t zz

  
  

        
 

             (6.1)            

Pipe-out 
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2 ( )o o o
r o r o r o og o g og f

T T Tc V V c u V b T T S Q
t zz

  
  

        
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   (6.2) 

 



Chapter 6 

128 

Grout 

2

2 ( ) ( )g g
g g g g g ig g i ig og g o og

T T
c V V b T T S b T T S

t z
 

 
        

 
         (6.3) 

in which the subscripts r and g represent the circulating fluid and the grout, respectively; 
Ti ,To and Tg (K) are the cross-sectional average temperatures in pipe-in, pipe-out and 
grout, respectively; 𝜆𝜆𝑟𝑟  and 𝜆𝜆g(𝑊𝑊/𝑚𝑚𝑚𝑚)  are the thermal conductivity of the circulating 
fluid and grout, respectively; 𝑢𝑢(m/s) is the circulating fluid cross-sectional average 
velocity; 𝑏𝑏𝑖𝑖g(W/m2K) is the reciprocal of the thermal resistance between pipe-in and 
grout; 𝑏𝑏𝑜𝑜g(W/m2K) is the reciprocal of the thermal resistance between pipe-out and grout; 
and 𝜌𝜌𝑐𝑐𝑟𝑟( J/m3K)  is the volume heat capacity, with 𝑐𝑐𝑟𝑟( J/kgK)  the specific heat, 
𝜌𝜌( kg/m3)  the mass density. ∆𝑉𝑉𝑖𝑖 ,∆𝑉𝑉𝑜𝑜  and ∆𝑉𝑉g(m3) are the partial volume of pipe-in, 
pipe-out and the grout respectively, and ∆𝑆𝑆𝑖𝑖g and ∆𝑆𝑆𝑜𝑜g (m2)  are the partial surface areas 

at the contact between pipe-in and grout, and pipe-out and grout, respectively. fQ  is 

the change in heat flux due to friction between the circulating fluid and the pipe internal 
wall, derived below. For clarity of notation, in what follows, the subscript r will not be 
included 

6.2.1 Initial and boundary conditions 
For a single U-tube borehole heat exchanger, the initial and boundary conditions are 
typically: 

in

( ,0) ( ,0) ( ,0) (z)

(0, ) (t)
( , ) ( , )

i o g st

i

i o

T z T z T z T

T t T
T L t T L t

  





                                                                (6.4) 

soil
( , )

( ) ( ) ( )g
g g ig g i ig og g o og gs g gs

T z t
A b T T S b T T S b T T S

z



         


      

                                                                                                                                     (6.5) 

where 𝑇𝑇𝑠𝑠𝑠𝑠  is the steady state soil temperature before operating the geothermal system; 𝑇𝑇in 
is the fluid temperature at the inlet of pipe-in (z = 0), coming from the heat pump; 𝑇𝑇soil is 
the soil temperature immediately surrounding the BHE; 𝑏𝑏gs(W/m2K) is the reciprocal of 
the thermal resistance between the grout and the soil; ∆𝑆𝑆gs (m2)  is the partial surface 
area at the contact between the grout and the soil; 𝐴𝐴g (m2) is the cross- sectional area of 
the grout; and L is the length of the BHE. At the bottom of the BHE, (z = L) the fluid 
temperature in pipe-in is equal to that in pipe-out, neglecting the elbow part because it is 
too small compared to the length. 
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Eqs. (6.1)-(6.3) and (6.5) state that, as physically occurring, the coupling between the 
BHE components, and between them and the soil formation occurs via the grout, which 
works as an intermediate medium that transfers heat from one component to another. 
Unlike the commonly utilized delta-circuit formulation, Eskilson (1987), heat flow in the 
grout is explicitly formulated. 

6.2.2 Friction heat gain term, fQ  

When a fluid moves in a pipe, it encounters frictional resistance due to the roughness of 
the inner surface of the pipe wall. This causes a loss of energy as a heat, which is 
equivalent to the loss of power consumed to overcome the viscous force at the contact 
surface between the fluid and the pipe.   

Head loss in fluid flow in a pipe due to friction is commonly described using the Darcy–
Weisbach equation, as  

 
2

loss 2D
i

Luh f
gd

                                                                                                         (6.6) 

where L is the length of the pipe, 𝑑𝑑𝑖𝑖 is its inner diameter, 𝑢𝑢 is the average velocity of the 
fluid, g is the gravity and 𝑓𝑓𝐷𝐷  is the Darcy friction factor, a dimensionless quantity. 
Several formulations describing 𝑓𝑓𝐷𝐷 are available in literature. Here, we utilize the 
Colebrook equation, Colebrook (1938), for the turbulent flow. For laminar and turbulent 
flow, 𝑓𝑓𝐷𝐷 is described as 

 

64 Re 2000
Re

1 2.512.0log Re 2000
3.7 Re

D

iD D

f
e
df f

             

                                   (6.7) 

 

where e (m) is the tubing surface roughness, and Re is the Reynolds number, defined as 

Re iud


                                                                                                          (6.8) 

where 𝜇𝜇 (Pa.s) is the dynamic viscosity.  

The fluid pressure associated with the head loss is expressed as  
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2

loss 2
D

i

f u LP gh
d


    (6.9) 

In fluid mechanics, the power loss is given by 

Power PV                (6.10) 

where V(m3/s) is the volumetric fluid rate.  

As the heat gain due to friction is equivalent to the power loss, substituting Eq.(6.9) into 
Eq. (6.10), the heat gain can be described as 

3

8
D

f
f uQ S

      (6.11) 

where S is the inner surface area of the pipe at depth z. 

Spectral analysis of BHE heat equations 

Applying the Fourier transform to Eqs.(6.1)-(6.3), gives 

2

2

ˆ ˆ ˆˆ ˆ ˆ( )i i
r i i r i r i ig i g ig f

d T dTi c T V V c u V b T T S Q
dzdz

            (6.12) 

 
2

2

ˆ ˆ ˆˆ ˆ ˆ( )o o
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d T dTi c T V V c u V b T T S Q
dzdz

           (6.13)

 
2

2

ˆ
ˆ ˆ ˆ ˆ ˆ( ) ( )g

g g g g g g ig g i ig og g o og
d T

i c T V V b T T S b T T S
dz

            (6.14) 

in which the transformed quantity is defined as ˆT T . These equations are ordinary
differential equations, two of which are nonhomogeneous. Solution of these 
nonhomogeneous equations is conducted by solving separately the homogenous part and 
the particular part, and then summed together algebraically. 

6.3.1 Homogeneous solution 
The homogeneous solution of Eqs.(6.12)-(6.14) is given in details in Al-Khoury (2010) 
and (2012a).  

6.3.2 Particular solution 
As for the homogeneous solution, the particular solution of Eqs. (6.12) and (6.13) can be 
represented by an exponential complex function of the form Doyle (1997):  
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ˆ ˆ ˆ, ,ikz ikz ikz
pi i po o pg gT C e T C e T C e     (6.15) 

where ˆ ˆ ˆ, andpi po pgT T T are the particular temperature frequency response of pipe-in,

pipe-out and grout respectively.  

Also, as for the homogeneous solution, the BHE system can be divided into two sub-
systems: pipe-in – grout and pipe-out – grout.    

Pipe-in – grout 

The particular solution of pipe in-grout equations, Eq. (6.12),  can be expressed as  

1 2
1 2

1 2
1 2

ˆ

ˆ

ik z ik z
pi i i

ik z ik z
pgi gi gi

T C e C e

T C e C e

 

 

 

 
 (6.16) 

where ˆ
piT and ˆ

pgiT are the particular temperature frequency response of pipe-in and

grout respectively. 𝐶𝐶𝑖𝑖1… 𝐶𝐶𝑔𝑔𝑔𝑔2 are integration constants that need to be determined. ˆ
piT

and ˆ
pgiT are coupled via Eq.(6.14), as

2

2

ˆ
ˆ ˆ ˆ( ) 0pgi

g g pgi g g g ig pgi pi ig
d T

i c T V dV b T T S
dz

           (6.17) 

which is the corresponding particular heat equation of the grout in contact with pipe-in 
only. Substituting Eq.(6.16) into Eq.(6.17) gives 

1 1 1

2 2 2

gi gi i

gi gi i

C C

C C








 (6.18) 

where  
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2 2
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ig ig
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g g g g g ig ig

ig ig
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 


    

 


    

 (6.19) 

Substituting Eq.(6.16) into Eq.(6.12), and with some mathematical arrangements, gives 
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2 1
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(6.20) 

Substituting Eq.(6.18) into Eq.(6.20) yields  
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(6.21) 

At 0z  , the heat gain due to friction is zero. Thus, the first equation of Eq.(6.16) gives 

1 2 0i iC C                                                                                                             (6.22) 

Applying Eq.(6.22) to Eq.(6.21) yields  

1
1 2

2
2 1

ˆ

ˆ

f
i

i i

f
i

i i

Q
C

Q
C

 

 











                                                                                                     (6.23) 

where  
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  (6.24) 

 

Pipe-out – grout 

Pipe-out is a continuation of pipe-in at z=L, and as the friction is a function of the length 
travelled by the fluid, the particular solution of pipe-out can be expressed as  

(2 ) (2 )1 2
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ˆ
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                                                             (6.25) 

where ˆ
poT  and ˆ

pgoT are the particular temperature frequency response of pipe-out and 

grout respectively. 𝐶𝐶𝑜𝑜1... 𝐶𝐶g𝑜𝑜2 are integration constants that need to be determined. ˆ
poT  

and ˆ
pgoT are coupled via Eq.(6.14), as   
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2
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which is the corresponding particular heat equation of the grout in contact with pipe-out 
only. 

Substituting Eq.(6.25) into Eq.(6.26) gives 
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where     
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Similar to pipe-in, substituting Eq.(6.25) and (6.27) into Eq.(6.13), yields   
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 where  
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Grout 

The particular solution of the grout is considered as an average value of the particular 
solutions of ˆ

pgiT , Eq. (6.16), and ˆ
pgoT , Eq. (6.25), represented as  

 1ˆ ˆ ˆ
2pg pgi pgoT T T                                                                                                 (6.31) 
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6.3.3 General solution of BHE heat equations 
The general solution of the single U-tube BHE heat equations can be obtained by 
summing over the homogeneous and particular solutions for all involved eigenfunctions 
and frequencies, as 
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Pipe-out 
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Grout 
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where 𝐴𝐴𝑖𝑖g, 𝐴𝐴𝑜𝑜g, 𝐵𝐵𝑖𝑖g, and 𝐵𝐵𝑜𝑜g are the homogeneous solution integration constants; defined 
in Al-Khoury (2010), and 𝐶𝐶g𝑖𝑖1, 𝐶𝐶g𝑖𝑖2, 𝐶𝐶g𝑜𝑜1, 𝐶𝐶g𝑜𝑜2 are defined in Eqs.(6.18) and (6.27) . 

Model Verification 

Exact solution describing heat flow with friction heat gain in a single U-tube BHE does 
not exist. Accordingly, verification of the model accuracy is done by comparing its 
computational results with those obtained from an analytical solution of a simplified case. 
The van Genuchten and Alves (1982) solution of a one-dimensional advective-dispersive 
solute transport equation including a nonhomogeneous term is utilized for this purpose.  

van Genuchten and Alves solved the following one-dimension partial differential 
equation 
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             (6.35) 

with the following initial and boundary conditions:  
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                                                               (6.36) 

where , , ,R D F and  are constants, and 𝑢𝑢 = 𝐹𝐹�1 + 4𝜇𝜇𝜇𝜇
𝐹𝐹2

 . The initial value, 𝐴𝐴(𝑧𝑧) in 

Eq.(6.36), is determined by solving the steady state condition of Eq. (6.35). In this way, 
the nonhomogeneous term will be included in the initial condition, and there is no need 
to solve for the particular solution. This is possible because  𝛾𝛾 is independent of time.  

The solution of this problem is    
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and  
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                                                                                                                                   (6.38) 

To compare with the proposed spectral model, the van Genuchten and Alves parameters 
need to be adjusted to match the physical parameters of the model. Comparing Eq.(6.1) 
to Eq.(6.35), these parameters are adjusted such that: 
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We utilized the two models to solve heat flow with heat gain due to friction in an insulated 
heat pipe. The geometry and material parameters are as the following: 

 
Pipe length   = 100m 
Pipe radius, ir                 = 0.016 m 
Fluid c    = 4.1298E6 J/m3 K 
Fluid     = 0.56 W/m K  
Fluid velocity, u   = 1 and  20  m/s 

 

The initial steady state temperature, and the temperature at the pipe inlet are:                   
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                                                  (6.40) 

 

 
(a)                                                        (b) 

Figure 6.1:  Spectral model vs. van Genuchten and Alves solution with time at 
z=100m. (a) the fluid flow u=1m/s, (b) the fluid flow u=20 m/s 
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In the spectral model, 𝑇𝑇𝑖𝑖𝑖𝑖 is equal to 𝑇𝑇𝑠𝑠𝑠𝑠 + ∆𝑇𝑇𝑖𝑖𝑖𝑖, where, in this case, ∆𝑇𝑇𝑖𝑖𝑖𝑖 = 30 ºC. The 
coefficient of the thermal interaction between the pipe and the surrounding material (grout 
in the spectral model), 𝑏𝑏𝑖𝑖g , was made relatively small (0.1 W/m2K) to insure insulation. 
The input temperature time histories of 𝑇𝑇𝑖𝑖𝑖𝑖  and 𝑇𝑇𝑠𝑠𝑠𝑠  were transformed to the frequency 
domain using the forward FFT. 4096 samples, with a sample rate of 1s, were used, giving 
a time window of 4096s.    

 

 
(a)                                                        (b) 

Figure 6.2: (a) Spectral model vs. van Genuchten and Alves solution along the pipe 
at time=50s with fluid average velocity u=1m/s. (b) Spectral model vs. van 

Genuchten and Alves solution along the pipe at time=500s 

 

The calculation results of the temperature at z = 100m, as calculated by the van Genuchten 
and Alves solution and the spectral model, are shown in Figure 6.1. Figure 6.2a shows 
the temperature distributions along the pipe after 50s with fluid average velocity equals 
to 1m/s, and Figure 6.2b shows the temperature distributions along the pipe after 500s for 
both velocities. Apparently, the two results are nearly identical for both fluid flow average 
velocities and along the depth of the pipe, though the van Genuchten and Alves solution 
exhibited some oscillation in the high velocity case.  

Physically, Figure 6.2 shows that with a relatively small fluid flow velocity, the 
temperature does not change along the pipe, while it increases by more than 2 °C for the 
high velocity case. As 𝑏𝑏𝑖𝑖g is relatively small, the pipe is effectively insulated, and this 
increase in temperature from the top to the bottom is merely due to friction.  
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 Numerical Examples 

As discussed earlier, the proposed spectral model is capable of calculating the temperature 
distribution in all BHE components and in the surrounding soil mass (not shown in this 
chapter) for short and long terms. Here, we introduce numerical examples illustrating its 
computational capabilities for analyzing an in-time varying signal for a relatively long 
term. The material and geometrical properties are given in Table 6.1. 

The initial temperature in the soil and the borehole is assumed 10°C. The air temperature 
is also set to 10 °C (see Al-Khoury 2012b). The fluid temperature at the inlet is assumed 
to vary between on and off, as    

20 30day
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                                                            (6.41) 

where it can be seen that the BHE has a 15 days off after every 30 days of operation. 

 

Table 6.1: Material and geometrical parameters 

Parameter Value 

Borehole:  

Borehole length 100 m 

Borehole diameter 0.127 m 

Pipe inner diameter 0.032 m 

Pipe  wall thickness 0.0029 m 

Pipe roughness   3 E-6 

Pipe thermal conductivity     0.42 W/(mK) 

Grout:  

Grout density 1420 kg/m3 

Grout thermal conductivity 0.6 W/(m.K) 

Grout specific thermal capacity 1197 J/(kg.K) 

Soil:  

Soil density  1680 kg/m3 

Soil thermal conductivity 2.15 W/(m.K) 

Soil specific thermal capacity 400 J/(kg.K) 
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Frequency discretization of 𝑇𝑇in, fQ  and 𝑇𝑇air signals was conducted using the forward 

FFT with 16,384 (214) samples and a sample rate of 1 hour, giving a time window of 
approximately 22 months. Spatial discretization of the soil mass was conducted using 100 
Bessel function roots. It is worth mentioning that, as the friction term is a function of fluid 
velocity and its effect vanishes by stopping the system operation, it must be discretized 
using FFT. Its time distribution is equivalent to the Tin signal, but its magnitude, for any 
specific 𝑧𝑧, is determined from Eq. (6.11).  

The thermal coefficients 𝑏𝑏𝑖𝑖g, 𝑏𝑏𝑜𝑜g and 𝑏𝑏gs are determined based on Al-Khoury (2012a) and 
(2012b) thermal resistance formulation.  

The effects of fluid velocities and viscosities are studied hereafter.  

 
(a) 

 
(b) 

Figure 6.3:(a) Temperature variations for BHE components and soil vs. time for 
u=0.5 m/s with 𝒃𝒃𝒊𝒊g = 𝒃𝒃𝒐𝒐g = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟓𝟓𝟓𝟓 and 𝒃𝒃gs = 𝟐𝟐𝟐𝟐.𝟓𝟓𝟓𝟓 𝐖𝐖/(𝐦𝐦𝟐𝟐𝐊𝐊). (b) Temperature 
distributions for BHE components and soil along the z-axes, for u=0.5 m/s after 20 

days with 𝒃𝒃𝒊𝒊g = 𝒃𝒃𝒐𝒐g = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟓𝟓𝟓𝟓 and 𝒃𝒃gs = 𝟐𝟐𝟐𝟐.𝟓𝟓𝟓𝟓 𝐖𝐖/(𝐦𝐦𝟐𝟐𝐊𝐊). 
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6.5.1 Fluid velocity effect  
To study the effect of velocity, two fluid velocities are assumed: 0.5 and 5 m/s. The 
thermal parameter for the circulating fluid is shown in Table 6.2.   

Figure 6.3a shows the temperature variations with no friction versus time for fluid 
velocity 0.5 m/s at  z = 0. Figure 6.3b shows the temperature distributions along the BHE. 
Analysis with friction heat gain (not shown in the figure) reveals that, for this fluid 
velocity, the difference is negligible.  

Table 6.2: the circulating fluid thermal parameters 

Parameter Value 

Fluid density  1000 kg/m3 

Fluid thermal conductivity      0.56 W/(mK) 

Fluid specific thermal capacity 4186 J/(kg.K) 

Fluid dynamic viscosity 0.001 Pa.s 

Fluid velocities  0.5 and 5 m/s 

 
 
 

 
                                 (a)                                                        (b) 

Figure 6.4: Temperature variations in pipe-out and grout vs. time with and 
without friction for u=5 m/s with 𝒃𝒃𝒊𝒊g = 𝒃𝒃𝒐𝒐g = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐 and 𝒃𝒃gs = 𝟐𝟐𝟐𝟐.𝟒𝟒 𝐖𝐖/(𝐦𝐦𝟐𝟐𝐊𝐊).  

(a) fluid temperature at the outlet, (b) grout temperature at the surface 
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Figure 6.4 shows the temperature variations with and without friction versus time for 
pipe-out (𝑇𝑇𝑜𝑜) and grout (𝑇𝑇𝑔𝑔), for a fluid velocity equals to 5 m/s. The figure reveals that 
the temperature in pipe-out increased by approximately 0.4 °C and in the grout increased 
by approximately 0.2 °C. Apparently, the friction effect is higher for this flow rate. 

6.5.2 Fluid viscosity effect 
To study the effect of viscosity, two solutions with different viscosities are assumed: 30% 
propylene glycol solution, and a solution with a 0.5 Pa.s viscosity. The thermal parameter 
for the 30% propylene glycol solution is shown in Table 6.3.  

Figure 6.5 shows the fluid temperature at the outlet of pipe-out (𝑇𝑇𝑜𝑜), for both: with friction 
and without friction. Apparently, the viscosity of this solution has no effect on the friction. 

 

Table 6.3: 30% propylene glycol thermal parameters 

Parameter Value 

30% propylene glycol: at 15 oC  

Fluid density     1031 kg/m3 

Fluid thermal conductivity         0.426 W/(mK) 

Fluid specific thermal capacity    3834  J/(kg.K) 

Fluid dynamic viscosity   0.00369 Pa.s 

Fluid velocity    0.5 m/s 

 

 

 

Figure 6.5: Outlet temperature of BHE with 30% propylene glycol solution 
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Suppose, for the sake of argument, we use a solution with 0.5 Pa.s viscosity, with thermal 
parameters given in Table 6.4. All other geometrical and thermal parameters are similar 
to the previous case. Figure 6.6 shows the temperature variations with and without friction 
versus time for pipe-out (𝑇𝑇𝑜𝑜) and grout (𝑇𝑇g), The figure reveals that the temperature in 
pipe-out increased by approximatly 1 ˚C and in the grout increased by approximately 0.5 
˚C. Apparently, the friction effect is higher for highly viscous fluids.     

 

 
(a)                                                      (b) 

Figure 6: Temperature variations in pipe-out and grout vs. time with and without 
friction, for u=.5 m/s, 𝝁𝝁 = 𝟎𝟎.𝟓𝟓 𝒑𝒑𝒑𝒑. 𝒔𝒔, 𝒃𝒃𝒊𝒊g = 𝒃𝒃𝒐𝒐g = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟖𝟖𝟖𝟖 and 𝒃𝒃gs = 𝟐𝟐𝟐𝟐.𝟒𝟒𝟒𝟒  𝐖𝐖/
(𝐦𝐦𝟐𝟐𝐊𝐊). (a) fluid temperature at BHE outlet , ( b) grout temperature at surface 

 

Table 6.4: A solution with high viscosity 

 Parameter Value 

Fluid density     1000. kg/m3 

Fluid thermal conductivity          0.56 W/(mK) 

Fluid specific thermal capacity     4186 J/(kg.K) 

Fluid dynamic viscosity     0.5  Pa.s 

Fluid velocity      0.5 m/s 
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 Conclusions 

A semi-analytical model for the simulation of transient heat transfer with friction heat 
gain in a single U-tube geothermal borehole heat exchanger subjected to an arbitrary force 
signal has been derived and tested. The friction effect appears as a nonhomogeneous term 
in the governing equations, which constitutes a set of coupled partial differential 
equations describing heat flow in the three components of the borehole; pipe-in, pipe-out 
and grout. The spectral analysis is utilized to discretize the time domain; and the 
eigenfunction expansion is utilized to discretize the spatial domain. The model is verified 
analytically against a simplified one-dimensional transport equation given by van 
Genuchten and Alves. A numerical example is given to illustrate the effect of friction on 
heat transfer for different fluid velocities, and viscosities. The analysis shows that; for the 
geometry, materials, fluid velocities and viscosities, typically utilized for shallow 
geothermal systems; the friction is not really significant. However, the main advantage 
of this work is on the solution technique that can be useful for many other applications, 
including fluid flow in narrow pipes, high fluid velocities, high fluid viscosities, and pipes 
with composite materials. Also, the method can be useful for solving other 
nonhomogeneous coupled partial differential equations.  

The proposed model combines the exactness of the analytical methods with a great extent 
of generality in describing the geometry and boundary conditions of the numerical 
methods. The CPU time for calculating temperature distributions in all involved shallow 
geothermal system components; using 16,384 FFT samples, for the time domain, and 100 
Fourier-Bessel series samples, for the spatial domain; is in the order of 1 second in a 
normal Intel PC. As the solution is highly accurate and computationally efficient, it can 
be suitable for inverse problems.  

 

 



 

 



 

 

 

 

 

 

 

 

 
Part II 

Parameter Identification of GSHP 
Systems: 

 
 

Inverse Calculations 



 

 

 

 

 

 



 

 

 

   
Parameter Identification Algorithm for Ground Source 
Heat Pump Systems 

This chapter introduces a new parameter identification (PI) algorithm for estimating 
effective and detailed thermal parameters of ground source heat pump systems using data 
obtained from the well-known thermal response test. The PI comprises an iterative 
scheme coupling a semi-analytical forward model to an inverse model. The forward 
model is formulated based on the spectral element method to simulate transient 3D heat 
flow in ground source heat pump (GSHP) systems, and the inverse model is formulated 
based on the interior-point optimization method to minimize the system objective 
function. Compared to existing interpretation tools for the thermal response test, the 
proposed PI algorithm has several advanced features, including: it can handle fluctuating 
heat pump power and inlet temperatures; interpret data obtained from multiple heat 
injection or extraction signals; produce accurate backcalculation for short and long 
duration experiments; and handle multilayer systems. The PI algorithm is tested against 
synthesized data, using a wide range of random noise, and versus an available laboratory 
experiment. The computational results show that the PI algorithm is accurate, stable and 
exhibiting relatively high convergence rate.    

 

 

 

This chapter is based on BniLam and Al-Khoury (submitted), Parameter Identification 
Algorithm for Ground Source Heat Pump Systems. 
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 Introduction 

The use of the ground source heat pump technology for heating and cooling of buildings 
is rapidly rising worldwide, and engineers are striving to improve its design. Efficient 
design of a GSHP system depends in part on the accuracy of the thermal parameters of 
the borehole heat exchanger and the soil mass (Witte et al. 2002), and in another on the 
optimization of the energetic, exergetic and economic performance of the system as a 
whole (Ozgener and Hepbasli 2007; Conti 2015; and Verrax 2018). This chapter focuses 
on the first part. 

Thermal parameters of the borehole heat exchanger (BHE) components are usually 
known a priori, but thermal parameters of the soil mass and the borehole thermal 
resistance are not readily known and need to be determined. Laboratory and field 
experiments have been devised for estimating the soil thermal parameters. Thermal 
properties estimated from laboratory experiments are in principle more accurate. 
However, the drawback in here is that only a small volume of the soil is tested, ignoring 
the inhomogeneity of the soil layers. Also, disturbances in the soil samples can lead to 
erroneous estimate (Witte et al. 2002). Following this, the in-situ Thermal Response Test 
(TRT), first introduced by Mogensen (1983), has become the tool for estimating the 
GSHP parameters. The TRT became popular because in addition to determining the 
thermal properties of the soil without the need for taking samples to the lab, it determines 
the borehole thermal interaction coefficient, a property that is quite difficult to be 
quantified in the lab. 

An important element of the thermal response test is the interpretation procedure of the 
measured data. This experiment is relatively expensive but can only be useful if the 
utilized parameter identification algorithm is able to produce accurate estimate of the 
involved thermal parameters. Basically, parameter identification algorithms employ 
forward and inverse models to obtain effective or detailed parameters, depending on the 
rigor of the algorithm. The forward model is a mathematical expression which describes 
the physical system and predicts the response of the system for any given values of the 
model parameters. The inverse model is a mathematical optimization algorithm designed 
for inferring the values of the model parameters from measured and theoretical response 
quantities. The competence of a parameter identification algorithm depends on several 
factors, including: 

a) the adequacy of the forward model to describe the physics of the problem, and its 
computational efficiency in utilization in iterative schemes for inverse calculations, 
and  

b) the consistency, stability and convergence rate and uniqueness of the inverse model 
for solving the objective functions.  

Based on these factors, parameter identification algorithms utilized for TRT interpretation 
can be put in three categories: 
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Figure 7.1: A schematic representation of the Forward analytical – Inverse 

graphical interpretation (GI) algorithm 

1) Forward analytical – Inverse graphical interpretation (GI) algorithm (also denoted as 
curve fitting method). This algorithm employs the well-known infinite line source 
(ILS) model (Ingersoll et al. 1954) for the forward calculation. The inverse 
calculation is conducted via curve fitting of the measured data to estimate the 
effective soil thermal conductivity and borehole thermal resistance, as shown in 
Figure 7.1.  This method is widely used because of its simplicity, simple 
mathematical tools (such as MS Excel) can be used to interpret the measured data. 
Works fall in this category, among many others, are: Witte et al. (2002); Busso et al. 
(2003); Sanner et al. (2005) and (2008); Witte (2013); Focaccia et al. (2013); and 
Bujok et al. (2014). In Section 7.2 we discuss this algorithm in detail, and in Section 
7.4 we examine its performance. The study shows that this algorithm has 
fundamental shortcomings, mainly in its non-uniqueness in determining two physical 
parameters (soil thermal conductivity and borehole thermal resistance) from one 
equation.   

2) Forward analytical – Inverse optimization algorithms. This kind of algorithms 
employ analytical models such as the infinite line source (ILS), infinite cylindrical 
source (ICS) (Ingersoll et al. 1954), thermal resistance and capacitance (TRC) 
(Pasquier and Marcotte 2014), or alike, for the forward calculation. The inverse 
calculation is conducted using some sort of optimization techniques, as shown in 
Figure 7.2.  Works fall in this category, among others, are: Fujii et al (2009); Li and 
Lai (2012); Wagner et al. (2013); Raymond and Lamarche (2013); Choi and Ooka 
(2015); Pasquier (2015) and (2018); and Pasquier et al. (2019). In this category, the 
use of optimization techniques for minimizing the system objective functions 
overcomes some of the shortcomings of the previous category. However, most of the 
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analytical forward models are not formulated to describe the detailed heat flow in the 
GSHP systems, making backcalculations based on such models limited in accuracy.     

3) Forward numerical – Inverse optimization algorithms. This kind of algorithms 
employ numerical solutions based on the finite element method, finite difference 
method or finite volume method for the forward calculation. The inverse calculation 
is conducted using some sort of optimization techniques, as shown in Figure 7.3.  
Works fall in this category, among others, are: Spitler et al. (2000), Austin et al. 
(2000); Wagner and Clauser (2005); Witte and van Gelder (2006); Signorelli et al. 
(2007); and Marcotte and Pasquier (2008b). In general, the parameter identification 
models of this category are more advanced, but the use of the numerical models for 
forward calculations make them computationally inefficient for utilization in 
iterative schemes for inverse problems. 

 

 

Figure 7.2:  A schematic representation of the Forward analytical – Inverse 
optimization algorithms 

Despite the bulk of research work in this field, there are yet many challenges that affect 
the accuracy of the TRT interpretation procedures, including:    

A) Heat pump power fluctuation  

Heat pumps used in GSHP systems usually produce fluctuating thermal loads, leading 
eventually to fluctuations in the measured inlet and outlet temperatures. As it will be 
shown in Section 7.2 and the subsequent sections, the GI algorithm is directly related 
to the heat power, and if this power is not constant, the temperature can be 
misrepresented, giving rise to inaccurate curve fitting. Two solutions have been 
employed for this problem. One is modifying the hardware by using electric resistance 
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heaters for heating the circulating fluid (Sanner et al. 2005, Sauer et al. 2012); and 
another is modifying the interpretation method by using numerical forward models 
which are usually capable of handling fluctuated heat fluxes. Witte and van Gelder 
(2006), for instance, employed TRNSYS simulator to estimate the soil thermal 
parameters using a time varying heat flux injection. Raymond et al. (2011) and Choi 
and Ooka (2015) tackled this problem by using a temporal superposition technique 
combining the ILS model to an optimization algorithm.     

 

 

Figure 7.3: A schematic representation of the Forward numerical – Inverse 
optimization algorithms 

B) TRT duration 

In practice, the TRT is conducted for 72 hours in an effort to let the system reaches 
the steady state and guarantee better interpretation (Witte and van Gelder 2006). This 
duration is particularly crucial for the GI algorithm, as will be explained in Section 
7.2 and verified in Section 7.4. However, performing the experiment for 72 hours can 
be expensive. Spitler et al. (2000) have shown that the cost of performing TRT 
increases significantly with the increase of the TRT duration. As a consequence, 
recently, several studies are initiated to investigate the possibility of shortening the 
TRT duration. Bujok et al. (2014) performed several TRT in a field containing 16 
boreholes to analyze the effect of shortening the TRT durations on the accuracy of the 
thermal parameter identification. Their study shows that shortening the test to 24 
hours can bring an acceptable amount of inaccuracy. Pasquier (2018) introduced an 
interpretation technique that can make use of the measured temperatures during the 
first three hours to produce an effective thermal conductivity accurate within 10% of 
a reference value. 
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C) Nonhomogeneous soil mass 

Most TRT parameter identification algorithms assume that the soil mass consists of 
a homogeneous layer, which can be described by effective soil thermal conductivity 
and borehole thermal resistance. Obviously, this assumption is not realistic as the 
borehole can go as deep as 200 m into the ground, which most probably consists of 
layers with varying soil types, geometry and thermal properties (Witte and van 
Gelder 2006, Spitler and Gehlin 2015). An attempt to backcalculate the thermal 
properties of a multilayer system necessities two main requirements:  

1) The TRT needs to include temperature measurements, not only at the inlet and 
outlet of the borehole, but also along its depth. Currently, this is gradually 
becoming a common practice, especially by the introduction of what is known 
as the Distributed Thermal Response Test (DTRT), where measurements are 
made along the BHE using optical fiber (Fujii et al. 2009, Acuña and Palm 2013, 
Vélez Márquez et al. 2018).  

2) The forward model needs to be able to simulate multilayer systems. Raymond 
and Lamarche (2013) presented a noteworthy attempt to estimate the thermal 
parameters of a multilayer soil mass system. They utilized the MLU simulator 
(an analytical tool for hydraulic pumping test in layered domains) for the forward 
calculation. The inverse calculation is conducted using the Levenberg–
Marquardt algorithm (Marquardt 1963). They backcalculated thermal 
parameters for three layers and showed that the results were, for most cases, 
within 20% accuracy.   

As indicated above, these challenges have been addressed in the literature, but most of 
the models can only deal with one or two challenges at a time. In this chapter we address 
these challenges, together with the possibility to identify parameters other than the 
conventional thermal conductivity and borehole thermal resistance. We introduce a new 
parameter identification (PI) algorithm capable of estimating effective and detailed 
thermal parameters of GSHP systems. The PI comprises an iterative scheme, coupling a 
semi-analytical forward model to an inverse model.  

The forward model is formulated based on the spectral element method (Doyle 1997) and 
the superposition principle to simulate transient 3D heat flow in multiple borehole heat 
exchangers embedded in multilayer systems. The spectral element method (SEM) solves 
linear partial differential equations for a homogeneous domain analytically, and for a 
layered domain it solves the governing equations by means of the finite element technique. 
It elegantly combines the exactness of the analytical methods to a great extent of 
generality of the numerical methods in describing the geometry and boundary conditions. 
It requires one element per layer, making the mesh size equivalent to the number of layers. 
These features make the proposed forward model accurate and computationally efficient, 
and thus suitable for utilization in iterative schemes for inverse problems.  
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The inverse model is formulated based on the interior-point method (IPM), a technique 
capable of optimizing multi-dimensional, sparse linear, quadratic or general nonlinear 
objective functions and constraints (Byrd et. al. 1999). Optimization algorithms based on 
the IPM are usually implemented on the basis of the predictor-corrector technique, 
Cholesky decomposition and Newton’s method. These features make the inverse model 
capable of identifying multiple variables problems with relatively high convergence rate. 
Details of the PI algorithm is given in Section 7.3, followed by verifications and analyses 
in Section 7.4 and 7.5. But first, we elaborate on the current GI algorithm. 

 Current Graphical Interpretation (GI) algorithm 

The GI algorithm estimates the effective soil thermal conductivity and borehole thermal 
resistance based on the infinite line source model (ILS) and the least square curve fitting 
method. For a sufficiently long time, Carslaw and Jaegar (1959) solved the ILS partial 
differential equation for a constant heat flow rate per unit length, q, giving: 
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
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                                                                                  (7.1) 

in which 𝑇𝑇(𝑟𝑟, 𝑡𝑡) is the temperature of the medium (soil mass in this case) at radial distance 
𝑟𝑟 from the heat line source, λ (W (m. k))⁄  is the medium thermal conductivity, α(m2 s⁄ ) 
is the thermal diffusivity and 𝛾𝛾 = 0.5772 is Euler's constant.  

At the borehole boundary surface, 𝑟𝑟 = 𝑟𝑟𝑏𝑏 , the borehole temperature is related to the 
average fluid temperature via (Eskilson 1987, and Wagner and Clauser 2005): 
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in which 𝑇𝑇in(𝑡𝑡) and 𝑇𝑇out(𝑡𝑡) are the inlet and outlet temperatures, and 𝑅𝑅𝑏𝑏 is the borehole 
thermal resistance between the fluid and the borehole wall.  

Substituting Eq.(7.1) into Eq.(7.2) , and rearrangement, gives  
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In a compact format, Eq. (7.4) can be written as 

   lnT t a t b                                                                                                        (7.5) 
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which represents a line in a semi-log scale with 𝑎𝑎 its slope and 𝑏𝑏 its 𝑇𝑇�-intercept. Relating 
𝑎𝑎 to the coefficient of the first term on the right-hand side of Eq. (7.4), and knowing the 
heat pump 𝑞𝑞, the soil thermal conductivity λ can readily be determined. Then, relating 𝑏𝑏 
to the second and third terms on the right-hand side of Eq. (7.4), and known λ from the 
previous step together with all other known parameters, 𝑅𝑅𝑏𝑏 can be determined.  

Apparently, the GI algorithm is easy to implement, making it attractive for daily 
engineering practice. However, it suffers from fundamental shortcomings, including: 

1. This method is undetermined. It entails determining two physical parameters from 
one equation in two steps; not by solving two equations simultaneously. An error in 
determining λ  would inevitably lead to error in 𝑅𝑅𝑏𝑏 . Basically, the parameter 
identification procedure requires either determinate systems (the number of 
equations is equal to the number of unknowns) or over-determinate systems (the 
number of equations is more than the number of unknowns).  

2. The time when the curve fitting begins can have a crucial effect on the values of  𝑎𝑎 
and 𝑏𝑏, and hence on 𝜆𝜆 and 𝑅𝑅𝑏𝑏.     

3. The solution given in Eq. (7.1), provided by Craslaw and jaeger (1959), is applicable 
for “sufficiently” long time, necessitating conducting the experiment for several days 
to be valid. 

 Proposed PI algorithm 

The proposed PI algorithm consists of a forward model to an inverse model, described 
hereafter. 

7.3.1  Forward model 
The background theory of the forward model has been thoroughly presented in Chapter 
4. The governing heat equations and initial conditions of a ground source heat pump 
consisting of a single U-tube borehole heat exchanger embedded in a soil mass, Figure 
4.1, are presented in Section 4.3. The boundary condition at the inlet of pipe-in might be 
any of two types:  

a Neumann boundary condition:  

in(0, ) ( ) i
i i

dTq t q t dA
dz

                                                                                       (7.6) 

or a Dirichlet boundary condition:                                                                                              

in(0, ) ( )iT t T t                                                                                                          (7.7) 

where 𝑞𝑞in  is the prescribed heat flux and  𝑇𝑇in  is the prescribed inlet temperature, that 
might have any arbitrary distribution in time.  
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Eqs. (4.1)-(4.4) are coupled via local thermal interaction terms describing heat flow at the 
contact surfaces between neighboring BHE components. At the boundary between pipe-
in and grout the heat flow is described in terms of the thermal interaction coefficient, 𝑏𝑏𝑖𝑖g, 
which can be expressed as:  

1
ig

ig ig
b

dS R
                                                                                                            (7.8) 

where 𝑑𝑑𝑑𝑑𝑖𝑖g  is the surface area of pipe-in in contact with the grout, and 𝑅𝑅𝑖𝑖g  is the 
corresponding thermal resistance, expressed analytically as  

 
convection pipe material

p

ln1
2 2

o i
ig

i

r r
R R R

r Lh L  
                                               (7.9) 

in which ir  and or  are the inner and outer radius of pipe-in, respectively; 𝐿𝐿 is the length 

of the spectral element; p is the thermal conductivity of pipe-in material; and 

Nuh D  is the convective heat transfer coefficient, where D is the inner diameter 
of the pipe, Nu  and   are the Nusselt Number and thermal conductivity of the 
circulating fluid. A similar formulation is used for 𝑏𝑏og , pipe out – grout thermal 
interaction. 

The thermal interaction coefficient for the soil film – soil mass is expressed as  

1
ss

s ss
b

dS R
                                                                                                          (7.10)            

where 𝑑𝑑𝑑𝑑𝑠𝑠 is the surface area of the soil film in contact with the soil mass, and  𝑅𝑅𝑠𝑠𝑠𝑠 is the 
corresponding thermal resistance, expressed analytically as  

 f bln
2ss

s

r r
R

L 
                                                                                                          (7.11)               

in which fr  is the radius of the soil film and br  is the borehole radius. The thermal 
interaction coefficient for grout –soil film is expressed as  

1
gs

gs gs
b

dS R
                                                                                                           (7.12)             

where 𝑑𝑑𝑑𝑑gs  is the surface area of grout in contact with the soil film, and 𝑅𝑅gs  is the 
corresponding thermal resistance. Unlike 𝑅𝑅𝑖𝑖g , 𝑅𝑅og  and 𝑅𝑅ss , 𝑅𝑅gs  does not have an 
analytical expression due to the acentric positions of pipe-in and pipe-out inside the grout. 
This coefficient is usually approximated using an equivalent centric pipe with an 



Chapter 7 

156 

equivalent cross-sectional area of pipe-in and pipe-out (Al-Khoury 2012b, Section 2.3). 
Here, 𝑅𝑅gs is backcalculated using the inverse model.   

 

 
Figure 7.4: a) BHE-soil top view, b) BHE-soil 𝒀𝒀–configuration thermal circuit,                                   

c) equivalent borehole thermal resistance. 

 

The above local thermal interaction terms are unique to this model, Eqs. (4.1)-(4.4). 
Different models can have different local thermal interaction arrangements and 
formulations. Nevertheless, regardless of the local interaction terms, models that are 
utilized to interpret the thermal response test (TRT) are required to back calculate the 
borehole thermal resistance, 𝑅𝑅𝑏𝑏. The usual practice is to lump the local thermal interaction 
coefficients into an equivalent coefficient using some sort of arrangements, such as the 
Delta– or 𝑌𝑌–configuration analogy to Ohm’s law (Al-Khoury 2012b). The governing 
BHE heat equations (Eqs. (4.1)-(4.4)) are a typical 𝑌𝑌– configuration, where pipe-in and 
pipe-out are interacting with each other via the grout, which is in contact with the soil, 
Figure 7.4a. Figure 7.4b shows the thermal resistance configuration, where 𝑅𝑅𝑖𝑖g and 𝑅𝑅𝑜𝑜g 
are in parallel to each other and in series with 𝑅𝑅g𝑠𝑠  and 𝑅𝑅𝑠𝑠𝑠𝑠 . The equivalent thermal 
resistance for this configuration is given in Figure 7.4c that can be expressed as 

b ig og gs ssR R R R R                                                                                      (7.13)        

where 𝑅𝑅𝑖𝑖g , 𝑅𝑅𝑜𝑜g   and 𝑅𝑅𝑠𝑠𝑠𝑠   are determined analytically using Eqs. (7.9) and (7.11), 
respectively, and 𝑅𝑅gs  is backcalculated.     



7.3 Proposed PI algorithm 

 

157 

7.3.2 Inverse model 
The procedure for parameter identification entails minimizing the objective function of a 
system subjected to predefined constraints, such that: 

minimize    ( )
subjected    

f


x
x

                                                                                                   (7.14) 

where 𝑓𝑓(𝐱𝐱) is the objective function that needs to be minimized; 𝐱𝐱 = [𝑥𝑥1, 𝑥𝑥2, … ] is the 
vector of the unknown parameters that need to be estimated, such as the soil thermal 
conductivity and the borehole thermal resistance; and  Ω represent the constraints of  𝐱𝐱.  

For a ground source heat pump, the objective function can be expressed as the Euclidean 
distance (norm 2) between the measured and computed temperatures. Using the spectral 
analysis, the Euclidean distance is described in the frequency domain, as 

m th 2
1 22

m th

ˆ ˆ ( ) ( , ) ( , , )

ˆ ˆ( , ) ( , , )n nn

f T z T z

T z T z

 

 

 

     

x x

x
                                                       (7.15) 

in which 𝑇𝑇�m (𝜔𝜔𝑛𝑛 , 𝑧𝑧)  is the frequency transformed measured temperature, as typically 
obtained from TRT, and  𝑇𝑇�𝑡𝑡ℎ (𝜔𝜔𝑛𝑛, 𝑧𝑧, 𝐱𝐱)  is its equivalent theoretical temperature, as 
computed by the forward model. Theoretically, 𝑇𝑇�m (𝜔𝜔𝑛𝑛 , 𝑧𝑧) and 𝑇𝑇�𝑡𝑡ℎ (𝜔𝜔𝑛𝑛, 𝑧𝑧, 𝐱𝐱) can be at any 
frequency, 𝜔𝜔𝑛𝑛, at any depth, 𝑧𝑧, and for any component of the GSHP system, including 
the soil mass. However, in typical TRT, only the temperatures at the inlet of pipe-in and 
outlet of pipe-out are measured. The summation over 𝑛𝑛 in Eq. (7.15) indicates that the 
objective function can contain any number of frequencies. This constitutes an important 
advantage of the spectral analysis compared to the time domain. In the time domain the 
whole signal must be considered and the whole system must be calculated in every 
iteration, while in the spectral analysis the system can be calculated for only few 
frequencies. This stems from the fundamental property of the frequency domain which 
describes the characteristic of the system to respond to a range of frequencies regardless 
of the time of occurrences. In the time domain, the sequence of occurrences determines 
the response of the physical system, specifically for that event. The verification and 
numerical examples given in later sections are conducted using 20 frequencies for each 
reading set.   

Solving the objective function, Eq. (7.15), requires a minimization algorithm capable of 
solving complex, multidimensional, nonlinear equations. In this work, we employ the 
Interior-point optimization algorithm (Bonnans et. al. 2006), which can handle large and 
sparse problems. It satisfies bounds at all iterations and can recover from 𝑁𝑁𝑁𝑁𝑁𝑁 (Not a 
Number) or 𝐼𝐼𝐼𝐼𝐼𝐼 (Infinity) results. This algorithm has been implemented and optimized 
in the MATLAB nonlinear programming solver called 𝑓𝑓𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (MathWorks 2019). The 
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proposed PI algorithm can be summarized in a computer program (see PROGRAM  PI 
Algorithm). 

 

PROGRAM  PI Algorithm 

1:            Transform measured temperatures into frequency domain: m̂ ( , )nT z  

2:            Set initial values for the required parameter:  𝐱𝐱𝑜𝑜 

3:            Call 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

4: Loop_z         DO   𝑚𝑚 = 1,𝑀𝑀 ; 𝑀𝑀 is the number of temperature readings along BHE or 
in soil 

5: Loop_freq                 DO  𝑛𝑛 = 1,𝑁𝑁 ; 𝑁𝑁 is the number of selected frequencies  

6:                                        Calculate th
ˆ ( , , )nT z x  using the forward model, Section 3.1 

7:                                    ENDDO Loop_freq 

8:                        ENDDO Loop_z 

9:                        Calculate the objective function, Eq. (7.15): 

                                        
1 2

2
m th

1

ˆ ˆ  ( ) ( , ) ( , , )
N

n n
n

f T z T z 


      
x x   

10:                      IF  ( )f x  ;   some tolerance 

                                          𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 determines new guess for 𝐱𝐱 

                                           GOTO Loop_z 

                           ENDIF 

11:                      Output 𝐱𝐱 

ENDPROGRAM  PI Algorithm 

 

 Performance of PI algorithm  

The performance of the proposed PI algorithm is examined by means of numerical 
experiments using synthetic data generated by the forward model to represent 
measurements of a typical TRT experiment. Synthetic data is usually smooth, but to make 
it comparable to measured data, random noise with different contamination levels is 
applied. The advantage of using synthetic data is that the input parameters are known a 
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priori that enables quantifiable verification of the inverse model. The PI algorithm is 
tested in terms of its accuracy; stability, which is a measure of the ability of an algorithm 
to converge even in the presence of contaminated data; and convergence rate, which is a 
measure of the speed at which a convergence sequence reaches the desired accuracy.  

 

Table 7.1: BHE material and physical parameters 
 

 

 

 

 
 

 

 

 

 

 

 

 

Typical TRT heat pumps exhibit fluctuations in their power signal, with standard 
deviation (std) ranging between 2% and 10% (Beier et. al. 2011 and Witte et. al. 2002). 
To mimic this, we contaminate the synthetic heat pump power using an additive white 
Gaussian noise (AWGN), such that     

 con sy ,stdP P t                                                                                            (7.16) 

in which 𝑃𝑃con is the contaminated heat pump signal, 𝑃𝑃sy is the synthetic heat pump power 
and 𝜂𝜂 is a zero-mean random AWGN with standard deviation, std. Here, the synthetic 
heat pump power is assumed 5000 W. To generate a wide range of randomness, we apply 
150 random AWGN with three levels of std: 

100
std 300

500



  W                                                                                                        (7.17) 

Parameter Value 

Borehole:  

Borehole length 100       m 

Borehole diameter 0.1        m 

Pipe external diameter 0.03      m 

Pipe thermal conductivity     0.42      W/(mK) 

Fluid:   

   Density, ρ  1000     kg/m3 

Specific thermal capacity, c 4186     J/(kg. K) 

Thermal conductivity, λ      0.56     W/(m. K) 

Dynamic viscosity, µ 0.001  Pa. s 

Velocity, u 0.5       m/s 

Grout:  

   Density, ρg 1400     kg/m3 

Specific thermal capacity, cg 2000    J/(kg. K) 

Thermal conductivity, λg    0.8      W/(m. K) 
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The heat pump is assumed to be connected to a 100 m BHE, constituting a single U-tube 
embedded in a soil mass. Details of the BHE parameters are given in Table 7.1. Two 
numerical TRT experiments have been conducted: 1) for a BHE embedded in a half space; 
and 2) for a BHE embedded in a three-layer system. Parameter identifications have been 
performed on the contaminated data using the GI method and the proposed PI algorithm. 
We compare the performance of these two algorithms based on: 

1. accuracy in predicting the parameters;  

2. noise effect; 

3. duration of experiment; and  

4. number of backcalculated parameters.  

 

7.4.1 Numerical TRT in a half space   
In this set up, the BHE is assumed to be embedded in a half space constituting a 
homogeneous soil layer with thermal conductivity 𝜆𝜆𝑠𝑠 = 2 (W/mK), and volumetric heat 
capacity  𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠 = 2.6 (MJ/m3K).  

150 numerical TRT experiments were conducted for 72 hours. They were divided into 
three sets, each representing 50 numerical experiments subjected to randomly 
contaminated power signal (Eq. (7.16)) with a specific standard deviation (Eq. (7.17)). 
Figure 7.5 shows an example of one of the three sets. It shows randomly contaminated 
power with 300 W standard deviation (Figure 7.5a), and the associated computed inlet 
and outlet temperatures (Figure 7.5b). This figure evidently demonstrates that the use of 
AWGN makes the synthetic data comparable to measured data.   

 

 
Figure 7.5: a) thermal power with 𝐬𝐬𝐬𝐬𝐬𝐬 = 𝟑𝟑𝟑𝟑𝟑𝟑 𝑾𝑾, b) inlet and outlet temperatures, 

c) borehole thermal resistance: Eq.(7.18) . 
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The borehole thermal resistance is calculated based on the forward model results, via 
(Raymond and Lamarche 2013): 

b
b

T TR
q


                                                                                                          (7.18) 

where 𝑇𝑇�  is the average fluid temperature (Eq. (7.3)), and 𝑇𝑇𝑏𝑏   the borehole temperature (𝑇𝑇𝑠𝑠 
in Eq.(4.3)). Figure (7.5c) is a plot of 𝑅𝑅𝑏𝑏 versus time, which clearly shows that, upon the 
end of the transient period, 𝑅𝑅𝑏𝑏 becomes nearly constant at 0.2 (mK)/W.  

 

 

 
Figure 7.6: Average fluid temperature and fitted curves for different fitting start 

time: a) 1 h, b) 6 h, c) 15 h and d) 30 h. 

 



Chapter 7 

162 

The backcalculation is carried out using both the GI algorithm and the proposed PI 
algorithm.  

A. Backcalculation based on GI algorithm 

The GI algorithm is utilized to backcalculate the effective soil thermal conductivity, 𝜆𝜆𝑠𝑠, 
and the borehole thermal resistance, 𝑅𝑅𝑏𝑏, for the 150 numerical experiments. Figure 7.6 
shows an example of one of the numerical experiments, generated from processing the 
computed results of Figure 7.5. It displays the average fluid temperature 𝑇𝑇� versus time, 
along with the best fitted curves. Four fitted curves, depending on the start time, were 
conducted: after 1 h; after 6 h; after 15 h; and after 30 h. The fitted curves are shown in 
normal scale plots and in semi-log scale plots (inside the blue boxes). Obviously, the 
fitted curve which starts after 1 h is the least accurate due to the high transient gradient at 
the beginning of the experiment.  

 

 
Figure 7.7: a) backcalculated soil thermal conductivity, b) backcalculated borehole 

thermal resistance. 

 

Figure 7.7 presents the backcalculated results of these four fitted curves. Apparently, the 
GI algorithm exhibits dependency on both the start time of fitting and the noise level. 
Knowing the input values (𝜆𝜆𝑠𝑠 = 2 W/mK;𝑅𝑅𝑏𝑏 = 0.2 mK/W ) the figure qualitatively 
indicates that the fitted curve which starts after 30 h and std = 100 W gave the best 
estimate. We use the boxplots as a means for descriptive statistics to observe the 
estimation errors of the best fitted curve case based on five quantities: minimum, first 
quartile, median, third quartile, and maximum. Figure 7.8 shows boxplots of the 30 h 
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fitting case; and Table 7.2 presents the associated statistical values. The following can be 
deduced from the boxplots: 

1) The median error decreases with increasing noise,  

2) The interquartile range ( 𝐼𝐼𝐼𝐼𝐼𝐼 , box size) increases with noise level:                                
𝐼𝐼𝐼𝐼𝐼𝐼100𝑊𝑊 = 1.2; 𝐼𝐼𝐼𝐼𝐼𝐼300𝑊𝑊 = 5.5; 𝐼𝐼𝐼𝐼𝐼𝐼500𝑊𝑊 = 5.7. 

3) The gap between the minimum and maximum increases with increasing noise: 
𝑀𝑀𝑀𝑀100𝑊𝑊 = 3.9; 𝑀𝑀𝑀𝑀300𝑊𝑊 = 10.3; 𝑀𝑀𝑀𝑀500𝑊𝑊 = 14.3.    

4) Noise level 100 𝑊𝑊 has three outliers, while others do not have. 

These observations indicate that the GI algorithm depends strongly on the noise level.  

 

 
Figure 7.8: Boxplot of estimated error of GI algorithm started at 30 h: a) soil 

thermal conductivity, b) borehole thermal resistance, for GI algorithm started at 
30 hours. 

 

Table 7.2: Statistical values of Figure 7.8 

Noise level Minimum 

(%) 

First quartile 

(%) 

Median 

(%) 

Third quartile 

(%) 

Maximum 

(%) 

𝐬𝐬𝐬𝐬𝐬𝐬 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝑾𝑾 4.2 5.4 5.9 6.6 8.1 

𝐬𝐬𝐭𝐭𝐭𝐭 = 𝟑𝟑𝟑𝟑𝟑𝟑𝑾𝑾 0.3 2.7 5.5 8.2 10.6 

𝐬𝐬𝐬𝐬𝐬𝐬 = 𝟓𝟓𝟓𝟓𝟓𝟓𝑾𝑾 0.1 2.6 4.1 8.3 14.4 
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It is worth noting that the error in the backcalculated borehole thermal resistance has the 
same statistical description as that for the thermal conductivity (see Figure 7.8a and 
Figure 7.8b). This proves the argument which was raised in Section 7.2. As the estimation 
of 𝑅𝑅𝑏𝑏 using the GI algorithm is dependent on 𝜆𝜆𝑠𝑠, the error in estimating 𝜆𝜆𝑠𝑠 is reflected on 
𝑅𝑅𝑏𝑏.  

 

B. Backcalculation based on PI algorithm 

Here, the proposed PI algorithm was utilized to backcalculate 𝜆𝜆𝑠𝑠 and 𝑅𝑅𝑏𝑏 from the 150 
numerical experiments. Figure 7.7 shows the backcalculated results (black lines). The 
estimated 𝜆𝜆𝑠𝑠  is 1.99 W/mK (input value is 2 W/mK) , and 𝑅𝑅𝑏𝑏  is 0.207 mK/W (input 
value is 0.2 mK/W). The figure also shows that the PI algorithm is stable such that it 
demonstrates minor oscillations with noise.  

Figure 7.9 shows the convergence rate of one of the experiments with std = 300 𝑊𝑊. It 
shows that both parameters were identified in 25 iterations. This relatively high 
convergence rate can be attributed to several reasons, including the use of the spectral 
element method for the forward calculation, and the use of the interior-point optimization 
algorithm and the Euclidean norm for the inverse calculation. 20 frequencies were utilized 
and on average it took 5 seconds in a normal laptop for the whole backcalculation 
procedure. 

 

 

 

 
Figure 7.9: Convergence rate of PI algorithm 
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7.4.2 Numerical TRT in a layered system   
In this section, we investigate a numerical TRT for a BHE embedded in a three-layer soil 
mass. Figure 7.10 shows the geometry and material properties of the soil layers. The BHE 
physical and thermal properties are as those given in the previous example. Also, 150 
numerical experiments with heat pump power and noise levels as for the previous 
example were conducted. The borehole thermal resistance is calculated using Eq. (7.18).  

We examined the PI algorithm in two ways: 1) effective parameter identification, where 
we estimate the thermal parameters assuming that the soil mass consists of a single layer 
which can be descried by an effective thermal conductivity and borehole thermal 
resistance; and 2) detailed parameter identification, where we estimate the thermal 
parameters of all layers, assuming that sufficient temperature readings along the pipe are 
available.   

 

 

 

Figure 7.10: Schematic presentation of a BHE embedded in a three-layer soil mass 

 

A. Effective parameter identification  

Conventional parameter identification using TRT measurements is based on estimating 
the thermal conductivity and borehole thermal resistance of the soil mass from the inlet 
and outlet temperatures. The soil mass is assumed half space, characterized by effective 
(average) thermal parameters.  



Chapter 7 

166 

The average thermal conductivity of the soil mass, as given in Figure 7.10, can readily be 
calculated to give 2.16 W/mK, and the average borehole thermal resistance to give 0.206 
mK/W. If the layer thicknesses are considered, calculation of the weighted averages 
would give 2.3 W/mK and 0.203 mK/W, respectively.  

Figure 7.11 shows the backcalculated effective parameters using both the proposed PI 
algorithm and the GI algorithm. The backcalculation due to the PI algorithm gave 2.188 
W/mK for the thermal conductivity, and 0.187 W/mK for the borehole thermal resistance; 
which are close to both averages of the input values. Additionally, the figure reveals that 
the PI algorithm has minor oscillations for all noise levels. On the other hand, the GI 
algorithm gave different results depending on the start time of the curve fitting and the 
noise level. In all cases it gave underestimated values.  

We furthermore examined the performance of the PI algorithm for different experiment 
durations: 12, 24, 48 and 72 hours. Table 7.3 presents the estimated values of the effective 
𝜆𝜆𝑠𝑠 and 𝑅𝑅𝑏𝑏, backcalculated from the PI algorithm and GI algorithm for different curve 
fitting periods (from 1, 6, 15 and 30 hours). This independency on the duration of the 
experiment is attributed to the capability of the forward model to simulate the highly 
transient period at the beginning of the experiment, and to the choice of the minimization 
procedure. On the other hand, the GI algorithm gave varying estimates with somewhat 
better performance for the longer experiment duration and shorter curve fitting. This 
explains why the TRT is conducted in practice for 72 hours.  

 

 

Figure 7.11: a) estimated soil thermal conductivity, b) estimated borehole thermal 
resistance 
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B. Detailed parameter identification 

Detailed parameter identification entails estimating the thermal parameters of all involved 
layers and/or parameters including the volumetric heat capacities, 𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠.  

As mentioned earlier, the basic principle of the parameter identification is that the system 
of equations must be either determinate or over-determinate. This implies that the number 
of measured set of readings must be equal or more than to the number of backcalculated 
parameters. To estimate the thermal parameters of the three-layer system of Figure 7.10, 
we assume that we have four measurement sets along the BHE. One set is the standard 
inlet and outlet temperatures, and the other three measurement sets are taken in the            
U-tube, on the middle of each layer. We backcalculate nine parameters: 𝜆𝜆𝑠𝑠 and 𝑅𝑅𝑏𝑏 for 
each layer together with their associated volumetric heat capacities, 𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠 . The TRT 
operation time is assumed 12 hours.      

Table 7.4 shows the estimated parameters compared to the exact (input values). It reveals 
that the estimated thermal conductivities for the three layers are nearly exact, the borehole 
thermal resistances have a maximum 5.5% error, and the volumetric heat capacities have 
a maximum 4.6% error.    

Table 7.3: Parameter estimation for different TRT durations 

Period PI algorithm GI starts at 1h GI starts at 6h GI starts at 15h GI starts at 30h 

 𝝀𝝀𝒔𝒔 𝑹𝑹𝒃𝒃 𝝀𝝀𝒔𝒔 𝑹𝑹𝒃𝒃 𝝀𝝀𝒔𝒔 𝑹𝑹𝒃𝒃 𝝀𝝀𝒔𝒔 𝑹𝑹𝒃𝒃 𝝀𝝀𝒔𝒔 𝑹𝑹𝒃𝒃 

12 h 2.188 0.187 1.35 0.1 1.61 0.13 ___ ___ ____ ____ 

24 h 2.187 0.187 1.51 0.116 1.77 0.144 1.85 0.15 ____ ____ 

48 h 2.184 0.187 1.67 0.13 1.9 0.154 1.95 0.16 1.84 0.149 

72 h 2.188 0.187 1.76 0.138 1.96 0.159 2.02 0.165 2.11 0.17 

 

 Model verification 

Witte et al. (2002) and Witte and van Gelder (2006) had conducted several in-situ thermal 
response tests to backcalculate the thermal conductivities of a multilayer soil mass. The 
borehole heat exchanger is 30 m in depth and 0.25 m in diameter, filled with soil materials 
of the surroundings, and embedded in which a U-tube, 0.025 m in diameter. The working 
fluid in the U-tube consists of water with 17% ethylene glycol solution. Detailed 
description of the geometry and materials can be found in Witte et al. (2002). Figure 7.12 
and Table 7.5 (Column TRT) give an overview of the geometry and show that the soil 
mass consists of 8 layers of different soil types and thicknesses.   



Chapter 7 

168 

Table 7.4: PI algorithm, detailed parameter identification 

𝝀𝝀𝒔𝒔 𝑹𝑹𝒃𝒃 𝝆𝝆𝒔𝒔𝒄𝒄𝒔𝒔 

Exact Estimated Exact Estimated Exact Estimated 

Layer1 2.5 2.49 0.19 0.2 3.3M 3.2M 

Layer 2 1 0.99 0.25 0.24 1.4M 1.38M 

Layer 3 3 2.99 0.18 0.19 2.14M 2.04M 

Witte et al. (2002) also provided the range of thermal conductivities of each soil type, as 
given in literature, and laboratory results for nine soil samples taken from the site. Witte 
and van Gelder (2006) conducted non-conventional experiments comprising three 
successive heat pump power pulses: two for heat injection and one for heat extraction. 
The power pulses lasted 96 hours, followed by a switching off period until 169 hours. 
The heat pump power together with the temperatures at the inlet and outlet of the U-tube 
were recorded for 169 hours every 4 minutes. Figure 7.13a shows the heat pump power 
versus time. 

Figure 7.12: Schematic presentation of the TRT given by Witte et.al. (2002) 
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Here, we make use of Witte and van Gelder (2006) TRT measurement to backcalculate 
the thermal conductivities of the involved soil layers with two varying complexities:   

1. Effective parameter identification of the average soil thermal conductivity, assuming 
that all soil layers can be grouped into one. The backcalculation results are given in 
Table 7.5 (Column Parameter Identification). The effective thermal conductivity is 
estimated to be 2.01 (W/mK). This estimation falls between the weighted average 
of the minimum (1.19 W/mK ) and maximum 3.4 (W/mK ), obtained from the 
literatures. It also compares well with the average laboratory results; 2.1 (W/mK), 
given by Witte et. al. (2002). 

2. Detailed parameter identification of thermal conductivities of all layers using the 
measured inlet and outlet temperatures, and eight synthetic fluid temperatures 
obtained from the forward model along pipe-in and pipe-out. Synthetic data was 
utilized because no measurements were made along the BHE. Nevertheless, they are 
computed using the measured inlet temperature, which intrinsically involves noise. 
The backcalculation results are given in Table 7.5 (Column Parameter Identification). 
It shows that the backcalculated thermal conductivities are rather close to the 
laboratory results. The weighted average of the backcalculated values of all layers is 
2.16 (W/mK).  

Figure 7.13b shows the measured inlet and outlet temperatures, together with the 
theoretical outlet temperature calculated based on the backcalculated thermal 
conductivities. The theoretical outlet temperatures were calculated in two ways: based on 
the effective thermal conductivity 2.01 (W/mk), and based on the detailed thermal 
conductivities, as given in Table 7.5 (Column Parameter Identification). The figure 
obviously shows a very good matching between the measured temperatures and the 
computed from both ways. This gives the impression that backcalculating the effective 
thermal conductivity is sufficient to produce accurate results; avoiding thus the need for 
detailed backcalculations. This argument has been highlighted in literature, see for 
example Lee (2011). However, matching accurately the fluid outlet temperature does not 
necessarily reflect the accuracy in calculating the temperature distribution in the soil mass. 
Figure 13c shows the associated temperature profiles in the soil mass in the 𝑧𝑧 −direction, 
10 cm away from the BHE. The temperature profiles are computed at the end of heat 
injection to the soil and the end of heat extraction. The figure clearly shows that 
calculations based on the detailed parameter identification exhibit different temperature 
distributions in the soil layers, depending on their thermal conductivities. This implies 
that relying on the effective thermal parameters might be useful for individual GSHP 
systems, but for regional GSHP systems where the thermal interaction between adjacent 
boreholes is crucial, knowing the detailed thermal properties of the soil layers is 
unavoidable.   
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Figure 13: a) supplied power, b) inlet and outlet temperatures, c) soil temperature 

in z direction at radial distance 10 𝑐𝑐𝑐𝑐 from the BHE. 

 

 Conclusions  

A new parameter identification algorithm has been introduced for estimating effective 
and detailed thermal parameters of ground source heat pump systems. The algorithm 
constitutes a semi-analytical forward model based on the spectral element method and an 
inverse model based on the interior-point optimization.  

Important features of the PI algorithm are:  

1. It can handle fluctuating heat pump power.  

2. It can interpret data obtained from multiple heat extraction or injection pulses 
for heating or cooling modes. 

3. It can produce accurate backcalculation for short and long duration experiments. 

4. It can handle multilayer systems. 

5. It can identify multiple parameters.  
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6. It is accurate and computationally efficient, stable and has a high convergence 
rate. Additionally, the numerical experiment on the multilayer system and the 
verification example demonstrated that the proposed PI algorithm has 
remarkable uniqueness even for multiple parameter identification. These 
features (accuracy, computational efficiency, stability, high convergence rate 
and uniqueness) constitute the essence of any parameter identification technique. 
They are manifested in the proposed algorithm due to the novel coupling 
between the spectral element method and the interior-point optimization method 
together with the Euclidean norm.   

In practice, these features can help in:  

1. Reducing the TRT cost by applying short duration experiments. The proposed 
forward model is accurate at both, the highly transient period of TRT and its 
steady state. This makes the backcalculation possible for almost any duration.    

2. Facilitating better GSHP design. Knowing the detailed soil mass parameters 
yields accurate calculation of the temperature distribution in the soil mass, 
making the PI particularly suitable for regional GSHP systems design. 
Combining this parameter identification technique to a heat pump optimization 
tool such as that of Jin and Spitler (2002), and to energetic, exergetic and 
economic performance optimization tools, such as those of Ozgener and 
Hepbasli (2007), Conti (2015) and Verrax (2018), would lead to optimal GSHP 
designs.   

The proposed PI algorithm can be extended to include features to consider the initial soil 
temperature gradient and groundwater flow in the forward model, and options to estimate 
the actual BHE length after installation and the thicknesses of the soil layers in the inverse 
model. 



Table 7.5: TRT field and laboratory data versus backcalculated.  

*This value is the mean of two readings at 4 and 6 meters.
**Normal average of all the values



 

 

 

 

  
Conclusions and Outlook 

 Conclusions 

This thesis deals with modelling heat flow in ground source heat pumps (GSHP). GSHP 
is a well-established technology that utilizes the vastly available shallow geothermal 
energy for the heating and cooling of buildings. The GSHP systems have many 
advantages, including low CO2 emissions, long lifetime (typically up to tens of years) and 
low costs for operation and maintenance. Even though the GSHP industry is relatively 
matured and efficient in extracting the shallow geothermal energy, accurate and efficient 
computational modelling of GSHP systems is still lagging. The design of this system is 
not yet optimal and requires further development.  

Several computational models have been developed to simulate the heat flow in GSHP 
systems. These models vary from detailed numerical 3D analyses to analytical solutions. 
Due to the peculiarity of the involved geometry (which constitutes highly slender 
borehole heat exchangers embedded in a vast soil mass, and the convection heat flow 
mechanism) the numerical models require extensive computational capacity and CPU 
time. The analytical models, on the other hand, are computationally efficient but their 
accuracy suffers from the over-simplified geometry and initial and boundary conditions. 
This thesis aims to bridge the gap between the numerical models in their generality and 
the analytical models in their computational efficiency. 

The proposed semi-analytical model is comprehensive in describing the physics of the 
problem and efficient in its computations. It can simulate heat flow in an effectively 3D 
GSHP system constituting multiple borehole heat exchangers embedded in multilayer soil 
mass. The heat flow, in a multilayer system, is formulated based on the spectral element 
method. The thermal interaction between multiple borehole heat exchangers, on the other 
hand, is formulated based on the superposition principle. The model possesses the 
exactness and computational efficiency of the analytical models, and (to a great extent) 
also the generality of numerical techniques in describing the geometry as well as initial 
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and boundary conditions. The key for obtaining such an exact, computationally efficient 
and practically general model is the unique mix adopted in this thesis between the 
conceptual model, the mathematical formulation and the solution technique:  

From the engineering point of view, the findings in this thesis can provide engineers with 
the means to have an in-depth knowledge of this technology, including:    

a) The model allows the calculations of the temperature distribution in all BHE
components and in soil layers. This feature allows engineers to analyse and design
ground source heat exchangers with great details.

b) The calculation can be done for short to long term, covering hourly, daily and
seasonally switching ON and OFF scenarios. This feature facilitates the calculation
of heat flow for any desired details, ranging from one second to years, done in a
single run.

c) The model allows the calculations of any arbitrary layout configuration of the
borehole heat exchangers and any number of soil layers. This feature is essential for
optimizing the layout configuration in a larger region and avoids conflicts among
neighbouring users.

d) The calculation can be done based on prescribing heat flux derived from the heat
pump power, as given by HVAC engineers. This feature allows the direct use of
heating and cooling design specifications to calculate the temperature distribution in
the system, including the inlet temperature and all other temperatures at any
geometrical point in the system.

1) The conceptual model includes coupling a 1D domain (representing the borehole 
heat exchanger) to an axial symmetric 2D domain (representing a homogeneous 
soil layer) and a 3D domain (representing multiple borehole heat exchangers 
embedded in multilayers soil mass). This coupling makes the model 
computationally more efficient compared to detailed numerical 3D models.

2) The mathematical formulation is designed to describe heat flow in all GSHP 
components, including the detailed heat equations of the individual 
borehole heat exchangers components and the soil mass (as well as their 
thermal interactions).  This formulation results to a comprehensive description of 
the involved physical features of the system. 

3) The solution technique is designed to be accurate and computationally efficient. 
The use of the spectral element method for modelling multilayer systems 
together with the superposition technique for modelling multiple borehole heat 
exchangers makes the solution technique fit for this problem. It enables the 
simulation of heat flow in effectively 3D GSHP systems subjected to any 
arbitrary time dependant boundary condition. It gives accurate computation of 
the governing equations and makes the model suitable for forward and inverse 
calculations. 
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e) The inverse model can handle the following: 

i. It can handle fluctuating heat pump power.   

ii. It can interpret data obtained from multiple heat extraction or injection pulses. 

iii. It can interpret data obtained at any spatial point in the GSHP system, including 
the surrounding soil mass. 

iv. It can produce accurate backcalculations for short and long duration experiments. 

v. It can handle multilayer systems. 

vi. It can identify multiple parameters.  

vii. It is accurate, computationally efficient, stable and has a high convergence rate.   

With further elaborations on the engineering aspects, these features can help engineers to 
improve their design method and make this technology more efficient and economic.   

 Outlook 

The proposed semi-analytical model is designed to be comprehensive in describing the 
physics and efficient in its computation. However, the model can be extended to include 
several features, such as:   

a) The effect of ground water flow on heat flow in GSHP systems.  

b) The soil temperature vertical gradient. 

c) Thermal interaction between the soil and air temperatures.  

d) The optimization process, in this thesis, has been applied for parameter 
identification problems. The same optimization process can be considered for 
GSHP systems’ design. The model can be used to optimize the size and the cost 
of GSHP systems. Furthermore, constraints (such as regulations set by 
authorities) can also be considered.  

e) The proposed PI algorithm can be extended to include more features such as: 
estimating the initial soil temperature gradient, the actual BHE length after 
installation and the thickness of the soil layers.       
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