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Abstract: Traffic signs are a key element in driver safety. Governments invest a great amount of
resources in maintaining the traffic signs in good condition, for which a correct inventory is necessary.
This work presents a novel method for mapping traffic signs based on data acquired with MMS
(Mobile Mapping System): images and point clouds. On the one hand, images are faster to process
and artificial intelligence techniques, specifically Convolutional Neural Networks, are more optimized
than in point clouds. On the other hand, point clouds allow a more exact positioning than the
exclusive use of images. The false positive rate per image is only 0.004. First, traffic signs are detected
in the images obtained by the 360◦ camera of the MMS through RetinaNet and they are classified
by their corresponding InceptionV3 network. The signs are then positioned in the georeferenced
point cloud by means of a projection according to the pinhole model from the images. Finally,
duplicate geolocalized signs detected in multiple images are filtered. The method has been tested
in two real case studies with 214 images, where 89.7% of the signals have been correctly detected,
of which 92.5% have been correctly classified and 97.5% have been located with an error of less
than 0.5 m. This sequence, which combines images to detection–classification, and point clouds to
geo-referencing, in this order, optimizes processing time and allows this method to be included in a
company’s production process. The method is conducted automatically and takes advantage of the
strengths of each data type.

Keywords: LiDAR; RetinaNet; inception; Mobile Laser Scanning; point clouds; data fusion

1. Introduction

Communication and mobility of people and goods are key elements of modern societies and
developing countries. Economic growth has a huge dependence on and a big relationship with
transport networks. Infrastructures such as ports (maritime and river), airports, railways, highways,
and roads are among the most relevant transport systems to guarantee the quality of life of people.
This relevance is well known by the EU. Proof of that are substantial national and EU funds spent
on transport infrastructures every year [1]. These policies are developed based on annual budgets
dedicated to new project construction and maintenance of existing infrastructures. In recent times,
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EU infrastructure policies are changing, focusing more on keeping existing infrastructure in good
working condition and less on new construction [2]. This goal has been gathered, among other ways,
through different national and EU research work programs (e.g., smart, green, and integrated transport
in the case of H2020) [3]. This has promoted numerous activities to improve the service given to society
in fields such as monitoring, resilience, reduction of fatal accidents, traffic disruption, maintenance
costs, and improvement of network capacity.

Highways and roads are the most used infrastructures for mobility in short distances. As a
consequence, their conservation and maintenance show high relevance in terms of safety and secure
mobility and reducing associated costs [4,5]. New concepts, called digital infrastructure and Intelligent
Transport System (ITS), are being developed in parallel with new concepts for mobility: resilient and
fully automated infrastructures; electric, connected and autonomous cars [6].

Concepts of digital infrastructure and ITS are connected. Digital road and permanent monitoring
are the bases of any ITS applied to highways and roads to ensure safe mobility and good service
conditions. There are different techniques and technologies to achieve digital road monitoring.
Depending on the effectiveness and applicability, the most used are based on satellite images,
aerial images, and Mobile Mapping System (MMS) solutions.

The low resolution of satellite images makes it impossible to extract certain information from
linear infrastructures [7]. Roads, highways, or railways are detectable in the satellite images, but it is
not feasible to know the state of the pavement, rails, or their signalling. As a consequence, the scale of
work is too small to get effective results with the ITS.

Aerial solutions have grown hugely in recent times based on civil drones and remotely piloted
civil systems [8]. This is an emerging market of huge interest. However, drones still have many legal
limitations related to the safety and protection of people. These drawbacks limit their use in many
fields, among them transport infrastructures.

The MMS solutions, based on Light Detection and Ranging (LiDAR) technology, images (video
and panoramic), and GNSS (Global Navigation Satellite System) technologies (for data geolocation) [9],
are mature solutions that saw limited growth for mainly two reasons: the high price of the technology
and high cost of processing the captured data (in terms of labour cost). Notwithstanding, the market is
showing novel and very active emerging low-cost and multiplatform solutions for autonomous vehicles.
On the other side, big data and artificial intelligence techniques allow efficient data processing [10].

This work is focused on developing a technical solution to generate infrastructure digital models
and road infrastructure inventory based on the MMS. This work is applied to a specific component of
roads, i.e., traffic signs (TSs), which are very relevant in transport infrastructures for the safety and
security of people. The objective is the fast TS detection, recognition, and classification with accurate
localization. But the application field of the proposed method is not limited to TSs. The proposed
method shows high relevance for autonomous mobility solutions and urban planning. Based on
them, the solution provides key information about on existing traffic signs, including accurate
geolocation parameters.

This paper is organized as follows: Section 2 collects related work about traffic sign detection,
recognition, and mapping in images and point clouds. Section 3 explains the designed method.
Section 4 presents and discusses the results obtained from applying the method to case studies,
and Section 5 concludes the work.

2. Related Work

The interest in the off-line automation of traffic sign inventory has increased in recent years.
Previously, proposed approaches tackled the particular properties of traffic signs (i.e., retro-reflectivity
for night-time visibility, colour, shape, size, height, orientation, planarity, and verticality), usually
following safety standards. These properties require traffic signs to be treated as different objects from
traffic lights [11–13], poles [14], lanes [15–17], trees [18], and other objects present in roads. A review of
approaches depending on the object can be found in [19].
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Traffic sign (TS) current technology provides mainly two sources of data: 3-D georeferenced point
clouds acquired through Mobile Laser Scanning (MLS) techniques; and digital images from a still
camera or as a frame extracted from a video. 3-D point-cloud data contains precise information related
to 3-D location and geometrical properties of the TS, as well as intensity. However, resolution of most
MMS techniques under normal use is not accurate enough to recognise all TS classes. Images are used
to overcome that weakness as they contain visual properties, despite the lack of spatial information.
Since the objective in automated traffic sign inventory is to accurately determine placement in global
coordinates and the specific type of each traffic sign on the road, point cloud and image become
complementary [20–22].

For TS inventory to be automated it is required to follow four main steps: traffic sign detection
(TSD), segmentation (TSS), recognition or classification (TSR), and TS 3-D location. TSD aims to identify
regions of interest (ROI) and boundaries of traffics signs. In TSS, a segment corresponding to the object
is separated from the set of input data. TSR consists of determining the meaning of the traffic sign.
Meanwhile, TS 3-D location deals with estimating 3-D position and orientation, or pose, of the TS.
A variety of approaches for these steps have been proposed in literature directly or indirectly related to
TS inventory.

One group of these approaches defines techniques focused on detecting and segmenting the set
of points with spatial information of the TS from 3-D laser scanner point clouds. These techniques
are based on the a priori knowledge of 3-D location, geometrical and/or retro-reflective properties.
All approaches are conditioned by the huge amount of information contained in point clouds (see,
for instance, [23–30]). With the aim of accurate TSR, aforementioned approaches combine point clouds
with images to extract features. As a previous step to TSR, segmented points can be projected onto
the corresponding 2-D image in the traffic-sign-mapping (TSM) step. A review of methods for TSR in
point-cloud and image approaches can be found in [31].

These types of techniques based on TSD in 3-D point cloud and TSR in image are accurate and
reliable for TS inventory. However, they entail high time and computational costs, mainly for the TSD
and TSS steps. As an alternative, images can be used not only for TSR but also for TSD without making
use of the 3-D point cloud. Some authors have used TSD in image for coarse segmentation of the 3-D
point cloud [32,33].

TSD, TSS, and TSR in image, which become TSDR, have been extensively studied for TS inventory
as well as for other applications such as advanced driver assistance systems (ADAS). The vast variety of
techniques proposed by the computer–vision community have been reviewed and compared, detailing
advantages and drawbacks, in [34–38]. Recently, Wali et al. [39] provided a comprehensive survey on
vision-based TSDR systems.

According to them, in TSDR image-based techniques detection consists in finding the TS bounding
box, while recognition involves classification by giving an image a label. Common TSD methods are:
colour-based, on different colour spaces, i.e., RGB, CIELab, and HIS [40]; shape-based, such as Hough
Transform (HT) and Distance Transform (DT); texture-based, such as Local Binary Patterns (LBP) [41];
and hybrid. By these methods a feature vector is extracted from image with lower computational cost
than from 3-D point cloud. Then, the class label of the feature vector is obtained using a classifier such
as Support Vector Machine (SVM) or with Deep Learning-based (DL) methods [42–44]. Among the
latter, Convolutional Neural Networks (CNN) have been widely adopted, given their high performance
in both TSD and TSR in images [45–48] and in point clouds [49].

Regarding TS inventory, TSDR in image requires the TS 3-D location to be completed. TS 3-D
location, after TSDR, has been considered by several authors in image-based 3-D reconstruction
approaches without making use of a 3-D point cloud. These techniques require prior accurate camera
calibration and removement perspective distortion. In [50], 3-D localization is based on epipolar
geometry of multiple images, while Hazelhoff et al. [51] calculated the position of the object from
panoramic images referenced to northern direction and horizon. Balali et al. [52] built a point cloud
by photogrammetry techniques using a three parameter pinhole model. Wang et al. [53] used stereo
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vision and triangulation techniques. In [54], 3-D reconstruction is conducted by geometric epipolar,
taking into account geometric shape of TS.

While TSDR in image is proved as high-performance, reconstruction models for TS 3-D location
from image are overcome in precision by 3-D point-cloud-based location. However, little research has
paid attention to techniques for TS inventory that jointly takes advantage of TSDR in image and TS
3-D location from the 3-D MLS point cloud. In [32], a method to combine DL with retro-reflective
properties is developed for TS extraction and location from a point cloud. In [55], TS candidates are
detected on images based on colour and shape features and filtered with point-cloud information.
Most authors use point clouds for TSD and images only for TSR [23–26,28,29].

In contrast to other approaches, in this work a data flow is implemented to minimize processing
times by taking advantage of each type of data. First, images are used for TSD and TSR. Image
processing is faster than point-cloud processing and allows the application of DL techniques, which right
now are state of the art. In addition, the design of a modular workflow allows each network to be
replaced in the future as its success rates increase. To maximize a correct TS identification, different
networks for TSD and TSR are used, unlike other works that use the same network to detect and classify,
see also [44,48]. After image processing, point clouds are used to filter out multiple TS detections
and false positives. Point clouds allow more precise geolocation than the use of epipolar geometry of
multiple images. Point clouds are not used for detection and classification since:

• DL point-cloud processing techniques are computationally more expensive than their equivalent
in image processing.

• The addition of point-cloud data to images increases processing times.
• TSs are not always in good condition to be detected by their reflectivity, as other authors have

proposed [23,56].
• The low point density does not provide useful information for TSR.

3. Method

The method consists of four main processes. First, TSs are detected in images. Second, detected
TSs are recognized. Third, TSs are 3-D geolocated by the projection of detected signs to the point
cloud. Fourth, multiple TS detections of the same sign in different images are filtered. The input data
of the method are MMS data: images from a 360◦ camera, point clouds, GPS-IMU positioning data,
and camera calibration data. Figure 1 shows the workflow of the method.

3.1. Traffic Sign Detection

TSD is based on object detection in images. No point-cloud data are used at this stage to speed up
the detection process. The input images are acquired with a 360◦ RGB camera mounted on the MMS
during acquisition. The panoramic image is converted and rectified into six images oriented according
to cube sides. Images in trajectory direction IT provide TS information in front of the MMS. Images in
the opposite direction ITo provide TS information in back of the MMS, either in the same lane or in
different lanes. Lateral images are perpendicular to trajectory direction I⊥T and provide information
about signs located on MMS sides. Lateral images I⊥T are particularly relevant for detecting no-parking
signs or no-entry signs. The images forming the top and bottom of the cube are not relevant for TSD.
Bottom images are occupied by the camera support. TSs that could be detected on top images are
already detected by front images IT.

The object detector implemented in this method is RetinaNet [57]. This detector has been chosen
because it is state of the art in standard accuracy metrics, memory consumption, and running times.
RetinaNet is a one-stage detector that has good behaviour with unbalanced classes and in images
with a high density of objects at several scales, key factors for traffic sign detection. RetinaNet uses
ResNet [58] as a basic feature extractor, and in this work is used the ResNet 50.
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The RetinaNet detector is applied to each cube-side image I of the set acquired with the MMS
during the acquisition. As a result, an array is obtained for each TS detected S(l,Ix,Iy,w,h) where l
indicates the label, Ix and Iy indicate top left corner position of the bounding box, w indicates TS width
and h indicates TS height. In order to obtain maximum classification accuracy, the number of classes
has been reduced to coincide with shapes of traffic sings. The classes for detection with RetinaNet are
five: yield, stop, triangular, circular, and square (Figure 1). In the recognition phase (Section 3.2) these
classes will be classified.
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Figure 1. Workflow of the method.

3.2. Traffic Sign Recognition

In this phase, TSs previously detected by their shape are classified with their final label. In some
TSs, their shape coincides with their final class, as in the case of stop signs (octagonal) and yield sign
(inverted triangle). TSs of obligation (circular), recommendation–information (square), and danger
(triangular) encompass multiple classes that must be classified for a correct inventory. For each of these
three sign shapes, an InceptionV3 network [59] has been trained and implemented. The InceptionV3
network needs input samples of fixed size 299 * 299 * 3 pixels, the bounding boxes images of detected
signs S are resized to adapt them to the network input.

3.3. Traffic Sign 3-D Location

The projection of TSs detected in images onto the georeferenced point cloud is done using the
pinhole model [60]. While in other works the four vertices of the detection polygon have been projected,
in this work, only the central TS point is projected Sc. This saves processing time and minimizes
calibration error. Another alternative would be detecting the pole directly or after TS detection.
Pole detection would mean more precise positioning, but it has the following limitations: (1) poles
may not have enough points to be easily detected, (2) some TSs share a pole, and (3) some TSs are
located on traffic lights, light posts, or buildings, so specific detection methods are needed for each case.
In view of the above, the authors have chosen to consider the error of positioning the TS to the pole
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as negligible, and obtain a simpler and faster method based on TS location and positioning. The TS

location in point cloud PS is done by projecting a line
→

CSc defined by the camera focal point C and the
central sign-point Sc (pinhole model in Equation (1)).

s · Sc = K [R|t]Ps (1)

where s is the scalability factor; Sc is the centre of traffic signal S detected in an image I, Sc = [u, v, 1]T

with u = Ix + w and v = Iy − h/2 w; K is the intrinsic camera parameters matrix provided by the
manufacturer; [R|t] is the extrinsic camera parameters matrix; Ps is the centre of the point-cloud traffic
signal Ps = [Xw, Yw, Zw, 1]T.

The rotation and translation matrix [R|t] positions the camera in the same coordinate system
as the point cloud Ps, which is already georeferenced. [R|t] is formed by two rotation–translation
matrices [R|t] = [R1|t1][R2|t2] relates the positioning of the pixels with the image by calibration prior to
implementation of the method. Once the matrix [R1|t1] for one image is obtained, it is valid for all
images acquired with the same equipment. The calibration is done by manually selecting the four
pairs of pixels in images and points in the point cloud per image. [R2|t2] positions the camera in the
optical centre C of each image I.

The TS points in the point cloud Ps form a plane Ts. The TS is located in the intersection between

the projection of the line
→

CSc following the pinhole model and plane Ts (Figure 2), Ps =
→

CSc ∩ Ts.
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Figure 2. Pinhole model used to project traffic signs (TSs) detected in the image onto the point cloud.

In order to reduce processing time, a region of interest (ROI) is delimited in the point cloud to
calculate possible Ts planes (Figure 3). First, points located at a distance more than d from the MMS
location at the time of taking the image are discarded. Distant TSs from the MMS are considered to
have very low point density for correct location. Distant TSs also are detected in successive images

captured near the MMS. Second, points located at a larger distance than r from line
→

CSc are discarded.
Third, points not located in the image orientation are discarded. TSs detected in images cannot be in a
point cloud in a different orientation. For remaining points, planes are detected in order to discard
point not in planes. Since TSs are planar elements, planar estimation avoids false locations due to noise

points crossing the projection line
→

CSc.
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→

CSc.

3.4. Redundant Traffic Sign Filtering

Since the same TS can be detected in multiple images, multiple detections of the same TS must be
simplified. The filtering is done with information of the classified TS, because one post can contain TSs
of different classes. TSs of the same class grouped in a smaller radius than f are eliminated, leaving
only the first detected (Figure 4).
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4. Experiments

4.1. Equipment and Parametes

The MMS equipment used for this work consisted of a Lynx Mobile Mapper, with a Ladybug5
360◦ camera and a GPS-IMU Applanix POS LV 520. The cube-images had a resolution of 2448 × 2024
pixels and they were captured with a frequency of 5 m in MMS trajectory. The point cloud was a
continuous acquisition over time. The values of parameters d and r to delimit the ROI were set at 15 m
and 2 m, respectively. The value of parameter f was set to 1 m in order to simplify duplicate signals.

For the RetinaNet training, 9500 images were used with 12,036 TSs, obtained by the 360◦ camera
and labelled. The training of the InceptionV3 networks was carried out with data sets of Belgium [50],
Germany [61], and images of Spanish traffic signs. The whole process (training and testing in real case
studies) was executed on a CPU computer Intel i7 6700, 32 GB RAM, GPU Nvidia 1080ti. The code was
combined TensorFlow–Python for TSD and TSR and C++ for 3-D location and filtering.

The RetinaNet training consumed 70 h with hyper-parameter optimization method adam, learning
rate 1e-5, L2 Regularization 0.001, Max Epochs 50 and Batch Size 1. The hyper-parameters for the three
Inceptionv3 training were optimization method sgdm, learning rate 1e-4, Momentum 0.9, Max Epochs
126 and Batch Size 64. The training of the triangular signs required 50 min, 12,995 samples for training
and 407 for validation. The training of the circular signs required 80 min, 25,000 samples for training
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and 743 for validation. The training of the squared signs required 7 min, 1094 samples for training and
243 for validation. The training process in terms of loss per epoch is shown in Figure 5.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 15 
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4.2. Case Studies

The methodology was tested in two real case studies: two secondary roads located in Galicia
(Spain) denominated EP9701 and EP9703. Road EP9701 case study was 9.2 km long, the point cloud
contained 350 million points and was acquired with 7392 images. Road EP9703 case study was 5.5 km
long, the point cloud contained 180 million points and was acquired with 4520 images. Both roads
were located in rural areas where houses, fields, and wooded areas were interspersed. The roads had
frequent crossings and curves. The sign-posting of both roads was abundant and in good condition,
with few samples that were damaged or partially occluded. The case studies were processed in 30 and
20 min, respectively.

The acquisition was performed at the central hours of the day (to minimize shadows) and on a
sunny day without fog, so as not to affect visibility. The MLS maintained a constant driving speed of
approximately 50 km/h, although this speed was reduced by following rules at intersections or traffic
lights. Point density increased as the driving speed decreased. It was estimated that the points in
acquisition direction were 1 cm closer for every 10 km/h that the speed was reduced.

4.3. Results

TS accounting was done manually by reviewing acquired images, detected signals, classified
signs and their locations in the point cloud. Table 1 shows the image count for each case study.

TSs were correctly detected at 89.7%, while 10.3 % were not detected. The use of the 360◦ camera
and the cube-images made it possible to locate TSs in the opposite and lateral directions to the MMS
movement. Some of the undetected TSs were partially occluded or were eliminated in the redundant
TS filtering process (Section 3.4), since they were traffic signs of the same class separated within a
distance f. Figure 6 shows examples of detected TSs.
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Table 1. Results.

EP9701 EP9703 TOTAL

Total detections 113 137 250
TS total 98 116 214

TS detected 86 87.8% 106 91.4% 192 89.7%
TS undetected 12 12.2% 10 8.6% 22 10.3%

False detections 22 19.5% 27 19.7% 49 19.6%
TS duplicated 5 5.1% 4 3.4% 9 4.2%

TS correctly classified 84 92.3% 102 92.7% 186 92.5%
TS uncorrectly classified 7 7.7% 8 7.3% 15 7.5%
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A high percentage of false detections was counted (19.6%). Of these, traffic mirrors represented
81.8% and 37% of false detections in case studies 1 and 2 respectively. Mirrors have a circular shape
surrounded by a red ring, so they were detected as false circular signals. Although the use of the
point cloud has been considered to eliminate these false positives, since mirrors should not have
points due to their high reflectivity, in the case studies the mirrors contained points due to their dirt or
deterioration. Nor have any characteristics been found that differentiate mirror points from TS points.
The remaining false detections corresponded to different objects on roadsides. Figure 7 shows some
examples of false detections.



Remote Sens. 2020, 12, 442 10 of 15

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 15 

 

 
Figure 7. False detections (red boxes) caused by a road mirror in case study 1 (a) and by an awning in 
case study 2 (b). 

Duplicate TSs were not filtered due to incorrect positioning by the TS 3-D location process 
(Section 3.3). In the input cube-side images, 382 TSs were detected in case study 1 and 441 signs in 
case study 2. After the 3-D localization and redundant filtering processes, the set of detections was 
reduced to 113 and 137 TSs, respectively. Duplicated TSs were 4.2% of the total.  

The positioning of a TS was based on the georeferenced point cloud, where the authors assumed 
that the location of the point cloud corresponded precisely to reality, as in [23]. Authors also 
considered that the TSs positioned in the correct TS point cloud were correctly located (0 m error). A 
total 97.5% of the detected TSs corresponded to points belonging to TSs (Figure 8). Only five TSs were 
positioned with an error of between 0.5 meters and 8 meters to the real location of the sign. These TSs 
not correctly positioned in the corresponding TS point clouds were manually measured from their 
incorrect detected location to the real TS location in the point cloud. 

 
Figure 8. Traffic sign location in point cloud (blue point) and labelled (a–d). 

Figure 7. False detections (red boxes) caused by a road mirror in case study 1 (a) and by an awning in
case study 2 (b).

Duplicate TSs were not filtered due to incorrect positioning by the TS 3-D location process
(Section 3.3). In the input cube-side images, 382 TSs were detected in case study 1 and 441 signs in case
study 2. After the 3-D localization and redundant filtering processes, the set of detections was reduced
to 113 and 137 TSs, respectively. Duplicated TSs were 4.2% of the total.

The positioning of a TS was based on the georeferenced point cloud, where the authors assumed
that the location of the point cloud corresponded precisely to reality, as in [23]. Authors also considered
that the TSs positioned in the correct TS point cloud were correctly located (0 m error). A total 97.5% of
the detected TSs corresponded to points belonging to TSs (Figure 8). Only five TSs were positioned with
an error of between 0.5 m and 8 m to the real location of the sign. These TSs not correctly positioned in
the corresponding TS point clouds were manually measured from their incorrect detected location to
the real TS location in the point cloud.
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With regard to signal recognition, 92.5% of the detected TSs were correctly classified, both in
good condition and partially erased. Since the methodology was tested in real case studies, it was not
possible to test all the existing classes of training data. The main classes in the case studies were TSs of
dangerous curves, speed bumps, no overtaking, and speed limits. To a lesser extent, there were also
traffic signs of yield, stop, roundabouts, no entry, roadworks, and pedestrian crossings. No significant
confusion was detected among classes. Errors in confusion were isolated and were corresponded to
the results of training.

4.4. Discussion

In general, most TSs were detected and positioned correctly, although the algorithm showed a
tendency to over-detection. This behaviour was chosen to facilitate monitoring by a human operator.
In a correction process, it was considered easier to eliminate false detections than to check all input
data for undetected signals. In terms of false positives per image, the false detection rate was low,
0.004 FP/image, compared to [54], where 0.32 and 0.07 were reached in the cases with images of better
resolution. Regarding undetected TSs (false negatives), the neural network did not detect 10.3% of
all TSs, which was similar to other artificial intelligence works: 10% in [51] and 11% in [28], but far
from the best of the state of the art: 6% in [62], based on laser scanner intensity; 5% in [32], based on
combining two neural networks; and 4% in [29], based on bag-of-visual-phrases.

The authors are aware that the detection success rate was not as high as in other applications using
RetinaNet [63]. This was due to the relative small size of the data set for TSD and the great variability of
elements that existed in the road environment. Generating a data set for detection is a costly work and
was not the final objective of this work, which was focused on presenting a methodology composed of
a series of processes to inventory signals, and not on optimizing the success rates of Deep Learning
networks such as RetinaNet and InceptionV3.

The methodology did not reach detection rates as high as reference works in TSD and TSR,
such as [50,52], although it is worth mentioning that the latter classifies TS grouped by type. By contrast,
the proposed methodology is adaptable for mapping different objects, as it does not focus on exclusive
TS features. Particularly, by not using reflectivity, it was possible to detect TSs whose reflectivity had
diminished due to the passage of time and incorrect maintenance. With the use of Deep Learning
techniques, although they do not explain exactly why false detections occur, it is possible to intuit the
underlying problem. Deep Learning techniques allow continuous improvement and updates to the
training database with new samples that, in this case, may be the wrong detections once corrected. In
this way, the algorithm will be able to avoid them.

The combination of images to TSD and TSR with a point cloud to TS 3-D locations allowed a
precise positioning of 97.5% of detected TSs in points belonging to TS point clouds, which was not
reached by other works based exclusively on epipolar geometry of multiple images, such as [50],
which only achieved a positioning with 26 cm of average error, [53] with 1-3 m of average error using
dual cameras, and [64] with 3.6 m of average error using Google Street View images.

While point clouds provide valuable information for locating objects, they also require much
more processing time than images. The methodology designed in [23] for TSD and TSR in point clouds
was implemented in the two case studies. Processing times using point clouds has reached 45 and
30 min, respectively. The time increment is 50% more than performing TSD and TSR on images and
3-D location in point clouds, as proposed in this work. No relation was found between inventory
quality and driving speed changes during acquisition. The work maintained a driving acquisition
speed similar to other point-cloud mapping works.

5. Conclusions

In this work, a methodology for the automatic inventory of road traffic signs was presented.
The methodology consists of four main processes: traffic sign detection (TSD), recognition (TSR),
3-D location and filtering. For the TSD and TSR phases, cube-images acquired with a 360◦ camera
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were used and processed by Deep Learning techniques. Five shapes of traffic signs were detected
in the cube-side images (stop, yield, triangular, circular and square) applying RetinaNet. Since the
stop and yield forms each corresponded to only one TS, in order to recognize the other forms in their
respective classes, an InceptionV3 network was trained for each classification. For the 3-D location
and filtering phases, the georeferenced point cloud of the environment was used. TSs detected in the
images were projected onto the cloud using the pinhole model for correct 3-D geolocation. Finally,
the duplicate signals detected in different images were filtered based on the coincidence between
classes and distance between them. The methodology was tested in two real case studies with a total
of 214 TSs, 89.7% of the TSs were correctly detected, of which 92.5% were correctly classified. The false
positive rate per image was only 0.004 and main false detections were due to road mirrors. 97.3% of
the detected signals were correctly 3-D geolocated with less than 0.5 m of error.

The effectiveness in the combination of data images and point clouds was demonstrated in
this work. Images allow the use of artificial intelligence techniques for detection and classification,
which improve their success rates day by day with new networks and designs. In addition, image
processing is much faster and more efficient than point cloud processing. The use of a 360◦ camera
does not require the passage of the MMS in two road directions. Furthermore, point clouds allow a
more precise geolocation of signals than only using images.

The entire process of TS inventorying from processing images (first) and point cloud (continued)
ensures speed and effectiveness in processing time, 50% faster than other proposals that first treat
point clouds and then images with much higher computational costs which, although they provide
satisfactory results in terms of success rates, make their inclusion in production processes unfeasible
due to cost of time and computer equipment. Due to these advantages, the presented methodology is
suitable to be included in the production process of any company. Also, it is conducted automatically
without human intervention.

Future work will focus on extending the methodology to more objects important for road safety
and for the inventory of objects, as the methodology does not depend on any exclusive feature of TSs.
In addition, it is proposed to feed back the network to improve the success rate of detections with
corrected images that present the main types of error. It is also considered to test the methodology in
other case studies such as highways and urban roads, to analyse the influence of driving speed during
acquisition on 3-D point cloud location.
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