
 
 

Delft University of Technology

Multiple Free Energy Calculations from Single State Point Continuous Fractional
Component Monte Carlo Simulation Using Umbrella Sampling

Rahbari, Ahmadreza; Hens, Remco; Moultos, Othonas A.; Dubbeldam, David; Vlugt, Thijs J.H.

DOI
10.1021/acs.jctc.9b01097
Publication date
2020
Document Version
Final published version
Published in
Journal of chemical theory and computation

Citation (APA)
Rahbari, A., Hens, R., Moultos, O. A., Dubbeldam, D., & Vlugt, T. J. H. (2020). Multiple Free Energy
Calculations from Single State Point Continuous Fractional Component Monte Carlo Simulation Using
Umbrella Sampling. Journal of chemical theory and computation, 16(3), 1757-1767.
https://doi.org/10.1021/acs.jctc.9b01097
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1021/acs.jctc.9b01097
https://doi.org/10.1021/acs.jctc.9b01097


Multiple Free Energy Calculations from Single State Point
Continuous Fractional Component Monte Carlo Simulation Using
Umbrella Sampling
Ahmadreza Rahbari, Remco Hens, Othonas A. Moultos, David Dubbeldam, and Thijs J. H. Vlugt*

Cite This: J. Chem. Theory Comput. 2020, 16, 1757−1767 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We introduce an alternative method to perform free energy calculations
for mixtures at multiple temperatures and pressures from a single simulation, by
combining umbrella sampling and the continuous fractional component Monte Carlo
method. One can perform a simulation of a mixture at a certain pressure and
temperature and accurately compute the chemical potential at other pressures and
temperatures close to the simulation conditions. This method has the following
advantages: (1) Accurate estimates of the chemical potential as a function of pressure
and temperature are obtained from a single state simulation without additional
postprocessing. This can potentially reduce the number of simulations of a system for free energy calculations for a specific
temperature and/or pressure range. (2) Partial molar volumes and enthalpies are obtained directly from the estimated chemical
potentials. We tested our method for a Lennard-Jones system, aqueous mixtures of methanol at T = 298 K and P = 1 bar, and a
mixture of ammonia, nitrogen, and hydrogen at T = 573 K and P = 800 bar. For pure methanol (N = 410 molecules), we observed
that the estimated chemical potentials from umbrella sampling are in excellent agreement with the reference values obtained from
independent simulations, for ΔT = ±15 K and ΔP = 100 bar (with respect to the simulated system). For larger systems, this range
becomes smaller because the relative fluctuations of energy and volume become smaller. Without sufficient overlap, the performance
of the method will become poor especially for nonlinear variations of the chemical potential.

1. INTRODUCTION

Knowledge of chemical potentials is essential for under-
standing and studying phase behavior of multicomponent
systems.1,2 In Monte Carlo (MC) simulations, chemical
potentials cannot be easily computed from a single simulation
because chemical potentials cannot be expressed directly as a
function of phase space variables (coordinates and momen-
ta).3−6 One of the most straightforward and commonly used
methods to compute the chemical potentials is Widom’s test
particle insertion (WTPI) method.4,7,8 In this method, test
particles are inserted at randomly selected positions inside the
simulation box. The chemical potential is computed by
sampling the interaction energies of the test particles with
the other molecules in the system. In the NPT ensemble, the
chemical potential of a certain component in a mixture is
obtained from
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in which ⟨···⟩ indicates an ensemble average, A is the
component type, β = (kBT)

−1, and kB is the Boltzmann
constant. V and T are the volume and temperature of the
system, respectively. ΔUA+ is the interaction energy of the test
molecule of type A with the rest of the molecules. The partial
molar volume and enthalpy of component type A can be

written as derivatives of μA,
9 namely, h̅ = (∂(βμ)/∂β)P and υ̅ =

(∂μ/∂P)T.
9,10 In their pioneering work in the 80s of the past

century, Frenkel et al. developed a method based on the WTPI
method to compute partial molar properties.11,12 These
properties cannot be directly written as averages of phase
space variables. Frenkel et al. showed that by random
insertions of a test particle, partial molar properties (in the
NPT ensemble) are obtained from11
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in which N denotes the number of molecules in the system and
s denotes the scaled coordinates. In the case of an ideal gas, h̅A

ex

in eq 2a becomes zero because there are no intermolecular
interaction between the molecules. The derivation of eqs 2a
and 2b is shown in detail in our earlier work.10 Partial molar
properties are important for studying thermodynamic proper-
ties of multicomponent mixtures. Partial molar enthalpies also
play a role in nonequilibrium thermodynamics, for example, in
studying the heat flux in mixtures.11 Recently, Josephson,
Siepmann, and co-workers introduced a method to compute
partial molar properties in the NPT version of the Gibbs
ensemble using a method based on postprocessing fluctuations
in energy, volume, and the number of molecules of each
component.13 It is also possible to compute partial molar
properties from Kirkwood−Buff integrals.14−20 In our recent
work, we have outlined the importance of computing partial
molar volumes υ̅ and partial molar enthalpies h̅ and provided
an overview of different methods developed for computing
partial molar properties in molecular simulation studies.10

Similar to eq 1, efficient sampling of partial molar properties
using eqs 2a and 2b relies on the formation of cavities in the
system, sufficiently large for a test particle. The probability of
formation of such cavities is directly related to the density of
the system. The limitations of insertion/deletion type methods
are well-known for dense systems and/or systems with
complex molecules.4,10,21−26 At high density, test particle
insertions result in overlaps with existing molecules in the
system, leading to a very large potential energy ΔUA+, that is, a
very small Boltzmann factor as shown in eqs 1, 2a and 2b.
Because of increased computational power since the early
1950s,27−29 more complex systems have been investigated in
molecular simulation studies of phase equilibria.30−33 The
inherent limitations of the WTPI method in free energy
calculations in complex systems have led to the development of
other simulation methods.7,8,34

In the previous century, alternative methods were intro-
duced to circumvent the sampling problems of the WTPI
method, such as the overlapping distribution method (ODM)
by Bennett35 or combining particle insertion and deletion
methods by Shing and Gubbins.36−38 The ODM is based on
the free energy difference between two systems. This
computation is not efficient if the systems significantly differ
in configuration space.7,25 Other Widom-type methods such as
the Theodorou deletion method22 and Widom’s test particle
deletion method21 suffer from the same sampling difficulties
associated with the WTPI method for complex and dense
systems.39 Lyubartsev et al. developed expanded ensembles for
accurate free energy calculations of complex systems.3 This
method takes advantage of gradual insertion/deletion of
molecules which allows the system to gradually adjust to the
new configuration in which a new molecule is added.40−46

Inspired by this, Shi and Maginn developed the continuous
fractional component MC (CFCMC) method to facilitate
molecule exchanges in open ensemble simulation of dense
phases.47 In CFCMC simulations, a fractional molecule is
added to the ensemble. During the simulation, the interactions
of this molecule are adjusted with a coupling parameter (λ).
The fractional molecule acts as ideal gas if λ = 0 and interacts
fully with other molecules if λ = 1. The application of the
CFCMC method for systems ranging from Lennard-Jones (LJ)
particles to larger molecules such as hydrocarbons is well-
established, see refs 48 and 49. Although the method by Shi
and Maginn facilitates molecule exchanges in dense phases,

postprocessing is required to obtain the chemical potentials.
Recently, Vlugt and co-workers combined the CFCMC
method with free energy calculations in ref 2. In this method
(hereafter referred to as the CFCMC method), the chemical
potential can be directly computed by sampling the probability
distribution p(λ). Consider a multicomponent mixture of
mono-atomic components, expanded with a fractional
molecule. In the NPT ensemble, the ensemble partition
function can be written as10,50
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in which Ufrac
A is the interaction energy of the fractional

molecule. Depending on the value of λ, Ufrac
A can vary between

“zero” and “fully scaled”.1,1,47,51 The chemical potential of
component A in CFCNPT equals50
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in which ρA is the number density of A. To make the logarithm
in eq 4 dimensionless, an arbitrary reference density ρ0 is
selected. The term μ0 contains intramolecular contributions to
the chemical potential. p(λA = 1) and p(λA = 0) are the
probabilities of λA when λA = 1 and λA = 0, respectively. The
chemical potential of eq 4 is split into an ideal gas part and
excess part. It is shown in ref 10 that the computed chemical
potentials obtained using eqs 1 and 4 are the same by
definition. In the CFCNPT ensemble, the partial molar excess
enthalpy and partial molar volume are equal10
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in which ⟨H⟩ and ⟨V⟩ are ensemble averages of the total
enthalpy and total volume computed at λA = 1 and ⟨H/V⟩ and
⟨1/V⟩ are ensemble averages computed at λA = 0. In ref 10, we
showed that eqs 2a, 2b, 5a, and 5b are identical and yield
identical results. Because the intramolecular contribution is not
included in QCFCNPT of eq 3, the excess partial molar enthalpy
computed using eq 5a is always taken with respect to the ideal
gas. Because the WTPI method suffers at high densities, the
application of eqs 1, 2a, and 2b is rather limited, in sharp
contrast to eqs 4, 5a, and 5b. In our recent publications, the
advantages of using the CFCMC method for free energy
calculations are shown for various systems.1,2,10,52−55 To
further use the CFCMC method, we introduce a formulation,
based on the idea of umbrella sampling,56 allowing one to
compute the chemical potentials (eq 4) for multiple state
points from a single state point simulation.
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Umbrella sampling is a well-known method developed by
Torrie and Valleau56 from which the free energy difference
between the system of interest and a reference system can be
obtained.7,34,56 By introducing a biasing function r( )N , the
ensemble average ⟨A⟩ in the canonical ensemble is calculated
from an ensemble where the configuration space is sampled
proportional to r U r r( ) exp ( ) ( )N N NβΠ ∝ [− + ]

A
A r

r
exp ( )

exp ( )

N

N⟨ ⟩ =
⟨ [− ]⟩
⟨ [− ]⟩

Π

Π (6)

in which ⟨···⟩Π denotes an ensemble average in the ensemble
Π. The biasing function r( )N is only a function of the
configuration space. The derivation is provided in ref 34. In
this paper, we show that by combining eq 6 with CFCMC, the
chemical potentials can be accurately estimated for an
appreciable temperature and pressure range from a single
state simulation in the CFCNPT ensemble. To estimate the
chemical potential at a temperature or pressure different from
that of the simulation, sufficient overlap is required between
the configuration space of the two systems.7,34 This depends
also on the system size. The relative density and energy
fluctuations become smaller with the increase in system size,
which may reduce the overlap between the configuration
spaces of two systems. Therefore, we investigated the
limitations of combining umbrella sampling with the
CFCMC method when estimating chemical potentials for
various temperature and pressure intervals. The combination
of umbrella sampling with the CFCMC method offers the
following advantages: (1) Accurate estimates of the chemical
potential as a function of pressure or temperature are
computed from a single simulation. (2) Partial molar
properties are obtained directly from a single simulation. By
definition, partial molar properties can be obtained by
numerically evaluating the expressions h̅ = (∂(βμ)/∂β)P and
υ̅ = (∂μ/∂P)T, using the estimated chemical potentials at
different pressures and temperatures.9,10 (3) Partial molar
enthalpies obtained from umbrella sampling can be used as an
independent check for the CFCMC method in eqs 5a and 5b,
both for programming bugs or an independent check whether
the phase space is sufficiently sampled.
In Section 2, the combination of umbrella sampling and free

energy calculations in CFCMC simulations is explained. In
Section 3, we provide a detailed overview of the systems
considered in our simulations. In Section 4, our simulation
results are presented. In this section, the chemical potentials
for a binary LJ color mixture are estimated at multiple
temperatures and pressures by performing single state
simulations in the CFCNPT ensemble. The results from
umbrella sampling are in excellent agreement with the ones
obtained from independent simulations. In addition, partial
molar properties are estimated by numerically evaluating h̅ =
(∂(βμ)/∂β)P and υ̅ = (∂μ/∂P)T, based on the results from
umbrella sampling. The computed partial molar properties for
the LJ mixture are in excellent agreement with the results from
the CFCMC method (eqs 5a and 5b) and the WTPI method
(eqs 2a and 2b). As an example of a molecular system, we
applied our method to different mixtures of water and
methanol at standard conditions (T = 298 K and P = 1 bar)
and compared the results with those obtained from
independent CFCNPT simulations. Accurate estimates of the
chemical potential of water and methanol are obtained using
umbrella sampling for a temperature difference ΔT = ±10 K,

for N = 470 molecules. Excellent agreement is observed
between partial molar properties of water and methanol
obtained from umbrella sampling and those obtained using eqs
5a and 5b. We also applied our method to a mixture of
ammonia, nitrogen, and hydrogen at T = 573 K and P = 800
bar at chemical equilibrium and compared the partial molar
properties obtained from our method to those obtained from
the CFCMC method. The limitations of the method are tested
by decreasing overlap in configuration space for pure
methanol. In Section 5, our conclusions are presented.

2. THEORY
Similar to eq 6, we combine umbrella sampling with the
CFCMC method to estimate the probability distribution p(λ)
at (T, P★) while performing a simulation at (T★, P★) in the
CFCNPT ensemble. This distribution is calculated using

p c H( ) ( )exp ( )λ δ λ λ β β| = ·⟨ ′ − [ * − ]⟩β β★ (7)

in which H = U + PV, U is the internal energy of the system,
and c is a normalization constant. In the ensemble, at β*, the
value of the scaling parameter equals λ′. In the Supporting
Information, one can find the derivation of eq 7. To estimate
the excess part of the chemical potential in eq 4 at β, the values
p(λ = 1)|β and p(λ = 0)|β are obtained using eq 7. Similar to eq
7, it can be shown that the number density can be calculated at
T* using

H
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in which ρN|β is the number density at β. The number of
fractional molecules is not included in computing number
densities.1 If the number of fractional molecules is much
smaller compared to that of the whole molecules (less than
1%), Boltzmann averages are not affected.50 By combining eqs
4, 7, and 8, the chemical potential at (T, P★) is estimated while
performing a single simulation at (T★, P★). In a similar
manner, the distribution p(λ) at (T★, P) can be estimated
while performing a simulation at (T★, P★), keeping the
number of molecules constant. This distribution is obtained by
introducing a bias to the ensemble average

p c V P P( ) ( )exp ( )P Pλ δ λ λ β| = ·⟨ ′ − [ − ]⟩★
★ (9)

The derivation of eq 9 can be found in the Supporting
Information. By computing the values p(λ = 0)|P and p(λ = 1)|P
based on eq 9, one can obtain the excess chemical potential at
pressure P while performing a simulation at pressure P★. For
the ideal part of the chemical potential in eq 4, the number
density is estimated at P using umbrella sampling

V P P

V P P
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exp ( )N P
N P

P
ρ
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⟨ [ * − ]⟩
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By combining eqs 4, 9, and 10, the chemical potential at
(T★, P) is obtained while performing a single state simulation
at (T★, P★). The derivation of eq 10 is very similar to the
derivation of eq 9.

3. SIMULATION DETAILS
Besides thermalization trial moves in the CFCNPT ensemble,
three additional sorts of trial moves are defined to facilitate
gradual insertions/deletions of the fractional molecule: (1)
changes in λ: randomly increasing or decreasing λ while the
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positions and orientations of all molecules are fixed. For the
fractional molecule, the LJ interactions are scaled using57,58
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It is possible to choose different alchemical pathways for uLJ.
A detailed study of different alchemical pathways can be found
in refs 57−59. For details on scaling, how the electrostatic
interactions are scaled, the reader is referred to refs 1, 52, 55.
(2) Identity changes: an attempt is made to transform the
fractional molecule into a whole molecule and simultaneously
transform a randomly selected whole molecule into a fractional
molecule. (3) Random re-insertions: the fractional molecule is
re-inserted at a randomly selected position. Except for the
fractional molecule, orientations and positions of other
molecules do not change. The acceptance rules for these trial
moves are derived based on metropolis importance sam-
pling.1,27 The trial move (2) has a high acceptance probability
at high values of λ, and the trial move (3) has a high
acceptance probability at low values of λ. Therefore, it is
efficient to combine trial moves (2) and (3) and use a single
hybrid trial move.1,10 It is shown in ref 10 that combining the
last two trial moves leads to higher acceptance ratios of trial
moves (2) and (3). To flatten the λ space, prior to performing
production runs, a weight function W(λ) was computed using
the Wang−Landau (WL) algorithm.60,61

To demonstrate the feasibility of our method, MC
simulations were carried out to compute the chemical
potentials of an LJ color mixture (50−50%) in the CFCNPT
ensemble, containing N = 200 molecules. All simulations were
carried out at T* = 2 and pressures between P* = 0.1 and P* =
8 (the symbol * denotes the reduced units). For the LJ system,
eqs 7 and 8 were used to compute the chemical potential at
temperatures between T* = 1.82 and T* = 2.22 and a pressure
of P* = 6 from a single simulation at (T* = 2, P* = 6).
Similarly, eqs 9 and 10 were used to compute the chemical
potentials at T* = 2 and pressures between P* = 5.95 and P* =
6.05 in the same simulation. To compute the reference values
for the chemical potentials, independent simulations were
performed for each temperature and pressure. The estimated
chemical potentials obtained from umbrella sampling were
used to numerically evaluate the partial molar properties using
the expressions h̅ = (∂(βμ)/∂β)P and υ̅ = (∂μ/∂P)T. As a
reference, the partial molar properties were also computed
using the WTPI method using eqs 2a and 2b and the CFCMC
method using eqs 5a and 5b. All LJ interactions were truncated
and shifted at 2.5σ, and the thermal wavelength Λ was set to
unity. For every simulation of the LJ system in the CFCNPT
ensemble, 105 cycles were used for equilibration and 107 cycles
were used for production. The number of trial moves in each
cycle is equal to the total number of molecules in the system.
The following probabilities were set for selecting trial moves:
33% translations, 33% λ changes, 33% hybrid trial moves, and
1% volume changes.

To test this method for a more complex system, aqueous
methanol mixtures with mole fractions of methanol between
xMeOH = 0.2 and xMeOH = 0.8 were simulated in the CFCNPT
ensemble. All MC simulations were performed using our in-
house code. We verified that the same results were obtained for
various systems1,52 when the RASPA software package62,63 was
used. For water, the TIP4P/200564 and for methanol, the
TraPPE65 force fields were used. Sites with a partial charge but
no LJ parameters are protected by adding an LJ site with ϵ/kB
= 1 K and σ = 1 Å. A comparison between different
combinations of force fields for predicting thermodynamic
properties of aqueous methanol mixtures is provided in our
earlier work.55 In all simulations of water−methanol mixtures,
a fractional molecule of methanol and a fractional molecule of
water were present. All molecules were modeled as rigid
objects, and pairwise interaction potentials consisted only of LJ
and Coulomb potentials. A cutoff radius of 12 Å for both LJ
and Coulomb potentials was used. Lorentz−Berthelot was
used for cross interactions between methanol and water
molecules, and analytic tail corrections were applied.7,8 The
damped shifted force method66 is used to handle the
electrostatic interactions of water and methanol systems. For
details on using these cutoff-based methods, the reader is
referred to refs 52, 55, 66−69. The interactions of the
fractional molecule are scaled in the following way: starting
from λ = 1, the electrostatic interactions are scaled to zero and
thereafter the LJ interactions are scaled to zero. This
circumvents configurations with charge overlaps between the
fractional molecule and other molecules leading to numerical
instabilities in the simulation.57−59,70−72 Chemical potentials of
water and methanol between T = 288 K and T = 308 K were
estimated by performing umbrella sampling from a single
simulation of the water−methanol mixture at T = 298 K and P
= 1 bar. As a reference, the chemical potentials of water and
methanol were computed independently at every pressure and
temperature. Subsequently, partial molar properties of water
and methanol were obtained from the estimated chemical
potentials using umbrella sampling. The results were compared
to the partial molar properties obtained using eqs 5a and 5b.10

For every simulation of the water−methanol system in the
CFCNPT ensemble, 105 cycles were used for equilibration and
6 × 106 cycles for production. The following probabilities were
set for selecting trial moves: 35% translations, 30% rotations,
17% λ changes, 17% hybrid trial moves, and 1% volume
changes. The WL algorithm60,61 was used independently for
water and methanol to flatten the probability of λ.60,61 In ref
50, we showed that the correlation between scaling parameters
of different fractional molecules is weak and independent of
the weight function. It is therefore computationally advanta-
geous to separate the multidimensional weight function into a
series of one dimensional weight functions:W(λ1, λ2) ≈ W(λ1)
+ W(λ2). This is due to the fact that filling one-dimensional
histograms is more efficient than filling two separate multi-
dimensional histograms.50 To investigate the limitations of
umbrella sampling in CFCMC simulations, umbrella sampling
was applied to estimate the chemical potentials of pure
methanol for a wide pressure and temperature range. The
results were compared to the results obtained from
independent simulations of pure methanol in the CFCNPT
ensemble, at every temperature and pressure.
To compute partial molar properties of ammonia, nitrogen,

and hydrogen in their mixture at T = 573 K and P = 800 bar,
simulations were performed in the CFCNPT ensemble.10
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Similar to our previous work, separate simulations were
performed in which only a single fractional molecule was
present. This was repeated for the three components, leading
to three independent simulations. Force field and simulation
details are provided in ref 10. The starting mixture
composition (NNH3

= 407, NN2
= 7, and NH2

= 20) was
obtained from simulations of the Haber−Bosch process in the
reaction ensemble as described in ref 1.

4. RESULTS AND DISCUSSION
A simulation in the CFCNPT ensemble was performed for an
LJ system at T* = 2 and P* = 6. Using umbrella sampling, the
chemical potentials were computed for temperatures ranging
from T* = 1.82 to T* = 2.22 and pressures ranging from P* =
5.95 to P* = 6.05. The values of the chemical potential were
compared to those obtained from independent CFCNPT
simulations for all temperatures and pressures. The results are
shown in Table 1. Excellent agreement is observed between the

computed chemical potentials obtained using umbrella
sampling from a single simulation at (T* = 2, P* = 6) and
the chemical potentials calculated from independent simu-

lations at P* = 6 and temperatures between T* = 1.82 and T*
= 2.22. In this work, the error bars (uncertainties) are obtained
by computing the standard deviation of the mean from five
independent simulations. It should be noted that the
uncertainty of the computed chemical potential associated
with umbrella sampling increases with the increase in the
temperature difference |ΔT*|. Because the overlap between the
configuration spaces decreases with the increase in temperature
or pressure difference, it impairs the sampling. The overlap
between the configuration spaces also decreases with the
increase in system size, as the relative fluctuations of energy
and volume become smaller for larger systems. In Table 1b, the
estimated chemical potentials from umbrella sampling from a
single simulation at (T* = 2, P* = 6) are compared to the
chemical potentials obtained from independent simulations at
T* = 2 and pressures between P* = 5.95 and P* = 6.05.
Excellent agreement is observed between the computed
chemical potentials estimated using umbrella sampling and
the results obtained from independent simulations for the
entire pressure range. From the results presented in Table 1, it
can be observed that accurate estimates of the chemical
potentials are obtained from a single simulation combining the
CFCMC method with umbrella sampling. Although the
statistical uncertainties of the estimated chemical potentials
obtained from umbrella sampling are larger compared to those
obtained from independent simulations, the differences in
uncertainties are not significant.
The chemical potentials obtained from umbrella sampling

are used to compute the partial molar properties for the LJ
mixture, by numerically differentiating (∂(βμ)/∂β)P and (∂μ/
∂P)T. For instance, the chemical potentials shown in Table 1
are used to plot βμ−β and μ−P for T* = 2 and P* = 6, as
shown in Figure 1. The data points connected with a line as
shown in Figure 1 indicate that the data points were obtained
from a single simulation combining CFCMC and umbrella
sampling, and the individual data points were obtained from
independent CFCNPT simulations. Calculating the slopes as
shown in Figure 1, at T* = 2 and P* = 6, leads to the values of
the partial molar volumes and enthalpies. A central difference
scheme with high order approximation h( )4 was used to
compute the partial molar enthalpies as shown in Figure 1a
and partial molar volumes as shown in Figure 1b. The partial
molar excess enthalpy was computed by subtracting the ideal
gas contribution from the total partial molar enthalpy. It is
shown in ref 10 that the ideal part of the partial molar enthalpy

Table 1. Chemical Potentials for a Binary (50−50%) LJ
Mixture Obtained from Umbrella Sampling (Eqs 7 and 9)
and Independent Simulations in the CFCNPT Ensemble
(Eq 4)a

aTo obtain estimates of the chemical potentials at (a) different
temperatures and (b) pressures, umbrella sampling is performed at T*
= 2 and P* = 6 in a single simulation. Boltzmann averages at T* = 2
and P* = 6 are highlighted in gray. Numbers in brackets indicate
uncertainties.

Figure 1. Plots showing (a) β*μ−β* and (b) μ−P* for an LJ binary color mixture consisting of 200 molecules. Downward-pointing triangles
indicate the results obtained from independent CFCNPT simulations at pressures between P* = 5.94 and P* = 6.05 and temperatures between T*
= 1.82 and T* = 2.22. Circles indicate the results obtained by performing umbrella sampling from a single simulation in the CFCNPT ensemble at
T* = 2 and P* = 6. Lines indicate that the data are obtained from a single simulation. Error bars are smaller than the symbol sizes. Raw data are
listed in Table 1.
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of an LJ particle, h̅id equals 5/(2β). It is noteworthy that the
contribution of the thermal wavelength Λ in h̅id equals 3/
(2β).10 Because Λ is set to unity in our simulations, the
contribution of the thermal wavelength cancels out when
numerically evaluating (∂(βμ)/∂β)P. Therefore, the partial
molar excess enthalpy is obtained from umbrella sampling of
the chemical potential using h̅ex = (∂(βμ)/∂β)P − 1/β. The
partial molar properties for the LJ system obtained from
umbrella sampling and the CFCMC method (eqs 5a and 5b)
and the WTPI method (eqs 2a and 2b) are provided in Table
2. Excellent agreement is observed between the partial molar
properties from CFCNPT simulations and the results obtained
from umbrella sampling. Similar uncertainties are observed
between the two methods. For the LJ system, umbrella
sampling works equally well compared to the CFCMC
method. In addition, accurate estimates of the chemical
potential at different pressures and temperatures are obtained
without any extra computational power or post processing.
Other realistic systems with complex intermolecular

interactions considered here are different aqueous methanol
mixtures with mole fractions of methanol between xMeOH = 0.2
and xMeOH = 1. These systems were simulated in the CFCNPT
ensemble. For a mixture composition xMeOH = 0.8, umbrella
sampling was used to estimate the chemical potentials of water
and methanol at temperatures between T = 288 K and T = 308
K while running a single CFCNPT simulation at P = 1 bar and
T = 298 K. In addition, independent simulations in the
CFCNPT simulations were performed to obtain the chemical
potentials as a reference. The results are shown in Table 3.
Accurate estimates of the chemical potentials of water and
methanol are obtained between T = 288 K and T = 308 K,
from a single CFCNPT simulation T = 298 K (ΔT = ±10 K).
The relative differences between the estimates of the chemical
potentials and the chemical potentials obtained from
independent simulations are well below 1%. For each
temperature, the differences between the absolute values of
the chemical potentials as shown in Table 3 are significantly
smaller than 1 kcal/mol = 4.184 kJ/mol, which is typically
considered as a benchmark in the computational chemistry
literature.73 The results show that umbrella sampling can
provide an accurate estimate of the chemical potentials of
water and methanol for an appreciable temperature range
(around ΔT = ±10 relative to the simulation temperature).
The raw data shown in Table 3 were used to plot βμ as a
function of β for the water−methanol mixture (N = 470),
xMeOH = 0.8, at temperatures between T = 288 K and T = 308
K. The results are shown in Figure 2. The lines indicate data
obtained from a single simulation. It can be seen in Figure 2
that excellent agreement is observed between the results

obtained from umbrella sampling and the reference values
from independent simulations in CFCNPT at every temper-
ature. The error bars associated with the estimated chemical
potentials for water and methanol increase with increase in

Table 2. Densities, Chemical Potentials, Partial Molar Excess Enthalpies, and Volumes at T* = 2 and Pressures between P* =
0.1 and P* = 8 Computed for a Binary LJ Color Mixture (200 Molecules)a

CFCNPT umbrella sampling WTPI method

P* ⟨ρ*⟩ μA h̅A
ex υ̅A h̅A

ex υ̅A h̅A
ex υ̅A

0.1 0.052 −7.460(7) −0.44(4) 18.6(3) −0.44(5) 19(2) −0.361(5) 19.29(4)
2 0.584 −1.075(8) −1.6(1) 1.72(3) −1.6(1) 1.72(3) −1.64(4) 1.70(1)
4 0.722 1.957(5) −0.06(5) 1.39(1) −0.06(5) 1.39(1) −0.3(2) 1.36(5)
6 0.800 4.581(9) 1.7(2) 1.26(2) 1.7(2) 1.26(2) 1.6(8) 1.23(5)
8 0.856 7.001(6) 3.2(1) 1.17(1) 3.2(1) 1.17(1) 4(1) 1.2(1)

aThree different methods are used at each P*, in order to compare the results for the partial molar properties: the WTPI method (eqs 2a and 2b) in
the NPT ensemble,11,12 the CFCMC method (in the CFCNPT ensemble, eqs 5a and 5b),10 and umbrella sampling (eqs 7 and 9). The chemical
potentials are calculated using eq 4 from independent simulations. Numbers in brackets indicate uncertainties.

Table 3. Chemical Potentials [kJ/mol] of the Water−
Methanol Mixtures (xMeOH = 0.8) Obtained from Umbrella
Sampling and Independent Simulations in the CFCNPT
Ensemble at Temperatures between T = 288 K and T = 308
Ka

aThe values of the chemical potentials are estimated using umbrella
sampling at T = 298 K and P = 1 bar. The corresponding Boltzmann
averages are highlighted in gray. Numbers in brackets indicate
uncertainties.

Figure 2. Plot showing βμ−β for a water−methanol mixture, xMeOH =
0.8. To compute the chemical potentials, independent simulations are
performed at temperatures between T = 288 K and T = 308 K.
Downward-pointing triangles and upward-pointing triangles denote
data for water and methanol from independent CFCNPT simulations.
Asterisks connected by a line indicate data obtained using umbrella
sampling from a single simulation at T = 298 K and P = 1 bar. Error
bars are smaller than the symbol sizes. Raw data are listed in Table 3.
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|ΔT| relative to T = 298 K. This indicates that umbrella
sampling becomes inefficient and inaccurate for a larger
temperature difference. It should be emphasized that this
temperature range is not a priori known and is system- and
system size-dependent. We explain later in this paper how a
reasonable temperature or pressure range can be selected for
umbrella sampling of the chemical potentials.
The βμ−μ and μ−P plots for the water−methanol mixture

at xMeOH = 0.8 are shown in Figure 2. The lines indicate that
the data points are obtained from a single simulation. To
compute the partial molar properties of water and methanol at
T = 298 K, a central difference scheme with high order
approximation h( )4 is used to numerically evaluate (∂βμ/
∂β)P and (∂μ/∂P)T. For each component type, the partial
molar excess enthalpy of water and methanol is then computed
by subtracting the ideal gas part. For different mixture
compositions, partial molar enthalpies of methanol and water
are computed using umbrella sampling and used as a reference.
The results are compared to those obtained from the CFCMC
method. The results are shown in Table 4 for the mixture with
mole fractions of methanol between xMeOH = 0.2 and xMeOH =
1. Because the density of methanol mixtures at T = 298 K is
high, the WTPI method is not used here. Excellent agreement
is found between both methods. It is observed both for the LJ
system and water−methanol mixture that the accuracy and
uncertainty of the partial molar properties from umbrella
sampling and the CFCMC method are similar. It is also
observed that the uncertainties associated with partial molar
properties are an order of magnitude larger compared to the
uncertainties of the chemical potentials. This is due to the
potential drawback of eqs 5a and 5b when subtracting two
large numbers with a (relatively) small difference.10 This may
induce larger error bars compared to the chemical potential. A
similar potential drawback is observed when using umbrella
sampling to compute partial molar properties. Numerically
computing the derivatives (∂(βμ)/∂β)P and (∂μ/∂P)T also
involves subtracting two numbers (or several numbers) over a
relatively small temperature or pressure difference. Therefore,
accurate estimates of the chemical potential are needed to
obtain accurate values for the partial molar properties. Based
on the results, it is clear that the overall performance of both
methods is very similar in terms of accuracy and precision.
To investigate the limitations of umbrella sampling in free

energy calculations, a wide temperature and pressure range is
selected for estimating the chemical potential of pure methanol

from a single CFCNPT simulation. The chemical potentials of
pure methanol in the temperature range of T = 266 K and T =
340 K and the pressure range of P = 1 bar to P = 1001 bar were
computed using eqs 5b−8 from a single simulation at T = 298
K and P = 1 bar. It should be noted that a wide temperature
and pressure range is only selected to test the limitations of the
method. The temperature and pressure range should be
selected to ensure sufficient overlap in configuration space and
energy between the systems. As a reference, independent
CFCNPT simulations of methanol were performed at each
temperature and pressure to compute the corresponding
chemical potentials. The results are shown in Table 5. It can
be seen that the estimated chemical potentials for ΔT = ±15
K, relative to T = 298 K, are in excellent agreement with the
chemical potentials obtained from independent simulations. It

Table 4. Chemical Potentials [kJ/mol], Partial Molar Excess Enthalpies [kJ/mol], and Partial Molar Volumes [cm3/mol] for
Water−Methanol Mixtures at Different Compositions at T = 298 K and P = 1 bar, Using Simulations in the CFCNPT
Ensemble (Eqs 5a and 5b) and Umbrella Sampling (Eqs 7 and 9)a

CFCNPT umbrella sampling

i xi ρi μi
tot h̅i

ex υ̅i h̅i
ex υ̅i

MeOH 0.2 289.4(3) −34.0(1) −40(10) 40(10) −40(10) 40(10)
H2O 0.8 650.9(3) −38.9(1) −47(7) 17(14) −47(7) 17(14)
MeOH 0.4 485.7(6) −32.7(2) −42(9) 39(9) −42(8) 39(9)
H2O 0.6 409.6(5) −39.3(1) −47(7) 16(5) −47(7) 16(5)
MeOH 0.6 620.7(4) −32.2(1) −41(5) 40(5) −41(5) 40(5)
water 0.4 233.0(2) −39.7(1) −49(9) 11(7) −49(9) 11(7)
MeOH 0.8 713.7(6) −31.5(1) −41(6) 45(5) −41(6) 45(5)
H2O 0.2 100.3(1) −41.4(3) −47(12) 21(16) −47(12) 21(16)
MeOH 1 777.0(9) −31.1(1) −42(3) 37(5) −42(3) 37(5)

aUmbrella sampling is performed at T = 298 K and P = 1 bar for all mixture compositions. xi denotes the mole fraction of the component i. The
chemical potentials are calculated from eq 4 using independent simulations. Numbers in brackets indicate uncertainties.

Table 5. Chemical Potentials [kJ/mol] of Pure Methanol
Obtained from Umbrella Sampling (Eqs 5b−8) and
Independent Simulations in the CFCNPT Ensemble (Eq
4)a

aUmbrella sampling is performed in the CFCNPT ensemble of
methanol at T = 298 K and P = 1 bar. Boltzmann averages obtained
from umbrella sampling are highlighted in gray. Numbers in brackets
indicate uncertainties.
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is clear that the sampling becomes more difficult when the
temperature difference increases. The uncertainties of the
estimated chemical potentials are an order of magnitude higher
for |ΔT| > 15 K. This sampling difficulty can be explained
based on the overlap between the energy or configuration
space of a system at two different temperatures or pressures. In
Figure 3a, the probability distribution of enthalpy per molecule

p(h) for pure methanol at different temperatures is shown (h =
H/N, N = 410). For the distribution p(h) at T = 266 K, no
overlap is observed with the distribution p(h) at T = 298 K,
and the method fails to estimate the chemical potential at T =
266 K, as can be seen in Table 5a. At T = 283 K, sufficient
overlap is observed with the distribution p(h) at T = 298 K,
and the estimated chemical potential is in excellent agreement
with the reference value. It should be noted that the
uncertainties of the chemical potentials from independent
simulations are always smaller. However, for ΔT = ±15 K, the
uncertainties of the estimated chemical potentials is small. In
Figure 3a, it is also shown that the overlaps between
distributions p(h) for T = 298 K and T = 320 K become
very small. This leads to large uncertainties in the estimated
values for the chemical potentials. It is shown in Figure 3b that
for P < 100 bar, the estimated chemical potentials of methanol
are in excellent agreement with the chemical potentials
obtained from independent simulations. For pressures ranging
between 100 and 500 bar, the uncertainties of the results from
umbrella sampling are up to 2 orders of magnitude larger than
those obtained from independent simulations. The estimated
values of the chemical potentials are however within chemical
accuracy (1 kcal/mol).73 In Figure 3b, the probability
distributions of volume per molecule p(υ) for pure methanol
at different pressures are shown (υ = V/N, N = 410). Sufficient
overlap is observed in Figure 3b for the distributions p(υ) at P
= 1 bar and P = 100 bar. This is expected because the
compressibility of liquid methanol is very low at room
temperature. Therefore, it is possible to estimate the chemical

potentials of methanol accurately for any pressure between P =
1 bar and P = 100 bar, see Table 5b and Figure 3b. For P > 500
bar, the uncertainty of the estimated chemical potentials
increases significantly (3 orders of magnitude larger compared
to independent simulations) and the method starts to break
down. This can be explained by examining the overlap between
the distributions p(υ) at high pressures and P = 1 bar. In
Figure 3b, no significant overlap is observed between the
distribution p(υ) at P = 1 and the distributions at P > 500.
Under these conditions, the excess chemical potentials of
methanol computed from umbrella sampling deviate signifi-
cantly from the excess chemical potentials computed from
independent simulations. Here, we illustrate the sampling issue
of the excess chemical potential at high pressures by plotting
p(λ) as a function of pressure, computed from umbrella
sampling at T = 298 K and P = 1 bar. For pure methanol (N =
410), it is clearly observed in Figure 4 that the computed p(λ)

shows scatter for pressures significantly different from that of
the simulation. This clearly illustrates that the method breaks
down when the pressure difference becomes large, and the
statistics for the excess chemical potential become very poor.
We observed that for liquid methanol (N = 410), the
computed chemical potentials from umbrella sampling are in
excellent agreement with the reference values obtained from
independent simulations, for ΔT = ±15 K and ΔP = 100 bar.
The pressure and temperature range for accurate estimation of
the chemical potentials or other thermodynamic properties
may differ from one system to another. However, plotting
distributions p(h) and p(υ) for a wide pressure and
temperature range can readily visualize at what range umbrella
sampling can be applied to obtain accurate results. As shown in
Figure 3, an investigation of the overlap between energies,
volumes at different temperatures, and pressures can easily
indicate the boundaries at which the method starts to fail. For
systems that lack sufficient overlap (i.e., Δβ or ΔP is too large),
it is expected that the performance of the method is poor. If
one is interested in nonlinear variations of μ (e.g., higher order

Figure 3. (a) Probability distribution of the enthalpy per molecule of
methanol; h = H/N at P = 1 bar and different temperatures: T = 266
K (green), T = 285 K (teal), T = 298 K (black), T = 320 K (orange),
and T = 340 K (red). (b) Probability distribution of the volume per
molecule of methanol; υ = V/N at T = 298 K and different pressures:
P = 1 bar (black), P = 100 bar (teal), P = 500 bar (orange), and P =
1000 bar (red). The number of molecules for pure methanol in the
liquid phase is N = 410.

Figure 4. Probability distribution of λ for pure methanol obtained
from a CFCNPT simulation at T = 298 K and P = 1 bar. Equation 9 is
used to compute p(λ) for pressures up to P = 600 bar from a single
simulation. The red lines indicate the Boltzmann distribution p(λ) at
P = 1 bar and the distribution p(λ) computed for P = 600 bar.
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derivatives of μ), our method may not work well because of a
lack of overlap. To compute partial molar properties, selecting
a narrow region (a small temperature or pressure range) still
allows for a numerical evaluation of h̅ = (∂(βμ)/∂β)P and υ̅ =
(∂μ/∂P)T. Therefore, partial molar properties can be
computed from umbrella sampling without selecting a wide
temperature or pressure range. As an example of a strong
hydrogen bond-forming system, we considered the Haber−
Bosch process (N2 + 3 H2 ⇌ 2NH3). Umbrella sampling was
used to compute partial molar properties of the mixture at T =
573 K and P = 800 bar, at chemical equilibrium. From our
earlier work, the equilibrium composition of the mixture is
known.1,10 Independent simulations are performed at T = 573
K and P = 800 bar in the CFCNPT ensemble. In each
simulation, the fractional molecule of only one component is
present. Partial molar properties obtained from umbrella
sampling (eqs 7 and 9) and the CFCMC method (eqs 5a
and 5b) are compared in Table 6. Excellent agreement is
observed between the results obtained from umbrella sampling
and the CFCMC method.

5. CONCLUSIONS
We introduced an alternative method to obtain accurate
estimates of the excess chemical potential of a component for a
wide temperature and pressure range from a single simulation.
This method combines umbrella sampling and the CFCMC
technique. Using the values of the estimated chemical
potentials, the partial molar enthalpies and volumes of a
component are obtained by numerically evaluating the
derivatives (∂(βμ)/∂β)P and (∂μ/∂P)V, respectively. This
method does not have the disadvantages of the WTPI method.
As a proof of concept, the values of the chemical potential for a
binary LJ mixture were estimated using umbrella sampling
from a single simulation in the CFCNPT ensemble at T* = 2
and P* = 6. For a temperature range between T* = 1.82 and
T* = 2.22 and pressure range between P* = 5.95 and P* =
6.05, excellent agreement was observed between the estimated
chemical potentials and those obtained from independent
CFCNPT simulations of the LJ system, at each temperature
and pressure. Partial molar properties obtained from umbrella
sampling were in excellent agreement with the CFCMC
method introduced in ref 10 and the original method of
Frenkel et al.11,12 We observed that the accuracy and precision
of the averages obtained from the CFCMC method in ref 10
and umbrella sampling are very similar. To apply our method
to a system with complex intermolecular interactions, we
considered aqueous mixtures of methanol with different

compositions. We applied our method to estimate the chemical
potentials of methanol and water for a temperature range
between T = 288 K and T = 308 K from a single simulation at
T = 298 K and P = 1 bar. Excellent agreement was found
between the results obtained from umbrella sampling and
those obtained from independent simulations in the CFCNPT
ensemble, with relative differences well below 1%. As an
example of a strong hydrogen bond-forming system, our
method was applied to a mixture of ammonia, nitrogen, and
hydrogen at chemical equilibrium at T = 573 K and P = 800
bar. It was observed that partial molar properties of ammonia,
nitrogen, and hydrogen obtained from umbrella sampling and
the CFCMC method are in excellent agreement. We
investigated the limitations of our method for liquid methanol
(N = 410 molecules). It was observed that for the temperature
difference ΔT = ±15 K, very accurate estimates of chemical
potential at different temperatures were obtained from
umbrella sampling from a single CFCMC simulation. In
addition, it was found that for a pressure difference ΔP = 100
bar, accurate estimates of chemical potential at different
pressures were obtained from umbrella sampling from a single
simulation. Lack of sufficient overlap (ΔP or Δβ) between
different states may result in a poor performance of the
method. Based on the results, it can be concluded that
combining umbrella sampling with CFCMC provides a
powerful tool for accurate estimation of chemical potentials
for an appreciable temperature and pressure range and
computation of partial molar properties. This can potentially
reduce the number of simulations of a system for free energy
calculations for a specific temperature and/or pressure range.
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(19) Dawass, N.; Krüger, P.; Schnell, S. K.; Simon, J.-M.; Vlugt, T. J.
H. Kirkwood-Buff integrals from molecular simulation. Fluid Phase
Equilib. 2019, 486, 21−36.
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