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This paper describes a driving simulation experiment, executed on the Daimler Driving
Simulator (DDS), in which a filter-based and an optimization-based motion cueing algo-
rithm (MCA) were compared using a newly developed motion cueing quality rating
method. The goal of the comparison was to investigate whether optimization-based
MCAs have, compared to filter-based approaches, the potential to improve the quality of
motion simulations. The paper describes the two algorithms, discusses their strengths
and weaknesses and describes the experimental methods and results. The MCAs were com-
pared in an experiment where 18 participants rated the perceived motion mismatch, i.e.,
the perceived mismatch between the motion felt in the simulator and the motion one
would expect from a drive in a real car. The results show that the quality of the motion cue-
ing was rated better for the optimization-based MCA than for the filter-based MCA, indicat-
ing that there exists a potential to improve the quality of the motion simulation with
optimization-based methods. Furthermore, it was shown that the rating method provides
reliable and repeatable results within and between participants, which further establishes
the utility of the method.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Motion cueing is the process of converting a desired physical motion, obtained from, e.g., a vehicle model, into motion
simulator input commands. This conversion is done by a motion cueing algorithm (MCA). In past decades, many different
types of MCAs have been introduced (Garrett, Best, & Loughborough, 2010). The vast majority of them are variations of
the filter-based approach, which relies mainly on scaling down and filtering the physical motions such that the commanded
motion lies within the limited motion envelope of a simulator.

Recently, several optimization-based MCAs have been developed, e.g. (Mayrhofer et al., 2007; Beghi, Bruschetta, Maran,
2012; Garrett & Best, 2013; Venrooij et al., 2015). The most important difference with filter-based approaches is that an
optimization-based MCA produces an optimized output, in which simulator constraints are explicitly accounted for, instead
of a filtered output for which it is not guaranteed it lies within the simulator’s operational capabilities. In some optimization-
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based MCAs the motions of the simulator platform are optimized which are then converted to simulator control commands
by low-level controllers, e.g., (Mayrhofer et al., 2007; Beghi et al., 2012). In others, the simulator control commands are opti-
mized directly, e.g., (Garrett & Best, 2013; Venrooij et al., 2015).

It is clear that filter-based and optimization-based MCAs are fundamentally different algorithms, but it is not readily
apparent which provides bettermotion cueing, if at all, and under which conditions. One can compare the algorithms’ output,
i.e., the commanded simulator motions, but that does not provide a direct answer to the question how the motion cueing
quality of the algorithms is actually perceived by simulator occupants. The study presented in this paper aimed at providing
some answers to that question by performing an experimental comparison.

The filter-based and optimization-based motion cueing approaches were compared in a driving simulation experiment,
executed on the Daimler Driving Simulator (DDS) of Daimler AG in Sindelfingen, Germany. In the experiment, an
optimization-based algorithm, developed by the Max Planck Institute for Biological Cybernetics in Tübingen, was compared
against Daimler’s filter-based MCA, using a newly developed motion cueing quality rating method (Cleij et al., 2015). The two
algorithms will be referred to, in this paper, as MCAOPT and MCAFIL respectively. The goal of the comparison is to investigate
whether optimization-based MCAs have, compared to filter-based approaches, the potential to further improve the quality of
motion simulations.

2. Motion cueing algorithms

2.1. Filter-based motion cueing

Filter-based motion cueing algorithms consist of a combination of gains and filters, which transform (desired) vehicle
motion into simulator set-points in real-time. Typically, the filters have a high-pass characteristic to prevent low-
frequency accelerations from consuming a considerable part of the simulator’s motion space. The gain functions can be linear
or nonlinear and are adjustable, with the aim of reaching a good motion representation in a wide range of manoeuvres,
preferably with a constant set of parameters. Special requirements of the manoeuvre that is to be simulated, like tight curves
or turns, might be considered separately by the algorithm in order to provide good motion cueing quality while keeping the
simulator within its operational limits. Well-known characteristics of the filter-based approach are tilt-coordination (where
low-frequency components of the linear acceleration are reproduced by tilting the simulator platform) and motion washout
(the ever-present push to return to the initial position). Such MCAs are commonly referred to as washout filters.

The MCAFIL for non-professional driver applications is based on a classical washout algorithm. Scaling factors and filters
are used in all six degrees of freedom (DOF) to calculate the motion cues. Lateral, vertical and yaw excitations are dynam-
ically limited by high-pass filters. A modified tilt-coordination algorithm provides an impression of steady-state acceleration
in longitudinal direction and maximizes the use of the linear rail.

The main goal of the MCAFIL is to provide linear motion cues within the envelope of the motion system even during worst-
case manoeuvres. The algorithm takes the outputs of the vehicle simulation (accelerations and rotation angles and rates in 6
DOF) and calculates the commands for the motion system at 500 Hz. When used in driver-in-the-loop studies, the algorithm
operates in real-time such that the driver is free to choose velocity, acceleration, deceleration and manoeuvres like lane
change or overtaking other cars.

2.2. Optimization-based motion cueing

Optimization-based motion cueing optimizes simulator motions or control commands through an optimization algo-
rithm. An often-used approach is Model Predictive Control (MPC). MPC is a control methodology that optimizes the current
control signal based on a process model and a future reference trajectory of finite length, while taking constraints into
account (Rawlings & Design, 2015). The optimization is governed by an objective function which quantifies the difference
between (desired) vehicle motion and simulator motion. The optimization is constrained by the simulator’s actuator limits.
As a result, the optimized simulator control inputs and states always lie within the simulator’s operational capabilities. MPC-
based algorithms utilize predictions of future reference signals, using a ‘prediction horizon’ of a certain length, to compute
the current control action. The advantage of this is that the current control action is optimized while taking future simulator
states and control actions into account (Maran et al., 2015).

In general, an MPC-based MCA finds a sequence of controls u and states x which minimizes the following objective
function:
Jðx;uÞ ¼
XN
k¼1

kukk2P þ
1
2

kyðxk;ukÞ � bykk2R þ kyðxkþ1;ukÞ � bykþ1k2R
� �� �

þ
XNþ1

k¼1

kxk � x0k2Q ð1Þ
Subject to the constraints:
xkþ1 � Fðxk;ukÞ ¼ 0
umin 6 uk 6 umax

xmin 6 xk 6 xmax

ð2Þ
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where N – number of time steps, x0 – the ‘‘neutral” state of the simulator, yðxk;ukÞ – inertial signal at the head point in the
simulator as a function of its state and input, – inertial signal at the head point in the vehicle (reference value), P, Q , R –
symmetric positive-definite weighting matrices for penalizing control input, deviation from the neutral state and error in
the inertial signal, respectively. F is the function that describes discrete-time dynamics of the system, umin, umax, are the lower
and upper bounds of the inputs and states. The inertial signal is defined as
Table 1
Compar

Type
Real
Driv
Sam
Futu
Acco
Tune
y ¼ f
x

� �
ð3Þ
where f – specific force, x – rotational velocity at the head point.
The MCAOPT is described in more detail in (Venrooij et al., 2015; Pretto, Venrooij, Nesti & Bülthoff, 2015). For the exper-

iment described in this paper the process model was adjusted to incorporate and cope with the parallel, rather than serial,
model of the Daimler simulator. In the current paper, a trajectory-based optimization was performed, which means that the
information of the entire trajectory was provided to the algorithm at the start of the optimization: i.e. in Eq. (1), is the total
number of trajectory samples and is obtained from a recording of the manoeuvre that was to be simulated (instead of a pre-
diction of the future reference). In theory, this should lead to the best cueing quality, as the maximum amount of available
information (i.e., a ‘perfect prediction’) is provided to the optimization algorithm. A clear disadvantage of this approach is
that it makes the algorithm only suitable for simulation of pre-recorded manoeuvres. It is possible to use prediction methods
to obtain real-time predictions of the future reference signal, which makes the algorithm suitable for driver-in-the-loop sim-
ulations, e.g., (Beghi et al., 2012). It is to be expected that this would result in a lower simulation quality compared to the
trajectory-based optimization approach used in the current study (Katliar et al., 2015).

The weighting matrices used in the objective function are: P ¼ 0:1, Q ¼ 0, R ¼ diagð1;1;1;10;10;10Þ2. As the value for Q
was zero, there was no penalty for deviation from the neutral state, which implies that the algorithm did not exhibit washout
behaviour. The weighting factor 10 for the rotational velocities is chosen as an approximate ratio of standard deviation of
specific force components in m/s2 and standard deviation of rotational velocity components in rad/s for typical car
manoeuvres.

The optimization was constrained by the actuator limits. For safety reasons, the bounds were set at 95% of the actual posi-
tion, velocity and acceleration limits of each actuator. In addition, the simulator state was constrained by the condition that
the initial and final position of the simulator should be upright (zero degrees of roll, pitch and yaw) and the initial and final
velocity of simulator should be zero. The optimization was performed using CasADi toolbox (Anderson, 2013) and Ipopt sol-
ver (Wächter & Biegler, 2006).

2.3. Algorithm comparison

It is important to note that the two MCAs described above are very different algorithms, each with their own character-
istics, see Table 1.

The MCAFIL is a robust, real-time algorithm, suitable for driver-in-the-loop simulations. The MCAOPT performs its opti-
mization based on perfect knowledge of the entire driving manoeuvre, making it unsuitable for real-time driver-in-the-
loop applications, but suitable for passive simulations.

The MCAOPT does not run in real-time due to the high computational load associated with the optimization. The optimiza-
tion of the trajectory used in this study – with a duration of approximately 5 min – took a few hours on a regular PC. After the
optimization, the output of the MCAOPT, which provided data at a sampling rate of 50 Hz, was resampled (interpolated) to
500 Hz, in order to run synchronously with the output of the MCAFIL.

During the optimization, the MCAOPT utilized exact knowledge on the desired motion for all future time steps (trajectory-
based optimization). Such an optimization would not be possible if the knowledge about the future is limited, as is the case
in real-time driving scenarios with a driver in the loop. In that case, prediction algorithms would be required to obtain an
estimate of the future reference trajectory. The effect of using (different approaches to) real-time prediction on simulation
quality remains a topic to be addressed in future studies.
ison of algorithm characteristics.

MCAFIL MCAOPT

Filter-based Optimization-based
-time capable Yes No
er-in-the-loop applications Suitable Not suitable
pling rate 500 Hz 50 Hz
re reference Not applicable Entire trajectory
unting for simulator limits Through manual tuning Through constrained optimization
d Yes No
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Furthermore, the optimization of the MCAOPT is constrained by the simulator’s actuator limits. As a result, the optimized
simulator control inputs and states always lie within the simulator’s operational capabilities. This is not guaranteed for the
output of the MCAFIL, where simulator limits are typically accounted for by tuning the algorithm’s parameters. The MCAOPT

did not need tuning for the experiment described in this paper. The implementation of the MCAOPT used in the current study
did not account for perceptual factors like drivers’ motion sensitivity and thresholds (Pretto et al., 2015). It is to be assumed
that the implementation of such features will further improve the cueing quality of the MCAOPT.

Due to the above differences, this study is not to be considered as a competitive comparison between MCA alternatives,
but rather as an attempt to gain insight in the potential that an optimization-based approach has to offer with respect to
well-established filter-based approaches.

3. Methods

3.1. Research questions

The primary research question of this study is whether optimization-based MCAs have the potential to further improve
the quality of motion simulations compared to filter-based approaches. At the start of the study it was unknown whether
there would be any measurable differences between the two algorithms, and if so, what can be learnt from these differences
to further improve motion cueing.

In order to measure the quality of the motion cueing, a quality rating method developed at the Max Planck Institute for
Biological Cybernetics in Tübingen was utilized. The method was described and evaluated in (Cleij et al., 2015). As the rating
method was only recently developed, a secondary research question was whether the method provides reliable and repeat-
able results within and between participants.

3.2. Apparatus

The experiment was conducted in the Daimler Driving Simulator (DDS), an electrical hexapod platform mounted on a
12 m long linear axis (Zeeb, 2012) (Fig. 1, left). For this experiment, the car’s longitudinal axis was aligned with the simu-
lator’s linear axis by rotating the cabin in the dome (Fig. 1, right). This adjustment provides a relatively large motion space
for the reproduction of longitudinal accelerations and deceleration with the disadvantage that the space for lateral motion is
limited. The driver’s cabin was a standard Mercedes-Benz C-Class model (W204) equipped with an additional display show-
ing the rating bar (described below).

3.3. Participants

In total 18 participants, 9 females, aged between 21 and 40 (mean = 29.3; std = 5.7) took part in the experiment. All had
previous experience in driving simulators, but no or limited knowledge of motion cueing. They were expert drivers with a
minimum mileage of 10,000 km per year (mean = 17,222; std = 7496). Two participants did not complete the experiment
due to motion sickness symptoms and their data were excluded from the analysis.

3.4. Experimental procedure

In the experiment, participants were presented with four pairs of evaluation trials, of which the first pair was used for
training purposes. Each trial consisted of the playback of an identical pre-recorded simulated drive. While the visuals
remained unaltered, the vehicle motions of the simulated drive were processed by either the MCAFIL or the MCAOPT, gener-
ating two different simulator trajectories. These trajectories were repeatedly presented in random order at each trial pair. In
total, participants rated each trajectory four times, of which the last three were included in the data analysis. During the
playback, the participants did not need to take any actions on the steering wheel or pedals. Instead, they were asked to con-
centrate on the movements of the simulator and rate the perceived motion mismatch, i.e., the perceived mismatch between
the motion felt in the simulator and the motion one would expect from a drive in a real car. The experiment lasted approx-
imately 1 h, of which 45 min in the DDS (Table 2).

3.5. Rating procedure

The ratings were provided using the built-in rotary COMAND-knob of a Mercedes C-Class. By rotating it, participants con-
trolled a rating bar with 15 coloured markers, visible on a small screen located to the left of the steering wheel (Fig. 2). A
rotation to the left reduced the number of visible marks (lower motion mismatch); a rotation to the right increased the num-
ber of visible marks (higher motion mismatch). There was always at least one green mark visible. The quality of the motion
cueing was rated in two ways:

A continuous rating (CR) method was used to measure time-varying aspects of the perceived mismatch between real and
simulated drive. For the CR, participants were asked to continuously assign a value (magnitude) to the instantaneous per-



Fig. 1. Exterior of the Daimler Driving Simulator (DDS) (left) and the car orientation during the experiment (right).

Table 2
Overview of experiment procedure.

TRAINING (1 trial pair, 10 min) Familiarization with rating device and procedure
EXPERIMENT PART 1 (1 trial pair, 10 min) Motion mismatch rating: CR followed by OR for each trial
BREAK (5 min)
EXPERIMENT PART 2 (2 trial pairs, 20 min) Motion mismatch rating: CR followed by OR for each trial

Fig. 2. Location of rating bar and rating knob in the car cabin. The rating bar has 15 coloured marks, where green/red marks indicated low/high perceived
mismatch. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ceived motion mismatch via the rotary knob during the playback. If no mismatch was perceived they were asked to provide a
rating of zero.

After each trial the participants were asked to provide an overall rating (OR), by indicating the perceived motion mis-
match of the entire playback. The OR resulted in a single rating for each trial.

The rating method is described in more detail in (Cleij et al., 2015).

3.6. Stimuli

The recorded simulated drive that was used in this experiment was performed by a human driver. The drive consisted of
different manoeuvres combined into one realistic drive in both rural and city surroundings of about 5 min. The chronological
list of manoeuvres that occurred during the drive is shown below.

� InitAcc: initial mild acceleration along a rural road up to the speed of 100 km/h.
� RuralCurves: drive over a rural road consisting of a large-radius left, right and left curve, during which a constant speed
was maintained.

� OverTake: double lane change manoeuvre at constant speed to avoid a car parked on the right-hand side of the road.
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� SlowDown50: upon entering an urban area the speed is initially reduced from 100 to 70 km/h and then from 70 to 50 km/
h.

� TrafLightDec: driving through a gentle curve and decelerating to a full stop in front of a red traffic light.
� TrafLightWait: standing still in front of the red traffic light for �6 s.
� TrafLightAcc: accelerating from the full stop to 50 km/h after the traffic light switched to green.
� City1: multiple gentle curves through the city at a constant speed of 50 km/h.
� Roundabout: decelerating to 20 km/h, driving through a four-exit roundabout, exiting at the second exit and accelerating
back to 50 km/h.

� City2: multiple curves through the city at a constant speed of 50 km/h.
� TurnLeft: decelerating to 20 km/h, driving through a 90� left turn and accelerating back to 50 km/h.
� City3: multiple gentle curves through the city at a constant speed of 50 km/h.
� FinalDec: deceleration to a full stop at a red traffic light.

4. Results

To compare the two MCAs, first the results and reliability of the overall and continuous ratings are shown in Section 4.1.
To determine which parts of the drive are responsible for these differences, the continuous rating is analysed per manoeuvre
in Section 4.2. In Section 4.3 a comparison between the continuous rating and the motion cueing errors over this time inter-
val is shown as an indication of what caused the perceived mismatch during these manoeuvres. To minimize the cueing
errors, both MCAs made use of different cueing mechanisms which are described in Section 4.4. Finally in Section 4.5 the
implementation of these mechanisms to generate the linear acceleration in the driver frame of reference in the Daimler Driv-
ing Simulator is explained.

4.1. Rating results and reliability

Using the method described above, participants rated the perceived motion mismatch between 0 (no motion mismatch)
and 14 (strong motion mismatch). Note that a higher rating value implies a lower cueing quality.

To test for significant differences between mean ratings the parametrized paired t-test (test statistic = t) and repeated
measures ANOVA (test statistic = F) were used. Because the mean ratings were not always normally distributed, the Lilliefors
test for normality and generalized ESD (extreme Studentized deviate) test were used to check the normality and outlier
assumptions of these tests. If these tests were not passed, the non-parametric Wilcoxon signed-rank test (test statistic = z)
and the Friedman test (test statistic = v2) were used instead of the paired t-test and ANOVA respectively.

The average results obtained for the overall rating (OR) are shown in Fig. 3. The mean overall rating (MCAFIL = 7.0,
MCAOPT = 3.0) across all participants differs significantly between MCAs: z = 3.2154, p < 0.01. This indicates that participants
felt less motion mismatch with the MCAOPT than with the MCAFIL. The overall rating does not change significantly for either
of the MCAs over the three evaluation trials (MCAFIL: F(47) = 0.91123, p > 0.05, MCAOPT: v2 (47) = 2.4615, p > 0.05).
Fig. 3. Mean overall rating across three evaluation trials (left) and mean overall rating per trial (right). Error bars indicate the standard error.
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The average results obtained for the continuous rating (CR) are shown in Fig. 4, showing the mean continuous rating
across all participants. Before computing the means, the CR raw data were standardized per trial pair by subtracting the min-
imum rating and dividing by the rating range. The mean values of the continuous ratings (MCAFIL = 4.0, MCAOPT = 1.5) also
differ significantly; t(15) = 3.6708, p < 0.001. Participants were consistent when rating the perceived motion mismatch con-
tinuously (Cronbach’s alpha, mean: 0.83, std: 0.07). As shown in Table 3, from the 16 participants only two did not pass the
statistical test for consistency (Cronbach’s Alpha < 0.7) (Hair, Black, Babin, & Anderson, 2009). This result is in line with pre-
vious findings in which the same method was used to determine MCA perceived quality (Cleij et al., 2015).

4.2. Rating results per manoeuvre

Differences between MCAs rating on specific manoeuvres were analysed by comparing the mean continuous rating of the
two MCAs per manoeuvre. The continuous rating for manoeuvres ‘InitAcc’ and ‘FinalDec’ was not recorded fully and was
Fig. 4. Mean continuous rating (line) and standard error (shaded area). Significance of the difference between MCAs is indicated per manoeuvre with ***(p-
adjusted < 0.001), **(p-adjusted < 0.01), *(p < 0.05) or – (p-adjusted > 0.05). No symbol indicates no statistical test is performed.

Table 3
Consistency test (Cronbach’s Alpha) for participants’ continuous rating.

Participant Cronbach‘s alpha

0 0.894
1 0.828
2 0.883
3 0.868
8 0.822
9 0.897
10 0.884
11 0.843
12 0.888
13 0.84
14 0.683a

15 0.875
16 0.671a

17 0.886
18 0.727
19 0.854

a Two participants did not reach 0.7.



60 D. Cleij et al. / Transportation Research Part F 61 (2019) 53–68
therefore excluded from the analysis. To control for the false discovery rate of multiple comparisons the Benjamini-Hochberg
correction was applied to all corresponding p-values before testing for significance. The resulting test statistics and the sig-
nificantly different means per MCA are shown in Table 4.

4.3. Comparison between rating and cueing errors

To determine which motion cueing errors were responsible for the measured perceived mismatch the data is split in dif-
ferent Manoeuvre Sets. For these sets only the manoeuvres that were rated significantly different between the two MCAs are
used.

� Set Longitudinal (X): ‘SlowDown’, ‘TrafLightDec’
� Set Lateral (Y): ‘RuralCurves’, ‘OverTake’, ‘City2’
� Set Combination (XY): ‘Roundabout’, ‘TurnLeft’

The mean of the continuous ratings over all participants was compared to the errors in 9 motion channels: linear accel-
erations in x, y and z direction, rotational rate and angle in roll, pitch and yaw. In Table 5 the correlations (Pearson correlation
coefficient r) between MCA continuous rating and the absolute error in different motion channels is shown per Manoeuvre
Set. Correlations also occur between some of the motion channels themselves, such as yaw and lateral acceleration, which
can make it difficult to determine exactly which error is rated. Nonetheless the correlation together with the maximum size
of the absolute error (emax) can give a good indication of whether a certain rating is likely to be caused by the error in a speci-
fic motion channel. The boldface values in Table 5 show the highest correlation coefficients and corresponding maximum
error for each column of the table.

From Table 5 one can see that the mean continuous rating correlates with errors in different motion channels for each
MCA. For the longitudinal manoeuvres the MCAOPT rating correlates best with the pitch angle error, while the MCAFIL rating
correlates best with the longitudinal acceleration error. For the lateral manoeuvres a similar observation can be made; here
the MCAOPT rating correlates best with the roll angle error, while the MCAFIL rating correlates best with the lateral acceler-
Table 4
Test statistics for the differences in mean continuous rating per manoeuvre.

Manoeuvre Test statistic (means MCAFIL/MCAOPT)

RuralCurves*** t = 4.3771 (5.1/1.7)
OverTake*** z = 3.9762 (6.1/1.7)
SlowDown** t = 3.4159 (3.2/0.9)
TrafLightDec* t = 2.8780 (2.7/1.2)
TrafLightWait z = 1.7721
TrafLightAcc z = 2.0919
City1 z = 1.5270
Roundabout** t = 3.3070 (5.5/2.6)
City2** t = 2.5093 (3.2/1.4)
TurnLeft* t = 2.8131 (4.1/1.9)
City3 z = 0.9526

***p-adjusted < 0.001, **p-adjusted < 0.01, *p-adjusted < 0.05 and otherwise p-adjusted > 0.05.

Table 5
Correlation coefficients between continuous rating and absolute motion errors.

Set Longitudinal Lateral Combination

MCA MCAOPT MCAFIL MCAOPT MCAFIL MCAOPT MCAFIL

Correlation/error r emax r emax r emax r emax r emax r emax

Longitudinal Acc 0.84 0.09 0.86 2.22 0.60 0.10 0.43 0.74 0.70 0.82 0.45 1.92
Lateral Acc 0.86 0.07 0.48 0.29 0.62 0.23 0.92 1.41 0.92 1.62 0.90 3.61
Vertical Acc 0.87 0.13 0.72 0.02 0.90 0.08 0.79 0.03 0.86 0.26 0.84 0.16
Roll Rate 0.68 0.25 0.23 0.53 0.61 1.98 0.38 1.58 0.93 6.27 0.70 1.53
Pitch Rate 0.78 1.95 0.72 0.70 0.68 1.05 0.45 0.31 0.85 4.27 0.57 0.79
Yaw Rate 0.85 0.16 0.43 1.12 0.69 3.20 0.81 5.06 0.84 9.42 0.88 26.10
Roll Angle 0.65 0.96 0.26 0.86 0.91 8.39 0.88 3.23 0.80 14.16 0.85 4.88
Pitch Angle 0.92 7.55 0.82 2.60 0.50 5.43 0.42 1.36 0.60 6.47 0.44 3.09
Yaw Angle 0.81 17.79 0.71 13.33 0.87 18.50 0.72 43.00 0.46 58.83 0.55 77.90

Boldface values indicate highest correlation coefficients and corresponding maximum error for each column of the table.
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ation error. It is also notable that the maximum pitch angle error is relatively high for the MCAOPT, but no clear correlation
between this error and the rating is found. For the manoeuvres with both strong longitudinal and lateral acceleration errors
the MCAOPT correlates best with the roll rate error, while the MCAFIL correlates best with the lateral acceleration error. Addi-
tionally a strong correlation between lateral acceleration error and the rating for the MCAOPT is also found.

Overall the rating for the MCAFIL correlates best with the linear acceleration error, while the rating for the MCAOPT cor-
relates best with the rotational error.

4.4. Motion cueing mechanisms

The MCAs utilize very different approaches to deal with the limited motion space of the simulator. While these mecha-
nisms are explicitly programmed for the MCAFIL, the mechanisms used by MCAOPT are only revealed when analysing the
resulting optimized simulator motions. In the following paragraphs these different mechanisms are described.

Global scaling of the vehicle motions is an often used mechanism to guarantee that the simulator motions stay within the
simulator motion space, while the visual and vestibular motions remain coherent. The MCAFIL relies to a large extent on a
global scaling of the vehicle motion, resulting in significantly reduced motion strengths. Because the MCAOPT uses an opti-
mization at each time step, motion scaling is only applied at those time steps where this is required (i.e., local scaling), result-
ing in virtually no global scaling.

Washout of the simulator motions is an often used mechanism to keep the simulator within its motion limits. This mech-
anism returns the simulator to its neutral position, such that simulator excursions in all simulator degrees of freedom are
still possible. This mechanism is used by the MCAFIL via high pass filtering of the accelerations that are produced via the sim-
ulator’s linear rail and hexapod translations. While the MCAOPT has a similar mechanism implemented, currently this was
not used (as Q ¼ 0 in Eq. (1)).

Tilt-coordination is an often used mechanism to simulate sustained linear accelerations while keeping the simulator
within the simulator workspace. The simulator is slowly tilted such that a component of the gravitational acceleration
can be used to simulate the desired longitudinal or lateral acceleration. This mechanism is explicitly implemented in the
MCAFIL where filters are used to obtain the low frequent vehicle accelerations that can be simulated with tilt-
coordination. Even though this mechanism is not explicitly implemented in the MCAOPT, the optimization can result in sim-
ilar behaviour, trading tilt rate errors for improved performance in linear acceleration simulation. From Fig. 5 it can be seen
that this trade-off results in much higher tilt rates for MCAOPT than for MCAFIL. The perceptual threshold of 3�/s (Groen & Bles,
2004), indicated with the striped black line, is only reached during the manoeuvres ‘Roundabout’ and ‘TurnLeft’. The effect of
using tilt-coordination for both MCAs is clearly visible in Fig. 8 where the green line indicates the acceleration in the driver
reference frame that is produced via tilt-coordination.

Prepositioning is a mechanism used by the MCAOPT to extend the motion space of the simulator. Knowing future
motions, the MCAOPT positions the simulator in such a way that the available excursion for this future motion is maximized.
Instead of moving the simulator to the neutral position as done with the washout mechanism, prepositioning results in mov-
ing the simulator to extreme positions of the simulator. For example, several seconds before the manoeuvre ‘OverTake’, the
hexapod is slowly moved to a large lateral offset to the right (�1.1 m) (MCAOPT at t = 5.5[s], Fig. 6). This prepositioning dou-
bles the available leftward excursion needed for the linear accelerations of the future motion.

A similar prepositioning strategy can be identified for the manoeuvre ‘Roundabout’. Here, the available clockwise yaw
excursion of the hexapod is maximized by very slowly prepositioning the hexapod to a counterclockwise yaw angle of
�21� (MCAOPT at t = 120[s], Fig. 7 top) before entering the roundabout. In this case the mechanism starts about 110 s before
the start of the roundabout manoeuvre. For the manoeuvre ‘LeftTurn’, the available yaw excursion is maximized about 10 s
before the turn starts (MCAOPT at t = 161[s], Fig. 7 top). Here the algorithm traded an error in yaw rate just before the turn
(MCAOPT between t = 161[s] and t = 171[s], Fig. 7 bottom) for additional yaw excursion possibilities while driving through the
turn (between t = 171[s] and t = 179[s]).

Velocity buffering, which is only utilized by the MCAOPT, is the final mechanism that will be discussed here. In velocity
buffering the simulator’s velocity is utilized to maximize the simulator’s future acceleration capabilities. It can be interpreted
as the velocity equivalent of the prepositioning mechanism. By giving the simulator a velocity in one direction, the duration
for which the simulator can then accelerate in the opposite direction is increased. In the experiment, velocity buffering was
most clearly observed during manoeuvres ‘InitAcc’ and ‘TrafLightWait’. As shown in the top plot of Fig. 8, the MCAFIL did not
result in simulator motion during the vehicle’s standstill (between t = 0[s] and t = 15.5[s] and between t = 33[s] and t = 38[s]),
but the MCAOPT generated a backwards simulator motion via the linear rail (blue1 line) and hexapod translation (red line)
during the vehicle’s standstill. At the same time the simulator pitch angle was slowly increased (green line) to counteract
the generated backward motion, resulting in a linear acceleration (black line) of zero in the driver frame of reference. The pitch
rate was constant at 0.9�/s for the manoeuvre ‘TrafLightWait’ and increased from 0 to 1.5�/s for the manoeuvre ‘InitAcc’. Upon
accelerating (at t = 15.5[s] and t = 38[s]), the initial forward vehicle acceleration was simulated by first slowing down the back-
wards motion (green and red lines) before the simulator obtained forward velocity, effectively extending the duration at which
the forward acceleration could be sustained. This mechanism was mainly used to improve the high frequent initial acceleration
1 For interpretation of color in Figs. 7 and 8, the reader is referred to the web version of this article.



Fig. 5. Tilt rates in head frame of reference for all manoeuvres and both MCAs.

Fig. 6. Hexapod lateral position for the end of the manoeuvre ‘RuralCurves’ and the manoeuvre ‘OverTake’ for both MCAs.
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cue provided by the hexapod translation (during both manoeuvres) and the linear rail (mainly during manoeuvre ‘InitAcc’).
Effective velocity buffering requires accurate knowledge on future accelerations in order not to exceed actuator position limits.

4.5. Linear acceleration simulation in the Daimler simulator

There are multiple ways in which the Daimler simulator, consisting of a linear rail and a hexapod, can be used to generate
linear acceleration in the driver frame of reference. Investigating the sources of the linear accelerations resulting from either
MCA gives a better insight in how the different cueing mechanisms and the capabilities of the Daimler simulator are
exploited by these MCAs. Table 6 shows the contributions of the different sources of acceleration as a percentage of the
required vehicle acceleration (first value) and as a percentage of the generated total simulator acceleration (second value)
in the driver frame of reference. As the MCAOPT results in very small acceleration errors (i.e. vehicle and simulator acceler-
ations in the driver frame of reference are almost equal), the two percentages are very similar for this MCA.



Fig. 7. Yaw angle (top) and yaw rate (bottom) during several manoeuvres for both MCAs.

Table 6
Contributions of different acceleration sources to the longitudinal and lateral acceleration in the driver frame of reference.

Acceleration Longitudinal (X) Lateral (Y)

MCA MCAOPT MCAFIL MCAOPT MCAFIL

Gravitational acceleration (GA) 99.5%/100% 19.3%/80.3% 82.0%/87.6% 24.2%/90.7%
Linear rail acceleration (LRA) 41.3%/41.5% 12.4%/51.4% 7.8%/8.3% 0.2%/0.8%
Hexapod X acceleration (HXA) 17.1%/17.2% 2.4%/9.9% 2.5%/2.7% 0%/0.2%
Hexapod Y acceleration (HYA) 4.3%/4.3% 0.2%/0.9% 17.6%/18.8% 4.6%/17.4%
Hexapod Z acceleration (HZA) 0.2%/0.2% 0.0%/0.0% 0.1%/0.1% 0.0%0.0%
Hexapod roll acceleration (HRA) 0.8%/0.8% 0.1%/0.3% 2.5%/2.7% 1.1%/4.1%
Hexapod pitch acceleration (HPA) 2.4%/2.4% 0.7%/2.8% 0.5%/0.5% 0.0%/0.0%
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The gravitational acceleration contributes to both linear and longitudinal acceleration in the driver frame of reference via
the tilt-coordination mechanism. When the hexapod yaw angle is zero, an acceleration of the hexapod over the linear rail
simulates longitudinal acceleration in the driver frame of reference. When the hexapod yaw angle differs from zero, this
source can also produce lateral acceleration in the driver frame of reference. The hexapod translation capabilities can also
be used to simulate short duration longitudinal and lateral linear accelerations in the driver frame of reference. In combina-
tion with a hexapod tilt angle, translation accelerations in one direction can contribute to the linear acceleration in a differ-
ent direction in the driver frame of reference. Finally, because the hexapod coordinate system is positioned 1.6 meter below
the driver’s eye point, also the roll and pitch acceleration of the hexapod cause small linear accelerations in the driver frame
of reference.

As can be derived from Table 6, the sum of the contributions of all these sources is not necessarily 100%. This can be
explained by the occurrence of counter acting accelerations produced by different sources resulting in a simulator acceler-
ation of zero in the driver frame of reference. As shown in Fig. 8 (top) this occurs, for example, during prepositioning (from
t = 0[s] to t = 15.5[s]) and velocity buffering (from t = 33[s] to t = 38[s]) where the linear rail (blue line) and hexapod (red line)
accelerations counter act the gravitational acceleration (green line). The total acceleration produced by the individual
sources is thus higher than the resulting acceleration in the driver frame of reference.

Both the MCAFIL as well as the MCAOPT use the gravitational acceleration as their main source for simulating both longi-
tudinal and lateral acceleration in the driver frame of reference. However, the angular rates produced by the MCAOPT are
much larger than those produced by the MCAFIL (means of 0.47 and 0.39�/s versus 0.14 and 0.09�/s in roll and pitch respec-
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tively). Table 6 shows that this source is responsible for 100% of the total longitudinal simulator acceleration in the drivers
reference frame when using the MCAOPT. To keep the corresponding tilt rate low, the tilt angle is slowly increased before the
motion starts as can be seen from the green line between for example t = 30[s] and t = 33[s] in the top plot of Fig. 9. At the
same time the resulting false rotational cue is minimized by the hexapod (red line) and linear rail (blue line) accelerations in
opposite direction. The MCAFIL also counter acts the excess gravitational acceleration from tilt-coordination with linear rail
accelerations, but does so only at the end of the manoeuvre as can be seen around t = 15[s] and t = 22[s] in the bottom plot of
Fig. 9.

The MCAFIL is designed to use tilt-coordination for sustained accelerations, while using the linear rail and hexapod trans-
lations for high frequent motions. This is clearly visible in Fig. 9 (bottom) during the manoeuvre ‘SlowDown’ where the linear
rail (blue line) is used for the initial and final high frequent part of the motion while the low frequent part of the motion is
produced by the gravitational acceleration (green line). In Fig. 10 (bottom) instead of the linear rail, the hexapod lateral
acceleration (yellow line) is used for the very low amplitude high frequent part of the motion throughout the curves. Even
though the MCAOPT does not explicitly implement such a division in the frequency domain, the optimization algorithm
comes up with a very similar solution. This effect is especially well visible in Fig. 10 (top), where all high frequent variations
of the lateral accelerations are generated via hexapod lateral acceleration (yellow line). The benefit of not implementing a
hard division for high and low frequencies explicitly is that the linear rail can also be used for low frequent motions as seen
clearly by the blue line in Fig. 9 (top) during the manoeuvre ‘TrafLightDec’.

Table 6 also shows an interesting difference between the usage of the linear rail accelerations as a source for both lateral
and longitudinal acceleration in the driver reference frame. In the currently used Daimler simulator configuration, the linear
rail can be used for longitudinal acceleration when the hexapod yaw angle is equal to zero. Table 6 shows that both MCAs
produce around half of the longitudinal simulator motions in the driver reference frame using this source. Due to the use of
linear rail accelerations for low frequent motions as well as the use of the prepositioning and velocity buffering mechanisms,
the linear rail accelerations account for a much larger part of the total vehicle acceleration when using the MCAOPT than
when using the MCAFIL.

When applying a yaw angle to the hexapod, the linear rail acceleration can also be used to simulate lateral vehicle accel-
eration which, as Table 6 indicates, is only used by the MCAOPT, where 7.8% of the lateral vehicle acceleration is produced in
this way. As shown in Fig. 11, the MCAOPT uses this mechanism effectively during the roundabout manoeuvre where the lin-
ear rail acceleration (blue line) contributes maximally at t = 15[s] with 0.5 m=s2 to the lateral acceleration in the drivers ref-
erence frame. Since the yaw angle of the hexapod is always smaller than 90�, using this mechanism for lateral acceleration
Fig. 8. Contributions of different acceleration sources to the longitudinal acceleration in the driver frame of reference for manoeuvres ‘InitAcc’,
‘TrafLightWait’ and ‘TrafLightAcc’ using the MCAOPT (top) and the MCAFIL (bottom).



Fig. 9. Contributions of different acceleration sources to the longitudinal acceleration in the driver frame of reference for the manoeuvres ‘OverTake’,
‘SlowDown’ and ‘TrafLightDec’ using the MCAOPT (top) and the MCAFIL (bottom).
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creates an additional parasitic longitudinal acceleration. Fig. 12 between t = 14[s] and t = 17[s] shows that the MCAOPT uses
pitch tilt-coordination (green line2) to counteract the parasitic longitudinal acceleration (blue line).

5. Discussion

The perceived motion mismatch for the MCAFIL and MCAOPT were rated using two measurement methods, both showing a
significantly larger perceived motion mismatch when using the MCAFIL than when using the MCAOPT. This indicates that the
MCAOPT indeed has the potential to further improve motion cueing in simulators such as the DDS. The rating methods both
showed very similar ratios between the MCAFIL and the MCAOPT (OR: 2.32, CR: 2.67), implying that the mean of the contin-
uous rating was a good indicator for the overall rating of the complete drive. The consistency of both the overall and the
continuous rating between trials indicates that learning, habituation or fatigue effects did not impact these ratings signifi-
cantly, and participants were able to provide consistent estimates during the whole experiment.

A more in detail analysis of the continuous rating shows that the difference between MCAs is mainly caused by the
manoeuvres ‘Overtake’ and ‘RuralCurves’, where the largest significant difference between the mean ratings was found. It
is especially surprising that during the ‘RuralCurves’ manoeuvre, where the MCAFIL simply scales down the motion, such
a large difference between MCAs is found. The often used mechanism of scaling, here with a factor of 0.3 during the ‘Rur-
alCurves’ manoeuvre, can thus have a larger impact on the perceived mismatch in motion simulation than often assumed.
The continuous rating also showed that for both MCAs the manoeuvre ‘Roundabout’ is rated as the worst of all manoeuvres
presented during the drive. It is notable that even with full knowledge of the future motions the MCAOPT still resulted in a
strong perceived motion mismatch during this manoeuvre. However, also here an optimization-based approach has the
potential to significantly improve motion cueing compared to a filter-based approach. In this study, the manoeuvres result-
ing in large lateral accelerations showed the largest difference between MCAs. It should be noted that better results for these
manoeuvres could likely be obtained by aligning the car’s lateral axis with the simulator’s linear axis.

The extensive use of global scaling mechanism by the MCAFIL and the lack of any global scaling in the MCAOPT is the lar-
gest difference between the two MCAs. This resulted in larger linear acceleration errors for the MCAFIL than for the MCAOPT.
Instead, the MCAOPT made much more use of tilt-coordination mechanism, resulting in higher rotation errors. The effect of
2 For interpretation of color in Fig. 11, the reader is referred to the web version of this article.



Fig. 10. Contributions of different acceleration mechanisms to the lateral acceleration in the driver’s coordinate system for the manoeuvres ‘RuralCurves’
and ‘OverTake’ using the MCAOPT (top) and the MCAFIL (bottom).

Fig. 11. Contributions of different acceleration mechanisms to the lateral acceleration in the driver’s coordinate system for the manoeuvre ‘Roundabout’
using the MCAOPT (top) and the MCAFIL (bottom).
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Fig. 12. Contributions of different acceleration mechanisms to the longitudinal acceleration in the driver’s coordinate system for the manoeuvre
‘Roundabout’ using the MCAOPT.
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these choices is also visible in the continuous rating results. The MCAOPT rating showed a higher correlation to rotation
errors, while the MCAFIL showed a higher correlation to the errors in linear accelerations. These correlations indicate that
both error types were perceived by the participants. The mean continuous rating, however, was significantly higher for
the MCAFIL than for the MCAOPT. This indicates that, a higher tilt rate that results in false rotational cues, would have been
more acceptable than the degree of global scaling as done by the MCAFIL to avoid these false cues.

One advantage of global scaling is that the resulting simulator motions are less strong, but still in coherence with the
desired vehicle motions. Currently the MCAOPT managed to minimize the acceleration errors so well, that low coherence
did not seem to be an issue during most of the drive. If the acceleration errors increase, for example when using a limited
prediction horizon, unpredictable scaling of the linear accelerations might become a problem. In this case global scaling
could also become necessary for the MCAOPT.

The correlation analysis also indicates that the participants rated rotational angles instead of rotational rates during the
lateral and longitudinal manoeuvre sets. This finding indicates that not only the tilt rate, but also a tilt angle can be perceived
as a false cue and should be taken into account when optimizing a motion cueing algorithm.

During the ‘TrafLightWait’ manoeuvre there were no vehicle motions. The MCAOPT, however, uses this time for velocity
buffering and prepositioning which results in significant simulator motion. The corresponding continuous rating of the
MCAOPT for this manoeuvre does not show a significant increase in perceived mismatch, indicating that this motion was
not perceived or did not bother the participants. This could be explained by the tilt rate of 0.9�/s, which is often found to
be below the human threshold for rotational rate, and a resulting acceleration of zero. In practice, however, simulator motion
can often be felt through the generation of parasitic rumble-like motions. In the Daimler simulator special attention was
given in the design for this purpose, resulting in very smooth simulator motions. Using simulator motions for prepositioning
or velocity buffering during standstill is therefore only recommended for high quality motion simulators. For both these
mechanisms knowledge of the future vehicle trajectory is necessary. Reducing the prediction horizon of an MPC-based algo-
rithm will therefore also reduce the possibilities of using these mechanisms.

The trade-off made by the MCAOPT to reduce the yaw rate before the ‘LeftTurn’ manoeuvre in order to increase the avail-
able yaw rate while driving through the turn could be responsible for the slight increase in continuous rating at this point.
During the ‘LeftTurn’ manoeuvre continuous rating also shows a clear perceived motion mismatch. Further research could
determine if such trade-offs are beneficial and the MPC cost function should be adjusted correspondingly.

For the manoeuvres ‘City1’ and ‘City3’ no significant difference between the MCAs was found. The maximum vehicle
acceleration during these manoeuvres was 0.36 in lateral direction, compared to 1.45 m=s2 during manoeuvre ‘City2’, where
significant differences between MCAs were found. The high scaling factor of the MCAFIL thus does not seem to reduce the
perceived motion mismatch significantly for accelerations below 0.36. It is likely that the resulting absolute errors were close
to the human perceptual threshold for lateral inertial acceleration and were thus not perceived as incoherent with the visual
motions.

6. Conclusions

The results of the experiment lead to the following conclusions:

� The results show that participants were able to rate the perceived mismatch consistently over the various repetitions.
This holds for both the overall rating (Fig. 3 right plot) as for the continuous rating (Table 3).
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� The rating results (Fig. 3 right plot and Fig. 4) show that optimization-based cueing algorithms such as MCAOPT indeed
have the potential to improve motion cueing compared to filter-based approaches such as MCAFIL.

� The continuous rating (Fig. 4) shows that avoiding global scaling of the vehicle motions, as can be done with
optimization-based cueing algorithms, has a large impact on the perceived motion mismatch especially during rural road
simulations. The rating also showed that simulating a roundabout manoeuvre is difficult even for optimization-based
approaches such as MCAOPT. However, a significant improvement can still be made compared to filter-based-
approaches such as MCAFIL.

� The comparison of the continuous rating with the motion errors (Table 5) indicates that a certain amount of detectable
rotation errors could be preferred over large scaling errors.

� Several mechanisms were identified that contributed to the differences observed between the two algorithms: global
scaling, washout, tilt-coordination, prepositioning and velocity buffering. Additionally an overview was given (Table 6)
of how the two MCAs used the different sources of linear acceleration in the Daimler Driving Simulator.

It should be noted that the two MCAs are very different algorithms, each with their own characteristics.
This study is therefore not to be considered as a competitive comparison between MCA alternatives, but rather as an

attempt to gain insight in the potential that an optimization-based approach has to offer. The results show that there exists
a potential to further improve the quality of the motion simulation with optimization-based methods, deserving of further
research.

Regarding the rating method, the results show that the rating method provides reliable and repeatable results within and
between participants, which further confirms the reliability and utility of the method. Ongoing research investigates the
dynamics and limitations of the rating behaviour.

In future experiments it could be investigated how the quality of the MCAOPT degrades if the prediction horizon is
decreased (i.e., no longer using trajectory-based optimization) or if the prediction is imperfect (i.e., no longer using the
pre-recorded trajectory but a predicted trajectory). Also, it could be studied how the objective function can be adapted to
further improve the quality of the MCAOPT. Finally, it would be interesting to investigate whether the tuning of the MCAFIL

can be further improved based on the more detailed analysis of the results presented in this paper.
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