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Analytical Equivalent Models of Artificial Dielectric
Layers with Arbitrary Inter-Layer Shifts

Daniele Cavallo1,
1 Microelectronics Department, Delft University of Technology, Delft, The Netherlands, d.cavallo@tudelft.nl

Abstract—Closed-form expressions to describe artificial dielec-
tric layers (ADLs) are presented. The propagation of a generic
plane wave within the artificial material is described by means of
transmission line models, where each layer is represented as an
equivalent shunt impedance. The given analytical formulas for
the shunt impedance account for the reactive coupling between
the layers due to higher order Floquet modes, thus remain valid
even for extremely small electrical distance between layers. The
expressions are derived assuming finite conductivity of the metal,
thus also an accurate estimation of the losses within the artificial
dielectric is obtained from the equivalent circuit.

Index Terms—Artificial dielectric layers, closed-form solutions,
equivalent circuit.

I. INTRODUCTION

Several of today’s radar and wireless communication appli-
cations are shifting their operation to higher frequency to fulfill
more demanding requirements on resolution, compactness and
data rates. When the operating frequency of these systems
increases, reaching the millimeter and sub-millimeter waves,
the separation of antenna and electronic circuits is no longer
possible. Thus, the recent trend is to place the antennas as
close as possible to the the electronic components, to facilitate
the interconnection and to realize highly integrated front-ends.
Despite this need, integrated antennas have never showed good
performance because of their intrinsic low efficiency. These
antennas are limited by problems such as high surface-wave
loss, narrow bandwidth, low front-to-back radiation ratio [1].

Recently, an approach to greatly improve the efficiency of
integrated antennas was proposed in [2], [3]. It consists of
adding an artificial dielectric slab above the antenna in order
to increase the front-to-back ratio. Because of the anisotropy
of the artificial dielectric, surface waves are not excited, thus
resulting in very high radiation efficiency.

A closed-form analysis of artificial dielectric layers (ADLs)
was presented in [4], [5], valid for aligned layers (Fig. 1(a)),
and subsequently generalized in [6] to include the shift be-
tween even and odd layers (Fig. 1(b)). Although Fig. 1(b)
depicts the case of maximum shift (layers are shifted by half of
the period), the shift can be an arbitrary percentage of the unit
cell size, realizing an example of glide symmetric structure. It
was shown in [6] that the shift greatly increases the effective
relative permittivity of the artificial dielectric with respect to
the aligned case, thus it constitutes a key parameter for more
flexible ADL designs.

All previous works consider lossless patches, made of
perfect electric conductor. The assessment of the losses in

Fig. 1. Two-dimensional side view and three-dimensional prospective view
for artificial dielectric slabs with (a) aligned and (b) shifted layers.

ADL was never included before in the analysis. Losses in
ADLs are typically very small because of the sub-wavelength
dimensions of the patches, that yield very low current intensity
on each patch. However, these losses can vary depending on
how the ADL slab is illuminated, e.g. by a near source or under
plane-wave incidence, and they also depend on the polarization
and direction of the incident field. For these reasons, it is
useful to include the finite conductivity of the metal already
in the analytical formulas, to accurately quantify the losses and
give more physical insight on the nature of Ohmic dissipation
in ADLs. In this work the losses introduced by the finite
conductivity of the metal patches in ADLs are analytically
characterized, to derive an effective dissipation factor (tan δ)
for these structure.

II. SINGLE LAYER WITH FINITE CONDUCTIVITY

A. Equivalence Theorem and Integral Equation

The initial problem under consideration is a layer of periodic
square patches in the x-y plane, infinitely thin in z and
illuminated by a generic plane wave with electric and magnetic
fields ei and hi. The unit cell of the patch array is shown in
Fig. 2(a) and it is characterized by period d and width of
the slots w. Due to finite conductivity σ, the metal can be
described by a surface impedance Zs, which is given by

Zs = (1 + j)

√
k0ζ0
2σ

(1)



Fig. 2. (a) Unit cell of a single layer of periodic square patches illuminated
by a plane wave. (b) Equivalent problem with magnetic surface current on
the gaps.

where k0 and ζ0 are the free-space wavenumber and
impedance, respectively.

The metal surface is modeled using the Leontovich bound-
ary conditions: e× n̂ = Zsn̂× [h× n̂], where n̂ is the outward
normal unit vector of the surface, and the fields e and h denote
the total fields, equal to the sum of incident and scattered. By
applying the equivalence theorem, the gaps between patches
are enclosed with infinitely thin closed surfaces, with equiva-
lent electric and magnetic surface current densities j0 and m0

above and below. The equivalent currents are related to the
fields by j0 = n̂× h and m0 = e× n̂.

Following a procedure similar to [7], the volume enclosed
by the surface can be filled with a material which has the
same finite conductivity as the metal patches, to obtain an ho-
mogeneous layer that is convenient to represent with spectral
Green’s function of stratified media. An effective magnetic
current density me, that account for both j0 and m0, can be
defined as

me = m0 + mj = m0 + Zsn̂× j0 . (2)

The continuity of both electric and magnetic fields in the
gap implies that the currents above and below the layer are
equal and with opposite signs for m0, but with same sign for
mj:

m+
0 = e+ × ẑ = e− × (−ẑ) = −m+

0 (3)
m+

j = Zs ẑ× (ẑ× h+) = Zs(−ẑ)× (−ẑ× h−) = m−j (4)

where the superscripts ‘+’ and ‘−’ are used to indicate the
current or the field above and below the layer plane. Thus, by
imposing the continuity of the tangential magnetic field in the
gaps, the following integral equation can be defined:

∞∫
−∞

∞∫
−∞

2m0(ρ′)gZs
(ρ−ρ′)dρ′ = −(1 + Γ)hi (5)

where Γ is the reflection coefficient of the magnetic field at
the metal, ρ = xx̂+yŷ and ρ′ = x′x̂+y′ŷ are the observation
and source points respectively, and gZs is the Green’s function
that relates the elementary magnetic source located on the
infinite lossy plane to the magnetic field. One can note that
the magnetic current mj does not contribute to the magnetic
field integral equation, since the difference between the field

Fig. 3. Equivalent z-transmission lines for the spectral Green’s function of
the problem: (a) TE and (b) TM modes.

scattered above and below by mj vanishes. Therefore, the
integral equation can be written only in terms of magnetic
current density m0. This is because, unlike [7], the Green’s
functions for the currents above and below the layer are the
same in the problem under analysis.

Equation (5) can be solved by an appropriate expansion of
the magnetic current in four entire domain basis functions,
defined on the entire unit cell, and by Galerkin projection,
as described in [4]. The terms of the admittance matrix
are conveniently calculated in the spectral domain. For this
reason, the spectral Green’s function is derived in terms of
the current i on transmission lines shown in Fig. 3, for
transverse electric (TE) and transverse magnetic (TM) modes.
The magnetic current sources are represented by unit voltage
generators. The characteristic impedance of the transmission
lines are Z0TE = ζ0k0/kz and Z0TM = ζ0kz/k0 where kz
is (k20 − k2x − k2y)1/2. The variables kx and ky indicate the
spectral counterparts of the spatial variables x and y.

B. Equivalent Layer Impedance

After the Green’s function is obtained, the rest of the steps
are very similar to the lossless case [4], thus omitted here. The
procedure leads to the following expression for the equivalent
layer impedance:

Zlayer,TE =
1

YTE
+ Zs, Zlayer,TM =

1

YTM
+ Zs (6)

where YTE and YTM are no longer pure susceptances as in
the lossless case, but they are given by

YTE ≈ 2
∑
my 6=0

|sinc(kymw/2)|2(
k2x0

2k2ym

(
ζ0k0
kzm

+ 2Zs

)−1
+

(
ζ0kzm
k0

+ 2Zs

)−1) (7)

YTM ≈ 2
∑
mx 6=0

|sinc(kxmw/2)|2(
k2y0
k2xm

(
ζ0k0
kzm

+ 2Zs

)−1
+

(
ζ0kzm
k0

+ 2Zs

)−1) (8)

where mx and my are the indexes of the Floquet modes,
kxm = kx0 − 2πmx/d and kym = ky0 − 2πmy/d are the



Fig. 4. Equivalent circuit representation of the single layer of patches with
finite conductivity.

Floquet wavenumbers, which determine kzm = (k20 − k2xm −
k2ym)1/2; kx0 = k0sinθcosφ and ky0 = k0sinθsinφ are the
propagation constant of the incident plane wave along x and
y, respectively. Equations (6), (7) and (8) are valid for the
lossless case, by imposing Zs = 0.

Figure 4 shows the equivalent circuit representation of the
impedance, including the Zs contribution. The finite conduc-
tivity introduces an impedance term (Zs) that is in series with
the layer impedance. However, the term Zs is not the only
contribution to the resistance, as also the impedances 1/YTE
1/YTM have a comparable resistive component.

To quantify the effect of the finite conductivity, the losses
are defined as

Loss(dB) = 10log10
1

|S11|2 + |S12|2
(9)

where S11 and S12 are reflection and transmission coefficient
of the incident plane wave, respectively. To validate the
analytical solutions, Fig. 5 compares the losses obtained with
the analytical solution and HFSS simulations, showing good
agreement. Since the losses of the structure with realistic
conductivity values are negligible, an unrealistically low con-
ductivity of σ = 1000 S/m is taken for the validation. The
geometrical parameters are d = 0.095λ0 and w = 0.01λ0,
with λ0 being the wavelength at 300 GHz. The incident plane
wave is impinging at oblique angles (θ = 40◦, φ = 0◦ and
θ = 60◦, φ = 0◦).

It is evident that the loss calculated for TE incidence is
generally larger than the value observed for TM incidence.
This phenomenon likely happens due to the occurrence of elec-
tric current loops that are supported by the patches when the
structure is illuminated by TE incidence. Figure 6(a) shows the
electric field distribution on the single layer for TE incidence,
and the correspondent electric current on the patches forming
a loop. A TM incidence is instead not supporting such current
loops, but only excites uniform and singly polarized currents
on the patches, as shown in Fig. 6(b). The current loops are
associated with a longer electrical length, and therefore with
higher current intensity (closer to the resonance), which can
explain the increased Ohmic losses.

Fig. 5. Comparing loss (in dB) calculated based on analytical solution and
HFSS simulation. The plane wave incident on a single layer of patches with
finite conductivity (σ = 1000 S/m) with angle of incidence: (a) θ = 40◦,
φ = 0◦; (b) θ = 60◦, φ = 0◦. The geometrical parameters are d = 0.095λ0
and w = 0.01λ0, with λ0 being the wavelength at 300 GHz.

Fig. 6. Illustration on single layer of periodic patches illuminated by TE
incidence. The electric fields that are propagating in the slot generate electric
current loops in the patches.

III. MULTIPLE LAYER WITH FINITE CONDUCTIVITY

Following the same generalization procedure used in [5],
[6], the analysis can be expanded to account for a finite
cascade of layers. This allows to quantify analytically the
losses in ADLs already in the early phase of the design
process. The steps are omitted, as they are similar to the ones
described in the previous publications. We consider a plane
wave incident on a finite cascade of layers with arbitrary shift
between even and odd layers (indicated by s, equal along x and



Fig. 7. Equivalent circuit representation of the ADL composed of 5 layers
with finite conductivity for TE and TM component.

y), as shown in Fig. 7(a). The equivalent circuit representation
in Fig. 7(b) can be used, where the admittances of the layers
are separated into infinite-cascade and semi-infinite-cascade
solutions, to describe the middle layers and the layers at
the edges, respectively. To account for the reactive coupling
between layers, the admittances terms in (7) and (8) are now
generalized as follows:

Y∞TE ≈ 2
∑
my 6=0

|sinc(kymw/2)|2S∞(
k2x0

2k2ym

(
ζ0k0
kzm

+ 2ZsS∞

)−1
+

(
ζ0kzm
k0

+ 2ZsS∞

)−1)
(10)

Y∞TM ≈ 2
∑
mx 6=0

|sinc(kxmw/2)|2S∞(
k2y0
k2xm

(
ζ0k0
kzm

+ 2ZsS∞

)−1
+

(
ζ0kzm
k0

+ 2ZsS∞

)−1)
(11)

where we introduced the term S∞ given by

S∞ = −j cot(−j2π|m|dzd ) + jej2πm
s
d csc(−j2π|m|dzd ) . (12)

The admittances for the edge layers (first and last layer)
have the same expressions, but replacing S∞ with Ssemi∞:

Ssemi∞=
1

2
− j

2
cot(−j2π|m|dzd )+

j

2
ej2πm

s
d csc(−j2π|m|dzd ).

(13)

Fig. 8. Comparing losses calculated based on analytical solution and HFSS
simulation. The plane wave is incident on a three-layer ADL with finite
conductivity (σ = 1000 S/m) with angle of incidence θ = 60◦, φ = 0◦. The
geometrical parameters are d = 0.095λ0, w = 0.01λ0, dz = 0.02λ0, with
λ0 being the wavelength at 300 GHz, and shift (a) s = 0 (aligned) and (b)
s = d/2.

Full-wave HFSS simulations are made to validate the an-
alytical solution, and the comparison is shown in Fig. 8. A
good agreement can be seen for the cases shown. Figures 8(a)
and (b) refer to a cascade of three layers with σ = 1000 S/m,
aligned and shifted respectively. The geometrical parameters
are d = 0.095λ0, w = 0.01λ0 and dz = 0.02λ0, with λ0
being the wavelength at 300 GHz. The incident plane wave
is incoming at oblique angle (θ = 60◦, φ = 0◦). It can
be observed that the shift does not introduce a significant
increase of losses, despite providing much higher equivalent
permittivity compared to the aligned case. The loss for TE
incidence shown in Figs. 8(a) and (b) appear not to increase
with the frequency as the TM case. This observation can be
explained with the fact that the transmission coefficient for the
TE case decreases significantly as the frequency grows. The
low transmission signifies that most of the incident wave is
reflected at the interface between the air and the ADL, thus
interacts less with the lossy metal patches.

Figure 9 shows a case where the ADL is designed so the
total height of the slab becomes resonant (half of the effective
wavelength) within the frequency of investigation. The ADL
comprises 5 layers with conductivity σ = 106S/m with the
same geometrical parameters as in Fig. 8, except for the
interelement spacing dz = 0.15λ0. It can be observed that the
losses are maximum around 250 GHz, which also corresponds
to the maximum transmission of the slabs. This effect can
be interpreted by imagining that, at the resonance, the wave
undergoes multiple bounces within the material which add up
in phase in the transmitted wave, resulting in higher losses.



Fig. 9. Losses for TE incidence from the direction θ = 60◦, φ = 0◦ on
a 5-layer aligned ADL with conductivity σ = 106 S/m. The geometrical
parameters are d = 0.095λ0, w = 0.01λ0, dz = 0.15λ0, with λ0 being the
wavelength at 300 GHz.

IV. CONCLUSION

We presented analytical formulas to describe artificial di-
electric layers where the metal patches are characterized by
finite conductivity. In this way, the losses are taken into
account rigorously in the closed form expressions of the
equivalent layer impedance. The geometry investigated is an
example of glide symmetric structure, since the even layers of
the artificial dielectric can be arbitrarily shifted with respect to
the odd ones. The analytical spectral Green’s function provided
here is useful to design artificial dielectric layers as standalone
material or in combination with antennas located in the near
field.
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