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A B S T R A C T

Although commonly used for the validation of morphological predictions, point-wise accuracy metrics, such
as the root-mean-squared error (RMSE), are not well suited to demonstrate the quality of a high-variability
prediction; in the presence of (often inevitable) location errors, the comparison of depth values per grid point
tends to favour predictions that underestimate variability. In order to overcome this limitation, this paper
presents a novel diagnostic tool that defines the distance between predicted and observed morphological fields
in terms of an optimal sediment transport field, which moves the misplaced sediment from the predicted to the
observed morphology. This optimal corrective transport field has the ‘‘cheapest’’ quadratic transportation cost
and is relatively easily found through a parameter-free and symmetric solution procedure solving an elliptic
partial differential equation. Our method, which we named effective transport difference (ETD), is a variation
to a partial differential equation approach to the Monge–Kantorovich 𝐿2 optimal transport problem. As a new
error metric, we propose the root-mean-squared transport error (RMSTE) as the root-mean-squared value of
the optimal transport field. We illustrate the advantages of the RMSTE for simple 1D and 2D cases as well as
for more realistic morphological fields, generated with Delft3D, for an idealized case of a tidal inlet developing
from an initially highly schematized geometry. The results show that by accounting for the spatial structure
of morphological fields, the RMSTE, as opposed to the RMSE, is able to discriminate between predictions that
differ in the misplacement distance of predicted morphological features, and avoids the consistent favouring
of the underprediction of morphological variability that the RMSE is prone to.

1. Introduction

Quantitative validation methods for morphological predictions are
often grid-point based: they compare observations and predictions per
grid-point and compute various metrics for the entire set or subset of
grid-points. Accuracy metrics, e.g. the root-mean-squared error (RMSE)
or the mean absolute error (MAE) measure the averaged correspon-
dence between individual pairs of model outcomes and observations,
whereas skill metrics determine the accuracy, using an accuracy metric
of choice, relative to the accuracy of a prediction produced by a
standard of reference (Gallagher et al., 1998). Several morphological
studies rely solely on a skill score, most notably a mean-squared-
error skill score (MSESS or BSS, Sutherland et al., 2004; Bosboom
et al., 2014) as a performance metric (e.g. van Rijn et al., 2003;
Plant et al., 2004; Henderson et al., 2004; Pedrozo-Acuña et al., 2006;
Scott and Mason, 2007; Ruggiero et al., 2009; Orzech et al., 2011;
Walstra et al., 2012; Williams et al., 2012; Simmons et al., 2017;
Monge-Ganuzas et al., 2017; Luijendijk et al., 2017, 2019). In other
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cross-shore, longshore and area modelling studies, skill scores and
accuracy metrics are used in concert (e.g. Ruessink et al., 2007; Dam
et al., 2016; Fortunato et al., 2014; Simmons et al., 2019). These
procedures are sometimes supplemented with bias- and correlation-
based measures, either directly (e.g. Gallagher et al., 1998; Roelvink
et al., 2009; McCall et al., 2010, 2015; Ganju et al., 2011; Davidson
et al., 2013; Dodet et al., 2019; Hallin et al., 2019) or through the
Murphy–Epstein decomposition of the MSESS (Sutherland et al., 2004;
Bosboom and Reniers, 2018), which additionally employs an amplitude
error (e.g. Sutherland et al., 2004; Ruessink and Kuriyama, 2008; van
der Wegen et al., 2011; van der Wegen and Roelvink, 2012; Elmilady
et al., 2019).

The various statistical measures condense a large number of data
into a single value, inevitably emphasizing only certain aspects of the
quality of the model results. Morphodynamic modellers are inclined
to judge model results on the reproduction of patterns. Unfortunately,
point-wise accuracy and derived skill metrics tend to penalize, rather
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than reward, the model’s capability to provide information on features
of interest, such as scour holes, accumulation zones and migrating bars
or tidal channels (Bosboom et al., 2014; Bosboom and Reniers, 2018).
This tendency to reward the underestimation of variability (Anthes,
1983; Arpe et al., 1985; Taylor, 2001) is easily illustrated by the
classical example of the ‘‘double penalty effect’’ (Bougeault, 2003): a
prediction, which reproduces a feature at the wrong location, is penal-
ized twice, both where the predicted feature is and where it should be,
and is thus diagnosed with a twice as large mean-squared error (MSE)
as a flat bed prediction. More in general, for a nonperfect correlation,
as would be the case in the presence of location errors, accuracy
as well as skill values can be ‘‘improved’’ by underestimation of the
variability (Bosboom et al., 2014; Bosboom and Reniers, 2018). Clearly,
this is inconsistent with the common judgement of morphologists. In
order to avoid the underestimation of bed changes, an indicator should
be added to determine whether the predicted variance is close to the
observed variance. Further, since point-wise metrics do not take the
spatial ordering of grid-points into account, they are not sensitive to
misplacement distance. The simplest demonstration of the latter is a
prediction of a feature on a otherwise flat bed that has been misplaced
over a distance larger than its size. For this situation, metrics that
impose a penalty on point-wise bed level differences yield identical
values irrespective of the misplacement distance.

The above illustrates the need for new validation metrics that ac-
count for the spatial structure of morphological fields. Pioneering tech-
niques in the field of weather forecasting comprise field deformation
methods, which give information about how much the predicted field
needs to be manipulated spatially (displacement, rotations, scaling,
etc.) and quantify the residual errors (Gilleland et al., 2009). Bos-
boom and Reniers (2014b) developed a field deformation or image
warping approach for morphological model validation that determines
a smooth displacement field between morphological predictions and
observations minimizing the residual point-wise error and computes
domain-averaged errors based on the displacement as well as residual
error fields. The method includes a robust and physically intuitive
combined error metric, the RMSEw, which rewards predictions to the
degree that a larger error reduction can be obtained with smaller
displacements. This error metric for morphological model validation
results in choices as to which of two predictions is better that are
consistent with visual validation, demonstrating the potential of field
deformation methods to overcome the limitations of point-wise metrics.
However, the so-determined optimal smooth transformation merely
relocates predicted bed levels in the two-dimensional domain. As a
result, horizontal dimensions of features may get distorted, such that
sediment is not necessarily conserved.

For morphodynamic model validation, it seems more natural to
base a validation metric on a transformation between predictions and
observations defined in terms of the physical quantity responsible for
morphodynamic development: sediment transport. Therefore, we have
developed a method that determines the distance between morphologi-
cal fields in terms of the minimal sediment transport required to change
the one field into the other. Since the transformation is defined in terms
of sediment transport, mass will now be conserved, but features may
not. The optimal transformation or effective transport difference (ETD)
has the ‘‘cheapest’’ transportation cost and is relatively easily found
by solving an elliptic partial differential equation. The solution proce-
dure is parameter-free and symmetric, the optimal transport field from
observations to predictions being the inverse of the optimal transport
field from predictions to observations. The new domain-averaged error
metric that we propose is a multiple of the minimum transportation
cost.

Our ETD method is related to the Monge–Kantorovich theory of
optimal mass transport, which deals with the transport of a distribution
of mass to another distribution of mass on the same space, in such a way
as to keep the transportation cost to a minimum. The first formulation
of the optimal mass transport problem was due to Monge in 1781,

who considered the most economical way of transporting a pile of soil
for construction works from one site to another. Monge used a cost
function equal to the norm of the distance, based on the argument that
the cost of transportation of an individual mass is proportional to its
weight times the travelled distance (Rachev and Rüschendorf, 1998).
This leads to the physical interpretation of the 𝐿1 optimization, which
minimizes the norm, in terms of the minimization of work, assuming
that the work of transporting a mass element 𝛥𝑚 over a distance 𝛥𝑑 is
𝛥𝑚𝛥𝑑 (Bogachev and Kolesnikov, 2012).

The work of Kantorovich in 1948 gave the optimal mass trans-
port problem its modern, generalized formulation, which is today
known as the 𝐿𝑝 Monge–Kantorovich problem (Villani, 2003). Here
one is allowed to ‘‘divide grains’’, whereas in Monge’s formulation
grains that share the same initial location must also share the same
final location (Rachev and Rüschendorf, 1998). Especially the 𝐿2

Monge–Kantorovich problem, which minimizes the squared norm of
the distance, has been researched intensively by theoretical mathemati-
cians (Villani, 2003), since, as opposed to the 𝐿1 problem, it allows for
relatively simple solutions. The search for efficient numerical solvers
has only recently become a lively research domain (Santambrogio,
2015). Benamou and Brenier (2000) and Benamou et al. (2002) were
the first to construct a robust and efficient numerical solver for the
𝐿2 Monge–Kantorovich problem by introducing a partial differential
equation approach. In a fluid mechanics framework, they showed
that the 𝐿2 optimal transport is equivalent to minimizing a kinetic
energy functional among solutions of the continuity equation, with the
optimal solution given as the gradient of a potential and, thus, being
irrotational.

Our ETD method also employs an irrotationality condition for the
optimal transport in order to reformulate a transport optimization
problem in terms of a partial differential equation that is easily solved.
However, whereas the 𝐿2 Monge–Kantorovich problem penalizes the
quadratic distance the transformation moves each bit of material,
weighted by the material’s mass, our quadratic cost function penalizes
the squared sediment transport, i.e. mass times distance, herewith
retaining the original physical Monge’s interpretation in terms of work,
albeit in a quadratic sense. New aspects are further that our model
boundaries are open to sediment, which allows a bias to exist between
the two bathymetric fields.

This paper presents a novel error metric, the root-mean-squared
transport error (RMSTE) as a multiple of the ‘‘cheapest’’ quadratic cost
for the transportation of sediment from predictions to observations
and establishes its applicability for morphodynamic model validation.
In doing so, for fairness of comparison, the behaviour of the RMSTE
as an error metric is evaluated in comparison to the behaviour of
its point-wise counterpart, the RMSE. First, in Section 2, we describe
our ETD method of finding the optimal transport difference between
two morphological fields, leading to the formulation of the RMSTE.
Section 3 shows in 1D how the RMSTE and RMSE behave for both
misplaced features and features that are underestimated in size. Fur-
ther, it compares the RMSTE and RMSE for a 2D example, in which
the latter of these two metrics suffers from the double penalty effect.
Next, in Section 4, we put the RMSTE to a more realistic test using
morphological fields, generated with Delft3D, for an idealized case of
a tidal inlet developing from an initially highly schematized geometry.
This section not only compares the RMSTE to the RMSE but to the
RMSEw as well. The implications of the results for morphodynamic
model validation are discussed in Section 5. Section 6 concludes with
a summary of our findings and identifies future work.

2. A new method

In this section, we present a new error metric, the RMSTE, which
measures the mismatch between two morphological fields in terms of
sediment transport. First, Section 2.1 describes common error metrics,
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such as the RMSE, that penalize bed level differences between predic-
tions and observations. Second, in Section 2.2, we define the RMSTE
as (a multiple of) the optimal (i.e. minimum) quadratic transport cost
required to transform the predictions into the observations. Third,
Section 2.3 demonstrates that the optimal transport, on which RMSTE is
based, can be found by solving an elliptic partial differential equation.
Finally, Section 2.4 briefly describes the numerical implementation.

2.1. Penalty on bed level differences

More traditional error metrics are based on a point-wise comparison
of predictions and observations. Let ℎ1 and ℎ2 be the predicted and ob-
served bed levels above a certain vertical reference level, respectively,
for a set of points 𝐱 over a domain 𝛺. If 𝑒 = ℎ2 − ℎ1 is the point-wise
bathymetric error, the 𝑝-norm bathymetric error is defined as:

‖𝑒‖𝑝 =
(

∫𝐱∈𝛺
|𝑒|𝑝d𝒙

)1∕𝑝
(1)

with 𝑝 = 1, 2,∞ the usual choices for 𝑝 and the 𝑝 = 2 norm known
as the Euclidean norm. Often used point-wise accuracy metrics, the
mean absolute error (MAE) and the RMSE are constant multiples of the
1-norm and 2-norm errors, respectively. The RMSE reads:

RMSE = 1
√

𝐴𝛺

(

∫𝐱∈𝛺
|ℎ2(𝐱) − ℎ1(𝐱)|2d𝐱

)1∕2
= 1

√

𝐴𝛺
‖𝑒‖2 (2)

with 𝐴𝛺 the domain surface area. The MSE simply is the square of the
RMSE.

Note that in Sections 3 and 4, we have chosen to visually compare
predictions and observations by means of difference fields 𝛿 = ℎ1 − ℎ2
rather than error fields 𝑒. The advantage of defining the deviations as
predicted values minus real, observed values is that the observations
are the reference point from which the predictions may differ, such
that a positive deviation indicates an overprediction and a negative
deviation an underprediction. Of course, the RMSE is unaffected when
computed from difference fields 𝛿 rather than from 𝑒.

2.2. Penalty on transport magnitude

Assume that 𝐪 on 𝛺 represents a cumulative, depth-integrated trans-
port of sediment from ℎ1 to ℎ2, such that with a constant grain size and
porosity, and, hence, constant density, the sediment volume balance is
satisfied:

∇ ⋅ 𝐪 = ℎ1 − ℎ2 (3)

with ∇⋅ is the divergence operator and either known or unknown
transports normal to the boundary 𝜕𝛺 of 𝛺 at every point of 𝜕𝛺.
Note that 𝐪 is to be interpreted as a corrective transport field moving
sediment from the predicted morphology ℎ1 to the observed field ℎ2,
and, hence, as a transport difference field between ℎ1 and ℎ2.

There may exist a multitude of transport fields satisfying Eq. (3).
An optimal field can be determined by minimizing the 𝑝-norm of the
transport field:

minimize
𝐪

‖𝑞‖𝑝 =
(

∫𝐱∈𝛺
|𝐪(𝐱)|𝑝d𝐱

)1∕𝑝
(4)

with 𝑞 = |𝐪| is the magnitude of the transport field.
Eq. (4) under the constraint Eq. (3) differs from the 𝐿𝑝 Monge–

Kantorovich mass transfer problem (Villani, 2003) in that it minimizes
the cumulative transport, and thus, assuming constant density, mass
times distance, to the power 𝑝, rather than the travelled distance to the
power 𝑝, weighted by the amount of transferred mass. If the exponent
𝑝 = 1, the minimization problem of Eqs. (3) and (4) reduces to an 𝐿1

Monge–Kantorovich problem with the Euclidean distance as the cost
function (Evans, 1997). Numerical methods for solving this problem
exist (Benamou and Carlier, 2015), but are considerably more complex
than the solution of Eqs. (3) and (4) with 𝑝 = 2. As we will see in

Section 2.3, the case 𝑝 = 2 is relatively easily solved by rewriting the
optimality condition Eq. (4) and will therefore be the one used in this
paper.

Summarizing, we will solve the following 𝐿2 problem minimizing a
quadratic transport cost:

minimize
𝐪

‖𝑞‖2 =
(

∫𝐱∈𝛺
|𝐪(𝐱)|2d𝐱

)1∕2

subject to ∇ ⋅ 𝐪 = ℎ1 − ℎ2.
(5)

By rewriting the cost functional, Eq. (5) can be reformulated as an
elliptic partial differential equation from which the quadratic optimal
transport field 𝐪𝐿2 is relatively easily solved (see Section 2.3). In
analogy with Eq. (2), we can now introduce the RMSTE as:

RMSTE =
(

1
𝐴𝛺 ∫𝐱∈𝛺

|𝐪𝐿2(𝐱)|2d𝐱
)1∕2

= 1
√

𝐴𝛺
‖𝐪𝐿2‖2. (6)

Note that since Eq. (6) is a constant multiple of the optimal quadratic
transport cost, the triangle inequality1 is satisfied; there is no other
transport field satisfying Eq. (3) and the boundary conditions that
obtains a lower RMSTE than 𝐪𝐿2.

The RMSTE, Eq. (6), can be seen to penalize the transport itself,
while the RMSE, Eq. (2), penalizes the bed level changes and thus,
according to Eq. (3), the divergence of the transport. As a measure of
volume times displacement per unit surface area, the RMSTE has units
m2, while the RMSE, which measures a volume per unit surface area,
has units m.

Redistributing sediment from ℎ1 to ℎ2 through 𝐪𝐿2 implies removing
sediment at locations for which 𝛿 = ℎ1 −ℎ2 > 0 and adding sediment at
locations for which 𝛿 = ℎ1−ℎ2 < 0. We can express the sediment surplus
as an excess height,2 given by 𝛿1 = max (𝛿, 0) and the sediment shortage
as a deficit height (see Footnote 2) given by 𝛿2 = max (−𝛿, 0). Of course,
in Eq. (3) ℎ1 − ℎ2 = 𝛿1 − 𝛿2. With these definitions, RMSTE can be seen
to measure the smallest overall volume transport of sediment required
to excavate 𝛿1 and fill 𝛿2. For a zero bias between predictions and
observations and boundaries closed for sediment, 𝛿1 will be transported
to 𝛿2. More in general, sediment may also be added or removed through
the boundaries depending on the transportation cost.

2.3. Solving the effective transport difference

The solution of Eq. (5) proves to be irrotational (see Appendix)
and can therefore be represented as the gradient of a scalar field, the
potential 𝜙:

𝐪𝐿2 = ∇𝜙. (7)

With Eq. (7), Eq. (3) can be written as:

∇2𝜙 = ℎ1 − ℎ2. (8)

Eq. (8) is a standard Poisson equation for which numerous efficient
solvers are available. With 𝜙 defined through Eq. (7), this Poisson
equation is fully equivalent to Eq. (5). This realization is analogous to
the interpretation of Moser’s coupling in terms of optimization theory
in Brenier (2003, Section 2.6), where it is shown that the solution to a
variant to the 𝐿2 Monge–Kantorovich problem can be represented as a
potential flow satisfying the Laplace equation.

1 A function 𝑚(𝐴,𝐵) is a metric if it is symmetric 𝑚 (𝐴,𝐵) = 𝑚 (𝐵,𝐴),
positive-definite 𝑚 (𝐴,𝐵) ⩾ 0 and 𝑚 (𝐴,𝐵) = 0 ⇔ 𝐴 = 𝐵, and satisfies the
triangle inequality 𝑚 (𝐴,𝐵)+𝑚 (𝐵,𝐶) ⩾ 𝑚 (𝐴,𝐶). Both the RMSE and the RMSTE
satisfy these criteria.

2 Surplus or shortage volume (m3) per squared metre of domain area (m2),
hence an excess or deficit height (m).
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The two typical boundary conditions for our application are:

1. Neumann-type boundary condition for a boundary closed for
sediment:

𝐪 ⋅ 𝐧 = ∇𝜙 ⋅ 𝐧 = 0 (9)

for all points on the boundary 𝜕𝛺. Here ⋅ denotes the inner
product and the normal vector 𝐧 is the unit vector that is
perpendicular to the surface 𝜕𝛺 and points outwards from 𝜕𝛺.

2. Dirichlet-type boundary condition for a free boundary that al-
lows for sediment transport across the boundary:

𝜙 = 0 (10)

for all points on the boundary 𝜕𝛺, which signifies that there is
no constraint on 𝐪 on the boundary (see Appendix).

One can prove that for the case of Dirichlet boundary conditions the
solution to Poisson’s equation always exists and is unique. The same
holds for combination boundary conditions, which consist of Dirichlet
boundary conditions on part of the domain boundary and Neumann
boundary conditions on the remainder of the domain boundary. For
the case of Neumann boundary conditions, a solution only exists if
the transport ∇𝜙 ⋅ 𝐧 integrated over the boundary 𝜕𝛺 is consistent
with ℎ1 − ℎ2 integrated over 𝛺. Then the solution is unique up to an
overall additive constant. Clearly, it is sufficient to determine 𝜙 up to
an arbitrary additive constant, which has no impact on the value of the
sediment transport 𝐪 = ∇𝜙.

The above implies that if all boundaries are closed to sediment,
the condition for existence of a solution to Eq. (8) is that the domain-
averaged value of the right-hand-side ℎ1 − ℎ2 equals zero. The term
ℎ1 − ℎ2 = 𝛿1 − 𝛿2 was seen to act as a source and sink term, with
𝛿1 the excess height, which needs to be removed, and 𝛿2 the deficit
height, which needs to be supplied (see Section 2.2). If its domain-
averaged value is equal to zero, hence, in the absence of a bias, the
excess sediment 𝛿1 suffices to fill the sediment deficit 𝛿2, such that
a solution can be found within the domain. If its domain-averaged
value is unequal to zero, i.e. in the case of a bias, a net sediment
import or export is required to obtain a match between predictions
and observations. Then, at least one free boundary condition should
be applied.

In specifying the boundary conditions for a particular application,
one must bear in mind that 𝐪 represents the optimal cumulative trans-
port through which a perfect match is obtained between predictions
and observations, hence a transport difference or error. This error is
just as arbitrary on the boundary as within the domain, such that in
general 𝐪 ⋅ 𝐧 on the boundary 𝜕𝛺 is unknown and there should be no
constraint on 𝐪 on the boundary. This means that from a physical point
of view, free boundaries, which are part of the transport optimization,
are generally the logical choice. Only in the special case of a boundary
that is physically closed for sediment, one may assume that the error
𝐪⋅𝐧 on the boundary is known and zero. Land boundaries or boundaries
beyond the depth of closure (Hallermeier, 1980) may typically be
regarded as closed boundaries.

In general, with one or more free boundaries, sediment may be
imported or exported through the boundaries depending on the trans-
portation cost. This may be the case both with and without a bias
between predictions and observations. In this respect, our method dif-
fers from usual optimal transport methods that do not allow a transport
across the boundaries and assume that the total mass is contained
within the domain.

We refer to the above algorithm for computing an optimal sediment
transport as Effective Transport Difference (ETD), since we resolve a
transport field that is fully effective in causing morphodynamic change.
An arbitrary transport field, satisfying Eq. (3), can be decomposed into
a rotation-free and divergence-free part (Helmholtz decomposition).
Only the rotation-free part, which contains the information about the

divergence, results in bed-level changes through Eq. (3). Thus, the
irrotational, optimal transport field from the least-squares optimization
(Eq. (5)) only contains information that can unambiguously be derived
from the bed-level differences and boundary conditions.

2.4. Numerical treatment

Section 2.3 presented a partial differential equation approach to
obtain the quadratic optimal transport 𝐪𝐿2. We have implemented this
approach using the functions from the Matlab Partial Differential Equa-
tion (PDE) Toolbox, which employs a Finite Element Method (FEM)
solver for problems on an unstructured grid (Mathworks, 2015). For
now, our implementation has been targeted to relatively simple 2D
cases, such as shown in this paper (Sections 3.2 and 4).

The complex geometry, as required by the PDE toolbox, is generated
starting with a rectangular domain from which any ‘‘dry points’’,
representing, for instance, barrier islands, are excluded (see Section 4).
The boundary enclosing the complex geometry, is subdivided into
multiple segments, for which a choice between free or closed boundary
conditions is available. The Poisson equation is solved on a triangular
Delaunay mesh, which is step-wise refined until the solution converges.

3. Simple cases

In this section, we compare the behaviour of the RMSTE and RMSE
for simple 1D and 2D cases. First, the 1D cases in Section 3.1 show
that the RMSTE does not suffer from the limitations of the RMSE, viz.
insensitivity to misplacement distance and the double penalty effect.
Next, Section 3.2 confirms these conclusions based on a simple 2D
example. Section 3.2 also discusses the characteristics of the 2D optimal
transport field and potential for both free and closed boundaries.

3.1. Metric behaviour in 1D

The 1D predictions, ℎ1, and observations, ℎ2, are represented by
equally wide, Gaussian-shaped humps (𝜎 = 3) on an otherwise flat bed,
with amplitudes and centre points 𝑎1 and 𝑥1 and 𝑎2 and 𝑥2, respectively,
such that the misplacement distance is 𝑑 = |𝑥1 − 𝑥2| (Fig. 1(a)). Our
aim is to compare the behaviour of the RMSTE and RMSE for varying
misplacement distance 𝑑 and amplitude ratio 𝑎1𝑎−12 . For 𝑥2 = 0, 10, 20
and 35m, 𝑥1 was varied such that the predictions were positioned
everywhere in the domain. The observed amplitude 𝑎2 was fixed at 1.33
m, while the amplitude of the predictions 𝑎1 varied as 0 ⩽ 𝑎1𝑎−12 ⩽ 2.
When the misplacement distance 𝑑 is larger than the feature width and
𝑎1𝑎−12 = 0, the classic double penalty case is obtained.

Obviously, in order to compute the RMSTE, first 𝑞(𝑥) needs to be
solved. In 1D, if the transport is known at one of the boundaries,
for instance 𝑞 = 0, the volume balance has no excess degrees of
freedom and only one solution exists, which is found by straightforward
numerical integration. This is equivalent to solving the 1D Poisson
equation with a closed boundary (𝑞 = 0) at one end of the domain
and an unconstrained boundary (𝜙 = 0) at the other end. Only if
the transport is unknown at the boundaries, there is (some) room for
optimization in 1D. Considering that the optimal transport 𝑞𝐿2 is given
by the gradient of the potential, the unconstrained condition 𝜙 = 0 at
either boundary of a 1D domain implies that the transport integrated
over the domain is zero, and, thus, the average transport 𝑞 = 0. The
optimal solution is therefore easily found by integration of the volume
balance, while requiring 𝑞 = 0. The addition of any nonzero constant
to the optimal transport, although still satisfying the volume balance,
would increase the transport cost without contributing to bed level
changes.

In the presence of a bias, when ℎ1 ≠ ℎ2, at least one boundary should
be free for a solution to exist. For the examples in this section, we have
used free boundary conditions at both ends of the domain. Since the
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Fig. 1. Lay-out of the 1D cases with an example solution: (a) predicted and observed bathymetries, ℎ1 and ℎ2 respectively, consist of equally wide Gaussian shaped humps (𝜎 = 3)
on a flat bed with amplitudes and centre points 𝑎1 and 𝑥1 and 𝑎2 and 𝑥2, respectively and the distance between the two bathymetries 𝑑 = |𝑥1 − 𝑥2| (depicted is 𝑎1 = 0.67m,
𝑥1 = −10m, 𝑎2 = 1.33m and 𝑥2 = 20m), (b) the corresponding optimal transport 𝑞(𝑥) and potential 𝜙(𝑥) with 𝜙 (−50) = 𝜙 (50) = 0 (free boundaries) and, thus, the domain-averaged
transport 𝑞 = 0.

free boundary is less constrained than the closed boundary, this will
always result in the smallest transport cost.

Fig. 1(b) depicts 𝜙(𝑥) and 𝑞(𝑥) corresponding to ℎ1 and ℎ2 as shown
in Fig. 1(a). The transports are defined positive in positive 𝑥-direction
and negative in negative 𝑥-direction. The potential 𝜙(𝑥) is zero at the
boundaries and increases with 𝑥 for positive transports and decreases
with 𝑥 for negative transports, its slope representing the transport
magnitude. Obviously, 𝑞 increases where sediment needs to be eroded
and decreases where it needs to be deposited, with the changes in 𝑞
equal to the volume changes. The average transport 𝑞 = 0. The bias
requires sediment to be imported, which is, because of the position
of the features relative to the boundaries, most cost-efficiently done
from the right boundary only, towards the observed feature, such
that 𝑞 (−50) = 0. All sediment contained in the excess height 𝛿1 =
max

(

ℎ1 − ℎ2, 0
)

of the predicted, left hump is moved to the right for the
benefit of the larger deficit height 𝛿2 = max

(

ℎ2 − ℎ1, 0
)

of the observed,
right hump.

Figs. 2(a) and 2(c) show the RMSE and RMSTE, respectively, as a
function of feature misplacement 𝑑. Fig. 2(a) illustrates that for two
equally sized features (𝑎1 = 𝑎2), the RMSE rapidly increases with
increasing 𝑑, until, when 𝑑 is larger than the feature width, the RMSE
attains a constant value. This value is a factor

√

2 larger than the
RMSE for a flat bed, since the double penalty on the MSE translates
to the RMSE as a factor

√

2. In contrast, the RMSTE shows an increase
with increasing misplacement distances 𝑑, until at relatively large 𝑑 the
proximity of the boundaries forces RMSTE to decrease (Fig. 2(c)); at
smaller feature spacings, 𝛿2 is almost fully replenished by 𝛿1, whereas
at larger feature spacing, it becomes more favourable to also export
and import sediment in order to excavate 𝛿1 and fill 𝛿2, respectively.
Note that for closed boundaries RMSTE is strictly increasing with 𝑑 (not
shown).

For equally sized features, 𝑎1 = 𝑎2, we have 𝑞 (−50) = 𝑞 (50). As
a consequence the RMSTE depends on the misplacement distance 𝑑
only, regardless of the values of 𝑥1 and 𝑥2. The RMSTE for the flat
bed prediction strongly depends on the position of the observed hump
relative to the boundary and, hence, on 𝑥2, since the entire deficit
height 𝛿2 must be imported. It follows from Fig. 2(c) that for not too
large 𝑥2 and 𝑑, the RMSTE is larger for the missed feature than for the
misplaced feature.

Fig. 2(b) confirms that the RMSE rewards an underprediction of
the feature amplitude. For a feature, misplaced over a distance smaller
than its width, RMSE is minimized for values of 0 < 𝑎1𝑎−12 ⩽ 1. For
misplacements larger than the feature size, the flat bed prediction,
𝑎1 = 0, receives the smallest RMSE. Although the RMSTE also has
minima at values of 𝑎1 < 𝑎2 for 𝑑 > 0, these minima appear at values
of 𝑎1𝑎−12 relatively close to 1 (Fig. 2(d)). Note that Figs. 2(b) and 2(d)
are valid for 𝑥2 = 0.

The above demonstrates that: (1) the RMSTE, as opposed to the
RMSE, is able to account for misplacement distance; and (2) that the
double penalty effect is specific to the RMSE. Whether or not the
RMSTE is larger for a flat bed prediction than for a correctly sized but
misplaced feature depends strongly on the situation.

3.2. Demonstration for simple 2D case

In this section, we present a simple example to illustrate the be-
haviour of the RMSTE in 2D and to provide insight in the characteristics
of the 2D potential and optimal transport fields, for various boundary
conditions.

Fig. 3 compares an observed 2D feature with three suboptimal
predictions: (1) a flat bed prediction, (2) a misplaced feature, and (3) a
misplaced feature at a larger misplacement distance. The (R)MSE and
RMSTE error values are given in Table 1. The RMSTE is computed
with three different sets of boundary conditions: free boundaries only,
closed boundaries only (not applicable for a bias) and a combination
of a closed South boundary and free boundaries elsewhere (further
on referred to as combination boundaries). The different boundary
conditions result in the same ranking of the three predictions. How-
ever, fewer constraints lead to lower transport costs, such that for all
predictions the lowest RMSTE is obtained for free boundaries.

Of course, predictions 2 and 3 are diagnosed with an MSE and RMSE
that are larger by a factor 2 and

√

2, respectively, than for prediction
1; prediction 2 and 3 are penalized twice, both where the predicted
feature is and where it should be, whereas prediction 1 is penalized
at the location of the observed feature only (see Fig. 3). As opposed
to the RMSE, the RMSTE distinguishes between prediction 2 and 3, the
feature with the smaller misplacement distance (prediction 2) receiving
the lower RMSTE. Prediction 2 also outperforms the flat bed prediction
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Fig. 2. Behaviour of RMSE and RMSTE, for free boundaries, for the 1D cases introduced in Fig. 1: (a) RMSE as a function of misplacement distance 𝑑 for predictions with a
correct amplitude and for a flat bed prediction, (b) RMSE as a function of amplitude ratio 𝑎1𝑎−12 for various misplacement distances 𝑑 and the centre position of the observations
at 𝑥2 = 0m, (c) RMSTE as a function of 𝑑 for correctly predicted amplitudes as well as for flat bed predictions compared to observations at various centre positions 𝑥2, and (d)
RMSTE as a function of 𝑎1𝑎−12 for various misplacement distances 𝑑 and the centre position of the observations at 𝑥2 = 0m. The red crosses in (b) and (d) indicate the minima.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
(R)MSE and RMSTE with free, combination (only South boundary closed) and closed
boundaries, for predictions 1, 2 and 3.

Prediction MSE RMSE RMSTEf ree RMSTEcombination RMSTEclosed
(×10−2 m2) (×10−1 m) (×10−2 m2) (×10−2 m2) (×10−2 m2)

1 1.05 1.03 1.04 1.08 n.a.
2 2.11 1.45 0.87 0.90 0.94
3 2.11 1.45 1.11 1.23 1.32

(prediction 1), while the feature with the larger misplacement distance
(prediction 3) obtains the worst score.

Evidently, in line with the findings for the 1D cases (Section 3.1),
for correctly sized features, the RMSTE increases with misplacement
distance, until, in the extreme, sediment exchanged across the model
boundaries may lead to a lower RMSTE. As discussed in Section 3.1,
whether or not a misplaced feature outperforms a missed feature is
determined by the (optimal transport cost for) the considered mor-
phological patterns and, hence, depends on the boundary conditions,
the size and shape of the observed and misplaced features and their
position relative to each other and to the domain boundaries.

Fig. 4 illustrates the characteristics of the potential and optimal
transport for prediction 3, using closed boundaries. The left panel
shows the optimal transport field moving sediment from the excess
height 𝛿1 to the deficit height 𝛿2, hence from the red to the blue patches,
at minimum cost. The transport field 𝐪 = ∇𝜙 is fully determined by the
potential 𝜙 (bottom right panel), given by Poisson’s Eq. (8). Thus, the
transport occurs everywhere at right angles to the equipotential lines,
i.e. the lines of constant 𝜙, and the spacing of the equipotential lines

Fig. 3. Three alternative predictions of the same observed feature. Top panels: the
featureless prediction 1 has a nonzero difference 𝛿 between predicted and observed
depth values at the location of the observed feature only. Middle panels: prediction
2, which reproduces the feature at the wrong location, is penalized twice, since
𝛿 is nonzero both where the predicted feature is and where it should be. Lower
panels: prediction 3, with a larger misplacement distance, is also penalized twice. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 4. Optimal solution, with closed boundaries, for prediction 3. Left panel: bed level difference 𝛿 = ℎ1 −ℎ2 with the arrows indicating the transport field (length and direction of
arrows indicative of the transport magnitude and direction, respectively). Right panels: transport field represented by the transport magnitude (top) and potential 𝜙 (bottom). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

reflects the transport magnitude (top right panel), from which RMSTE
is easily computed. At the closed boundaries, the equipotential lines
are perpendicular to the boundaries, corresponding to zero transport
through the boundaries. Naturally, the quadratic cost function governs
the transport pattern. The transport magnitudes at different locations
are weighted quadratically, so extremes are heavily penalized. This
leads to the observed somewhat diffuse transport pattern with curved
transport pathways.

Fig. 5 shows the transport magnitude and potential for the situation
of free boundaries all around as well as for combination boundaries,
which combine a closed South boundary with free boundaries else-
where. One can verify that the potential is zero at free boundaries
allowing transport across the boundaries. The transport magnitudes are
smallest when all boundaries are free, resulting in the lowest RMSTE
(see Table 1). Unless there is additional knowledge about the error
on the boundaries, for instance for a boundary physically closed to
sediment, the use of free boundaries is advised (see Section 2.3).

4. Example of a tidal inlet

In this section, we test and illustrate the RMSTE for a more realistic
case of a tidal inlet. We diagnose the correspondence between multiple
pairs of morphological fields, generated by Delft3D, as well as the
relative ranking between the pairs. First, an overview of the model runs
and morphological fields is given in Section 4.1. Next, in Section 4.2,
we test the behaviour of the RMSTE for fields with misplaced tidal
channels due to incorrect Coriolis settings. Subsequently, Section 4.3
presents a full comparison demonstrating the differential behaviour of
the RMSE and RMSTE.

4.1. Overview

Starting from an initially highly schematized tidal inlet (Fig. 6),
we have generated ten morphological fields with Delft3D. The inlet
geometry and boundary forcing are chosen such as to resemble the
Wadden Sea inlet of Ameland. The tidal basin is rectangular with an
area of 15 × 10 km2 and a uniform initial depth of 2 m; the entrance
has a width of 2 km, and the seabed initially slopes from −2 m at the
barrier islands to −10 m at the offshore (Northern) boundary (Roelvink,
2006). The model has a uniform grid size of 100 × 100 m2.

For the base run O (see Table 2), the latitude was set to 0◦ and
a uniform, harmonic water level variation was applied along the off-
shore boundary with a period of 12 h and a water level amplitude

Table 2
Overview of the 10 runs used to generate the morphological fields
of Fig. 7. O is the base run, the others are variations with respect
to latitude, tidal amplitude and direction [C(ross)- or L(ongshore)],
transport parameter 𝑓sus and 𝐷50. The labels are chosen such as to be
consistent with Bosboom and Reniers (2014b) and Mol et al. (2015).

Run Latitude Amplitude Direction 𝑓sus 𝐷50
(m) (μm)

O 0◦ 1.0 C 1.0 200
A 0◦ 1.0 L 1.0 200
B 0◦ 0.67 C 1.0 200
C 0◦ 1.5 C 1.0 200
D 0◦ 0.5 C 1.0 200
F 90◦ N 1.0 C 1.0 200
G 90◦ S 1.0 C 1.0 200
L 53◦ N 1.0 C 1.0 200
M 53◦ N 1.0 C 1.5 200
N 0◦ 1.0 C 1.0 250

𝑎 of 1 m. The standard sediment transport formulations according to
Van Rijn were applied, with a multiplication factor for the suspended
sediment reference concentration 𝑓sus = 1 and a median sediment size
𝐷50 = 200 μm. The other 9 runs listed in Table 2 are variations to
the base run O with respect to latitude, 𝑓sus, 𝐷50, tidal amplitude 𝑎
and tidal direction. The latter was changed, for run A only, from cross-
shore to alongshore by applying a phase difference along the Northern
boundary. The final bathymetries of the 10 runs are shown in Fig. 7.
For the computation of the ETD and, subsequently, the RMSTE between
pairs of depth fields (Sections 4.2 and 4.3), we have considered the
land boundaries and sea boundaries as closed and free boundaries,
respectively (see Fig. 6).

4.2. Variation in coriolis

First, in this section, the model-generated depth fields O, F, G and
L (see Table 2 and Fig. 7) are considered, which only differ with
respect to the latitude, and, hence, Coriolis parameter. We label depth
field L, the one with 53◦ N, as the observations and regard the other
three as three competing predictions. The pairs of computations and
observations are named by the label of the predictions followed by the
label of the ‘‘observations’’ (see Table 3).

Figs. 8 and 9 show the bed level differences 𝛿 = ℎ1−ℎ2 and transport
magnitudes |𝐪|, respectively. The required transport corrections are
mostly confined to the flood and ebb tidal delta areas, with zero or
small transports outside these delta regions. Sediment is relocated from
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Fig. 5. Transport magnitudes and potential for predictions 1, 2 and 3 for free boundary conditions and combination (South boundary closed, remainder free) boundary conditions.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Initial bathymetry with the free sea boundaries for Poisson’s Eq. (8) in green
and the closed land boundaries in red. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

the excess locations to the shortage locations, i.e. from the red to the
blue patches in Fig. 8. On the ebb tidal delta, this results in a transport
between the delta flat and the outer edges in both directions. In the
flood tidal delta, sediment is transported to locations where channels
are wrongly predicted and away from locations where they should have
been predicted. The transport distances are limited, since the Coriolis
errors require only local corrections to feature locations.

Both the RMSE and RMSTE increase with increasing latitude de-
viation (Table 3), since both the misplaced volumes of sediment and
the misplacement distances increase with latitude error. Under these
circumstances, the various error metrics, including the metrics based
on the field deformation or image warping method (see Bosboom and
Reniers, 2014b), demonstrate the same qualitative behaviour.

4.3. Comparison of all fields

In this section, the predictions A to N are compared to the ob-
servations O by means of the RMSE and the RMSTE (see Table 4).

Table 3
RMSE and RMSTE for three cases with errors in latitude and hence
Coriolis parameter. Case names consist of the label of the predictions
followed by the label of the ‘‘observations’’, which are taken as the
model outcome at 53◦ N.

Case Latitude Latitude RMSE RMSTE
model observed (m) (×102 m2)

FL 90◦ N 53◦ N 0.29 0.5
OL 0◦ 53◦ N 0.52 1.2
GL 90◦ S 53◦ N 0.73 2.0

Table 4
RMSE and RMSTE for predictions A to N compared
to ‘‘observations’’ O, the model outcome at 0◦, hence
without the influence of Coriolis.

Case RMSE RMSTE
(m) (×102 m2)

AO 0.78 2.6
BO 0.77 5.5
CO 1.16 8.2
DO 0.95a 7.8
FO 0.59 1.4
GO 0.59 1.4
LO 0.52 1.2
MO 0.59 2.2
NO 0.47 1.8

aCorrected from 0.96 as previously listed in Bosboom
and Reniers (2014b).

From Table 4, it is clear that the RMSE and RMSTE lead to a different
ranking amongst the predictions, with prediction L receiving the lowest
RMSTE and prediction N the lowest RMSE. Further, as opposed to the
RMSE, the RMSTE is seen to discriminate between predictions F (or
its mirrored prediction G) and M as well as between A and B. The
distinctive behaviour of the two error metrics is a logical consequence
of their different definition. Below, we highlight and explain some of
these differences on the basis of the underlying fields of bed level
differences and transports (Figs. 10 and 11).

Prediction L, which has a modelled latitude of 53◦ N rather than
the ‘‘real’’ 0◦, is awarded the lowest RMSTE. Predictions F and G,
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Fig. 7. Final bathymetries of the 10 runs with settings according to Table 2. The horizontal and vertical axes and the colour scaling are as in Fig. 6.

Fig. 8. Bed level differences and transport fields, with the length and direction of the arrows indicative of the transport magnitude and direction, respectively, for cases FL, OL
and GL (see Table 3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Transport magnitudes for cases FL, OL and GL with closed land boundaries and free sea boundaries.

with a 90◦ modelled latitude, receive the second best RMSTE. The
wrongly predicted Coriolis deflection leads to a distortion of the outer
edges of the ebb tidal delta and a mispositioning of the channels on
the flood tidal delta and in the inlet gorge. The sediment transport
required to correct these Coriolis errors takes place over short distances
only, explaining that, measured by the RMSTE, predictions F, G and L
outperform the other predictions, including prediction N, which is the
best prediction in terms of RMSE. The too high grain size of the latter
prediction results in an underdeveloped delta, which must be corrected
by transporting sediment from the channel locations to build the flats
and extend the delta rims. The relatively large distances over which
this sediment is transported explains the larger RMSTE compared to the
predictions with Coriolis error, even though, based on the RMSE, the
amount of misplaced sediment is smaller. This underlines again that the
RMSE measures misplaced sediment volumes only, whereas the RMSTE
takes misplacement distance into account as well.

Despite receiving the same values of RMSE, predictions F and M
behave differently in terms of RMSTE. The erroneous Coriolis deflection
that both predictions suffer from, is stronger for prediction F than for
prediction M. Prediction M, however, has an additional error source
that requires a corrective transport over larger distances; due to too
large suspended sediment transports (𝑓sus = 1.5 instead of 1), the inlet
system is overdeveloped. The corrective transport pattern for prediction
M shows the two error sources operating at different spatial scales, of
which the longer scales weight heavier towards the RMSTE. The result
is a domain-averaged corrective sediment transport that is larger for
prediction M than for F.

Predictions A to D were added to allow a comparison with the
RMSEw, the combined error metric based on the field deformation or
image warping method of Bosboom and Reniers (2014b). The RMSEw
combines all relevant information on location errors and pre- and post-
warp intensity (i.e. bed level) errors. It depends on a user-defined
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Fig. 10. Bed level differences and transport fields, with the length and direction of the arrows indicative of the transport magnitude and direction, respectively, for predictions A
through N compared to the ‘‘observations’’ O. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
The combined error metric RMSEw from the image warp (with 𝐷max =
3000m and 1000m) for predictions A to D compared to ‘‘observations’’
O (values from Bosboom and Reniers, 2014b). The values for RMSE and
RMSTE are copied from Table 4 for ease of reference.

Case RMSEw (m) RMSEw (m) RMSE RMSTE
𝐷max = 3000m 𝐷max = 1000m (m) (×102 m2)

AO 0.49 0.63 0.78 2.6
BO 0.60 0.71 0.77 5.5
CO 0.78 1.02 1.16 8.2
DO 0.84 0.94 0.95 7.8

parameter 𝐷max, which represents the maximum distance over which
morphological features may be displaced for the prediction to still get
(some) credit for predicting these features. Both the RMSTE and the
RMSEw diagnose prediction A to be a better prediction than B, in spite
of the similar values for RMSE (Tables 4 and 5). Whether prediction C
or D is diagnosed the better prediction by the RMSEw depends on the
chosen value for 𝐷max. In contrast, the RMSTE does not allow such a
parameter. Based on the RMSTE, and hence on the required amount of
corrective sediment transport, prediction D outperforms prediction C.

A final remark concerns the free boundary conditions. From Figs. 10
and 11, it can be seen that for predictions A to D, with larger morpho-
logical change closer to the North boundary, there is a small corrective
sediment transport across this boundary. Note that these predictions
require a net sediment exchange with the outside world due to the
presence of a (small) bias. The contribution of the transport across

the North boundary to the RMSTE is limited, as can be verified from
Fig. 11.

5. Discussion

Sections 3 and 4 have shown that the newly introduced RMSTE is
capable of discriminating among model results, which is an important
requirement of any error metric. We have seen that the RMSTE may
lead to a different judgement as to which of two predictions is better
than the RMSE, since it highlights other aspects of model performance.
The RMSE measures the amount of misplaced sediment, and, hence,
penalizes small misplacements of features heavily. As a consequence,
it is difficult to demonstrate the quality of a high-variability prediction
with the RMSE. The RMSTE on the contrary, is based on the corrective
sediment transport from the predicted to the observed morphological
field and, consequently, not only takes the amount of misplaced sed-
iment into account, but also the distance over which this sediment is
misplaced. Hence, larger spatial scales in the bathymetric error fields,
requiring larger corrective transport distances, are penalized heavier
than shorter scales. For the simple cases in Section 3, this was reflected
in the RMSTE increasing with the misplacement distance of the consid-
ered features and being free from the consistent favouring of flat bed
predictions that the RMSE suffers from. Similarly, Section 4 demon-
strated, for more realistic bathymetric patterns, that more localized
sediment misplacements, due to, for instance, incorrect Coriolis de-
flections, are diagnosed with better RMSTE scores than misplacements
similar in volume but over larger distances. Section 4 further indicates
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Fig. 11. Transport magnitudes for predictions A through N compared to the ‘‘observations’’ O.

that inspection of the corrective transport fields, underlying the RMSTE,
may provide some guidance as to how the model should be improved.
As an example, for case MO in Section 4.3, the transport pattern
revealed two error sources operating on different spatial scales, which,
when isolated, may be separately addressed for the improvement of the
model.

Based on the above described results, we expect that the RMSTE will
enable a more balanced comparison between morphodynamic model
predictions. The current validation practice of only using a point-wise
accuracy metric – for example the (R)MSE – or a skill score based on
such a point-wise metric – for example the mean-squared-error skill
score known as BSS – tends to reward predictions that underestimate
the variability of morphodynamic change (Bosboom et al., 2014; Bos-
boom and Reniers, 2018). This undesirable effect can be counteracted
by also taking the RMSTE into account. We further anticipate that
the RMSTE will be helpful in calibrating morphodynamic models with
respect to the morphodynamic time-scale. In a first calibration step, an
automated calibration routine, which minimizes the RMSTE, may be
able to determine the optimal global model settings, such as certain
transport parameters, that merely affect the morphodynamic time-
scale. In a next step, a more detailed calibration of other parameters can
be undertaken using multiple error metrics, amongst others the RMSE
and the RMSTE.

In Section 3.1, we have seen that the proximity of the boundaries
may restrict the increase of the RMSTE with the misplacement distance
between two features, or even cause the RMSTE to decrease. This
can occur when it is cheaper to (partly) export the excess height 𝛿1
through the one boundary and (partly) import the deficit height 𝛿2

through another boundary than to directly move 𝛿1 towards 𝛿2. It may
seem counterintuitive at first, that free boundaries could prevent a
predicted and observed feature on either side of the model domain
to be (fully) associated with each other. However, the transport error
on the boundary is equally unknown as within the domain, such that
free boundaries, which are themselves part of the optimization, are
generally the logical choice. Only in the special case of a boundary
that is physically closed for sediment, such as land boundaries, one
may assume that the transport error on the boundary is known and
zero. The transport across free boundaries will be relatively small when
the bias between predictions and observations is small and the model
boundaries are chosen far away from the regions of morphodynamic
change, as would generally be the case in practical applications (see
also Section 4). In these cases, also the effect of the boundary conditions
on the RMSTE will be small.

As opposed to the RMSE, the RMSTE requires fields to operate
on, which complicates its application in data-poor environments. A
solution could be to interpolate the data to the computational grid using
straightforward interpolation methods. Alternatively, more advanced
stochastic models may be used to generate realistic realizations of
the seabed, consistent with the available data (Novaczek et al., 2019;
Williams et al., 2017). The sensitivity of the RMSTE to data coverage
and resolution can be assessed in practice by evaluating the difference
between the RMSTE values computed using different methods to esti-
mate missing data. Note that both the RMSE and the RMSTE can be
expected to be sensitive to the spatial resolution of the data. In fact,
the sensitivity of the RMSTE to spatial resolution is likely to be smaller
than of the RMSE, since the first gives more weight to larger spatial
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scales in the bathymetric error fields than to shorter scales. This also
raises the question of the validity of computing the RMSE based on
the measurement locations only, which could also be addressed by a
sensitivity analysis using multiple realizations of the seabed consistent
with the measurements.

In principle, a skill score could readily be derived from the RM-
STE, in the same manner as skill scores have been derived from the
(R)MSE (Gallagher et al., 1998; Sutherland et al., 2004). Like any skill
score, it would inherit the characteristics of the error metric it is based
on, in this case the RMSTE, and be critically dependent on the choice of
the reference prediction. We expect however that the common choice
of the initial morphology as the reference prediction will not be able to
create the required level playing field, as was previously demonstrated
for the MSESS/BSS (Bosboom et al., 2014; Bosboom and Reniers, 2018).

The ETD expresses the mismatch between predictions and observa-
tions in terms of a sediment transport field that is able to transform
the predictions to perfectly match the observations. This method, by
definition, allows for the redistribution of the excess sediment volume
though splitting or coalescing and implies that bed features are not
necessarily kept intact. While bed forms are created or flattened out,
sediment is redistributed over the morphological scales. The transport
direction of sediment contained in a misplaced feature is not necessarily
the same as the direction in which the predicted feature needs to be
moved. In the examples of Section 3, the direction of feature movement,
for instance from left to right, coincided with the transport direction of
the sediment contained in the predicted feature. If we would multiply
the bed levels by −1, such that the features were channels rather than
humps, the required feature displacement would still be from left to
right, but the sediment, rather, would be moved towards the predicted
feature, from right to left; the excess height 𝛿1 and deficit height 𝛿2
are now found at the location of the observations and predictions,
respectively, instead of the other way around. This highlights one of
the important differences between the ETD, which moves sediment, and
the image warp, such as employed in Bosboom and Reniers (2014b),
which, roughly speaking, moves features. This warping method finds
an optimal displacement field by minimizing a regular 𝐿2 distance
(Eq. (1), with 𝑝 = 2). It essentially shifts pixels by (locally) stretching
or compressing the morphological pattern to better match the obser-
vations. Bed level differences between corresponding features in the
predictions and observations prevent an exact match. The combined
error metric RMSEw as presented in Bosboom and Reniers (2014b)
weights both the remaining RMSE after the optimal transformation and
the magnitude of the displacements required to obtain this reduced
error, according to a user-defined parameter. As a consequence, the
RMSEw can be expected to capture the visual disagreement between
morphological patterns, whereas the RMSTE represents the minimum
cost, in terms of (squared) sediment transport and, hence, work, to
bridge the deviations between the morphological patterns. Advantages
of the ETD method over the image warp are that the ETD is mass-
conserving, parameter-free and symmetric, the optimal transport from
observations to predictions being the inverse of the optimal transport
from predictions to observations.

The transport fields 𝐪𝐿2, as found in Sections 3 and 4, are cumu-
lative, corrective and net transport fields. Here, cumulative refers to
the time-integration of the transport and corrective signifies that the
transport fields represent the transport differences between predictions
and observations, rather than observed or modelled transports between
consecutive moments in time. Further, net expresses that they present
the ‘‘cheapest’’ way, based on the 2-norm of the transport field, to
move the mispredicted sediment volumes to the right locations. Thus,
from the multitude of corrective transport fields satisfying the volume
balance Eq. (3), the transport that minimizes the amount of squared
work is thought to best represent the mismatch between predictions
and observations. Since the optimal transport 𝐪𝐿2 is irrotational, it is
fully effective in causing morphodynamic change and only contains
information that can unambiguously be derived from the bed-level

differences and boundary conditions, see Section 2.3. The physical
justification of 𝐪𝐿2 as the optimal transport is found in the choice
of the cost function formulated in terms of work, rather than in a
connection to the usual transport descriptions based on hydrodynamic
drivers, which may lead to transport fields that are not optimized
with respect to the cost function. Obviously, the exponent 𝑝 in the
cost function can be expected to influence the transport pattern. With
our pragmatic choice of 𝑝 = 2, the transport magnitudes at different
locations are weighted quadratically, so extremes are heavily penalized.
This leads to somewhat smeared out transport patterns with curved
transport pathways, as found in Sections 3 and 4. With 𝑝 = 1 on
the other hand, the transport magnitudes at different locations are
weighted proportionally, so the cost function is likely to be less affected
by local large transports, which may lead to more pronounced transport
patterns.

6. Conclusions and perspectives

In this paper, we have presented a novel diagnostic tool for morpho-
dynamic model validation. The employed ETD method solves an opti-
mal transport problem that moves sediment from the one bathymetry
(the predictions) to the other bathymetry (the observations) at min-
imum quadratic transport cost and, thus, work. The quadratic cost
function allows a reformulation of the problem in terms of a Poisson
partial differential equation, which is uniquely solvable, at least up to
an additive constant. A new error metric, the RMSTE, is defined as a
constant multiple of the optimal quadratic cost. As such, it measures the
error in terms of the net corrective sediment transport volume required
for a match with the observations. By penalizing the total sediment
transport, the spatial structure of the error is taken into account; the
RMSTE is sensitive to the volumes of misplaced sediment as well as to
the distance over which this sediment must be transported. Advantages
of the ETD method over the image warp of Bosboom and Reniers
(2014b) are that the ETD is mass-conserving, parameter-free and sym-
metric, the optimal transport from observations to predictions being the
inverse of the optimal transport from predictions to observations.

The results have shown that the RMSTE, as opposed to the RMSE,
is able to discriminate between predictions that differ in the misplace-
ment distance of predicted morphological features. Also, the RMSTE
avoids the consistent favouring of the underprediction of the variability
of morphodynamic change that point-wise accuracy metrics, such as the
RMSE, and the mean-squared-error skill score known as BSS are prone
to.

By definition, each error metric condenses a large amount of data
into a single number, therewith highlighting certain aspects of mor-
phological model performance only. Therefore, we recommend that a
combination of metrics is used in the validation of morphological mod-
els and that the weighting is determined by the goal of the simulation.
We expect that the addition of the RMSTE enables a fairer comparison
between morphodynamic model predictions, by avoiding some of the
pitfalls of point-wise metrics and by defining the error in terms of a
quantity that is at the heart of morphodynamic model validation.

In future studies, the behaviour of the RMSTE in a range of practical
applications will need to be considered. In order to do so, a more
robust implementation of the ETD is required in order to deal with
arbitrary model domains. Further, we anticipate that valuable addi-
tional information can be extracted from the optimal transport fields
by isolating the various scales in the transport fields, for instance using
our scale-selective validation method (Bosboom and Reniers, 2014a).

The choice of 𝑝 = 2 in the optimization problem, leading to
quadratic transport costs, has enabled a relatively straightforward so-
lution procedure resulting in a rotation-free optimal transport. For
𝑝 = 1 and a domain boundary closed to sediment, our formulation
and the 𝐿𝑝 Monge–Kantorovich problem are equivalent and correspond
to the original Monge mass transfer, which guarantees the shortest
possible weighted transport distance and smallest transport magnitude.
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Numerical methods for solving the 𝐿1 problem exist (Benamou and
Carlier, 2015), but are considerably more complex than our 𝐿2 solution
procedure. Nonetheless, it may be worthwhile to explore possibilities
to solve the 𝐿1 optimization problem. Such an approach would lead
to the introduction of a new error metric, the mean absolute transport
error (MATE), which can be expected to behave differently than the
RMSTE. The MATE is to the RMSTE as the MAE is to RMSE, with that
difference that MATE is based on 𝐪𝐿1 rather than 𝐪𝐿2.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

J. Bosboom: Conceptualization, Methodology, Validation, Formal
analysis, Investigation, Writing - original draft, Writing - review &
editing, Visualization. M. Mol: Software, Validation, Formal analysis,
Investigation. A.J.H.M. Reniers: Conceptualization, Writing - review
& editing. M.J.F. Stive: Writing - review & editing. C.F. de Valk:
Conceptualization, Methodology, Writing - review & editing.

Acknowledgements

We thank the reviewers for their constructive comments, which
resulted in an improved paper.

Appendix. Proof of irrotationality of transport field

Here we prove the claim in Section 2.3 that the minimizer of

|

|

|

|

∫𝐱∈𝛺
|𝐪(𝐱)|2 d𝐱

|

|

|

|

1∕2
(A.1)

under the constraint of the volume balance (Eq. (3)) is irrotational. The
corresponding Lagrangian  is

(𝐪, 𝜆) ∶= ∫𝐱∈𝛺
1
2
|𝐪(𝐱)|2 d𝐱 + ∫𝐱∈𝛺

𝜆(𝐱) (∇ ⋅ 𝐪(𝐱) + ℎ2(𝐱) − ℎ1(𝐱)) (A.2)

with 𝜆 the Lagrange multiplier for the constraint and ∇⋅ the divergence
operator. Note that the first term is equivalent to Eq. (A.1) as the cost
function. At the minimum, the variation of the Lagrangian (𝛿) with
respect to 𝐪 is zero, hence:

0 = 𝛿(𝐪, 𝜆) = ∫𝐱∈𝛺
(𝐪(𝐱) ⋅ 𝛿𝐪(𝐱) + 𝜆(𝐱) ∇ ⋅ 𝛿𝐪(𝐱)) d𝐱 (A.3)

with ⋅ denoting the inner product. Using partial integration, Eq. (A.3)
can be rewritten as:

0 = ∫𝐱∈𝛺
(𝐪(𝐱) − ∇𝜆(𝐱)) ⋅ 𝛿𝐪(𝐱)d𝐱 − ∫𝐱∈𝜕𝛺

𝜆(𝐱)(𝛿𝐪(𝐱) ⋅ 𝐧(𝐱))d𝐱 (A.4)

with 𝐧 the inward normal to the boundary 𝜕𝛺 of 𝛺.
Typically, we either have that 𝐪 ⋅ 𝐧 on the boundary 𝜕𝛺 is known,

and, thus, 𝛿𝐪 ⋅𝐧 = 0 on 𝜕𝛺 or that 𝐪 ⋅𝐧 on the boundary 𝜕𝛺 is unknown,
which, because there is no constraint on 𝐪 on the boundary, translates
to 𝜆 = 0 on 𝜕𝛺. The latter, unconstrained boundary condition is referred
to as free boundary in this paper, whereas the first, specified boundary
condition has the employed closed boundary as a special example. With
either 𝛿𝐪 ⋅ 𝐧 = 0 or 𝜆 = 0 on 𝜕𝛺, the last term of Eq. (A.4) equals
zero, and Eq. (A.4) implies, since 𝛿𝐪 is arbitrary in the interior of 𝛺,
𝐪(𝐱) = ∇𝜆(𝐱). Therefore, we have

𝐪(𝐱) = ∇𝜙(𝐱) (A.5)

with 𝜙 = 𝜆 satisfying Eq. (8) in the interior of 𝛺 and either ∇𝜙 ⋅ 𝐧 = 0
or 𝜙 = 0 on 𝜕𝛺.

This proves that the 2-norm of 𝐪 is minimal if the vector field 𝐪 is
irrotational.
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