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ABSTRACT

Marchenko imaging is based on integral representations for focusing functions and

Green’s functions. In practice the integrals are replaced by finite summations.

This works well for regularly sampled data, but the quality of the results degrade

in case of imperfect sampling. Here we introduce discrete representations that

account for imperfect sampling of the sources (or, via reciprocity, of the receivers).

These representations contain point-spread functions which explain the blurring

of the focusing functions and Green’s functions due to the imperfect sampling.

Deblurring the focusing functions and Green’s functions involves multidimensional

deconvolution for the point-spread functions. The discrete representations form the

basis for modifying Marchenko imaging to account for imperfectly sampled data,

which is important for field data applications.

INTRODUCTION

Marchenko imaging is based on integral representations for Green’s functions with virtual

sources and/or receivers in the subsurface (Broggini and Snieder, 2012; Slob et al., 2014; Wape-

naar et al., 2014). In practice the integrals are replaced by finite summations over the available

sources (or, via reciprocity, over the available receivers). This works well for regularly sampled

sources (or receivers) obeying the Nyquist criterion, on a large enough grid. Most authors that

use the Marchenko method tacitly assume that these conditions are fulfilled, however, some

authors have investigated the effects of imperfect sampling. Peng et al. (2019) numerically

evaluate the effect of downsampling the sources and/or receivers in a regular way. Staring and

Wapenaar (2019) numerically investigate the effects of missing near offsets, limited crossline

aperture and undersampling in the crossline direction on 3D Marchenko imaging. Apart from
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evaluating the effects of imperfect sampling, one would also like to compensate for them. Ravasi

(2017) and Haindl et al. (2018) consider the situation of irregularly sampled sources and well-

sampled receivers. Using reciprocity, they reformulate the representation integrals along the

well-sampled receivers and propose a sparse inversion method to compensate for the source

irregularity.

Ultimately, one would like to compensate for imperfect sampling of the sources as well as the

receivers. This paper aims to make a first step in that direction by reformulating the integral

representations in terms of discrete finite summations over imperfectly sampled sources. This is

akin to reformulating the representations underlying seismic interferometry for irregular source

distributions. For seismic interferometry the approach is as follows. The classical correlation

integral representation is replaced by an implicit convolution integral representation, which is

subsequently inverted by multidimensional deconvolution (MDD; Wapenaar et al., 2011). The

point-spread function (PSF) plays a central role in this approach (Van der Neut and Wape-

naar, 2015). This approach is not straightforwardly adapted for Marchenko imaging, because

this method is based on a combination of convolution and correlation integral representations.

Following a different route, we derive discrete representations for Marchenko imaging, which

include PSF’s. We illustrate these representations with numerical examples. These represen-

tations form the basis for modified Marchenko imaging of imperfectly sampled data, which is

subject of ongoing research.

INTEGRAL REPRESENTATIONS

We consider an inhomogeneous lossless acoustic medium bounded by acquisition surface S0

(Figure 1(a)). We assume this surface is reflection free and the half-space above it is homoge-

neous. The reflection response at this surface is given by R(xR,xS, t), where xS and xR denote
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the source and receiver positions, respectively, and t denotes time. Let us define a virtual re-

ceiver position xA inside the inhomogeneous medium. Green’s functions from the surface S0 to

this virtual receiver are given by G+(xA,xR, t) and G−(xA,xR, t), where the superscripts + and

− denote downward and upward propagation, respectively, at xA. Next, we define a horizontal

surface SA at the depth of the virtual receiver. We consider a truncated version of the medium,

which is identical to the actual medium above SA and homogeneous below it (Figure 1(b)).

At S0 we introduce a downgoing focusing function f+
1 (xS,xA, t) which, when emitted from all

xS at S0 into the truncated medium, focuses at xA. Its upgoing response at S0 is denoted by

f−1 (xR,xA, t).

All these quantities are related via the following integral representations

G−(xA,xR, t) + f−1 (xR,xA, t) = (1)∫
S0
R(xR,xS, t) ∗ f+

1 (xS,xA, t)dxS,

G+(xA,xR, t)− f+
1 (xR,xA,−t) = (2)

−
∫
S0
R(xR,xS, t) ∗ f−1 (xS,xA,−t)dxS,

where the asterisk (∗) denotes temporal convolution. These representations hold for flux-

normalised as well as pressure-normalised wave fields (Wapenaar et al., 2014).

We illustrate these representations with a 2D numerical example, assuming for the moment

that the source positions xS are regularly distributed along S0. For simplicity we consider a

horizontally layered medium, of which the propagation velocity and mass density as a function

of depth are shown in Figure 2. We define S0 at x3 = 0 m and SA at x3 = 1000 m. We

numerically model the reflection response at S0 and convolve it with a Ricker wavelet with a

central frequency of 25 Hz. Also the focusing functions are numerically modeled (since the aim
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of this paper is to investigate representations rather than the performance of the Marchenko

method). We evaluate the integrals in the right-hand sides of equations 1 and 2 for a fixed

receiver position (x1,R = 0), using regular source sampling (∆x1,S = 5 m, nr. of sources is 601).

The results are shown in Figures 3(a) and (b), respectively. The red dashed lines separate the

retrieved focusing functions from the Green’s functions at the left-hand sides of equations 1 and

2 (except for the first event below the red line in Figure 3(b), which belongs to the focusing

function and the Green’s function, as indicated by the arrows).

In practice, the right-hand sides of equations 1 and 2 are approximated by summations,

according to

∑
i

R(xR,x
(i)
S , t) ∗ f+

1 (x
(i)
S ,xA, t) ∗ S(t) (3)

and

−
∑
i

R(xR,x
(i)
S , t) ∗ f−1 (x

(i)
S ,xA,−t) ∗ S(t), (4)

respectively, with S(t) the source wavelet. Assuming the source position x
(i)
S is imperfectly

sampled, these approximations have an effect on the retrieved focusing functions and Green’s

functions. We illustrate this with a numerical example. Figure 4 shows an irregular distribution

of source positions x(i)
S along S0 (average ∆x1,S = 16.7 m, nr. of samples is 181). We evaluate

equations 3 and 4, using resampled versions of the reflection response and focusing functions

of the previous example (the sources are resampled; the receiver position is again fixed at

x1,R = 0). The results, which are shown in Figures 5(a) and (b), respectively, are blurred

versions of those in Figure 3. This blurring can be quantified by PSF’s, which are introduced

in the next section.
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POINT-SPREAD FUNCTIONS

The focusing function f+
1 is defined as the inverse of the transmission response between S0

and SA. This is quantified as follows

δ(x′H,A − xH,A)δ(t) =∫
S0
T (x′A,xS, t) ∗ f+

1 (xS,xA, t)dxS, (5)

with x′A and xA at SA, and x′H,A and xH,A denoting the horizontal coordinates of x′A and xA,

respectively. Here T stands for the flux-normalised transmission response or for a modified

version T of the pressure-normalised transmission response (Wapenaar et al., 2014). For the

case of imperfect sampling, the discretised band-limited version of equation 5 reads

Γ+(x′A,xA, t) =∑
i

T (x′A,x
(i)
S , t) ∗ f+

1 (x
(i)
S ,xA, t) ∗ S(t), (6)

where Γ+(x′A,xA, t) is a PSF. It is illustrated in Figure 6(a) (obtained from the numerically

modelled f+
1 and T ), for the same irregular source distribution that was used in the example

in Figure 5. In the next section we show that this PSF explains the blurring in Figure 5(a).

However, it does not explain the blurring in Figure 5(b). For this we need a second PSF, which

we discuss now.

Analogous to equation 5, we define a quantity Y as the inverse of f−1 as follows

δ(x′H,A − xH,A)δ(t) =∫
S0
Y (x′A,xS, t) ∗ f−1 (xS,xA,−t)dxS. (7)
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In the following we tacitly assume that Y exists, but we remark that, since f−1 is a reflection

response, inversion of equation 7 for Y may not always be stable. Analogous to equation 6, we

define a PSF for the case of imperfect sampling as follows

Γ−(x′A,xA, t) =∑
i

Y (x′A,x
(i)
S , t) ∗ f−1 (x

(i)
S ,xA,−t) ∗ S(t), (8)

which is illustrated in Figure 6(b) (obtained from the numerically modelled f−1 and Y ).

DISCRETE REPRESENTATIONS

We use the PSF’s introduced in the previous section to transform the integral representations

of equations 1 and 2 into discrete representations. We start by applying the operation
∫
SA
{·} ∗

Γ+(x′A,xA, t)dx
′
A to both sides of equation 1 (with xA replaced by x′A). For the terms on the

left-hand side we define the blurred functions “G− and “f−1 , according to

“G−(xA,xR, t) = (9)∫
SA
G−(x′A,xR, t) ∗ Γ+(x′A,xA, t)dx

′
A,

“f−1 (xR,xA, t) = (10)∫
SA
f−1 (xR,x

′
A, t) ∗ Γ+(x′A,xA, t)dx

′
A.
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Applying the same operation to the right-hand side of equation 1, substituting equation 6 and

interchanging the order of summation over x(i)
S and integration along SA, we obtain

∑
i

∫
S0
R(xR,xS, t) ∗ f+

1 (x
(i)
S ,xA, t) ∗ S(t) (11)

∗
∫
SA
f+
1 (xS,x

′
A, t) ∗ T (x′A,x

(i)
S , t)dx

′
AdxS.

Since T and f+
1 are each other’s inverse, the integral along SA yields δ(xH,S − x

(i)
H,S)δ(t), where

xH,S and x
(i)
H,S denote the horizontal coordinates of xS and x

(i)
S , respectively. Using the sift-

property of this delta function in the integral along S0, what remains of equation 11 is a

summation over x
(i)
S , precisely as formulated in equation 3. Combining the results we thus

obtain

“G−(xA,xR, t) + “f−1 (xR,xA, t) = (12)∑
i

R(xR,x
(i)
S , t) ∗ f+

1 (x
(i)
S ,xA, t) ∗ S(t).

This discrete representation is the counterpart of the integral representation of equation 1. The

right-hand side can be seen as the practical implementation of the integral in equation 1 when

the sources x
(i)
S are imperfectly sampled. The left-hand side contains blurred versions of the

Green’s function and the focusing function. According to equation 9, the receiver of the Green’s

function is smeared around xA by the PSF Γ+(x′A,xA, t). Similarly, equation 10 quantifies the

smearing by the PSF of the focal point of the focusing function around xA. Hence, the PSF

Γ+(x′A,xA, t) explains the blurring observed in Figure 5(a). We deblur this figure by MDD, i.e.,

by applying the least-squares inverse of the PSF to “G−(xA,xR, t) + “f−1 (xR,xA, t) (for fixed xR

and variable xA). Note that, although the medium is laterally invariant, the PSF is not shift-

invariant due to the irregular sampling. Hence, MDD requires a full matrix inversion, similar
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as for laterally varying media. The result is shown in Figure 7(a) and accurately matches the

ideal result in Figure 3(a). The maximum deviation for the central trace is 2.4 %. At far offsets

the amplitudes are somewhat overestimated due to limitations of the MDD method.

Next, we apply the operation
∫
SA
{·} ∗Γ−(x′A,xA, t)dx

′
A to both sides of equation 2 (with xA

replaced by x′A). In a similar way as above we obtain

“G+(xA,xR, t)− “f+
1 (xR,xA,−t) = (13)

−
∑
i

R(xR,x
(i)
S , t) ∗ f−1 (x

(i)
S ,xA,−t) ∗ S(t),

with

“G+(xA,xR, t) = (14)∫
SA
G+(x′A,xR, t) ∗ Γ−(x′A,xA, t)dx

′
A,

“f+
1 (xR,xA,−t) = (15)∫

SA
f+
1 (xR,x

′
A,−t) ∗ Γ−(x′A,xA, t)dx

′
A.

Equation 13 is the discrete counterpart of the integral representation of equation 2. The PSF

Γ−(x′A,xA, t) in equations 14 and 15 explains the blurring observed in Figure 5(b). Deblurring

this figure by MDD yields the result shown in Figure 7(b) which accurately matches the ideal

result in Figure 3(a). The maximum deviation for the central trace is 4.7 %. There are also

some small edge effects, probably caused by the quantity Y (introduced in equation 7 as the

inverse of f−1 ), which is not unconditionally stable. At far offsets the amplitudes are somewhat

underestimated due to our efforts to suppress the aforementioned edge effects.
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TOWARDS MARCHENKO IMAGING OF IMPERFECTLY SAMPLED DATA

The discrete representations of equations (12) and (13), with the blurred Green’s functions

and focusing functions defined in equations (9), (10), (14) and (15), form the basis for a modi-

fication of the Marchenko method, which accounts for the effects of imperfect source sampling.

We propose an iterative scheme, building on the current Marchenko method, where in each

iteration the effect of the PSF is removed by MDD (between the evaluation of the summation

and the application of the time window). This requires an initial estimate of the PSF’s and

an update in each iteration. The initial estimate of the PSF can be obtained from an estimate

of the direct arrival of the transmission response and the initial focusing functions. For the

situation in which the sources and receivers are both imperfectly sampled and occupy different

positions, we envisage an iterative scheme which combines the inversion of the discrete repre-

sentations (to account for imperfect source sampling) with a sparse inversion method such as

proposed by Haindl et al. (2018) (to account for imperfect receiver sampling).

CONCLUSIONS

Current implementations of the Marchenko method do not account for imperfect sampling.

We have derived discrete representations as an alternative for the integral representations that

underlie the Marchenko method. These discrete representations account for the effects of imper-

fect source sampling (or, via reciprocity, of imperfect receiver sampling). The Green’s functions

and focusing functions expressed by these representations are blurred by PSF’s, for which we

derived explicit expressions.

The discrete representations form the basis for a modification of the Marchenko method,

which accounts for the effects of the inherent imperfect sampling of seismic field data. The
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development of such a modified Marchenko method is subject of ongoing research.
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Captions
Fig 1: (a) Inhomogeneous medium, its reflection response and Green’s functions. (b) Truncated

medium with focusing functions. In both figures the rays stand for full responses, including all

orders of multiple scattering.

Fig 2: Propagation velocity and mass density of a horizontally layered medium as a function

of depth.

Fig 3: Evaluation of the integrals in equations 1 and 2, for fixed xR at S0 and variable xA

along SA.

Fig 4: Irregular distribution of x(i)
S along S0. The black bars denote the positions of the sources.

Fig 5: Evaluation of the irregular summations in equations 3 and 4, for fixed xR at S0 and

variable xA along SA. Note to the typesetter: if possible, please place Figures 5 and 7 next to

each other.

Fig 6: PSF’s, as defined by equations 6 and 8, for fixed x′A and variable xA, both at SA. These

PSF’s quantify the blurring in Figures 5(a) and (b), respectively.

Fig 7: Results of deblurring Figures 5(a) and (b) by MDD. Note to the typesetter: if possible,

please place Figures 5 and 7 next to each other.
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FIG. 1 (a) Inhomogeneous medium, its reflection response and Green’s functions. (b) Truncated
medium with focusing functions. In both figures the rays stand for full responses, including all or-
ders of multiple scattering.
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FIG. 2 Propagation velocity and mass density of a horizontally layered medium as a function of depth.
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FIG. 3 Evaluation of the integrals in equations 1 and 2, for fixed xR at S0 and variable xA along SA.
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FIG. 4 Irregular distribution of x(i)
S along S0. The black bars denote the positions of the sources.
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a)	

b)	

FIG. 5 Evaluation of the irregular summations in equations 3 and 4, for fixed xR at S0 and variable
xA along SA. Note to the typesetter: if possible, please place Figures 5 and 7 next to each other.
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FIG. 6 PSF’s, as defined by equations 6 and 8, for fixed x′A and variable xA, both at SA. These PSF’s
quantify the blurring in Figures 5(a) and (b), respectively.
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FIG. 7 Results of deblurring Figures 5(a) and (b) by MDD. Note to the typesetter: if possible, please
place Figures 5 and 7 next to each other.
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