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ABSTRACT: Despite having the advantage of a secondary flow
pattern in coiled tubes, a very high Dean number is required to
induce significant mixing in helical coils, usually implying high shear
rates. At very high shear rates, polymer fluids with long molecular
chains can be damaged. Therefore, in this study, we investigate the
enhancement of mixing of a viscoelastic fluid in a coiled tube at low
Dean numbers using the concept of a coiled flow inverter (CFI).
Viscoelastic flow simulations were performed for CFIs of different curvature ratios, by changing the coil diameter, for a range of
Weissenberg numbers (Wi) 0−125. An analytical method using velocity streamlines to quantify mixing is presented. The pressure
drop per unit length increases with increasing Wi number. A more efficient mixing is predicted in the CFI, when compared with a
helix of the same curvature ratio for all flow conditions. The mixing in the CFI is improved with an increase in flow rates (Wi). The
mixing is enhanced at every bend because of flow inversion in the CFI.

■ INTRODUCTION

A complete understanding of non-Newtonian fluid flow in
complex geometries is of importance in many industrial
processes, e.g., for the production of plastics, polymers, and
pharmaceuticals to foods. A non-Newtonian fluid does not
exhibit a linear relationship between stress and rate of strain.
Because of the nonlinear dependence, the analysis of the
behavior of the fluid motion of non-Newtonian fluids tends to
be much more complicated and subtle in comparison with that
of Newtonian fluids.1,2 A viscoelastic fluid is a common form of
non-Newtonian fluid. The flow phenomena that are observable
in viscoelastic fluids cannot be predicted by the Navier−Stokes
equations using simple viscous stress terms. The complexity of
viscoelastic fluid flow is due to the presence of elastic terms
that depend on the fluid’s flow history, which leads to
difficulties with computing the velocity field of viscoelastic
fluids even in a relatively simple configuration.3,4 In general,
the velocity profile of a laminar fully developed Newtonian
fluid flow through a pipe exhibits a parabola-like profile. In
contrast, the flow behavior of a non-Newtonian fluid has many
facets. Among them are a shear-rate dependence of the shear
viscosity, leading to different (often more plug-flow like)
velocity profiles, the presence of normal stress differences, high
resistance to elongational deformation, and memory effects
associated with the elasticity of the material.5 Many studies
theoretically and experimentally revealed the flow behavior of
viscoelastic fluids in simple geometry configurations; the early
developments in the numerical analysis of viscoelastic flows are
critically reviewed in the book by Bird et al.5 The viscoelastic
fluid poses a characteristic material time scale, i.e., a time scale
necessary to relax into a stress-free state after a sudden

deformation. The ratio between the material time scale and the
time scale of the flow is indicated by the dimensionless
Weissenberg number (Wi). While Wi vanishes for Newtonian
fluids, it is on the order of 1 or 10 for many polymer flows of
interest. The challenge for numerical models is for a very high
Wi, known as the High Weissenberg Number Problem or
HWNP, which is discussed in detail in Crochet et al.3 The
HWNP is now partially resolved, in that high-Wi numerical
solutions have been reported over the years for a variety of
flow problems.6−9 A review by Bird et al.10 gives a complete list
of existing viscoelastic models.
In this paper, we will focus on mixing. Mixing of viscoelastic

fluids is important in a variety of industrial applications such as
processing of polymer solutions and melts.11,12 One of the
foremost approaches to increase fluid mixing is the use of
coiled tubes. The working principle of coiled tubes and reasons
for their enhanced performance are well established and as
follows: (a) generation of a secondary flow due to unbalanced
centrifugal forces; (b) enhanced cross-sectional mixing; (c) a
reduction in axial dispersion; (d) improved heat-transfer; and
(e) an improved mass-transfer coefficient.13 The secondary
flow pattern was first described by Dean14,15 and is known as
Dean vortices. Dean observed that for a given pressure drop,
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the volumetric flow rate in a curved tube was less than that in a
straight tube.15 The secondary flow dissipates additional
kinetic energy, thus increasing the resistance to flow. The
strength of the secondary flow depends on the curvature of the
surface. Named after Dean, the flow through a curved channel
is quantified by the dimensionless Dean number (De), which is
analogous to the Reynolds number (Re) in straight tubes. The
Dean number accounts for the effect of curvature ratio and is
defined as De = Re/√λ, where λ is the curvature ratio of the
coiled tubes. Numerous studies13,16−24 have been carried out
to understand transport phenomena in coiled tubes that
concern steady and transient flows. Several researchers25−29

have investigated the influence of various parameters on the
mechanism of polymerization in coiled tube reactors. Despite
having the advantages of a secondary flow pattern in a coiled
tube, a careful analysis of the data shows that a very high Dean
number (De) is required to induce significant mixing in a
cross-sectional plane, usually implying a high shear rate, which
can cause long molecular chains to rip. The mixing efficiency in

a curved tube is a complex function of the Reynolds number,
Schmidt number, curvature ratio, and tube pitch, therefore, the
relative effectiveness of a helical tube is quite complicated
compared to that of a straight tube.30 Mansour et al.31−33

studied a broad range of Reynolds numbers and showed that
there are two optimal values of Reynolds number (Re = 20−60
and Re = 350−1000) which lead to excellent mixing conditions
between the fluids. For the lower range of Reynolds numbers,
strengthening of the Dean vortices enhances mixing. An
increase in Reynolds number leads to a more intense vortex
structure, improving convective mixing; however, it reduces
the residence time of the liquids. To increase the mixing
efficiency even at low Dean number, Saxena et al.34 introduced
a new concept of a helical coil, termed the coiled flow inverter
(CFI). As shown in Figure 1, the geometrical configuration of
a CFI consists of 90° bends in a helical coil, with equal arm
length before and after the bend. The secondary flow
generated in this device continuously changes direction due
to the change in direction of the centrifugal forces caused by

Figure 1. (a) Sketch of the CFI geometry, where d is the diameter of the tube; D, the diameter of the coil; and H, the pitch between the coils. (b
and c) Three-dimensional views of the computational geometries for the CFI and helix, respectively. The helix is of a tube length equivalent to that
of the CFI.
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bending of a helical coil. The plane of vortex formation rotates
with the change in the direction of the centrifugal force by the
same angle. A sharp 90° bend in the CFI increases mixing
between the fluid elements of different age groups, which
provides a more uniform residence time distribution and more
uniform temperature distribution within the CFI.35 The CFI
shows enhanced mixing performance without any moving parts
and no fixed inserts.36,37 In coiled tubes and coiled flow
inverters, different trends of mixing were shown as a result of
varying Reynolds numbers due to the changing nature of Dean
vortices.37

Zhou and Shah38 and Naphon and Wongwises39 performed
extensive and critical reviews of theoretical and experimental
studies of flow in curved pipes. When these works are
reviewed, it is understood that there is only a limited
knowledge for non-Newtonian fluids flowing through coils,
in particular on the effects of the viscoelasticity of the fluid.
Results from studies show that the non-Newtonian fluid can
itself also generate a secondary flow, which is in the same plane
as the secondary flow due to the centrifugal force.40−43 Saxena
et al.44 studied the residence time distribution (RTD) of non-
Newtonian fluid flow in helical coils. Other researchers25,45

experimentally studied the dispersion of polymer solutions in
coiled tubes. However, only experimental studies have been
performed for non-Newtonian fluid flow in coiled geometries.
The resistance to flow through curved tubes, i.e., the

pressure drop, can be quantified by the friction factor. The
friction factor for a fluid, Newtonian or non-Newtonian,
flowing through a helical coil is larger than that for the same
fluid flowing through a straight tube under the same
conditions.35 Several other studies37 reported the flow
behavior of Newtonian fluids in coiled tubes. Mridha and
Nigam36 studied the CFI as an inline mixer for Newtonian
fluids. The characteristics of non-Newtonian fluids in CFIs
have not been investigated in detail. Agrawal et al.46−48

presented a series of papers on power-law fluids in a circular
curved tubes under laminar flow conditions. Singh et al.35

studied a power law fluid in a CFI and limited the discussion to
pressure drop and friction factors. Mandal et al.49 studied
numerically polystyrene synthesis in a coiled flow inverter.
However, no study on the mixing characteristics of viscoelastic
fluid flow has been reported to date. Therefore, in this
computational study, we investigate the flow phenomena and
quantify the efficiency of mixing of viscoelastic fluids in a CFI.
An analytical approach to quantify mixing from the fluid
velocity fields is presented. Simulations were performed using
foam-extend. Details on simulation settings are given in
the Simulation Settings sections, and the approach to quantify
mixing is given in the Post-Processing: Quantification of
Mixing section. First, a mesh sensitivity study is performed for
the CFI and helix geometry. Then, a parametric study for the
CFI is presented at different flow conditions. The pressure
drop, friction factor, and mixing properties are compared for
CFI’s for different curvature ratios. A comparison between a
CFI and helical geometry for a curvature ratio of 10 is
presented. The effects of the sequential bends on mixing in a
CFI are compared. We end with our conclusions.

■ COMPUTATIONAL FLUID DYNAMICS

We consider incompressible and isothermal flow of a shear-
thinning polymeric fluid. In the following, we will describe the
governing equations for the fluid and the simulation settings.

Governing Equations. We solve the momentum and
continuity eqs 1a and 1c, where the fluid stress is described by
the FENE-P constitutive model50 for a Newtonian solvent and
single polymeric solute.51 This gives rise the usual problem of
finding the velocity field u(t, x) ∈ [0, T] × Ω, pressure field
p(t, x) ∈ (0, T) × Ω, and positive-definite polymeric stress
τp(t, x) ∈ [0, T) × Ω such that

pu u u u fdiv grad divt s pτρ η∂ + ⊗ − Δ = − + +
(1a)

z a D2p F p pτ τλ η+ =
∇

(1b)

udiv 0= (1c)

where

z
a tr

1
3

2

F

p
τ

= +
+ λ

η

for some shorthand parameter a ≔ (1 − 3/l2)−1 and the
deformation rate tensor D ≔ 1/2(grad u + grad uT) on an
open, bounded domain Ω ⊂ R3 with a Lipschitz-continuous
boundary δΩ.52 Here p is the hydrostatic pressure; ρ, the
volumetrically averaged density, f ∈ [0, T] × Ω, a forcing term;
ηs, the viscosity of the Newtonian solvent; τp, the deviatoric
stress tensor of the polymeric solute, which is modeled as
having a single relaxation mode with relaxation time λF and
zero-shear viscosity ηp; and l2, the finite molecular extensibility

parameter. ∂t denotes the time derivative; Δ, the Laplacian; °
∇
,

the upper-convected time derivative, i.e.

u u u( grad) (grad ) gradp t p p p p
Tτ τ τ τ τ≔ ∂ + · − · − ·

∇

and tr○, the tensor trace operator.
In this study, eq 1 is solved with the open-source

viscoelasticFluidFoam solver,53 which abstracts
away implementational details in a mathematically intuitive
way. By virtue of the DEVSS (Discrete Elastic Viscous Stress
Splitting),54 eq 1a is rewritten to the form

p

u u u u

f u

div ( )

grad div

t s

pτ

ρ η κ

κ

∂ + ⊗ − + Δ

= − + + − Δ

for a calibration constant κ ∈ R, such that the κΔu term
prevents the unbounded exponential growth of the stress
tensor components and thereby a loss of positive definite-
ness.53,55,56 Due to the imposed requirement of incompressi-
bility, there is no variation in density to link to pressure, and
the computation of eq 1a is decoupled using a hybrid
segregated solution algorithm based on the SIMPLE (Semi-
implicit Method for Pressure Linked Equations)57 and PISO
(Pressure-Implicit with Splitting of Operators)58 algorithms.
Multiple iterations can be performed per time step to increase
solution accuracy.53,59 The arising discretization is imple-
mented verbatim using the mathematical operator abstractions
of foam-extend 4.x used in the viscoelastic-
FluidFoam.c solver, barring some efficiency optimiza-
tions.60

The convective terms and time derivatives were discretized
with a first-order upwind interpolation scheme and the Euler
method, respectively. The Poisson pressure equation was
solved using the generalized Geometric/Algebraic Multi-Grid
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solver (GAMG), and the velocity and stress were solved using
the BiCGstab solver with an Incomplete Lower−Upper (ILU)
preconditioner. The absolute precision was set to 10−6 for all
three solvers.
Simulation Settings. A sketch of the CFI considered in

this study is shown in Figure 1, where d is the inner tube
diameter and H is the distance between two turns (i.e., the
pitch). The value of d and H are fixed to 4 mm and 10 mm,
respectively. For comparison, CFIs of curvature ratios (i.e., λ≔
D/d) of 10, 15, and 20 were studied by varying the coil
diameter D to 40, 60, and 80 mm, respectively. The flow
inversion takes place after four helical coil turns in each arm
with a total of three bends. This is similar to the geometry used
by Mridha and Nigam.36 The comparison of the CFI with a
straight helical coil is performed for a curvature ratio of 10,
both having the same length and tube diameter.
We characterize the flow by the values of three

dimensionless numbers, namely the zero-shear Reynolds
number (Re), Dean number (De), and Weissenberg number
(Wi), which are defined as

Re
u d

De Re
d
D

Wi
u
d

, , andin

s p
F

inρ
η η

λ≔
+

≔ ≔
(2)

where uin is the inlet velocity; ρ, the volumetrically averaged
density; and λF, the relaxation time of the polymer. ηs and ηp
are the viscosities of the Newtonian solvent and the zero-shear
viscosity of the FENE-P polymer solute, respectively. Note that
λ is used for the curvature ratio, whereas λF indicates a fluid
property.
The definition of a Weissenberg number Wi requires a

regard for both the geometry and selection of the length scale
of interest. The Weissenberg number as defined in eq 2 reflects
the shear-dominated nature of the flow at hand61,62 and was
chosen over other definitions for its widespread adoption and
convenience; note that a Weissenberg number must be derived
from nonlinear properties if a local quantification of shear-
thinning is required.62−64

The selected parameters for the rheological properties of the
FENE-P fluid are given in Table 1. Simulations were

performed for different inlet fluid velocities and their
corresponding Re, De, and Wi numbers as given in Table 2.
The inlet velocity uin is taken to be an independent variable,
tuned to reach the desired Weissenberg number Wi, which is
swept over to include the most relevant segments of the shear-
thinning regime. The solvent viscosity ηs = 0.01, was chosen so
as to maximize the relative viscosity while conveniently
defining the total viscosity to be unity.

■ POST-PROCESSING: QUANTIFICATION OF MIXING
The mathematical characterization of the mixing performance
of fluids is subject to several counterintuitive curiosities: if, for
example, streamline dispersion patterns are analyzed using a
coefficient of variation of concentration, the resulting index is
not an adequate norm for the mixing performance of the

fluid.65 In the shear-thinning regime in particular, quantifica-
tion methods based on coefficients of variation or striation area
analysis have been reported to give misleading results.66

Indeed, as stated by Baddley:67

The applied literature is dominated by ad-hoc methods based
on evaluating a summary statistic (e.g., the average distance
from a point to its nearest neighbor) with very little statistical
theory to support them.
We therefore quantified mixing by measuring the scale of

segregation with a dispersion index based on the approach
discussed in the book by Diggle;68 assuming that perfect
mixing is equivalent to complete spatial randomness (CSR),
deviations from the Poisson distribution can be used to
quantify clustering.69 Unlike Kukukova et al.,65 which use a
dimensional dispersion index similar to the third standardized
moment, we propose the use of the Szymkiewicz−Simpson
overlap coefficient, i.e.

I
X P

X P
( )

min , ( )
0, 1X

X
m

θ μ
θ μ

=
| ∩ = |

| | | = |
∈ [ ]

(3)

to quantify distribution similarity. Here, X is the frequency
distribution of the streamline-to-gridpoint distances to the
desired precision and P, the Poisson distribution with its
parameter equal to the mean of the set X. The index eq 3
approaches unity for perfect mixedness and can therefore also
be used to fit to.
The distribution X is obtained by measuring each of the

relative distances from a regular reference grid of m points to
the n streamlines cutting through a specific cross-section. Edge
effects are therefore negligible by construction as long as the
grid is sufficiently fine. The grid size and the number of
number of data points, in our case streamlines, is a complex
interplay of, among others, distribution resolution, computa-
tional time, particle efficacy, and geometry and therefore has to
be determined empirically.69,70 We chose n = 1000 streamlines
effective to the selected computational grid size. For our cases,
we computed the mixing index for different inlet seed sizes and

Table 1. Rheological Properties of the FENE-P Fluid Used
in the Simulations

rheological properties

ρ ηs ηp λF l2

103 kg/m3 0.01 kg/m·s 0.99 kg/m·s 1 s 4

Table 2. Derived Velocity Boundary Condition uin per
Geometry

cases

dimensionless numbers

λ Wi Re De uin in m/s

coiled-flow inverter
10 12.5 0.2 0.063 0.05

25 0.4 0.126 0.1
62.5 1.0 0.316 0.25
125 2.0 0.632 0.5

15 12.5 0.2 0.052 0.05
25 0.4 0.103 0.1
62.5 1.0 0.258 0.25
125 2.0 0.516 0.5

20 12.5 0.2 0.045 0.05
25 0.4 0.089 0.1
62.5 1.0 0.224 0.25
125 2.0 0.447 0.5

helical geometry
10 12.5 0.2 0.063 0.05

25 0.4 0.126 0.1
62.5 1.0 0.316 0.25
125 2.0 0.632 0.5
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found that, while a large number of inlet seed streamlines leads
to a much more convergent mixing index at the inlet, it also
results in downstream clustering. Our choice of n = 1000
streamlines provides the expected consistence in the dispersion
index for the simpler case of the helix. Therefore, for a fair
relative comparison of the CFI and the helix under different
flow conditions, n = 1000 streamlines is chosen as the base
case for relative comparison.
The fact that Im ≔ 1 for perfectly randomly distributed

spatial data can be used to obtain a geometry and
measurement-scale independent normalization coefficient
cnorm by solving the power regression problem

c X I c X( ) arg min ( , ) 1
c

norm m norm
norm

| | ≔ * −
* (4a)

Rcsubject to norm 0∈ > (4b)

for a set of randomly distributed streamline coordinates X to
the desired precision. The dependence of the normalization
coefficient cnorm on the cardinality of X should not be thought
of as a weakness; methods that rely upon having a “statistically
significant” data set, such as the nearest neighbor method71

that tests for spatial randomness by measuring the distances in
between the streamlines themselves, give results that in our
experience cannot be trusted in flows with significant plug flow
regions as (1) insufficient resolution of the boundary layer can
lead to a disproportionately large loss of streamlines near the
pipe wall due to numerical artifacts which, in combination with
the lack of verifiability of the assumption of statistical
significance, can lead to a meaningless mixing index, and (2)
these methods do not account for the clustering of the entire
population of streamlines within a particular geometry.

■ RESULTS AND DISCUSSION
First, we discuss the mesh sensitivity study for pressure drop
convergence in the Mesh Sensitivity section. Next, we discuss
the effect of pressure drop and friction factor for different flow
conditions and for different curvature ratios. Next, mixing is
quantified in the CFI and helix for different flow conditions.
Finally, the effect of sequential bends on the mixing in the CFI
is discussed.
Mesh Sensitivity. To study the effect of the mesh size, we

performed simulations on a single coil, i.e., revolution, of a
helix in order to reduce computational time. Figure 2 shows a
cross-sectional view of the generated mesh. In order to control
the mesh, refinement was done over the length of the coil

(naxial‑extrusions) and the scaling of the number of mesh faces on
the inlet (“radial scale”), as shown in Table 3. The sensitivity of

the mesh is analyzed by the change in predicted pressure drop
across the geometry, measured at half the axial length of the
coil in order to avoid numerical inlet artifacts. Table 3 shows
that the pressure drop decreases as the mesh is refined. The
most computationally efficient time permissible parameters
that sufficiently resolve the boundary layer and are within 5%
relative pressure drop error δrel

Δp was the geometry with 1.61 ×
105 elements. Correspondingly, this coil mesh scales up to
≈1.8 × 106 elements in the full coiled-flow inverter.

Pressure Drop and Friction Factor. The pressure drop
values are given in Table 4 for different Wi numbers. For each

given CFI curvature ratio, the pressure drop increases with an
increase in Wi number. When comparing the pressure drop for
curvature ratios of 10, 15, and 20, the overall pressure drop
increases due to an increase in the length of the tube for a high
curvature ratio (because the pipe diameter d is fixed).
However, the pressure drop per unit length is nearly the
same for all CFIs at a given Wi number, as shown in Table 4.
Therefore, the curvature ratio that is calculated with regard to a
change in coil diameter has no effect on the pressure drop perFigure 2. Cross-sectional view of the computational mesh.

Table 3. Mesh Convergence and Sensitivity Study

mesh convergence

discretization parameters

radial scale naxial‑extrusions nelements Δp [Pa] δrel
Δp [-] %

800 1.54 × 106 3.003
400 7.68 × 105 3.005 0.067
250 4.80 × 105 3.096 3.098
200 3.84 × 105 3.165 5.395
150 2.90 × 105 3.344 11.34
100 1.92 × 105 3.653 21.64

0.75 250 2.61 × 105 3.108 3.495
200 2.09 × 105 3.174 5.686
150 1.57 × 105 3.290 9.543
100 1.05 × 105 3.489 16.18

0.6 250 1.61 × 105 3.112 3.623
200 1.29 × 105 3.176 5.750
150 9.67 × 104 3.281 9.252
100 6.44 × 104 3.488 16.137

0.5 250 1.20 × 105 3.119 3.859
200 9.60 × 104 3.183 5.890
150 7.20 × 104 3.287 9.467
100 4.80 × 104 3.490 16.23

0.4 250 8.50 × 104 3.129 4.178
200 6.80 × 104 3.193 6.309
150 5.10 × 104 3.297 9.790
100 3.40 × 104 3.499 16.53

Table 4. Pressure Drop Comparison in the CFI for Different
Shear Flow Conditions

λ = 10 λ = 15 λ = 20

Wi
Δp
[Pa]

ΔpL
[Pam]

Δp
[Pa]

ΔpL
[Pam]

Δp
[Pa]

ΔpL
[Pam]

12.5 32.4 17.1 48.1 17.0 63.9 17.0
25 43.6 23.1 64.3 22.7 85.5 22.8
62.5 66.2 35.0 96.6 34.1 129 34.4
125 95.4 50.8 136 48.1 178 47.5
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unit length for a given flow rate. However, other studies have
shown that the pressure per unit length is influenced by
curvature ratios when calculated with regard to a change in
tube diameter. Due to computational limitations, the effect of
curvature ratio change with regard to the tube diameter is not
considered in this study. When comparing the CFI with the
helix of same tube diameter and curvature ratio (λ ≔ 10), the
pressure drops do not show a significant difference. For a
Newtonian fluid flow, an increase of 2−7% in pressure drop in
the modified coiled geometry was reported72 when compared
with a helical coil. The absence of an increase in pressure drop
in a CFI is promising to process viscoelastic fluids without any
additional pumping costs. In the next section, we will discuss
how a significant enhancement in mixing is predicted in the
CFI compared to the helix.
Figure 3a shows the pressure drop per unit length in the CFI

on a log−log plot for varying Dean numbers, compared for
CFI curvature ratios of 10, 15, and 20. The pressure drop per
unit length increases with an increase in Dean number and
decreases with an increase in curvature ratio. It is important to
note that the pressure drop per unit length, as a function of the
Wi number, does not have any significant effect, as shown in
Table 4. Since the De number is calculated from the curvature
ratio (see eq 2), a different De number is obtained for a given
value of the Wi number. Corresponding to the pressure drop,
the friction factor is calculated from the definition of Fanning
friction factor. The friction factor represents the resistance to
flow and is the ratio of the wall shear stress per unit mass to the
kinetic energy head of the fluid.73 Figure 3b shows the friction
factor as a function of Dean number. The friction factor
decreases with an increase in Dean number. It is also observed
that the friction factor decreases with an increase in curvature
ratio. This is due to the fact that the secondary flow becomes
less effective with an increase in curvature ratio due to weaker
centrifugal force. For Non-Newtonian fluids, Singh et al.35 also
observed a decrease in friction factor with an increase in
curvature ratio. They also observed that the friction factor in a
CFI is 5 times lower in the case of non-Newtonian fluid flow
compared to that of water. The reason is the reduction in
viscosity of a shear thinning fluid, which becomes stronger at a
higher value of n (power law index). We attribute a similar
reason for the reduction in friction factor for our viscoelastic
fluid, which is also shear-thinning. For a helical coil, Pimenta

and Campos74 have found that the friction factors in non-
Newtonian fluids decrease with an increase of the shear-
thinning behavior and seem to increase when the elastic
behavior increases.

Mixing Characteristics. Mixing is an important character-
istic of coiled geometries, which is generally quantified by
introducing a tracer in the fluid. In this study, we presented an
analytic approach to the quantification of mixing. The details
to calculate the mixing index is given in the postprocessing
section. A number of points are defined at the inlet as a starting
point of streamlines, which are traced through the geometry.
The dispersion of those points by the flow can be used to
quantify the quality of mixing. The mixing index Im can be
calculated from the distribution of streamline/tracer points at
any cross-sectional plane. To test the effect of the initial
location of streamline points at the inlet, five different locations
at the inlet are tested, as shown in the top-left of Figure 4 for a
thousand streamlines. The corresponding dispersion of
streamlines is measured at the outlet cross section with the
mixing index (Im), where the bottom-left plot corresponds to

Figure 3. (a) Pressure drop per unit length as a function of Dean number. (b) Log−log plot of the friction factor as a function of the De number,
compared to CFI curvature ratios of 10, 15, and 20.

Figure 4. Representation of streamline points for chosen locations at
the inlet cross section (top row, left) and the corresponding
distributions of streamline points at the outlet. The bottom-left plot
corresponds to the center inlet point. The top-central and top-right
plots correspond to the locations of the vertical points. Simmilarly, the
bottom-central and bottom-right plots correspond to the horizontal
points, respectively.
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the center inlet point. The top-central and top-right plots
correspond to the locations of the vertical points. Similarly, the
bottom-central and bottom-right correspond to the horizontal
points, respectively.
Figure 4 shows that the location of inlet streamlines has a

significant effect on dispersion at the outlet. As the inlet point
moves toward the wall in the horizontal direction, the mixing
index decreases. A maximum of the mixing index is predicted
to occur when the inlet tracer point is chosen near the center.
The difference in mixing index when moving about the cross-
sectional plane is to be expected; the mixing is an interplay of
the centrifugal force in the horizontal direction and the velocity
profile in general. The centrifugal force on fluid elements
affects the dispersion in the horizontal direction. The
formation of Dean vortices promotes, due to their symmetric
nature, higher dispersions when the inlet point is chosen to be
near the center. Therefore, the top-right seed is located in an
area where the secondary flow velocity gradient is low and as a
consequence of that has a low Im. The center was chosen as the
inlet seed for the subsequent discussion as it is the most
neutral point throughout the parameter sweep of Weissenberg
numbers for the relevant direction.
Figure 5 shows the cross-sectional view of the dispersion

streamline points at the outlet for different Wi numbers
(different rows) and for the CFI of curvature ratios 10, 15, and
20 (different columns). For comparison, the helix with a

curvature ratio of 10 is added. For the helix, the streamline
points follow the profile of the Dean vortices. For the helix, the
distribution in streamline points is nearly similar for Wi = 25,
62.5, and 125 with an Im = 0.2. The value of the mixing index
corresponding toWi = 12.5 is a consequence of the streamlines
being dispersed more in the radial direction, moving to the
opposite vortices depicted in Figure 5. This is attributed to the
residence time being higher at lower Wi numbers. Therefore,
the residence time has a stronger effect on the mixing index
compared to vorticity in helix geometries. Ranade and
Ulbrecht22 reported that in the case of non-Newtonian fluids,
the dependence of the apparent viscosity on shear rate changes
the velocity distribution over the tube cross-section, which in
turn affects the residence time distribution and hence the
mixing. Mishra and Gupta21 observed that, for the case of
Newtonian fluid flows, a high Dean number is necessary for
mixing to take place in helical coils. Our simulations for the
helical geometry show that flow rates affect viscoelastic fluid
mixing less than Newtonian fluid mixing. For the case of the
CFI, the flow inversion promotes better mixing of viscoelastic
fluids, as shown in Figure 5. At a low Wi of 12.5 and a
curvature ratio of 10, the mixing index is lower for the helix
compared to the CFI. This shows that even at a low Wi
number the inversion of flow in a viscoelastic fluid has a
significant effect on the radial dispersion. A detailed discussion
of the CFI at low Wi is given in the next subsection. As the

Figure 5. Distribution of streamline points at the outlet of the helix and CFI geometries. Rows represent flow at different Wi numbers. The
columns represent different geometries at different curvature ratios λ. The value of Im represents the corresponding mixing index; a value closer to 1
indicates better mixing (i.e., the distribution becomes closer to complete spatial randomness).
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Figure 6. Effect of sequential bends in a CFI for different curvature ratios for (a) Wi = 12.5 and (b) Wi = 125. The secondary flow vortices are
shown in color, and the points indicate the distribution of streamlines. Axis dimensions are in m and vorticity (colormap) in rot/s.
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Weissenberg number increases, the mixing increases for the
CFIs of all curvature ratios. In conclusion, Figure 5 clearly
shows that the distribution of streamline points is more
uniform, and a better mixing is achieved in the CFI as the flow
rate of viscoelastic fluid is increased.
When comparing the CFI geometries with different

curvature ratio, the mixing index increases with curvatio
ratio. A significant enhancement in mixing is predicted when
moving to a higher curvature ratio of 15 from a ratio of 10 at a
high Wi number. When comparing curvature ratios of 15 and
20 at a given Wi number, nearly the same mixing index is
predicted. Kumar et al.30 discussed the effect of the lower coil
curvature ratio resulting in improved mixing due to the
increased centrifugal effects. In principle, for a smaller
curvature ratio, the intensity of the secondary flow is very
high (due to the higher centrifugal force), in comparison to
that for a higher curvature ratio. The high intensity of the
secondary flows promotes better mixing. However, the increase
in curvature ratio, i.e., by increasing the coil diameter, requires
a longer tube length for the same number of turns. The
effective increase in length of tube also allows for a higher
residence time, resulting in better mixing. Therefore, mixing is
a function of both vorticity as well as residence time. The
increase in curvature ratio by virtue of a change in tube
diameter can be chosen as such to provide the same equivalent
tube length but leads to a different radial dispersion and is not
considered in this study. A detailed discussion on curvature
ratios is presented in the following subsection, where we
discuss the combined effect of sequential bends.
Effects of Sequential Bends. Figure 6 shows the effect of

sequential bends in the CFI for Wi numbers 12.5 and 125 for
curvature ratios of 10, 15, and 20. In these subfigures, the
intersection of the streamlines with the outlet is shown along
with the secondary flow vortex intensity on a color scale. It is
observed that the magnitude of the secondary flow vortices
decreases with an increase in curvature ratio for a given Wi
number. The high magnitude of vortices at a small curvature
ratio shows that the intensity of the secondary flow is very high
due to a high centrifugal force on the fluid element. The same

magnitude of flow vortices at each bend shows that the
intensity of secondary flow is nearly the same; however an
inversion of flow is taking place at each bend. The circular
patterns are flipped at each bend which changes the direction
of the vortices. The location of the vortices is the same for all
curvature ratios, irrespective of Wi number. For a high Wi of
125 the vortices are symmetric and more pronounced. The 90°
flipping of vortices due to flow inversion in the CFI is evident
at high Weissenberg numbers for all the curvature ratios.
When comparing the distribution of streamline points in the

cross-section at each bend, the distribution perfectly follows
the vortices at Wi = 125, while for a lower Weissenberg
number of Wi = 12.5 the points are clustered for a curvature
ratio of 10, and a more wide distribution of streamline points
occurs for curvature ratios of 15 and 20. Interestingly, for all
curvature ratios and Wi numbers studied, the distribution of
streamlines does not show a significant difference at each bend.
This shows that a change in curvature ratio with regard to a
change in coil diameter does not have a significant impact on
radial mixing at a low Wi number of 12.5 as shown in Figure
6a. In Figure 6b, the distribution of points follows the contours
of the vortices at the first bend, and for the second and third
bends the streamline points distribute uniformly over the
vortices. The most significant enhancement of mixing in the
CFI takes place when the flow is inverted for the second time
at bend 2 and, subsequently, at bend 3. From Figure 6, it is
clear that coiled-flow inverter bends have a significant effect on
the mixing of viscoelastic fluids. When comparing the helix and
the CFI for a curvature ratio of 10 and Wi of 125 in Figure 7,
the CFI shows a symmetric distribution of streamline points at
the first bend and uniform distribution at the second and third
bends. However, the helix in Figure 7 shows a distribution of
streamline points at vortices throughout. The Im of
approximately 0.2 at different tube lenghts (i.e., sections)
shows that no axial and radial mixing is taking place. However,
for the CFI, even a single bend is effective in increasing radial
mixing in a viscoelastic fluid. Other studies on Newtonian
fluids36 show that the mixing performance of a CFI with only
one or two flow inversions is very close to the simple, straight

Figure 7. Comparison between the CFI bends and equivalent helix lengths for Wi ≔ 125 showing the effect of CFI bends on the vorticity and
streamline dispersion. Axis dimensions are in m and vorticity (colormap) in rot/s.
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helical pipe, and several flow inversions are required to achieve
a considerable enhancement of the mixing performance of a
CFI over helical pipes. This again confirms that CFIs may be
particularly useful for the enhancement of mixing of non-
Newtonian fluids.

■ CONCLUSIONS
In this work, the flow and mixing characteristics of a
viscoelastic fluid in a helical coil and CFI are investigated
with the help of CFD simulations using the foam-extend
solver. An analytical solution to quantify mixing using the
streamline point is presented. Simulations were performed for
CFIs of curvature ratios 10, 15, and 20 for flow rates
corresponding to Wi numbers 12.5, 25, 62.5, and 125. A
comparison between the CFI and helix having a curvature ratio
of 10 is reported. The pressure drop per unit length increases
with an increase in Wi number and follows a power law
relation. The pressure drop per unit length is the same for all
curvature ratios for a given Wi number. However, the pressure
drop per unit length increases with an increase in Dean
number. Similarly, the friction factor decreases with increase in
Dean number and with an increase in curvature ratios of CFI.
When comparing mixing in the CFI and helix of curvature ratio
10, the CFI shows better mixing for a given flow rate. The
chosen curvature ratios of 10, 15, and 20 do not have a
significant effect on mixing characteristics in the CFI. The
bends in a CFI have a significant impact on mixing, where
mixing of a viscoelastic fluid is enhanced significantly even at
the first bend. The mixing is enhanced at each bend, so the
mixing efficiency of a CFI increases with an increase in number
of bends. In other mixing devices, high shear flow rates are
required for proper mixing of viscoelastic fluids. However, at a
high shear flow, fluids with very long molecular chains can be
damaged. This work shows that a CFI can lead to improved
mixing of viscoelastic fluids even for relatively low shear rates.
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