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Figure 1: Our novel interactive approach for shape detection in point clouds allows for sophisticated interactions: Left: A
Lasso selection selects only points that lie on the support shape as shown in the top image. Points in front and back of the
support shape are not selected (bottom). Middle: A volumetric brush selection is performed on the selected support shape (top).
Points are only selected if they belong to the support shape and intersect the brush (bottom). Right: Interactive LoD increment
interaction along the selected support shape (drawn in red). The top image shows the original rendering model of the point
cloud; the bottom image shows the point cloud with the additional points.

ABSTRACT

In this work, we propose an interaction-driven approach stream-
lined to support and improve a wide range of real-time 2D interac-
tion metaphors for arbitrarily large pointclouds based on detected
primitive shapes. Rather than performing shape detection as a
costly pre-processing step on the entire point cloud at once, a user-
controlled interaction determines the region that is to be segmented
next. By keeping the size of the region and the number of points
small, the algorithm produces meaningful results and therefore feed-
back on the local geometry within a fraction of a second. We can
apply these finding for improved picking and selection metaphors
in large point clouds, and propose further novel shape-assisted
interactions that utilize this local semantic information to improve
the user’s workflow.

*Also with VRVis Research Center.
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1 INTRODUCTION

Acquisition of point clouds from real environments becomes ever
simpler and cheaper. Laser scanners, depth cameras, and photogram-
metric reconstructions are routinely used to produce highly detailed
point clouds that contain hundreds of millions or even billions of
points. This sheer size presents challenges to data processing as
well as user interaction. As data is too large to fit into system and
GPU memory, various out-of-core solutions have emerged [Else-
berg et al. 2013; Rusu and Cousins 2011; Scheiblauer 2014]. Most
approaches create structured files in a preprocessing step, then
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transfer chunks of points to memory as needed based on different
culling and caching heuristics.

It is usually necessary to extract regions of interest or to remove
imperfect, noisy or nonessential data, depending on the application
domain. However, achieving this goal using standard 2D manual
interaction metaphors can be tedious due to the lack of topological
structure in point clouds. Selecting or picking with a mouse or a
touch-enabled device often results in inadvertently picking through
a desired object.

A way of introducing topological structure into unstructured
point sets is shape detection. The objective is to find regions with
similar characteristics, such as local curvature and neighborhoods,
to help the system better understand local and global structures.
For example, Schnabel et al. [2007a; 2007b] demonstrate high qual-
ity segmentation of point clouds into sets of (partial) geometric
primitives. Unfortunately, performance of such algorithms is far
from real-time, requiring minutes for a few million points, and
being infeasible for billions of points. It also does not make sense
to perform the segmentation as a preprocessing step, because the
point cloud changes due to interactive editing. On the other hand,
most user interactions, at a single point in time, only require a very
specific subset of all the possible topological information.

We therefore propose an interaction-driven approach streamlined
to support and improve a wide range of real-time 2D interaction
metaphors for arbitrarily large (out-of-core) point clouds. By repeat-
edly performing shape detection on a very small subsets of points
relevant to the current interaction, we create a continuous stream of
partial shape approximations, which in turn is used to incrementally
build up a bigger picture of the environments topological structure.

Our main contributions are:

e A background process generating a continuous stream of
partial shape matches on massive out-of-core point clouds.

o Real-time clustering of aforementioned partial shapes into
coherent larger shapes.

o Improved point picking and region selection user interactions
using local geometry as support shapes, with the further
benefit of shorter computation times.

e A novel interaction technique allowing the user to interac-
tively increase the level of detail locally along a shape to focus
on detail structures.

2 RELATED WORK

The scope of this paper covers data management, shape detection
and interactive editing of massive point clouds.

2.1 Out-of-Core Point Clouds

The QSplat system [Rusinkiewicz and Levoy 2000] was one of the
earliest systems capable of handling datasets with well over hun-
dred million points. A hierarchy of bounding spheres makes it easy
to perform visibility culling and LoD control. Gobbetti and Marton
[2004] proposed Layered Point Clouds (LPC), a multi-resolution
approach for rendering massive point clouds. Points are stored in
a binary tree of chunks of approximately the same size, including
LoD representations. Compared to the QSplat system, LPC hides
out-of-core latency by speculatively fetching data, reduces the cost

Steinlechner et al.

of traversal on the CPU-side significantly, and benefits from the
parallel GPU architecture. Wimmer and Scheiblauer [2006] intro-
duced nested octrees to create a multi-resolution model similar to
LPCs. A nested octree consists of an outer octree used for visibility
culling and a memory-optimized SPT as inner octree for efficient
point rendering. Dachsbauer et al. [2003] introduced Sequential
Point Trees (SPT), a data structure that arranges and sorts points
(by depth) in a list, allowing for adaptive rendering of point clouds
completely on the GPU (but also bound by GPU memory).

Besides rendering and storing, modifications are a key task for
out-of-core point cloud systems. Wand et al. [2007] describe a multi-
resolution out-of-core octree, that stores additional points per LoD
to enable efficient removal and insertion operations. The Modifiable
Nested Octree (MNO) by Scheiblauer and Wimmer [2011] replaces
SPTs from inner nodes with a grid and introduce a so-called Selection
Octree storing selected points separately, allowing to interactively
change the visualization model without actually having to modify
original data permanently. Wenzel et al. [2014] propose a system
tailored towards quick data updates by maintaining an additional
cycle stack as a node history of in-memory data.

2.2 Shape Detection and Processing

The objective of detecting structures in point clouds is defined very
loosely, since structures can relate to geometric primitives, but also
to more complex components representing distinct man-made or
natural formations. In our work, we are interested in detecting
basic geometric shapes. The 2D Hough transform [VC 1962] is used
in image processing to detect lines and curves. It was extended
to 3D by Maas et al. [1999] and refined by Rabbani and Van Den
Heuvel [2005].

Schnabel et al. [2007a] propose Random Sampling Consensus
(RANSAQC) [Fischler and Bolles 1981] to extract a minimal set of
primitive shapes approximating the global structure of the point
cloud. The algorithm randomly selects a set of points that roughly
follow the curvature of a shape. If a defined number of points
are approximated by this shape, the shape is considered valid.Our
system is based on an extension to out-of-core datasets [Schnabel
et al. 2007b].

GlobFit by Li et al. [2011] uses RANSAC to detect not only prim-
itive shapes, but also their global mutual relations, such as orien-
tation, placement, and equality among shapes. Oesau et al. [2016]
propose an alternative approach to detect planar shapes and their
relations using region growing, and Attene and Patané [2010] use
a hierarchical method construct a multiresolution representation
for region selection.

2.3 Interactions

Interactions (such as removing unwanted points, selecting regions
of interest, or creating new geometry) are crucial to improve the
data quality of the point cloud. The Lasso tool is a common in-
teraction metaphor to select regions in 2D screen space. It was
applied in 3D space by Lucas et al. [2005] by drawing the lasso on
a tracked 2D canvas that shows a desired view of the scene. Yu
et al. [2012] present two new methods of interaction that turn a
2D lasso into a three-dimensional volume that is fitted to the spa-
tial structure of the point cloud: Similar to sketch-based modeling
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[Igarashi et al. 2007], TeddySelection inflates a user-drawn lasso us-
ing a heuristic accounting for local point density. CloudLasso uses
Marching Cubes [Lorensen and Cline 1987] to identify and select
regions within the lasso where the density is beyond a threshold.
Both techniques only use two degrees of freedom, thus can be used
in traditional mouse-based interactions, as well as in direct-touch
environments. Another example of a 3D interaction technique is
the Volumetric Brush by Weyrich et al. [2004]. A brush follows the
local curvature by tracking the current depth of the cursor in the
z-Buffer. Scheiblauer and Wimmer [2011] utilize the volumetric
brush for selections in point clouds.

Huang et al. [2014] propose GPU-driven point picking. The idea
is to perform picking in screen space and choose the point that
is closest to the mouse position. Potree [Schiitz 2016] applies a
similar technique without using compute shaders. Instead, a unique
per-point id is rendered into a texture from which a small window
around the cursor is downloaded to the CPU to perform the final
picking decision.

3 OUT-OF-CORE OCTREE

Our approach relies on an out-of-core octree with a structure similar
to that of Wand et al [2007], where the entire point set is distributed
among the node’s children. A random subset of points is duplicated
(in contrast to Instant Points [Wimmer and Scheiblauer 2006]) to
create a LoD representation, which also makes each node self-
contained as no points from parent nodes are needed. This results
in a simpler system and we save memory, as we only need to keep
nodes representing the current rendering horizon alive.

Our octree split criterion is a fixed point count threshold (5000),
which keeps variations in loading time and shape detection low,
and allows for immediate feedback in user interactions. We apply
view-frustum culling to consider only those nodes that contribute
to the currently viewed scene. If the octree is culled purely for
rendering purposes, it would be sufficient to collect visible nodes
in a set and use this for rendering. However, since interaction and
processing tasks are performed on the viewed data, the hierarchical
structure is kept intact.

We also compute and store additional properties used in the
Shape Detection and Clustering steps (Section 4). Each node contains
an rkd-tree [Tobler 2011] for efficient ray-queries and k-nearest
neighbor searches, per-point normals, and the points’ centroid and
average point distance which we use as approximate for the spatial
density. For the average point distance we use nearest neighbor
distance queries for each point and use their average value.

4 SHAPE DETECTION AND CLUSTERING

Our proposed system is not tied to any specific shape detection al-
gorithm. Any algorithm will do, as long as it is capable of extracting
(partial) shapes from single octree cells and for which a clustering
metric for merging partial shapes can be defined.

Currently our implementation uses the algorithm by Schnabel
et al. [Schnabel et al. 2007a] for proof of concept, as it provides
different types of primitive shapes like planes, spheres, cylinders,
cones, and tori. As we found, the algorithm is particularly suitable
for the detection of primitives in urban environments. We use the
average point distance in a node as the algorithm’s € parameter.
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Parameters for the minimum number of support points n per shape
(250) or the normal deviation « (0.95) are constant. As we perform
shape detection only on the points of a single octree node at a time
(5000 points or less) its performance is adequate.

Since planes, cylinders, and cones are of infinite size, they need
to be refitted to encapsulate the corresponding support points and
create a minimal boundary. This is especially true for rendering
and interaction. Since our approach produces a continuous stream
of new primitive shapes and accurate reconstruction is not a goal,
the refitting process only uses the set of support points to refit the
shape and create a finite representation. For planes, we calculate a
bounding quad used as the representation of the plane. The quad is
obtained by using the minimum-bounding-rectangle algorithm by
Freeman [1975]. Cylinders and Cones are adjusted to have minimal
volume but still contain all their support points.

4.1 Shape Matching

Performing shape detection on single octree nodes naturally results
in (partial) shapes limited to the extents of the node. Of course these
shapes are presumably part of a larger structure. We therefore
continuously match newly found (partial) shapes to previously
matched shapes to form larger coherent shape clusters. To this end,
we propose a set of matching functions to determine if two shapes
originate from the same geometry. Only shapes of the same type
can be matched to form a cluster.

4.1.1  Elementary Matching Functions. As primitive shapes are rep-
resented by only a handful of parameters, we use a simple similar-
ity measure (with threshold 1) based on the following elementary
matching functions:

e Scalars fi, fo: % > A, where f1 < fo

. . % (%
e Directions vy, vg: — 2 > )

o o] " Tool =
e Positions pq, p2:

\/(pl.x—pz.x)z + (pl.y —pzy)z + (p1.2—p2.2)2 <A

e Axes a,b:
An axis is defined by a start and end point (astart, dends
bstart beng)- Furthermore, let v, = a,,q — astars, and vy, =
bend — bstart, and let d be the largest distance of a start-
or end point to its complementary axis. Similarity is then
defined as follows:

v v
L =R > Ad <y

lvz] o2l
4.1.2  Primitive Shape Matching Functions. Based on the elementary
matching functions, we define the following pairwise matching
functions for shapes:

e A plane shape consists of a quad enclosing all support
points. Let d be the largest normal distance of a corner of a
quad to the plane of the other quad. Two plane shapes match,
if the planes’ normal vectors are similar within a threshold
A1 and if d < Ay.

e Two cylinder shapes are matching if radii and axes are
matching.

e Two cone shapes are matching if axes, apexes and opening
angles are matching.
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e Two sphere shapes are matching if centers and radii are
matching.

e Two torus shapes are matching if center, axes, major radii,
and minor radii are matching.

Table 1 shows all threshold values used for our implementation.

Table 1: Threshold values for matching.

threshold values

Scalars A=0.99
Vectors A=0.95
Positions A=10.05

Axes | A1 =0.95, 12 = 0.05
Planes | A1 = 0.99, 1, = 0.05

4.2 Shape Clustering

Our graph-based shape clustering algorithm is based on Oesau et
al. [2016], but not limited to planes. We search the octree for partial
shapes that were detected previously and that match a base shape.
From this set of partial shapes, a complete graph is created, and a
region-growing algorithm reduces the number of shapes to those
that create a coherent shape cluster.

im

Base Shape

Figure 2: A cluster of plane shapes created by computing the
e-connected component. The base shape is colored in blue.
Planes that belong to the cluster are colored in turquoise.
Shapes that do not belong to the cluster are colored in or-
ange. The cluster’s € distance is drawn in grey. Each shape
that intersects this area belongs to the cluster.

4.2.1 Building a set of matching primitive shapes. Clusters are con-
structed from currently visible primitive shapes. Therefore, rather
than searching the full octree, its current rendering horizon is
queried for shapes matching the base shape. The base shape, se-
lected by the user, has a particular level of detail. For the shape
cluster to mimic a structure of a similar level of detail, only shapes
with a level of detail within a user-specific threshold I are used.
Using a threshold value of 0 creates small clusters, as larger over-
lapping shapes cannot form bridges between smaller shapes. For
our test data, a threshold | = 2 creates clusters large enough to
include meaningful parts of a structure, while still having little to
no unwanted shapes.

Steinlechner et al.
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Figure 3: This figure shows a cylinder cluster and a cone clus-
ter build from matching shapes. Shapes that belong to the
cluster are colored in turquoise.

In such a cluster each primitive shape can already be seen as
a part of a larger shape. However, distances between shapes are
not yet taken into account. Thus, gaps may still exist. Hence, for
infinite shapes, an additional step is performed using a graph-based
region-growing algorithm.

4.2.2 Graph-based Region Growing. A cluster of shapes can be
seen as an e-connected component from a larger graph. A complete
graph is created from the vertices of all matching shapes, including
the base shape. In a complete graph, an edge exists between any
pair of vertices. The weight of an edge is determined by a distance
function for each primitive shape:

e As a plane shape is bounded by a quad, the distance be-
tween two plane shapes is computed as the shortest dis-
tance between the two bounding quads.

o The distance between two cylinder shapes is determined
by the shortest distance between all pairs of start/end points
of both cylinders.

o The distance between two cone shapes is determined by
the shortest distance between all pairs of start/end points
from both cones.

Overlapping shapes can occur if shapes from multiple levels of
detail are clustered together. However, this causes no problems, as
the distance between two overlapping shapes is set to 0. A cluster
is created by growing a region in a graph, only adding vertices that
connect to the current region via an edge with weight smaller than
€. This creates a cluster of shapes, ensuring that the distance to the
closest neighboring shape is at maximum e.

Figure 2 shows an exemplary illustration of region growing for
plane shapes. The distance between two plane shapes is measured
as the closest distance between the two bounding quads. Figure 3
illustrates region growing for both cylinder shapes and cone shapes.
The matching heuristic already confirms that the shapes lie on the
same axis and share a similar radius. Therefore, instead of a 3D
world distance, a one-dimensional distance between two points is
sufficient to build a shape cluster. The region-growing component
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Shape Picking

Pick shape H Find matching H Create shape ’
shapes cluster

Assisted Interaction

Find set of Reduce points Perform
affected nodes P selection/picking

Figure 4: The workflow for shape-assisted interactions is di-
vided into two major steps. First, the user picks a primitive
shape, from which a larger cluster is created and used as sup-
port shape for the following interaction. Upon starting an
assisted interaction, the system finds all nodes that are af-
fected by the interaction, reduces the set of points to those
that are approximated by this shape and, finally, performs
the interaction (e.g., selection, picking).

of the clustering heavily depends on the € distance threshold. For
this task, we chose the density of the node of the base shape, more
specific: € = 2 - density.

5 INTERACTIVE APPLICATION

Next, we present an interactive application which finally exposes
the potential enabled by our approach. To this end, we implemented
an interactive heuristic for user-guided shape detection and show
how picking and selection can be improved using shape-assisted
interactions.

5.1 User-Guided Shape Detection

Typically, our previously described shape-detection and clustering
algorithm provides results in less than 250 milliseconds for a single
octree node. Based on the user’s current view and mouse position,
user-guided shape detection continuously updates the active shape
in real-time. A background process continuously processes nodes
that

(1) are currently rendered,

(2) intersect the pick ray,

(3) contain at least n points (= minimal support for shape detec-
tion), and

(4) have not been processed before

and favors nodes with higher LoD, such that the user receives
geometric information for the most detailed parts of the currently
explored region first. For nodes with the same LoD, the node closest
to the camera is chosen.

The selection of a suitable candidate node depends heavily on the
camera position. When zooming out, the camera moves away from
the scene, thus reducing the render horizon and therefore reducing
the maximum LoD. If the node with the highest LoD is processed
already, the heuristic chooses a node from a lower LoD. Thus, a
multi-scale representation of the local geometry is constructed over
time.
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5.2 Shape Picking

The use of a support shape raises the need for an initial interaction
to pick a primitive shape. A ray-cast from the current mouse posi-
tion is performed to create an initial filtering of octree nodes. Then
all primitive shapes from these nodes are sorted using a custom key,
key = level + 1 — depth, with depth ranging from 0 (near plane) to
1 (far plane). The primitive shape with the largest key (highest LoD
and closest to the camera) is chosen as support shape. From this,
shape clustering as described in Section 4.2 is applied. This step is
important, since user interactions are usually performed on larger
areas. A cluster can be seen as a single, multi-level shape and is
referred to as support shape.

5.3 Shape-Assisted Interactions

In 3D applications, standard 2D interaction metaphors, such as lasso
selection or point picking, are limited by the lack of information
on the desired depth (see Section 2). By using a primitive shape as
support, the user can easily interact with the point cloud in a way
that only points are considered that belong to the support shape.
Figure 4 demonstrated the basic workflow for shape-assisted user
interaction, comprising two major steps. The first interaction is
to pick a primitive shape and build a larger cluster from it. This
cluster acts as a support shape for the following user interaction.
For this interaction, when initialized, all affected nodes are col-
lected, and their point sets are reduced to only those points that
are approximated by this shape. A point is filtered if it fulfills the
same e-distance and normal-deviation criteria with regard to the
support shape as used for the shape detection in Section 4. After the
filtering step, the actual interaction is performed on the remaining
points.

5.3.1 Shape-Assisted Point Picking. Point picking is used to select a
single point from the scene. A pick radius r denotes the maximum
distance of a point to the pick ray for the point to be considered. It
can either be constant in world space, constant in screen space, or
dependent on the depth value (see Figure 5). Each case has certain
drawbacks, e.g. preferring points in the foreground, or introducing
depth disambiguities. Furthermore, a single ray-cast is not sufficient
to find all octree nodes that are affected by this interaction, since it
is possible that the cylinder (in world space) or the cone (in screen
space) also intersects neighboring nodes.

Shape-Assisted Point Picking utilizes primitive shapes to perform
picking only on points that are part of a structure. The user selects a
cluster to restrict candidate points to the support shape. Rather than
using a cone- or ray-cast to collect all candidate nodes, only nodes
intersecting the support shape are considered. This leaves only a
handful of nodes containing points that mostly follow the support
shape on which the interaction is performed. Points on the back of
a shape are projected near the mouse position as well and might get
favored over points facing the user. Therefore, picking is restricted
to points inside a sphere centered at the pick ray’s intersection
with the support shape, which also reduces computation time. The
sphere’s radius is calculated by unprojecting the desired screen
space pick radius to the sphere’s world space center.

Usually, a shape cluster intersects far fewer nodes than a ray-
cast, as the cluster’s extent is limited, while a ray traverses the full
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Figure 5: Comparison of picking methods. Selected points are marked red. Left: Ray-cast with radius using a cylinder in world
space. Middle: Ray-case using a cone instead. Right: A support shape (dark blue) is used to further constrain selection.

Figure 6: Shape-assisted point picking performed on a shape
cluster representing the foreground wall. Note that the cross
hair does not jump to a point in the background even if it is
closer to the cursor in screen space.

extent of the point cloud. This again reduces computation time. An
example of shape-assisted point picking can be seen in Figure 6.

Figure 7: Top row: Classic Lasso Selection. The user draws a
polygon in screen space (left) to select all points that are pro-
jected to the area of the polygon (middle). Same selection
from a different point of view (right). Bottom Row: Shape-
Assisted Lasso Selection avoids unintentional selection of
points obscured by foreground objects.

5.3.2  Shape-Assisted Lasso Selection. Lasso Selection is commonly
used to select regions in 2D. However, in 3D, a screen-space lasso
polygon combined with the camera view creates a 3D volume (see
Figure 7, top). In order to select exactly the desired point set, usu-
ally multiple select/deselect interactions from differing views are
required.

We propose Shape-Assisted Lasso Selection to provide smaller
sets of points on which a lasso selection is performed (see Figure 7,

Figure 8: Shape-assisted Volumetric Brush using a shape
cluster (transparent red) representing the front wall. Roof
points intersecting the brush path (left) are not selected
(right).

bottom and Figure 1, top). To construct these smaller sets, the octree
is consulted for nodes that intersect the support shape. The number
of candidate points per node is reduced by filtering points that are
approximated by the support shape. On this reduced set, a normal
lasso selection is performed. The result is a selection that mimics a
lasso selection, with the benefit of not selecting ‘through’ the point
cloud. The depth ambiguities of the lasso selection are circumvented
by introducing continuous depth boundaries defined by the local
curvature of the shape cluster.

5.3.3 Shape-Assisted Volumetric Brush. The Volumetric Brush is
designed to project a selection volume onto the foremost geom-
etry [Scheiblauer and Wimmer 2011; Weyrich et al. 2004]. Since
this technique follows the foremost geometry only, sudden depth
changes occur if different geometry occludes the area of interest.
Thus, view changes are still required. In regions close to intersec-
tions with other structures, the user must control the volume size
to avoid selecting points on neighboring structures. We propose
Shape-Assisted Volumetric Brush (see Figure 8 and Figure 1, middle),
in which, instead of consulting the depth buffer to reconstruct the
cursor’s world position, the pick ray is intersected with the selected
support shape. The octree is consulted for nodes that intersect the
support shape, and the sets of points are reduced to only those that
are approximated by the support shape.

5.3.4  Shape-Assisted Local LoD Increment. Section 3 describes the
culling heuristic to create an octree that only contains nodes that
are rendered for the current frame. This heuristic uses view-frustum
culling paired with LoD culling. If a user wants to investigate local
structures in more detail, the currently rendered LoD might not
suffice. We propose Shape-assisted local LoD increment to fetch
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Figure 9: Shape-assisted LoD Increment. Default LoD (left) is
increased (right) along the active shape cluster (transparent
red).

Table 2: Datasets with total point count, number of octree
nodes, and maximum octree depth (LoD).

#Points ‘ #Nodes ‘ max. Depth

JB_House.pts 620.722 440 15
TechCenter.pts | 11.762.924 8863 15
Synthetic.pts 472.000 315 5

additional data from the octree: By adding nodes without additional
point filtering, noise and unwanted structures are amplified as
well. Therefore, this interaction utilizes a shape cluster, selected
by the user, to amplify detail only on structures of interest. The
candidate set is filtered further, such that only those nodes remain
that intersect the support shape. For each node from this final set,
only points approximated by the support shape are added to the
scene (see Figure 9 and Figure 1, bottom).

6 RESULTS

All results were obtained on a PC with an AMD FX-9590 CPU,
16 GB RAM, and an AMD Radeon HD 7970 GPU. The proposed
techniques were tested on three different datasets (see Table 2).
The synthetic point cloud (Figure 11) is constructed from a set of
primitives discretized as point sets and includes approximations
for all types of detectable primitives. In the supplemental video, we
demonstrate both the interactive performance of our approach, as
well as the successful application of our novel interaction metaphors
for point cloud selection and picking.

6.1 Interactive Shape-Detection Performance

The goal of user-guided shape detection is to provide meaningful
results within interactive time, such that detected shapes can be
used to support interactions immediately. The capabilities of the
implementation by Schnabel et al. are benchmarked on three dif-
ferent datasets in Table 2 using the interactive approach, as well as
on the point cloud at once.

The tests are performed without user interaction. Instead, all
octree nodes are collected and fed into the shape-detection pipeline
sequentially to retrieve results for each node of the point cloud
independently. Therefore, shape detection is performed on the com-
plete point cloud for each LoD. Each octree node contains at most
5000 points. The results are averaged over five runs. Table 3 shows
the per-node performance of the user-guided shape detection. Each
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Table 3: Interactive shape detection performance measures
for 3 datasets. The last column shows the number of shapes
found in each dataset on all LoDs (without clustering).
Datasets were benchmarked using plane detection only (%),
and by detecting all types of primitives (results averaged
over five runs).

#Shapes | Time (ms) || #Shapes
per Node | per Node total
(avg) (avg)

JB_House* 1.31 22.396 576.40
JB_House 1.40 93.264 616.00
TechCenter™ 1.18 18.781 || 10458.34
TechCenter 1.19 83.180 || 10546.97
Synthetic* 1.89 29.779 595.35
Synthetic 1.24 136.474 390.60

Table 4: Performance measures using the original shape de-
tection algorithm by Schnabel et al. [2007a], executed on
the entire point cloud at once. Again, datasets were bench-
marked using plane detection only (*), as well by detecting
all types of primitives (results in seconds and averaged over
five runs).

#Shapes (avg) | Time (avg, seconds)
JB_House* 64 1.79
JB_House 66 5.60
TechCenter* 689 285.84
TechCenter 773 514.94
Synthetic* 13 4.01
Synthetic 12 8.39

node from the datasets is benchmarked five times and the results
are averaged. It can be seen that detecting only planes is signifi-
cantly faster than detecting all types of primitive shapes. Detecting
all types of primitives still produces results within the desired time.
The results of the original shape detection on the whole point
cloud at once are shown in Table 4. The interactive approach pro-
cesses the point cloud in chunks, resulting in the detected primi-
tives being chunks of larger primitives as well. This explains the
higher number of detected primitives using the interactive approach.
While on small datasets, such as the JB_House, the original shape-
detection approach produces results within seconds, larger datasets
require significantly more computation time (up to ~9 minutes).

6.2 Shape-Detection Results

Figure 10 compares the results of the RANSAC shape detection on
the entire dataset with our interactive approach. Our interactive
method finds more shapes that can be grouped into one larger
consecutive shape. However, the overall structure of the building is
approximated similarly in both techniques. The interactive shape
detection was unable to produce results on the synthetic point
cloud (which can be seen in Figure 11). On coarse LoDs, implausible
shapes are detected that occluded the entire scene. Hence, a visual
comparison of the classic shape detection with our approach did
not yield any satisfying results.
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Figure 10: Top row: the JB_House dataset, bottom row: the TechCenter dataset. From left to right: Rendering, the resulting
shapes of the RANSAC shape detection, and the detected shapes using the interactive shape-detection method.

6.3 Interaction Performance

Shape-assisted point picking drastically reduces computation time
compared to standard point picking. Randomly picking points with
and without support shape on all three datasets shows a tenfold
performance increase on average (3.28ms vs. 37.96ms). Although
per-point processing time is higher in shape-assisted point picking,
far fewer points need to be checked due to the additional support
shape constraint.

We also compared shape-assisted lasso selection to a classic lasso
selection, sharing the same lasso polygon. The averaged computa-
tion time ratio between shape-assisted (437ms) and classic (748ms)
lasso selection is ~1.81.

Figure 11: Top row: Lasso selection supported by a cylinder
shape. Points on the back of the cylinder are selected. Bot-
tom row: In contrast, the volumetric brush selection sticks
to the side of the cylinder that is facing the camera.

7 CONCLUSION AND FUTURE WORK

In this work we proposed an interactive, user-assisted segmentation
method enabling enriched interaction techniques for out-of-core
pointclouds. In contrast to previous work we fluently integrate
processing and interaction with a level-of-detail approach. The
continuous stream of shape approximations can be used to guide

interactions such as improved point picking. Based on clustering of
shapes, we allow interaction techniques such as lasso selections to
directly operate on geometric multi-scale approximations. In future
work, we plan to further investigate on interaction techniques as
well as incremental segmentation methods.
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