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Artificial Dielectric Layers
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𝜀𝜀𝑟𝑟,host

𝜀𝜀 𝜇𝜇eff eff

𝑛𝑛eff > 𝑛𝑛host

𝑛𝑛eff �𝐩𝐩,𝜃𝜃
𝜃𝜃: angle of incidence

�𝐩𝐩: polarization of the incident 
plane wave (TE/TM)

Sub-wavelength patches

Anisotropy is a key property to avoid surface waves



Solution to surface waves 
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ADL

Near source

High front-to-back ratio

No surface wave

𝑛𝑛eff

Equivalent material

Artificial dielectricHomogeneous dielectric

High front-to-back ratio
Surface waves

𝑛𝑛eff decreases 
with angle

𝜃𝜃 (∘)

𝑛𝑛eff2

𝐡𝐡
𝐞𝐞

𝐤𝐤

𝜃𝜃



Applications for antennas
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Improve efficiency of on-chip antennas Wide-band wide-scan phased array

Dipole alone

Input resistance

Bandwidth 1%

Efficiency 36%

Ground plane

SiO2

Si

Dipole
10μm

ADL

Si
SiO2

6 -15 GHz

No surface waves 

Scan to 60 deg. on H-plane 
and 80 deg. on E-plane
with no scan blindness

300 GHz 
prototype

With ADL

10%

87%



Closed-form expression for  aligned layers

Analysis of ADL
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D. Cavallo, W. H. Syed and A. Neto, ‘Part-I’, IEEE TAP, 61-3, 2014
D. Cavallo, W. H. Syed and A. Neto, ‘Part-II’, IEEE TAP, 61-3, 2014

𝑠𝑠𝑑𝑑

D. Cavallo and C. Felita, TAP, 65-10, 2017

alternatively shifted layersGeneralization:



Aligned layers Shifted layers

Electric field distribution

Shift between layers
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Shift 𝑠𝑠 (key parameter)

• More flexible design 
• Reduced number of layers
• Reduced overall thickness

• Extended range of desired permittivity

𝑠𝑠

𝑑𝑑

w
dz

𝑛𝑛eff shifted
2 /𝑛𝑛eff aligned

2

Much higher equivalent 
permittivity with shift

𝑠𝑠/𝑑𝑑

𝑛𝑛eff = 𝑓𝑓(𝑑𝑑,𝑤𝑤,𝑑𝑑𝑧𝑧, 𝑠𝑠)



Equivalent circuit
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𝑍𝑍TM

TM component

𝑍𝑍TE

TE component

𝑍𝑍TM = −
𝑗𝑗
𝐵𝐵∞

𝑍𝑍TE = −
𝑗𝑗
𝐵𝐵∞

1

1 − sin2 𝜃𝜃
2

Reactance of single layer Inter-layer reactive coupling

− cot
−𝑗𝑗𝑗𝑗𝑗 𝑚𝑚 𝑑𝑑𝑧𝑧

𝑑𝑑 + 𝑒𝑒𝑗𝑗2𝑗𝑗𝑗𝑗 𝑠𝑠/𝑑𝑑 csc
−𝑗𝑗𝑗𝑗𝑗 𝑚𝑚 𝑑𝑑𝑧𝑧

𝑑𝑑
𝐵𝐵∞ ≈ 𝑗𝑗

𝑘𝑘0
𝜁𝜁0
𝑑𝑑
𝑗𝑗 �
𝑗𝑗≠0

sinc 𝑗𝑗𝑚𝑚𝑤𝑤/𝑑𝑑 2

𝑚𝑚

𝑑𝑑

𝑑𝑑

𝑠𝑠

𝑠𝑠

𝑤𝑤
𝑤𝑤

𝑑𝑑𝑧𝑧



Validation formulas
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Plane wave incidence
5 layers

TE incidence, 𝜃𝜃 = 60∘

𝑠𝑠𝑥𝑥 = 𝑠𝑠𝑦𝑦 = 0.25𝑑𝑑𝑥𝑥

TM incidence, 𝜃𝜃 = 60∘

Equivalent circuit 
provides S-parameters 

• Generic plane wave 
incidence

• Arbitrary small distance
• Arbitrary number of layers



Ohmic losses in ADLs
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Most frequent question: losses?

Answer: very low because the patches are sub-wavelength

Metal patches (finite conductivity 𝜎𝜎)

More quantitative answer: 0.8 dB losses at 300 GHz

300 GHz prototype

Goal: quantify analytically the losses 
due to finite conductivity

• However, losses depends on 

 How the ADL is illuminated
e.g. plane wave or near source

 Polarization and direction of the incident field 



Generalization to lossy metal
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Integral Equation

Equivalent 𝑧𝑧-transmission lines 
of the spectral Green’s function

M. Albani, A. Mazzinghi and A. Freni, IEEE TAP, 59-11, 2011.

Equivalence 
theorem

𝑍𝑍𝑠𝑠 = 1 + 𝑗𝑗
𝑘𝑘0𝜁𝜁0
𝑗𝜎𝜎



𝑍𝑍𝑠𝑠

𝑍𝑍𝑠𝑠

𝑍𝑍𝑠𝑠

𝑍𝑍𝑠𝑠

𝑍𝑍𝑠𝑠

𝑍𝑍𝑠𝑠

𝑍𝑍𝑠𝑠

𝑍𝑍𝑠𝑠

𝑍𝑍𝑠𝑠 = 1 + 𝑗𝑗
𝑘𝑘0𝜁𝜁0
𝑗𝜎𝜎

Equivalent circuit for lossy metal
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Equivalent layer impedances are in the form
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Single layer: losses

𝜆𝜆𝜆𝜆𝜆𝜆GHz 𝜎𝜎 = 1000
S
m

Example

0.095𝜆𝜆
0.01𝜆𝜆

60∘

TE incidence TM incidenceCurrent loops 
yield higher loss
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Validation

3 layers 𝜎𝜎 = 1000
S
m

Example 1

0.095𝜆𝜆 0.01𝜆𝜆

60∘

0.015𝜆𝜆

60∘

5 layers 𝜎𝜎 = 106
S
m

Example 2

0.01𝜆𝜆0.095𝜆𝜆
0.02𝜆𝜆

TE



Near source excitation
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4 layers 𝜎𝜎 = 107
S
m

125 μm 𝜆𝜆 μm
15μm

𝑙𝑙slot = 𝑑𝑑slot = 75𝜆μm
𝑤𝑤slot = 50 μm

𝛿𝛿slot = 1𝜆𝜆𝜇𝜇𝑚𝑚
ℎ = 50μm

What are the losses for near source illumination?



Effective constitutive parameters
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D. Cohen and R. Shavit, IEEE TAP, 63-5, 2015.

S-parameters 

𝜀𝜀 𝜇𝜇eff eff

𝜃𝜃2



Double slot with ADLs
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200 GHz 250 GHz
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Efficiency of 200GHz antenna

• No TM surface  wave propagates in the structure

• TE modes, responsible for magnetic losses, are below cutoff

• Higher losses if ADLs used for guiding waves, when TE modes propagate



Conclusions
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ANALYTICAL SPECTRUM OF ARTIFICIAL DIELECTRIC LAYERS (FINITE 𝝈𝝈)

• Analytical description of the dissipation losses

𝜎𝜎

• Effective electric and magnetic tan 𝛿𝛿 can be retrieved

1) Magnetic losses much higher than electric one (current loops)

2) Magnetic losses are excited by TE mode propagating in the structure

3) Our applications of ADLs does not involve TE modes (very high efficiency)

3 MAIN MESSAGES
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