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� A continuum damage model was implemented via user material subroutine to model fiber failure.
� The Mohr-Coulomb plastic criterion were used to model the epoxy behavior.
� The cohesive surfaces were used to simulate the fiber-matrix interface damage.
� Different analytical micromechanics theories were verified by the test results.
� Numerical homogenization methods effectively predicted the pultruded lamina macroscopic properties.
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In this paper, analytical and numerical homogenization methods are proposed to effectively simulate the
macroscopic characteristics of a pultruded composite lamina. A continuum damage model was imple-
mented via user material subroutine to model fiber failure, while the Mohr-Coulomb plastic criterion
is employed to model matrix damage. In order to simulate the damage of the fiber-matrix interface,
the relationship between traction and displacement is established. The proposed theoretical and numer-
ical models were verified by tensile, compressive, and shear test results. The outcomes of this study indi-
cated that both theoretical, numerical prediction values agree well with experimental verification results
confirming the validity of the proposed methodology in providing a reliable reference for structural
design of pultruded fiber reinforced polymeric (FRP) composite structures.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Deterioration of existing structures built with traditional mate-
rials such as concrete, steel, and timber is considered to be a major
challenge for civil engineers. Fiber reinforced polymer (FRP) com-
posites are one of the promising alternative materials that poten-
tially can solve this problem with its unique features such as its
high strength-to-weight ratio, and high resistance to harsh envi-
ronments [1–5]. One of the popular types of composites that have
been used by civil engineers for the past three decades or so is
manufactured through the pultrusion continuous manufacturing
process. Pultruded glass fiber reinforced polymer (GFRP) compos-
ites could meet the established design criteria with reasonable cost
and are often recommended for newly constructed bridges and
buildings [6–9]. Typical pultruded composites profiles used in civil
engineering application includes I- and H-shaped girders [1,2],
double web beam [10], GFRP-concrete hybrid decks [3,4,11] and
modular bridge decks [12,13].

Due to the fact that GFRP composites are inhomogeneous, aniso-
tropic and viscoelastic, such materials require more sophisticated
and multi-level (micro-mechanics and macro-mechanics) analyti-
cal producers, as compared to conventional materials such as steel,
and reinforced concrete. The importance of adopting a multi-scale
analysis in determining mechanical properties of pultruded GFRP
laminates has been recommended in previous studies e.g. [12,13].
Although several investigations on carbon fiber reinforced polymer
(CFRP) for aerospace structures were conducted, results and out-
comes of such studies are not generally applicable to pultruded
composites that are commonly used in construction applications.
One of the known difficulties in modeling pultruded composites
accurately [14] is that pultruded composites are not precisely

http://crossmark.crossref.org/dialog/?doi=10.1016/j.conbuildmat.2019.04.191&domain=pdf
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http://www.sciencedirect.com/science/journal/09500618
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laminated structures due to the nature of the pultrusion process.
For this reason, analytical modeling that considers the specific nat-
ure of pultruded composites is required in order to predict its
thermo-mechanical performance. Details for calculating lamina
thickness, laminates fiber volume fraction and engineering con-
stants of each lamina were reported previously by the authors
[12,13]. In addition, and in order to accurately obtain lamina
strength, laboratory tests to characterize the unidirectional lamina
strength are needed. However, the experimental approach is usu-
ally impractical due to several reasons including: (i) each lamina
is orthotropic that requires measuring multiple strength parame-
ters including: longitudinal tensile strength, XT, longitudinal com-
pressive strength, XC, transverse tensile strength, YT, transverse
compressive strength, Yc, and in-plane shear strength, S., (ii) as sta-
ted earlier, pultruded composites are not precisely laminated in the
true sense due to the nature of the manufacturing process and it is
physically almost impossible to extract the mechanical properties
of an individual lamina experimentally (refer to Fig. 1). For this rea-
son, the micromechanics approach, the technique used to obtain
values of composite material, are adopted in this study, where rel-
atively accurate homogenization models are used to predict the
equivalent properties of pultruded composites.

Micromechanics models can be classified as analytical and
numerical. The analytical methods include empirical, semi-
empirical, and strictly-analytical mode. Many analytical tech-
niques of homogenization are based on equivalent Eigen-strain
method [15]. The Reuss model [15] (also called rule-of-mixtures),
assumes that the strain tensors in the fiber, matrix, and composites
are the same. The longitudinal elastic modulus E1 and longitudinal
Poisson’s ratio v12 are derived and computed this way in the rule of
mixtures formulas. The Voigt model (also called the inverse rule of
mixtures), assumes that the stress tensors in the fiber, matrix,
and composite are the same. The transverse elastic modulus E2

and in-plane shear modulus G12 etc. are derived and computed this
way in the inverse rule of mixtures formulas. Considering initial
imperfections, the formulas of the rule of mixtures were improved
by introducing empirical parameter [16]. If the composite could
be approximated as having periodic microstructure, then Fourier
series could be used to estimate all the components of the stiffness
tensor of a composite. Explicit formulas for a composite reinforced
by long circular cylindrical fibers, which are periodically arranged
in a square array, are adopted by Barbero et al. [17]. In addition to
predicting the elastic engineering constants, the rule-of-mixtures
approach was also used to predict lamina’s longitudinal tensile
and longitudinal compressive strength XT and XC, respectively
[15,18,19]. In this approach, fibers and the matrix are assumed to
behave linearly up to failure and the fibers were stiff and brittle
relative to the matrix, implying that the longitudinal tensile
strength is dominated by fiber strength. The longitudinal compres-
sive failure [15,18] could also be assumed to be dominated by fiber
micro-buckling when individual fibers buckle inside the matrix.
The transverse tensile strength of composites [18,20] is dominated
by matrix ultimate strength that is lower than the matrix strength
Fig. 1. Pultruded composites v
by a factor (SRF) known as the strength-reduction factor, that
depends on the volume fractions properties of fibers and matrix.
The transverse compressive strength could be obtained by the
strain-magnification factor method [21,22] or by empirical formu-
las [23,24]. As compared with analytical micromechanics formula-
tions [25], numerical homogenization simulation can consider
both geometry and spatial distribution of the phases as well as pre-
dicting both damage propagation and failure strength. Numerical
homogenization method [26] is an emerging methodology that is
considered to be an effective modeling tool for analyzing FRP com-
posites, where the lamina macroscopic properties could be
acquired by means of numerical modeling of deformation and fail-
ure of the microstructure model. The microstructure is generally
called representative volume element (RVE). Results of several
research studies conducted on nonlinear simulation of the
mechanical response of FRP lamina have been reported. For exam-
ple, Gonzalez and Lorca [25] analyzed the mechanical response of a
unidirectional FRP subjected to transverse compression. The
results showed that transverse compression behaviors of unidirec-
tional FRP were mainly controlled by interface strength and the
matrix yield strength while the failure modes were controlled by
the nucleation of interface cracks or by the formation of matrix
shear bands. Vaughan and McCarthy [27] investigate the effect of
fiber-matrix debonding and thermal residual stress on the trans-
verse damage behavior of unidirectional FRP. Results of their study
indicated that the fiber-matrix interface strongly affected the
transverse strength and that the interfacial strength is one of the
major controlling factors of the overall transverse strength. Soni
et al. [28] developed a three-dimensional micromechanical finite
element model to predict mechanical behavior and damage
response of composite laminates, where the macroscopic stress-
strain fields were obtained using Gauss’s theorem, in conjunction
with the Hill-Mandal strain energy equivalence principle. The pre-
dicted results from the proposed model, which could be used to
study the effect of matrix friction angle and cohesive strength of
the fiber-matrix interface on global material response. In addition,
it could be used to predict initiation and propagation of the fiber-
matrix interfacial decohesion and propagation at every point in the
laminate, were found to be in good agreement with experimental
results. Romanowicz [29] employed the numerical homogeniza-
tion methods to predict the strength of unidirectional FRP lamina
under a combination of the transverse compression and axial ten-
sion. The failure modes were found to be mainly due to fiber break-
age, fiber/matrix debonding, and matrix plastic deformation. The
proposed model is verified against an analytical solution and
experimental data. Results showed that the numerical results
agreed better with experimental data than the analytical model.
Xin et al. [30] conducted numerical homogenization to predict
the tensile and shear behavior of steel reinforced resin after vali-
dated by compressive material test results. The friction angle, the
ratio of the yield stress in triaxial tension to the yield stress in tri-
axial compression, and the dilation angle of the linear Drucker Pra-
ger plastic model are obtained based on experiments and
s. laminated composites.



Fig. 2. Typical RVEs of unidirectional FRP composites.
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numerical homogenization simulation. Melro et al. [31] used a
pressure-dependent, elasto-plastic thermodynamically consistent
damage mode to simulate the matrix and used cohesive elements
to model the interface between matrix and fibers. Their results
showed that damage initiation is mainly due to interfacial damage
under both transverse tension and shear loadings and that the
damage initiation under longitudinal shear load is mainly due to
the damage of the epoxy matrix. Ullah et al. [32] developed a com-
putational homogenization framework to predict the nonlinear
mechanical response of FRP composites. The accuracy and perfor-
mance of the computational framework are demonstrated with a
variety of numerical examples.

In order to expand the use of pultruded GFRP profiles in bridge
engineering and provide basic design data of pultruded unidirec-
tional GFRP lamina, analytical and numerical homogenization
methods were used to effectively model the lamina macroscopic
properties. Continuum damage model implemented via user mate-
rial subroutine is employed to simulate fiber failure, Mohr-
Coulomb plastic criterion is employed to simulate the matrix dam-
age and the cohesive surfaces reflecting the relationship between
traction and displacement at the interface were employed to sim-
ulate the fiber-matrix interface. Tensile performance, compressive
performance and shear performance have been experimentally
studied to validate the theoretical and numerical results.

2. Analytical micromechanics evaluation

Based on information obtained from an in-depth literature
review conducted in this study, it is believed that there is a dearth
of references involving pultruded FRP profiles in civil engineering
application with multiscale prediction in both modulus and ulti-
mate capacity.

2.1. Lamina engineering constants

Unidirectional lamina’s moduli include longitudinal elastic
modulus E1, transverse elastic modulus E2, in-plane shear modulus
G12, transverse shear modulus G23, longitudinal Poisson’s ratio m12

and transverse Poisson’s ratio m23. The detailed equations to predict
lamina engineering constants were listed in Appendix A.

2.2. Lamina ultimate strength

The ultimate strength of a pultruded unidirectional lamina
includes longitudinal tensile strength F1t, transverse tensile
strength F2t, longitudinal compressive strength F1c, transverse com-
pressive strength F2c and in-plane shear strength S. Detailed equa-
tions to predict ultimate strengths were listed in Appendix B. It is
also noted that the purpose of predicted strength is to provide ini-
tial coarse reference in the finite element simulation in the fact
that the constitutive law of sub-materials and interface between
sub-materials were much complicated.

3. Computational homogenization

As stated earlier, numerical homogenization simulation could
accurately consider the geometry and spatial distribution of the
phases, and also could precisely estimate the propagation of dam-
age to accurately predict the failure strength as compared to ana-
lytical micromechanics formulations [25].

3.1. Computational homogenization & periodic boundary condition

The link between micro-scale and macro-scale behavior could
be established based on Hill-Mandel computational Homogeniza-
tion method. The macro-scale Cauchy stress r
�

ij is obtained by aver-
aging the microscale Cauchy stress, r ij, in the unit cell domain,
expressed as Eq. (1). [26]:

r
�

ij ¼ 1
Hj j

Z

H
r ijdH ð1Þ

where: r
�

ij is the macro-scale Cauchy stress, r ij is the micro-scale
Cauchy stress, H is the domain of the unit cell. The unit cell problem
could be solved for the leading order translation-free micro-scale

displacement. The micro-scale displacement uf
i x; yð Þ is expressed

in the following form [26]:

uf
i x; yð Þ ¼ ec

ijyj þ u 1ð Þ
i x; yð Þ ð2Þ

where: x is the macro-scale position vector in the macro-scale
domain, y is the micro-scale position vector in the unit cell domain;

ec
ij is the strain tensors in the macro-scale domain, u 1ð Þ

i x; yð Þ is the
perturbation displacement of the micro-scale.

If two nodes, M and S, located at the opposite faces of the RVE
model, with M and S being the master and slave nodes respectively.
Considering the periodic boundary conditions [26] in the unit cell
domain gives:

uf
i x; yM

j

� �
� uf

i x; yS
j

� �
¼ ec

ij yM
j � yS

j

� �
ð3Þ

This could be implemented by so-called ‘‘mixed boundary condi-
tions” via constraint equations, is expressed by the following equa-
tions [26,33]:
Z

@HY

u f
i x; yð Þ � ec

ikyk

� �
NH

j dcY ¼ 0 ð4Þ

uf
i x; yð Þ � ec

ikyk

�
�
�

�
�
�NH

j � Tol ð5Þ

where: NH
j is the unit normal to the unit cell boundary @H y.

3.2. Material constitutive model

Typical RVE model in the case of unidirectional GFRP compos-
ites employed in this paper is shown in Fig. 2, which consists of
a fiber embedded in a matrix polymer. The macro-scale GFRP
material behavior could be obtained by averaging micro-scale
stress distribution and considering individual sub-materials com-
ponents constitutive law and fiber-matrix interface de-bonding.
Each constitutive model of sub-material is detailed explained as
below section.

3.2.1. Fibers
In this study, a continuum damage material model was

implemented via the user-material subroutine UMAT of ABAQUS/



Table 1
Implementation algorithm of fiber damage model.

1 Initial variable: {nw, nwv, nr}
2 Update strain : nþ1 ei ¼ n ei þ Dei i ¼ 1 . . .6

3 Compute the principal strain nþ1e
�

j j ¼ 1 . . . 3

4 Compute the equivalent strain nþ1 ê
5 Update stress and Jacobian Matrix:

5-1 If nþ1ê�nr:
nþ1r ¼ n r; nþ1 w ¼ n w; nþ1 wv ¼ n wv

5-2 If nþ1ê> n r:
nþ1r ¼ nþ1 ê; nþ1 w ¼ � nþ1ê

� �
; nþ1

nþ1wv ¼ g
gþDt

n wv þ Dt
gþDt

nþ1
w

5-3:Update Stress:
nþ1r ij ¼ 1 � nþ1 w

� �
Lnþ1

ijkl ekl

5-4:Update Jacobian Matrix:
n þ 1 @r ij

@ekl

� �
¼ 1 � nþ1 w

� �
Lijkl

Fig. 3. Illustration of material model.
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Standard [34] to simulate the fiber damage. The stress and strain
relationship [12] was expressed as follows:

r ij ¼ 1 � wð ÞLijklekl ð6Þ
where: w is the damage variable. Once a damage initiation is
detected, further loading will cause degradation of material stiff-
ness. The stiffness reduction coefficients are dependent on damage
variables. The evolution of damage variable, w, is assumed to be
governed by equivalent strain ê. Now, considering the brittle nature
of glass fibers, the glass fibers are assumed to be fully damaged
when the equivalent strain, ê; increases to a value larger than the
defined strain threshold value teu

f . The damage variable is given
as the following relationship:

� êð Þ ¼
0 ê< teu

f

wmax ê�teu
f

(

ð7Þ

where: wmax is the maximum value of the damage variable and is
assumed to be 0.999 in this manuscript to avoid convergence prob-
lems. The equivalent strain, ê; is defined as follows:

ê¼
������������������������
2
3

X3

i¼1

e
�

i

D E2

vu
u
t ð8Þ

where: e
�

i is the principal strain in each direction. Note that the
shear strain is zero in the principal strain coordinate. The operator
‘‘< >” is defined in order to consider the difference between tensile
damage and compressive damage of glass fibers. The effective prin-

cipal strain, e
�

i

D E
, in each direction is given as the following

relationship:

e
�

i

D E
¼ e

�
e
�

i � 0
v e

�
e
�

i < 0

(

ð9Þ

where: the material parameter v is defined as the ratio of the
ultimate tensile strain to the ultimate compressive strain.

v ¼ teu
f

ceu
f

ffi tr u
f

cr u
f

ð10Þ

where: tr u
f and cr u

f is the ultimate tensile and compressive strength
of fibers.

The yield function that predicts damage initiation of glass fibers
is expressed by the following relation:

g ê; rð Þ ¼ ê� r � 0 ð11Þ
The loading functions obey the loading-unloading conditions of

the Karush–Kuhn–Tucker conditions, and are expressed in the fol-
lowing form [14]:

_x � 0; g ê; rð Þ � 0; _x g ê; rð Þ ¼ 0 ð12Þ
Materials models with softening behavior and stiffness degra-

dation generally have convergence difficulties in implicit finite ele-
ment method. In order to alleviate convergence difficulties, a
viscous regularization scheme is adopted, and a viscous damage
variable is defined by the evolution equations [14]:

_wv ¼ 1
g w � wvð Þ ð13Þ

where: g is a viscosity coefficient representing the relaxation time
of the viscous system and wv denotes regularized damage variable.

The finite element equations obtained for this model by dis-
cretizing the virtual work equations are in general nonlinear, and
the Newton–Raphson technique is used to solve the resulting sys-
tem of nonlinear equations in ABAQUS [34]. It is important to note
that the material tangent constitutive tensor is computed correctly
to ensure the robustness of the Newton–Raphson method. The
material tangent constitutive tensor could be computed from the
following equation:

@r ij

@ekl
¼ 1 � wvð ÞLijkl ð14Þ

The detailed implementation algorithm is summarized in
Table 1.



Table 2
Mechanical properties of E-glass fibers.

Longitudinal modulus, Ef1

(GPa)
Transverse modulus, Ef2

(GPa)
Poisson’s
ratio, vf

Shear modulus, Gf

(GPa)
Tensile strength, Xft

(MPa)
Compressive strength, Xfc

(MPa)
Density, q
(kg/m3)

74.0 74.0 0.20 30.80 2150 1450 2560

Table 3
Mechanical properties of epoxy resin.

Modulus, Em

(GPa)
Poisson’s
ratio, vm

Shear modulus Gm,
(GPa)

Tensile strength Xmt,
(MPa)

Compressive strength, Xmc,
(MPa)

Shear strength, Sm,
(MPa)

Density (q),
(kg/m3)

3.35 0.35 1.24 80.0 120.0 75.0 1160

Fig. 4. Schematic of the pultrusion process [38].

Table 4
Fiber volume fraction and density.

Number Length (mm) Width (mm) Thickness (mm) Mass before burning, (g) Mass after burning, (g) Composite destiny, (kg/m3) Fiber fraction (%)

1 24.12 25.11 4.2 4.84 3.65 1902.7 56.1%
2 24.95 23.93 4.05 4.05 3.50 1931.3 56.5%
3 25.00 23.47 4.22 4.22 3.55 1926.4 56.0%
Average 24.69 24.17 4.16 4.37 3.56 1920.1 56.2%

Fig. 5. Tensile specimen (mm).
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3.2.2. Polymer matrix
The polymeric matrix was assumed to behave as isotropic

materials. The plastic behavior of the polymer matrix was assumed
to be governed by the Mohr-Coulomb criterion [34,35]. The Mohr-
Coulomb criterion assumes that the yielding happens when the
shear stress along one specific plane reaches a critical value, which
is related to the normal stressr . It is expressed as:

s ¼ c � r tan/ ð15Þ
where: c stands for the cohesion of the matrix materials, / stands
for the friction angle of the matrix materials. The cohesion, c, stands
for the failure stress under pure shear while the friction angle / is
used to consider the effects of the hydrostatic stress on yield stress.
The values of both material parameters could be determined from
its tensile and compressive strengths, r mt and r mc expressions as
follow:

r mt ¼ 2c
cos/

1 þ sin/
ð16Þ
Fig. 6. Compressive specimen (mm).
r mc ¼ 2c
cos/

1 � sin/
ð17Þ

The Mohr-Coulomb yield surface can then be expressed as [34]:

F ¼ Rmcq � ptan/ � c ¼ 0 ð18Þ
where: p is the hydrostatic stress, q is the Mises equivalent stress,
Rmc is defined as the Mohr-Coulomb deviatoric stress measure, the
detailed expression may refer to [34].

3.2.3. Fiber-matrix interface
The cohesive surfaces reflecting the relationship between trac-

tion and displacement at the interface were employed to simulate
the fiber-matrix interface. As shown in Fig. (3-a), the bilinear
traction-separation model, which assumed to be linear elastic
(point ‘‘a”) followed by the damage initiation (point ‘‘b”), the evo-
lution of damage (point ‘‘c”), and finally the fully damaged state
(point ‘‘d”), is employed in this paper. In the elastic stage [12,13],
the traction increased linearly along with the displacement with
an initial slope of K0. At point ‘‘b”, the damage of the cohesive ele-
ment is initiated. The cohesive element is always subjected to com-
bined loading including opening, in-plane shear and out-of-plane
shear, the quadratic stress failure criterion [34] is used to evaluate
the initial damage, as is shown in Fig. (3-b).

tnh i
t0

n

( ) 2

þ ts

t0
s

( ) 2

þ tt

t0
t

( ) 2

¼ 1 ð19Þ

where: tn , ts and tt are traction components related to pure modes I,
II and III, t0

n, t0
s and t0

t are interfacial strength of pure modes I, II and
III.

In the damage evolution period, the interfacial stiffness
degraded from initial K0 to (1-d) K0, where d is a damaged variable.
The Benzeggagh-Kenane fracture criterion (BK Law) described in
Eq. (20) [34,36] is particularly used to predict damage propagation
of mixed-mode loadings in terms of the critical fracture energies
during deformation purely along with the first and the second
shear directions are the same.

GC ¼ GC
n þ GC

s � GC
n

� � Gs þ Gt

Gn þ Gs þ Gt

� 	 g

ð20Þ
Fig. 7. In-plane shear specimen (mm).



Table 5
Summary of test results.

Property Number Elastic Modulus (GPa) Ultimate Strength (MPa)

SD Eav E95% COV SD Uav U95% COV

Longitudinal Tensile 5 3.10 47.17 43.12 0.07 33.93 1146.03 1104.50 0.03
Transverse Tensile 5 1.35 16.18 14.51 0.08 5.31 47.45 40.86 0.11
Longitudinal Compressive 5 0.96 55.02 53.82 0.07 70.83 1014.34 926.40 0.02
Transverse Compressive 5 0.06 16.74 15.45 0.06 3.49 168.40 164.20 0.02
In-plane Shear 5 0.46 5.04 4.55 0.09 8.47 48.50 39.38 0.10

Poisson’s ratio 5 Longitudinal Poisson’s ratio Transverse Poisson’s ratio
SD vxyav vxy95% COV SD vyxav vyx95% COV
0.017 0.265 0.286 0.06 0.011 0.114 0.128 0.10

Table 6
Summary of resistance factors.

Property 95% Reliability 99% Reliability

Elastic Modulus Ultimate Strength Elastic Modulus Ultimate Strength

Longitudinal Tensile 0.88 0.95 0.84 0.93
Transverse Tensile 0.87 0.82 0.81 0.74
Longitudinal Compressive 0.88 0.97 0.84 0.95
Transverse Compressive 0.90 0.97 0.86 0.95
In-plane Shear 0.85 0.84 0.79 0.77
Longitudinal Poisson’s ratio 0.90 – 0.86 –
Transverse Poisson’s ratio 0.84 – 0.77 –

Fig. 8. Engineering constants comparison.

Fig. 9. Longitudinal tensile behavior comparison.
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where: Gn, Gs, and Gt are the corresponding energy release rates
under pure modes I, II, and III, the additional subscript ‘‘C” denotes
critical case, which can be determined based on a standard fracture
toughness test and g is a material parameter.
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4. Experimental programs and results

4.1. Properties of fiber and resin

Tables 2 and 3 present a summary of the mechanical properties
of both E-glass fibers and epoxy resin, respectively [37].
4.2. Processing method

As shown in Fig. 4, a typical pultrusion production line mainly
consists of the following components [38]: (i) roving/fabric stacked
on creels, (ii) pre-forming guide plate, (iii) resin impregnator, (iv)
forming & curing die, and (v) a pulling system and cutting system.
E-glass rovings with the type of 9600 TEX are employed. Glass
fibers rovings are guided by a pre-forming plate from a creel into
a resin impregnation tank for wetting the reinforcements with
the polymeric matrix. The pre-forming guide plate guides positions
of reinforcements in the designed locations in the cross section of
profiles. The wetted reinforcements are then traveled through the
heated die to cure epoxy resin drawn by pulling system. The resin
matrix progressively changes from liquid to gel and finally to solid.
After performing and shaping, the composites are pulled out and
cut off based on the required length.
Fig. 10. Stress, plastic strain and damage distributions of the u
4.3. Density & fiber volume fraction tests

In this study, three specimens with nominal dimensions of
25.0 mm � 25.0 mm � 4.0 mm were fabricated to investigate the
fiber fraction based on calcination methods [39] and density [40].
The specimens were weighed to acquire composite destiny before
burning in an incinerator. After burning, the remaining consists
only of fiber that was weighed to determine the fiber volume frac-
tion of each specimen. Table 4 presents a summary of the results of
these tests. As shown in this table, the average density of the pul-
truded composite lamina is 1920.10 kg/m3 with an average fiber
volume fraction of 56.2%.

4.4. Test specimens

The tensile performance, Poisson’s ratio, compressive perfor-
mance, and in-plane shear performance of pultruded lamina have
been experimentally investigated. As shown in Fig. 5, five speci-
mens were tested under tension load parallel to fiber direction
and five specimens were tested under tension load perpendicular
to fiber direction in order to measure the ultimate tensile strength,
elastic modulus and the Poisson’s ratio based on procedures
described in reference [41]. The typical dimensions of the longitu-
dinal tensile specimens are 230.0 mm � 15.00 � 4.0 mm, while the
nit cell under longitudinal tensile loading (11-direction).
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dimensions of the transverse tensile specimens are
170.0 mm � 25.0 mm � 4.0 mm. In addition, five specimens were
tested under compression along the fiber direction and another
five specimens perpendiculars to the fiber direction [42] were also
tested under compression (refer to Fig. 6). The average dimension
of the compressive specimens is 110.0 mm � 8.7.0 mm � 4.0 mm
with an effective compressive length of 10.0 mm. A total of five
specimens were also prepared based on procedures described in
reference [43] to measure the in-plane shear strength and modulus
of each specimen (refer to Fig. 7). The average dimension of the in-
plane shear specimen is 76.0 mm X 56.0 mm X 4.0 mm (see Fig. 7).
The loads and displacements were measured by a calibrated uni-
versal testing machine (UTM) load cell and displacement sensor,
respectively, while strains were measured using electrical strain
gauges during the loading process.
4.5. Experimental results

Table 5 presents a summary of the experimental results. In this
table, SD is the standard deviation, COV is the coefficient of vari-
ability, Eav is the average elastic modulus, E95% is the elastic modu-
lus with 95% reliability, Uav is the average ultimate strength, and
U95% is the ultimate strength with 95% reliability.

The average longitudinal tensile strength, transverse tensile
strength, longitudinal compressive stress, transverse compressive
stress, and the in-plane shear stresses obtained from the tests are
1146.03 MPa, 47.45 MPa, 1014.34 MPa, 168.40 MPa and
48.50 MPa, respectively. The average experimental values of longi-
tudinal tensile elastic modulus, transverse tensile elastic modulus,
longitudinal compressive elastic modulus, transverse compressive
elastic modulus and in-plane shear modulus are 47.17 GPa,
16.18 GPa, 55.02 GPa, 16.74 GPa and 5.04 GPa, respectively. Exper-
imental results also indicated that the average longitudinal and
transverse Poisson’s ratio are 0.265 and 0.114, respectively. Test
results showed that the experimental value of the in-plane shear
strength is smaller than the predicted value obtained in previous
studies [12–14]. This variation may be attributed to the fact that
the behavior of woven reinforced lamina is different from unidirec-
tional GFRP lamina.
Fig. 11. Longitudinal compressive behavior comparison.
4.6. Resistance factor

The load and resistance factor design (LRFD) protocol is com-
monly adopted in the design of structures. According to LRFD
design method, the resistance of the structure and the applied
loads are considered separately. The design should satisfy the
following inequality [44].

UF > aDLD þ w
XNL

j¼1

ajLj ð21Þ

where: F is material strength, U is resistance factor, aD is dead load
factor, LD is dead load, aj is live load factors, Lj is other loads includ-
ing live, pressure, thermal, acceleration etc., and NL is the number of
other types of design loads.

Now, assuming that the applied stress is deterministic, the
resistance factor could be obtained for a given reliability relation
as follows [15]:

U ¼ l F þ zx
�

F

l F
¼ 1 þ zCF � 1 ð22Þ

where: l F is average strength, x
�

F is standard deviation (SD), CF is
the coefficient of variability (COV), z is variable in terms of standard
normal Gaussian probability density function.
The results of the resistance factors are summarized in Table 6.
If the required reliability is 95%, the resistance factor of the elastic
modulus will then falls between 0.84 and 0.90, and the corre-
sponding ultimate strength resistance factor will fall in the range
of 0.82–0.97. In case that the required reliability is 99%, the elastic
modulus resistance factor will fall between 0.77 and 0.86 while the
ultimate strength resistance factor falls within a range between
0.74 and 0.95. Therefore, the minimum resistance factor is adopted
on the safety side, where an ultimate strength resistance factor is
0.8 for 95% reliability and 0.7 for 99%.
5. Comparisons and discussion

5.1. Engineering constants comparisons

Using Eq. (A.1.1) of Appendix A, the predicted density of com-
posites is 1946.8 kg/m3, and the difference between theoretical
value and experimental value is within 3%.

Fig. 8, shows a comparison between analytical, numerical, and
experimental engineering constants results. It is noted that all the
predicted values of both the longitudinal elastic modulus E1 and
longitudinal Poisson’s ratio, v12, agreed well with the average
experimental results and that the test results fall within 95% relia-
bility, with a difference of about 10%. For the transverse elastic
modulus, E2, the predicted value obtained from the improved
rules-of-mixture approach and numerical homogenization agreed
well with the average values of the experimental results where test
results fall within a 95% reliability. However, predicted values
obtained from other methods tended to be smaller than the average



110 H. Xin et al. / Construction and Building Materials 216 (2019) 101–118
test results. With respect to the in-plane shear modulus, the pre-
dicted value, except of the case of rules of mixture, agreed well with
both the average experimental results that test results fall within
95% reliability.

5.2. Ultimate strength comparisons

5.2.1. Longitudinal tensile strength
Fig. 9 shows comparisons between experimental and theoreti-

cal ultimate strength and stress-strain relationship for specimens
subjected to longitudinal tensile loading. As shown in Fig. 9-a,
the predicted ultimate strength values obtained from the ‘‘rules
of mixture” equations (Eq. B.1.1 in Appendix B), and the ‘‘numerical
homogenization” approach both agreed well with experimental
results. As shown in this figure, the predicted value obtained from
the ‘‘rules of mixture” approach is 10% larger than the average
experimental results but is about 14% larger than the experimental
results with 95% reliability. In addition, the difference between
predicted results obtained from ‘‘numerical homogenization”
Fig. 12. Stress, plastic strain and damage distributions of unit c
approach and corresponding experimental results is within 7%.
Also, theoretical stress-strain relationship for specimens subjected
to longitudinal tensile loading calculated using ‘‘numerical homog-
enization” agreed well with experimental values (refer to Fig. 9-b).

Fig. 10 presents the Mises stress, equivalent plastic strain, and
the damage distributions in the unit cell domain under longitudi-
nal tensile loading. As shown in Fig. 10-a, in the elastic stage, the
fibers Mises stress are generally much larger than the matrix stres-
ses due to elastic moduli of fiber is larger than the matrix. One can
also see that the plastic strains developed gradually in the matrix
phase and that fiber-matrix de-bonding developed gradually as
load along fiber direction increased. The Mises stress has a periodic
distribution in both the elastic and plastic stages under longitudi-
nal tensile loading, indicating that the unit cell was modeled with
correct periodic boundary conditions based on Eqs. (7) and (8). As
shown in Fig. 10-b, the load is applied along fiber direction reached
its maximum value when the fiber damage initiated, and this fail-
ure agreed well with the basic assumption of the role of mixtures
approach presented in Eq. B.1.1 in Appendix B.
ell under longitudinal compressive loading (11-direction).
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5.2.2. Longitudinal compressive strength
Fig. 11 presents comparisons between theoretical and experi-

mental ultimate strength and stress-strain relationships for speci-
mens subjected to longitudinal compressive loads. Assuming a
value of 1.16 for the correction factor, b, in the ‘‘rules of mixture”
equation (Eq. B.2.1 in Appendix B), results in differences between
predicted and experimental results within 10%. On the other hand,
if one assumes that the correction factor, b, is equal to 0.28 in the
‘‘fiber buckling method” (Eq. B.2.2 in Appendix B), the predicted
value would agree well with test results. The predicted result of
the ‘‘improved fiber buckling method” (Eq. B.2.3 in Appendix B)
agrees well with experimental results if a fiber misalignment stan-
dard deviation of ar = 1.15 is assumed. Also, results showed that
the predicted value obtained from the ‘‘numerical homogeniza-
tion” approach is 14% less than the average experimental results
and 6% less than the experimental results with 95% reliability. As
shown in Fig. 11-b, the predicted stress-strain relationship based
on ‘‘numerical homogenization” method generally agrees well
with test results.

Fig. 12 presented Mises stress, equivalent plastic strain, and
damage distributions in the unit cell domain under longitudinal
compressive loading. As is shown in Fig. 12-a, in the elastic stage,
the elastic modulus of fiber is much larger than the matrix leading
to that fiber distributed larger Mises stress. The Mises stress of
both fiber and matrix presented periodic distribution in both the
elastic stage and plastic stage. Obvious plastic strain appeared in
the matrix phase and fiber-matrix de-bonding occurred in the plas-
tic stage. As is shown in Fig. 12-b, de-bonding between fiber and
matrix interface and damage of fiber led to final failure under lon-
gitudinal compressive loading.
Fig. 13. Transverse tensile behavior comparison.
5.2.3. Transverse tensile strength
Fig. 13 presents the ultimate strength and stress-strain relation-

ship comparisons under transverse tensile loading. The predicted
value obtained from the stress concentration method in Eq. B.3.1
of Appendix B, with concentration factor proposed by Agarwal
[18] (Eq. B.3.2 in Appendix B) is less than experimental results,
while the difference between the predicted value from the stress
concentration method with the concentration factor proposed by
Huang [20] (Eq. B.3.3 in Appendix B) falls within 10% under assum-
ing bridge factor b as 0.70. The predicted value based on linear frac-
ture mechanics method (Eq. B.3.6 in Appendix B) agreed well with
test results if mode I critical fracture energy G1c is assumed to be
140.0 J/m2. Now, assuming Vt to be 0.02, based on Ref. [15], the
predicted value using the empirical equation is 5% larger than
the average test results and 20% larger than the test results with
95% reliability. The predicted value from the ‘‘numerical homoge-
nization” method is 1.5% less than the average experimental
results and 10.5% less than the experimental results with 95% reli-
ability. As is shown in Fig. 13-b, the stress-strain relationship pre-
dicted from the ‘‘numerical homogenization” method for
specimens subjected to transverse tensile loading agreed well with
test values.

Fig. 14 presents Mises stress, equivalent plastic strain and dam-
age distributions in the unit cell domain under transverse tensile
loading. As shown in Fig. 14-a, the Mises stress for both the fibers
and the matrix exhibited periodic distribution in both the elastic
stage and plastic stage. The maximum Mises stress value in the
elastic stage appeared in the middle of fibers, while the maximum
Mises stress in the plastic stage occurred near the interface. As
shown in Fig. 14-b, de-bonding between fiber and matrix interface
and damage of matrix led to final failure under transverse tensile
loading. No fiber damage occurred during the transverse tensile
loading, indicating that the transverse tensile behavior is mainly
controlled by matrix and interface performance.

5.2.4. Transverse compressive strength
Fig. 15 presents comparisons between theoretical and experi-

mental values of both the ultimate strength and stress-strain rela-
tionship for specimens subjected to transverse compressive
loading. The predicted value from the ‘‘strain amplification method”
(Eq. B.4.1 in Appendix B) is 10% larger than the average experimen-
tal value and is 12.5% larger than the test value with 95% reliability.
However, the predicted result based on the empirical formula
described in Eq. B.4.2 of Appendix B is much less than the experi-
mental results. On the other hand, the predicted value from the
‘‘numerical homogenization” method is 2.5% larger than the aver-
age experimental results, and 5.5% larger than the experimental
results with 95% reliability. As shown in Fig. 15-b, the stress-
strain relationship obtained from the ‘‘numerical homogenization”
for specimens subjected to transverse compressive loading agreed
well with test values.

Fig. 16 presents the Mises stress, equivalent plastic strain, and
damage distributions in the unit cell domain under transverse
compressive loading. As is shown in Fig. 16-a, the Mises stress of
both fibers and matrix exhibited periodic distribution and that
the maximum Mises stress appeared in the middle of fiber in both
elastic stage and plastic stage. Also, Fig. 16-b shows that the dam-
age of matrix led to the final failure under transverse compressive



Fig. 14. Stress, plastic strain and damage distributions of unit cell under transverse tensile loading (33-direction).
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loading. Again, no fiber damage occurred during the transverse
compressive loading, indicating that the transverse compressive
behavior is mainly controlled by matrix plasticity.

5.2.5. Ultimate shear strength
Fig. 17 presents comparisons between the theoretical and

experimental ultimate strength and stress-strain relationship for
specimens subjected to in-plane shear loads. As shown in the fig-
ure, the analytical results obtained from the ‘‘fracture mechanics”
methods is 1% less than the average corresponding experimental
value, and is 12.5% larger than the test value, with 95% reliability
under the assumption that the mode II critical fracture energy,
G2c, is 220 J/m2. Also, the predicted value from the ‘‘numerical
homogenization” approach is 1.2% larger than the average experi-
mental results and is 18.5% larger than the experimental results
with 95% reliability.

Fig. 18 presents the Mises stresses, the equivalent plastic strain,
and the damage distributions in the unit cell domain for specimens
subjected to in-plane shear loads. As shown in Fig. 18-a, the max-
imum Mises stress appeared periodically at both the top and the
bottom middle surface in the elastic stage. The stress redistributed
due to material damage, and the maximum Mises stress occurred
in the fiber due to matrix damage. As shown in Fig. 18-b, debond-
ing between fiber and matrix interface and matrix damage led to
the final failure of specimens subjected to in-plane shear loads.
Again, no fiber damage was observed during in-plane shear load-
ing, indicating that the in-plane shear behavior is mainly con-
trolled by matrix and interface performance.

Due to the fact that the thickness of the FRP plate is relatively
small, it is usually difficult to experimentally define the transverse
shear behavior of composites. For this reason, the numerical
homogenization approach may provide a satisfactory reference
for the transverse shear behavior of unidirectional FRP materials.
Fig. 19 show the numerical shear stress-strain curves. As shown
in Fig. 19, one can notice a difference between the in-plane shear
modulus and the transverse shear modulus (23-direction), while
only a small difference is observed between the transverse shear
strength (23-direction) and the in-plane shear strength (13-
direction). It is commonly accepted that in case of lack of sufficient
material test data, transverse shear strength of a pultruded unidi-
rectional GFRP lamina could be assumed to be the same as its in-
plane shear strength value [14]. The Mises stress, the equivalent
plastic strain, and the damage distributions in the unit cell domain
under transverse shear loading are presented in Fig. 20. As shown
in Fig. 20-a, the maximum Mises stress periodically appeared in
the fibers near the matrix-fiber interface in both elastic and plastic



Fig. 15. Transverse compressive behavior comparison.
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stage. As shown in Fig. 20-b, damage of the matrix led to the final
failure under transverse shear loading. No fiber damage occurred
during in-plane shear loading, indicating that the transverse shear
behavior is mainly controlled by matrix performance.

6. Conclusions

Analytical and numerical homogenization methods were suc-
cessfully used in this study to effectively model the macroscopic
properties of unidirectional GFRP pultruded composite lamina.
Five identical specimens were experimentally evaluated under
tensile, compressive and shear loads in order to validate the pro-
posed theoretical and numerical results. Based on the results of
this study, the following conclusions are drawn:

� Results of this study indicated that numerical homogenization
approach is shown to be effective for accurate prediction of
the non-linear behavior pultruded composites. The differences
between numerical homogenization and the average experi-
mental results of longitudinal tensile, transverse tensile, trans-
verse compression and in-plane shear fall within a 5% range.
However, numerical homogenization results related to com-
pressive strength is 14% less than the average experimental
results. In general, a good correlation between numerical
homogenization results and test results is achieved.
� The damage of unidirectional GFRP lamina subjected to longitu-
dinal tensile and compressive loads is controlled mainly by the
extent of fiber damage, while transverse tensile and compres-
sive stresses, in-plane and shear behaviors of the unidirectional
GFRP lamina are controlled by both matrix and fiber-matrix
interface damages. It should be noted that in order to accurately
predict different failure modes, numerical results should be ver-
ified by conducting micro-scale experimental tests of the GFRP
lamina.
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Appendix A. Prediction of engineering constants

The engineering constants of a unidirectional lamina include
longitudinal elastic modulus E1, transverse elastic modulus E2, in-
plane shear modulus G12, transverse shear modulus G23, longitudi-
nal Poisson’s ratio m12 and transverse Poisson’s ratio m23.

A.1. Rules of mixtures

All engineering constants could be approximated based on
rules-of-mixtures [19] as follows:

qc ¼ qf Vf þ qmVm A:1:1

E1 ¼ Ef 1Vf þ EmVm A:1:2

E2 ¼ Ef 2Em

EmVf þ Ef 2Vm
A:1:3

G12 ¼ Gf 12Gm

GmVf þ Gf 12Vm
A:1:4

v12 ¼ v f Vf þ vmVm A:1:5

where: qf is the density of fiber, qm is the density of resin, Ef1 is the
longitudinal elastic modulus of fiber, Ef2 is the transverse elastic
modulus of fiber, Vf is the fiber volume fraction, vf is Poisson’s ratio
of fiber, Em is the elastic modulus of matrix, Vm is resin volume frac-
tion, vm is Poisson’s ratio of resin. Gf is the shear modulus of fiber,
Gm is the shear modulus of resin.

A.2. Improved rules of mixtures

To account for initial imperfections, the formulations of rules-
of-mixture were improved as following [16]:

E1 ¼ Ef 1Vf þ g1EmVm A:2:1

E2 ¼ E3 ¼ Ef 2
Em½Vf þ g2Vm�

EmVf þ Ef 2
g2Vm

A:2:2

g2 ¼ 0:2
1 � vm

1:1 �
������
Em

Ef

s

þ 3:5Em

Ef

 !

1 þ 0:22Vf
� �

A:2:3

G12 ¼ G13 ¼ Gf Gm½Vf þ g12Vm�
GmVf þ Gf g12Vm

A:2:4



Fig. 16. Stress, plastic strain and damage distributions of unit cell under transverse compressive loading (33-direction).
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g12 ¼ 0:28 þ
������
Em

Ef

s

A:2:5

G23 ¼ Gf Gm Vf þ g23Vm

 �

GmGf þ Gf g23Vm
A:2:6

g23 ¼ 0:388 � 0:665

������
Em

Ef

s

þ 2:56
Em

Ef
A:2:7

m23 ¼ k v f V f þ vmVm
� �

A:2:8

k ¼ 1:095 þ 0:27 0:8 � Vf

� �
A:2:9
A.3. Analytical homogenization method

The lamina’s engineering constants could be explicitly obtained
in terms of the coefficients of the stiffness tensor [17,45].

E1 ¼ C	
11 � 2C	2

12

C	
22 þ C	

33
A:3:1
E2 ¼ ð2C	
11C	

22 þ 2C	
11C	

23 � 4C	2

12ÞðC	
22 � C	

23 þ 2C	
44Þ

3C	
11C	

22 þ C	
11C	

23 þ 2C	
11C	

44 � 4C	2

12

A:3:2
G12 ¼ G13 ¼ C	
66 A:3:3
v12 ¼ v13 ¼ C	
12

C	
22 þ C	

23
A:3:4
v23 ¼ C	
11C	

22 þ 3C	
11C	

23 � 2C	
11C	

44 � 4C	2

12

3C	
11C	

22 þ C	
11C	

23 þ 2C	
11C	

44 � 4C	2

12

A:3:5
G23 ¼ C	
22

4
-

C	
23

4
þ C	

44

2
¼ E2

2ð1 þ v23Þ A:3:6

where: C	
ij (i = 1. . .3, j = 1. . .3) is coefficients of the stiffness tensor. It

is assumed that the composite has periodic microstructure in a
square array and that the Fourier series could be used to estimate
all the components of stiffness tensor. In terms of square symmet-
rical microstructure, the stiffness tensor has six unique coefficients
and details are given in [17].



Fig. 17. In-plane shear behavior comparison.
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Appendix B. Prediction of ultimate strength

B.1. Ultimate longitudinal tensile strength

By assuming that all the fibers have the same tensile strength,
both the fibers and the matrix behave linearly up to failure, the
fibers are brittle with respect to the matrix and the fibers are stiffer
than the matrix, the longitudinal tensile strength is controlled by
the fiber strength and represented as follows based on rules-of-
mixtures. [15,18,19]

F1t ¼ Fft Vf þ Em

Ef
Vm

� 

B:1:1

where: Fft is the fiber tensile strength.

B.2. Ultimate longitudinal compressive strength

B.2.1. Rules of mixtures
Based on the assumption of rules of mixtures, the longitudinal

compressive strength could simply be predicted as the smaller
value obtained from Eq. B.2.1 [15].

F1c ¼
Ffc½bVf þ Vm

Em
Ef

�
Fmc½Vm þ bVf

Em
Ef

�

8
<

:
B:2:1
where: b is a correction coefficient for longitudinal compressive
strength, Ffc is the compressive strength of fibers, Fmc is the matrix
compressive strength.

B.2.2. Fiber buckling method
The longitudinal compressive failure mode is assumed to be

triggered by fiber micro-buckling when individual fibers buckle
within the matrix. In this case, the longitudinal compressive
strength is considered to be the smaller value of in-phase shear
mode and out-of-phase mode [15,18].

F1c ¼ 2Vf

�������������
bEf EmVf

3Vm

q
In � phase shear mode

bGm
1�Vf

out � of � phase mode

8
<

:
B:2:2
B.2.3. Improved fiber buckling method
The fiber buckling method is improved to account for fiber

misalignment and expressed as follows [15]:

F1c ¼ G12 1 þ 4:76G12ar

S

� 
 �0:69

B:2:3

where: ar is the standard deviation of fiber misalignment.

B.3. Ultimate transverse tensile strength

B.3.1. Strength concentration method
It is assumed that the transverse strength of composites is con-

trolled by the matrix ultimate strength and is lower than the
matrix strength by a factor known as strength concentration factor
(SCF), which depended on the relative properties of the fibers and
the matrix and their volume fractions. Thus, the transverse com-
posite strength could be expressed as [18]:

F2t ¼ Fmt=SCF B:3:1

where: Fmt is the matrix tensile strength. Agarwal et al. [18] pro-
posed the following expression for determining SCF:

SCF ¼ 1 � Vf ½1 � Em=Ef �
1 � ð4Vf =pÞ1=2½1 � Em=Ef �

B:3:2

Huang [20] also proposed SCF formula with transversely isotro-
pic fibers derived upon isotropic fiber reinforcement as:

SCF ¼ 1 þ
������
Vf

p

2
A0 þ

������
Vf

p

2
ð3 � Vf �

������
Vf

q
ÞB0

" #

� ðVf þ bVmÞEf 2 þ Vmð1 � bÞEm

bEf 2 þ ð1 � bÞEm

� �
B:3:3

A0 ¼ ½1 � vm � 2v2
m�Ef 2 � ½1 � v f 23 � 2v2

f 23�Em

Ef 2ð1 þ vmÞ þ Em 1 � v f 23 � 2v2
f 23

� � B:3:4

B0 ¼ Emð1 þ v f 23Þ � Ef 2 1 þ vmð Þ
Ef 2 �3 þ vm þ 4v2

m

� � � Em 1 þ v f23
� � B:3:5

where: b is bridging parameter.

B.3.2. Fracture mechanic method
It is assumed that the transverse tensile failure of a unidirec-

tional lamina occurs when a transverse crack propagates along
the fiber direction [15], the transverse tensile strength could be
obtained as follows:

F2t ¼
�����������������������������������

G1c

1:122pðtt=4ÞK0
22

s

B:3:6



Fig. 18. Stress, plastic strain and damage distributions of the unit cell under in-plane shear loading (13-direction).

Fig. 19. Stress-strain curve of transverse shear.
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K0
22 ¼ 2

1
E2

-
v2

12E2
2

E3
1

 !

B:3:7
where: G1c is the fracture toughness in mode I, tt is the transition
thickness.
B.3.3. Empirical formula
An empirical formula for estimating the transverse tensile

strength is adopted [15,23,24].

F2t ¼ Fmt 1 �
���������������������

4V t

pð1 � Vf Þ

s" #

1 þ Vf �
������
Vf

q� �
1 � Em

Ef 2

� 
� �
B:3:8

where: Vt is the void volume fraction, Fmt is the matrix tensile
strength.
B.4. Ultimate transverse compressive strength

B.4.1. Strain amplification method
The transverse compressive strength could be obtained by

strain-amplification factor method as follows [21,22]:

F2c ¼ E2emc 1 � ð4Vf =pÞ1=2½1 � Em=Ef �
n o

B:4:1

where: emc is the matrix ultimate compressive strain.



Fig. 20. Stress, plastic strain and damage distributions of unit cell under transverse shear loading (23-direction).
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B.4.2. Strain amplification method
An empirical formula for estimating the transverse compressive

strength is given by [15, 23, and 24]:

F2c ¼ Fmc 1 �
���������������������

4V t

pð1 � Vf Þ

s" #

1 þ ðVf �
������
Vf

q
Þð1 � Em

Ef2
Þ

� �
B:4:2
B.5. Ultimate In-Plane shear strength

B.5.1. Rules of mixtures
It assumed that in-plane shear failure occurs when a transverse

crack propagates [15].

S ¼
����������������
G2cG12

pðtt=4Þ

s

B:5:1

where: G2c is the fracture toughness in mode II.

B.5.2. Fracture mechanic method
Similar to transverse compressive strength, one empirical

formula is also adopted [15,23,24].

S ¼ Sm 1 �
���������������������

4V t

pð1 � Vf Þ

s" #

1 þ ðVf �
������
Vf

q
Þð1 � Gm

Gf
Þ

� �
B:5:2
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