

**Delft University of Technology** 

#### Nonintrusive determination of aerodynamic pressure and loads from PIV velocity data (Invited)

van Oudheusden, Bas

**Publication date** 2019

**Document Version** Final published version

#### Citation (APA)

van Oudheusden, B. (2019). Nonintrusive determination of aerodynamic pressure and loads from PIV velocity data (Invited). 10th Ankara International Aerospace Conference, Ankara, Turkey.

#### Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

# Nonintrusive determination of aerodynamic pressure and loads from PIV velocity data

**Bas van Oudheusden** 

**Delft University of Technology – The Netherlands** 





September 18-20, 2019 @ METU, Ankara - TURKEY

**10<sup>th</sup> ANKARA INTERNATIONAL AEROSPACE CONFERENCE** 

## Acknowledgements

**People** (colleagues, MSc and PhD students, collaborators, etc.)

Anand Ashok, Steve Brust, Eric Casimiri, Paul van Gent, Roeland de Kat, Valeria Gentile, Marco Klein Heerenbrink, Kyle Lynch, Remco van de Meerendonk, Matteo Novara, Qais Payanda, Mustafa Percin, Daniele Ragni, Eric Roosenboom, Fulvio Scarano, Jan Schneiders, Ferry Schrijer, Louis Souverein, Daniele Violato, Pierre-Elie Weiss (ONERA), and others...

#### Support funding (grants)

**STW** (Dutch National Science Foundation): grants 7645 (2006-2011) and 11023 (2010-2016)

EU grants: FP7-NIOPLEX (2013-2016) and H2020-HOMER (2018-2021)



### **Background: Classical procedures for pressure and load measurement**

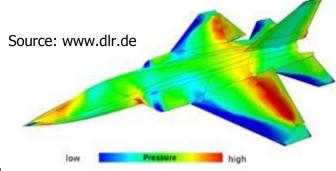
Pressure: surface pressure sensors and flow probes

Loads: mechanical balance systems

#### **Features:**

- Reliable & established
- Expensive (system complexity)
- Intrusive
- Either localized or global
- Low spatial resolution
- High temporal resolution








### **Non-intrusive optical pressure/load measurement**

#### **Pressure Sensitive Paint (PSP)**

Surface pressure



# **PIV/PTV-based pressure measurement:** "pressure from velocity"

- PIV = Particle Image Velocimetry
- PTV = Particle Tracking Velocimetry

#### **Attractive Features:**

- Flow-field (+surface) pressure
- Tuneable sensitivity
- Non-intrusive
- No (model or probe) instrumentation required
- Flow + pressure: FSI & aeroelasticity; aeroacoustics





## **1. Working Principles**

## 2. Applications (aerospace domain)



## Part 1

# **Working Principles**

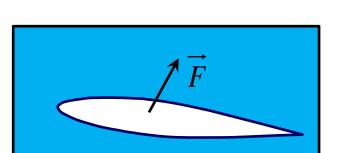


### **Velocimetry-based pressure measurement**

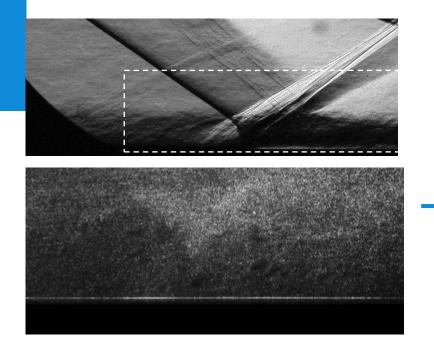
#### Pressure/loads from velocity: basic operating principle

- **1.** Pressure gradient from momentum equation:
- 2. Pressure field from spatial integration:
- **3.** Integral loads from control volume formulation:

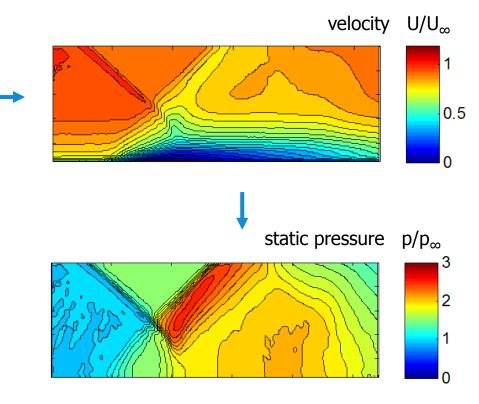
$$\mathbf{F}(t) \approx -\underbrace{\iiint_{V} \frac{\partial \rho \mathbf{u}}{\partial t} dV}_{\text{Acceleration term}} -\underbrace{\iint_{S} \rho \mathbf{u} \mathbf{u} \cdot \mathbf{n}}_{\text{Momentum flux term}} \frac{dS}{dS} - \underbrace{\iint_{S} \rho \mathbf{n} dS}_{\text{Pressure term}}$$


- Van Oudheusden (Meas.Sci.Technol. 2013) pressure ٠
- Rival & Van Oudheusden (Exp.Fluids 2017) loads ٠




 $\nabla p = -\rho \frac{D\mathbf{u}}{Dt} + \mu \nabla^2 \mathbf{u}$ 

 $p = \iint \nabla p \ dA$ 

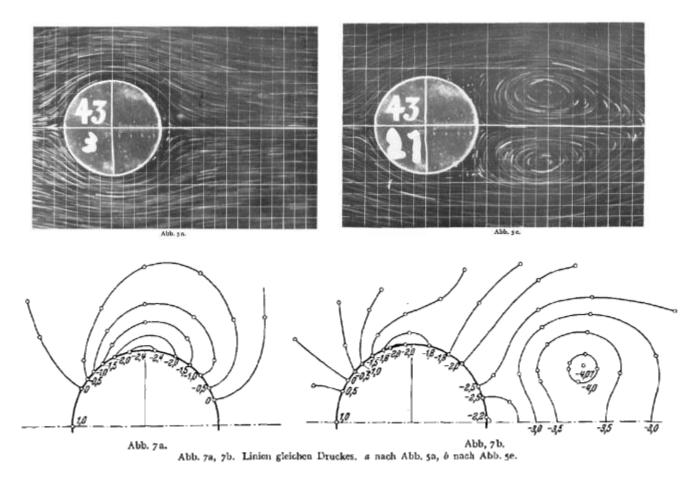

$$\mathbf{F}(t) \approx -\underbrace{\int \int \int_{V} \frac{\partial \rho \mathbf{u}}{\partial t} dV}_{\text{Acceleration term}} - \underbrace{\int \int_{S} \rho \mathbf{u} \mathbf{u} \cdot \mathbf{n} \, dS}_{\text{Momentum flux term}} - \underbrace{\int \int_{S} p \, \mathbf{n} \, dS}_{\text{Pressure term}}$$



### **PIV-based pressure procedure**



Mach = 1.6 shock-wave boundary-layer interaction (Van Oudheusden and Souverein 2007)




- 1. PIV image recording
- 2. image interrogation
- 3. pressure integration



### **Visualisation-based pressure determination**

#### A (pre-)historical example: Schwabe 1935 (!)



**TU**Delft

Schwabe M (1935) Über die Druckermittlung in der nichtstationären ebenen Strömung - *Ing. Archiv* 

### **Visualisation-based pressure determination**

#### **Developments towards a digital implementation**

Progress is enabled by advances in <u>digital camera hardware</u>, <u>image</u> processing tools and <u>numerical algorithms</u>

#### **Early steps:**

• <u>Imaichi and Ohmi (1983)</u> applied a numerical processing of <u>photographic</u> flowvisualization data of two-dimensional cylinder flows

#### **Real progress after the introduction of Digital PIV** (DPIV, Willert & Gharib, 1991):

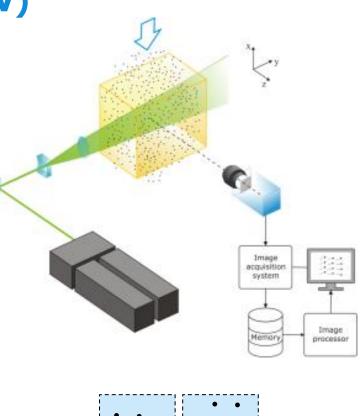
- <u>Jakobsen et al (1997)</u> and <u>Jensen et al. (2001)</u> used PIV to determine acceleration and pressure in water wave phenomena
- Baur and Köngeter (1999) investigated pressure variations in vortical structures
- <u>Gurka et al. (1999)</u>: time-average pressure in a nozzle flow and an air jet

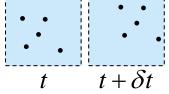
So, basically the technique is about 20 years old



### **Particle Image Velocimetry (PIV)**

### Planar PIV (2C or 3C-stereo)


#### **Basic working principle:**


- 1. Flow is seeded with small particles
- 2. Illumination by thin laser sheet (pulsed)
- 3. Two image frames are captured at small time interval (= pulse separation  $\delta t$ )
- Image interrogation: cross-correlation of frame sections ("interrogation windows") provides local average particle displacement
- 5. local flow velocity = part.displacement /  $\delta t$

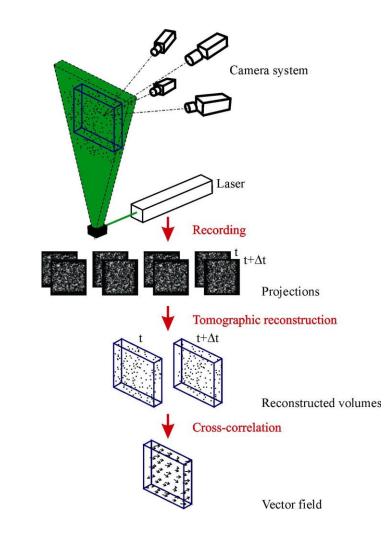
#### **Typical current PIV system capabilities:**

- pulse separation  $\delta t$  down to 1  $\mu s$
- Repetition rate up to 10 kHz

Delft






an "interrogation window"

### **Volumetric PIV**

### **Tomographic PIV**

#### **Extension of stereoscopic PIV:**

- 1. Volumetric illumination
- 2. Simultaneous recording from multiple views  $\rightarrow$  "projections" (typical 4)
- 3. Tomographic reconstruction of volumetric "particle" distribution
- 4. 3D cross-correlation  $\rightarrow$  **3D-3C** velocity data
- Tomo-PIV has severe volumetric limitations (~100 cm<sup>3</sup> in air) + large processing time
- Recent improvements by using volumetric particle tracking methods



(Elsinga et al, Exp. in Fluids, 2006)



### **PIV-based "pressure measurement"**

$$\nabla p = -\rho \frac{D\mathbf{u}}{Dt} + \mu \nabla^2 \mathbf{u} \quad \text{with:}$$

viscous term (negligible)

$$\frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}$$

material derivative = flow acceleration

#### **Requirements on velocity measurement**

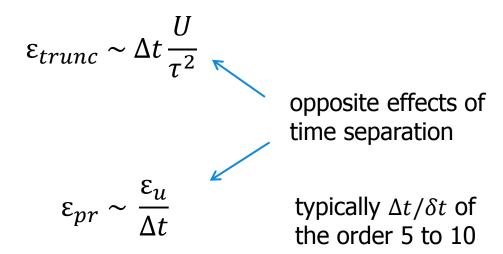
- Instantaneous pressure determination in unsteady flows: requires acceleration data (time-resolved or "multiple-pulse" PIV)
  - pulse separation  $\delta t$  governs velocity measurement
  - time separation  $\Delta t$  (~repetition rate) governs acceleration measurement
- **Mean pressure** (or steady flow): velocity mean/statistics sufficient
- **Pressure in 2D flow**: planar velocity data sufficient (2C-PIV)
- **Pressure in 3D flow**: volumetric velocity data needed (3D-3C-data)



### **Accuracy of material derivative determination**

#### **Effect of time separation** $\Delta t$

#### **Error sources:**


#### 1. Truncation error

(result of discretization)NB: τ and U are typical time and velocity scales of the flow

#### 2. Precision error

propagation of velocity measurement uncertainty  $\varepsilon_u$ 

$$\frac{du}{dt}(t) \approx \frac{u(t + \Delta t) - u(t)}{\Delta t}$$

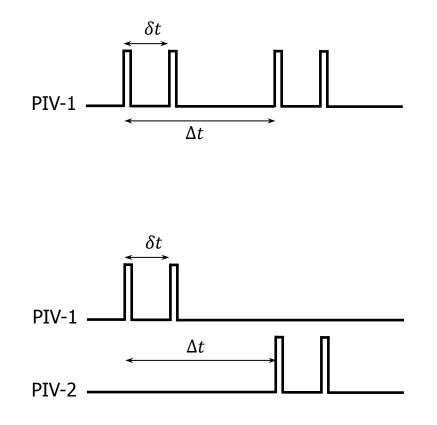


NB: error can be further reduced by using time-series data



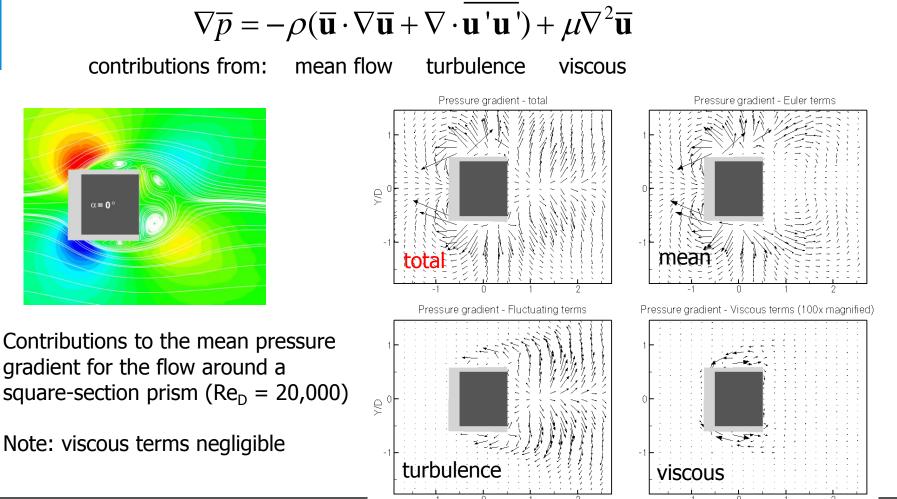
### **Timing strategies (hardware implementation):**

#### • Time-resolved double-pulse:


- Allows independent tuning of pulse separation  $\delta t$  and time separation  $\Delta t$
- Requires high repetition rate (~ kHz)
- Minimum time separation sets limit on flow speed (~ 25 - 50 m/s)

#### • Multiple-pulse (or dual PIV):

Suitable for high speed flow


Delft

- Small time separation achieved by delay between two independent PIV systems; no high repetition rate required!
- Optical separation of the PIV systems (e.g. by wavelength or polarization)



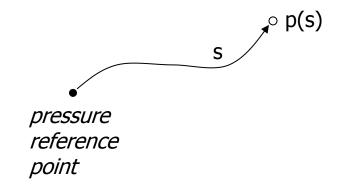
### **Reynolds-averaging for mean pressure**

Mean pressure gradient from Reynolds-averaged momentum equation:



X/D

X/D


16

**T**UDelft

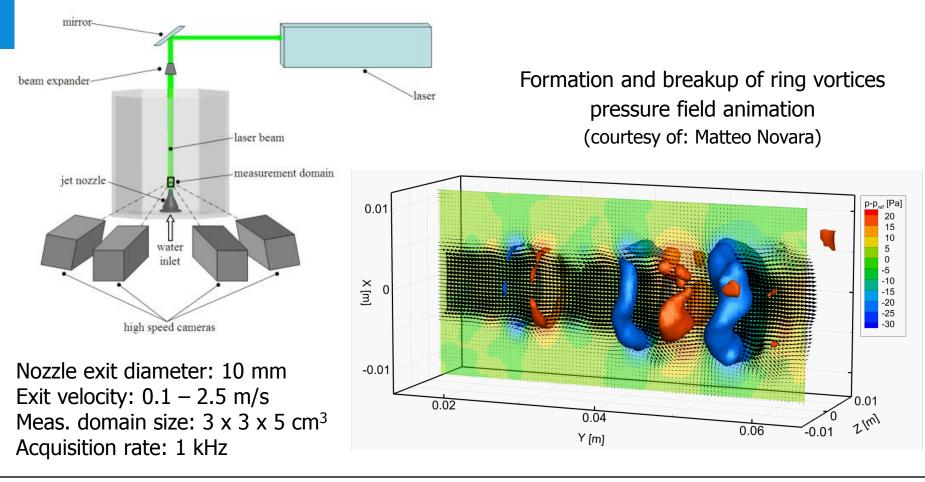
### **Pressure-gradient integration approaches**

#### **Spatial integration:**

$$p(\mathbf{s}) = p(\mathbf{s}_{ref}) + \int_{\mathbf{s}_{ref}}^{\mathbf{s}} \nabla p \cdot d\mathbf{s}$$



#### **Uniqueness:**


- Pressure value can be path-dependent due to pressure-gradient inconsistencies (measurement errors or incomplete velocity information)
- Multi-path integration or marching-schemes with weighted averages
- Poisson-equation approach (equivalent to global error minimization)

$$\nabla^2 p = \nabla \cdot f(\mathbf{x}, t) \iff \min_{p} \iint_{S} \|\nabla p - f(\mathbf{x}, t)\|^2 dS$$



### **Example: 3D pressure field of low-Re jet in water**

#### **3D characterization of a transitional jet using time-resolved tomo-PIV**



## Part 2

## **Applications in high speed flows**

**Extension to compressible flows** 

**Axisymmetric base flows** 



### **Extension to compressible flow**

**Governing relation:** (with viscous term neglected)

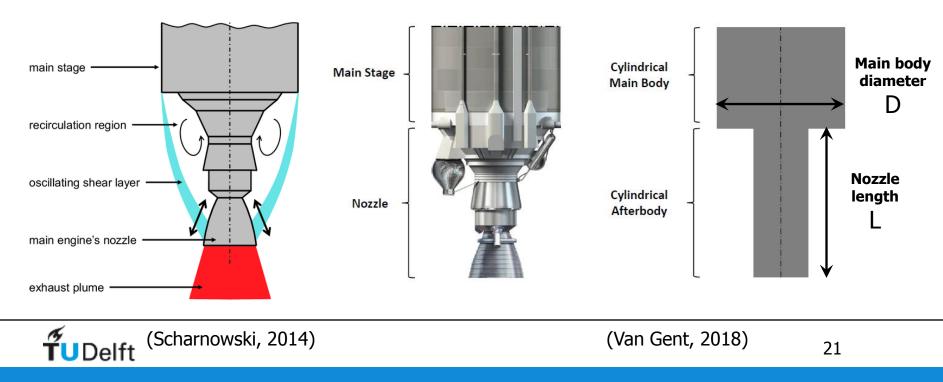
• momentum equation: 
$$\nabla p = -\rho \frac{D\mathbf{u}}{Dt}$$
 but with variable density!

Closure procedure: (Van Oudheusden et al. 2006)

• equation of state:  
• constant total temperature: 
$$c_p T + \frac{1}{2} \|\mathbf{u}\|^2 = \operatorname{cst.}$$
  $\int \rho = \frac{p}{R \cdot T(\|\mathbf{u}\|)}$ 

Explicit formulation for the pressure gradient:

$$\frac{\nabla p}{p} = \nabla(\ln p) = \frac{1}{R \cdot T(\|\mathbf{u}\|)} \cdot \frac{D\mathbf{u}}{Dt}$$



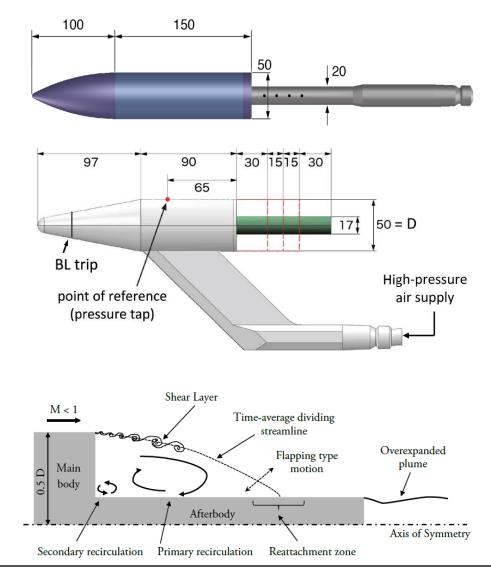

### **Axisymmetric base flows**

#### **Relevance:**

- Background: transonic buffet in launchers
- Unsteady shear layer reattachment
- Simplification: generic (axisymmetric) test geometries






### **Base flow investigations**

#### **Experimental models:**

- Rear-sting mounted model
- Side-sting mounted model with exhaust plume simulation (1990's FESTIP program)

#### **Objectives:**

- Unsteady flow behaviour
- Particular interest: pressure on base and afterbody
- Influence of afterbody length and plume presence





### **Base flow investigations**

#### **1.** Potential for <u>instantaneous</u> pressure:

- Synthetic test case: method assessment (numerical simulation)
- Instantaneous pressure in low-speed (experimental)
- Idem in high-speed

#### 2. Determination of mean pressure:

- Re-averaged approach for mean pressure
- 2D vs 3D data (is tomo necessary?)
- Application study: base flow with simulated exhaust plume

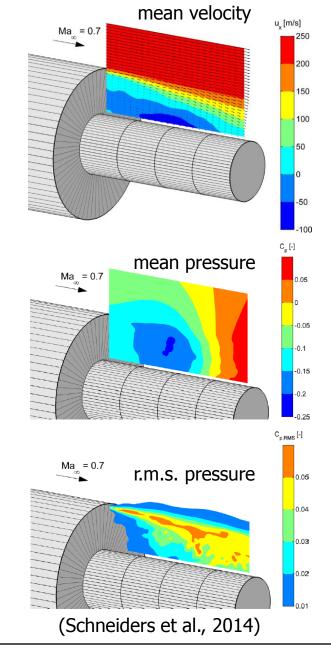
PhD of Paul van Gent (various publications; 2015-2018) Partly funded by FP7 project "NIOPLEX" (2013-2016)





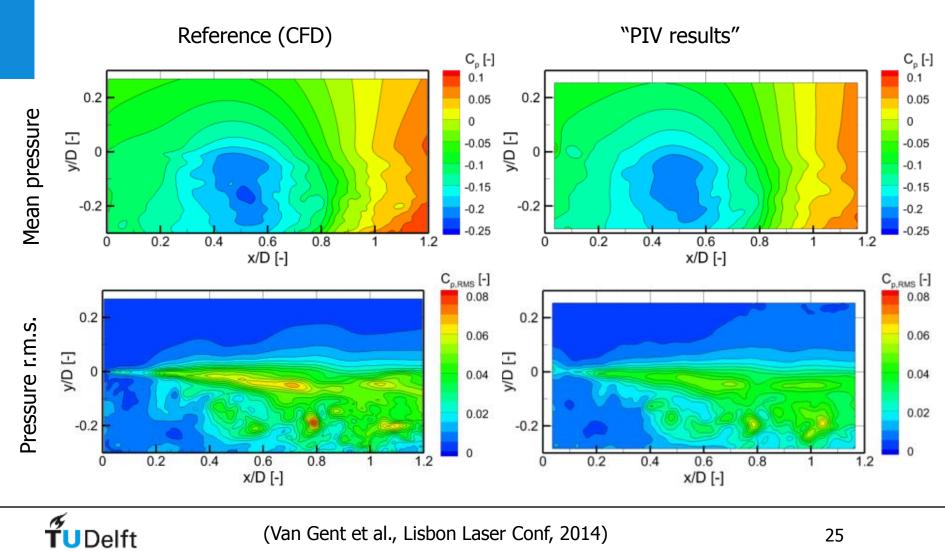


### **Comparative test case**


#### Methodology:

- Reference data: Zonal Detached Eddy (ZDES) simulation (ONERA) of a transonic base flow (Mach = 0.7)
- The CFD data is processed to construct a "synthetic PIV experiment"
- This comprises sequences of quasi-PIV/PTV data in either <u>time-resolved</u> or <u>multi-pulse</u> (4 pulses) mode

#### **Objectives:**


**TU**Delft

- Assessment of modeling assumptions
- Comparison of different methods (PIV/PTV, timeresolved/multi-pulse, processing schemes)
- Effect of data noise, etc..



### **Comparative test case – results**

Illustrative results from an earlier study



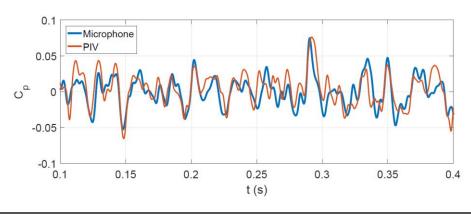
(Van Gent et al., Lisbon Laser Conf, 2014)

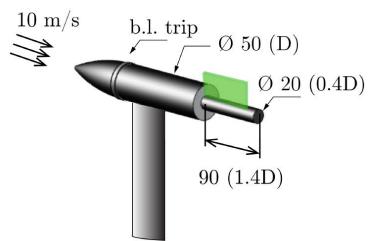
### **Comparative test case - conclusions**

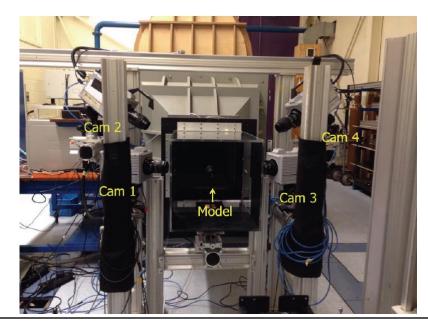


- Modeling assumptions are less relevant than the accuracy of the flow acceleration determination
- All different processing methods allow a good to accurate reconstruction of the pressure (r.m.s. errors <1-2%)
- PTV-based methods can give higher accuracy than PIV-based, due to higher spatial resolution
- Time-resolved data provides the best results, but meaningful pressure can be obtained from multi-pulse (or even single-snapshot) approaches
- Adding (realistic) image noise levels is not prohibitive




### Low-speed base flow experiment


#### **Experimental set-up:**


- Flow speed: 10 m/s
- PIV: 4-camera thin-tomo volume (75 mm x 35 mm x 3.5 mm)
- Acquisition rate 10 kHz (time-resolved)
- Reference pressure: microphones (6)

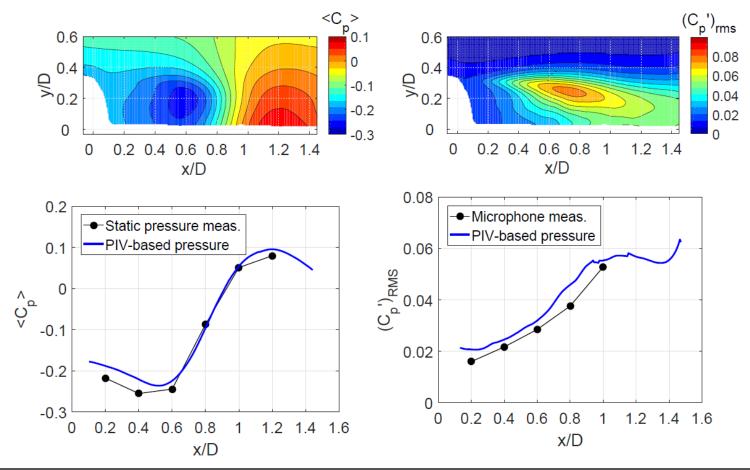
#### Data processing:

 Flow acceleration is computed from tracks of 25 subsequent PIV fields









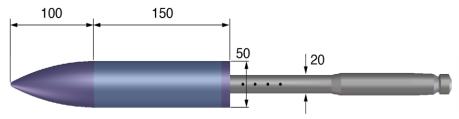

(Van Gent et al., Meas.Sci.Technol., 2018)

### Low-speed base flow experiment

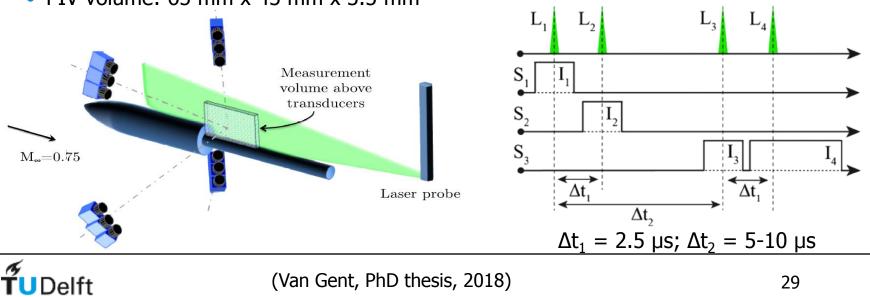
#### **Results:**

• Good agreement between PIV-based and reference (microphone) pressure




### **High-speed base flow experiment**

#### Model:

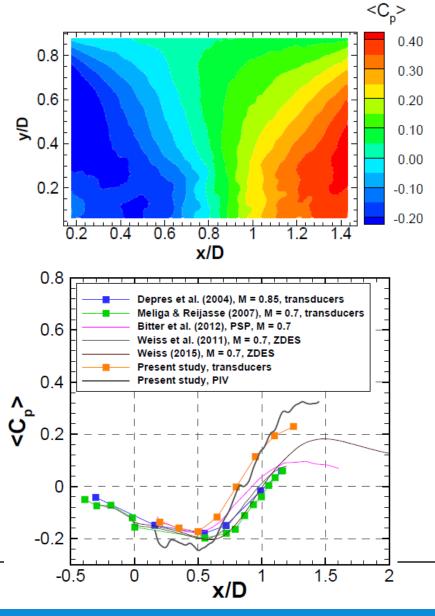

- Rear-sting-mounted model
- Flow speed: Mach = 0.75
- Pressure: 4 Endevco transducers

#### **PIV set-up:**

- PIV strategy: **four-pulse tomographic**
- 3 independent tomographic PIV systems (2-laser, 12-camera system, Lynch & Scarano 2014)
- PIV volume: 65 mm x 45 mm x 3.5 mm










### **High-speed base flow experiment**

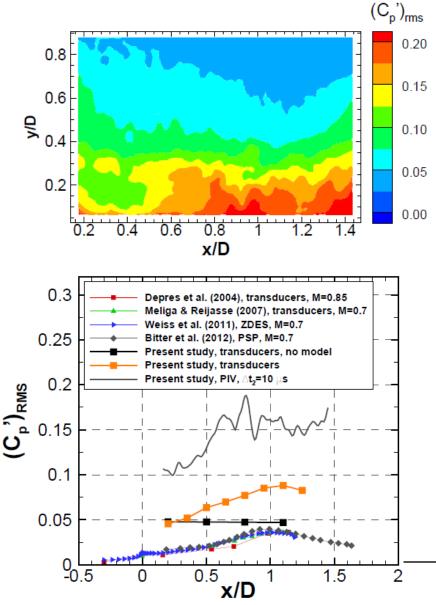
#### **Results for the mean pressure:**

- Good agreement between transducer and PIV-based pressure
- Reasonable agreement with other experiments and numerical simulations (differences in exact configuration, flow conditions, blockage, etc.)





### **High-speed base flow experiment**


#### **Results for the r.m.s. pressure:**

- Poor agreement between PIV and transducers
- Pressure levels higher than for reference studies (both exp & num)

Possible causes:

**Ť**UDelft

- High wind tunnel noise level
- Detrimental effect of discrepancies between the different PIV systems



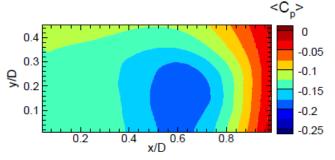
### Mean pressure determination in compressible flow

#### **Reynolds averaging approach**

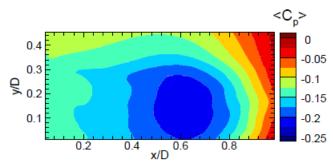
 (Mean) pressure from velocity data using (Re-avg.) momentum equation:

$$\nabla \bar{p} = -\rho [\bar{\boldsymbol{u}} \cdot \nabla \bar{\boldsymbol{u}} + \nabla \overline{\boldsymbol{u}' \boldsymbol{u}'}] + h.o.t.$$

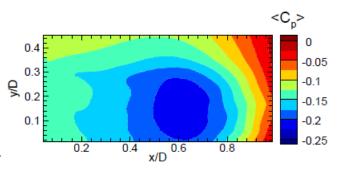
 h.o.t.: fluctuations and gradients of density -> are negligible (Van Gent et al. 2018)


#### **Assesment with synthetic PIV exp. data:**

- Contribution of the Reynolds-stresses: ~ 20%
- Contribution of  $h.o.t.: \sim 1 \%$


**TU**Delft

- Including Re-stresses reduces r.m.s. error from 17% to 5%
- <u>Tomo vs. planar PIV</u>: 2D-2C and 3D-3C results differ by less than 1%!
- -> planar PIV is "sufficient" in this case (NB: axisymmetric geometry)

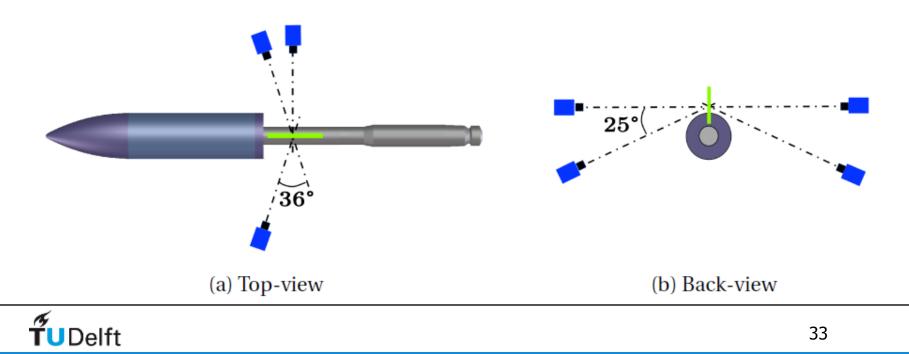





(b) Pressure field reconstructed using mean-flow terms



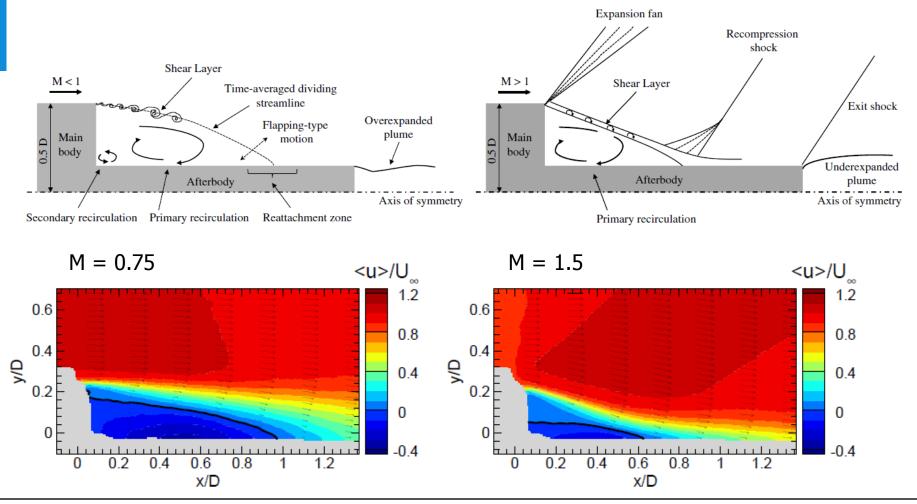
(d) idem + Reynolds-stresses terms




(f) idem + density-gradient terms

### Mean pressure: compressible base flow experiments

#### **Experimental set-up**


- Rear-sting-mounted model
- Single tomographic PIV system (5 cameras, one in planar configuration)
- Standard **double-pulse** strategy @ 5 Hz repetition rate)
- PIV volume: 85 mm x 50 mm x 5 mm
- Mach number: M = 0.75 (transonic) and M = 1.5 (supersonic)

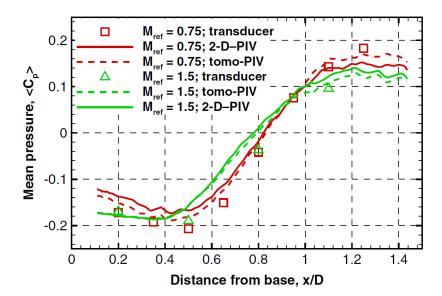


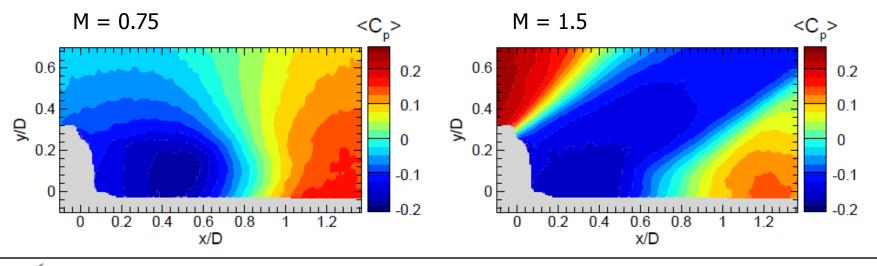
### Mean pressure: compressible base flow experiments

#### **Time-average velocity flow fields**

**T**UDelft




### Mean pressure: compressible base flow experiments


#### **Pressure results**

**Ť**UDelft

- Good agreement between PIV and transducer data, for transonic and supersonic flow
- Close agreement between 2D and tomo PIV data!


-> planar PIV is "sufficient" in this case

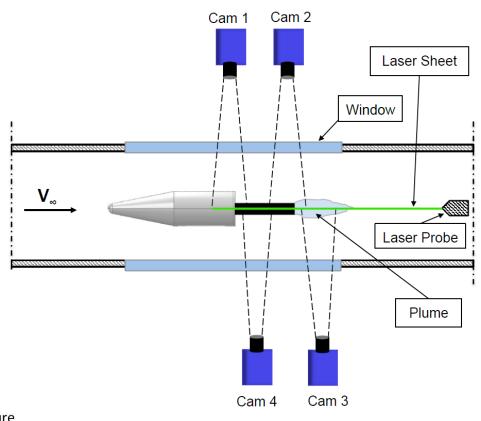


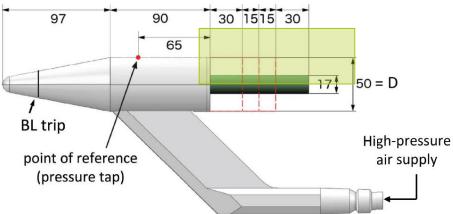


#### **Experimental set-up**

- Side-sting-mounted model
- Effect of jet plume is simulated by compressed air supply
- Variable nozzle length (collars)
   L/D = 0.6, 0.9, 1.2, 1.8



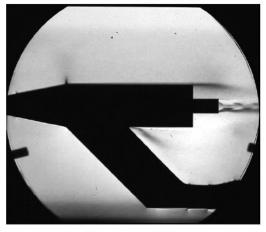

#### **Flow conditions**


**TU**Delft

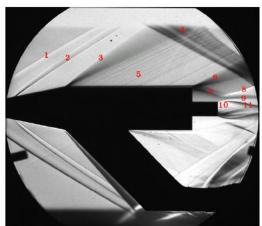
- Free-stream Mach number: M = 0.76 (transonic) and M = 2.2 (supersonic)
- Jet exit Mach number 3.5
- Jet (pressure) conditions are modelled after Ariane 5 Vulcain 2 operation
- In terms of jet pressure ratio:  $JPR = p_j/p_{amb}$ 
  - Transonic: JPR = 0.21 (over-expanded)
  - Supersonic: JPR = 1.57 (under-expanded)

### **PIV configuration**

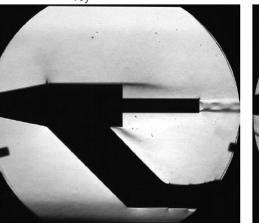
- Planar (2C) PIV
- Recording: 5 Hz in double-frame mode
- 4 cameras to extend field of view
- FOV size: 140 mm x 50 mm
- NB: only free stream flow is seeded







### **Schlieren visualization**

(with jet operative)


Shortest nozzle (L/D = 0.6)



(a)  $M_{ref} = 0.76; L/D = 0.6$ 



(b)  $M_{ref} = 2.19; L/D = 0.6$ 

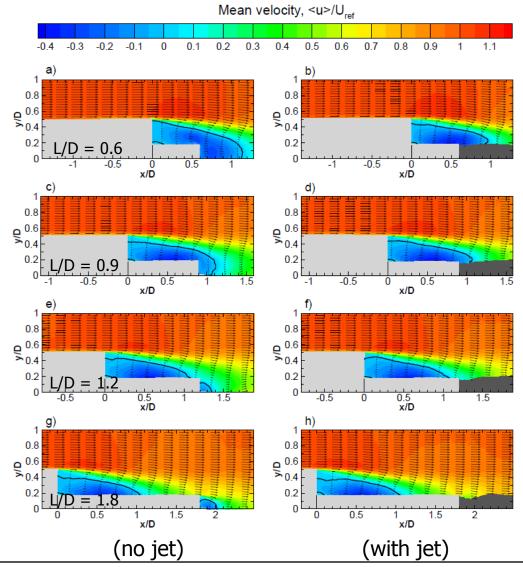


(c)  $M_{ref} = 0.76; L/D = 1.8$ 

Transonic case M = 0.76

(over-expanded jet)

Supersonic case M = 2.19 (under-expanded jet)


(d)  $M_{ref} = 2.19; L/D = 1.8$ 

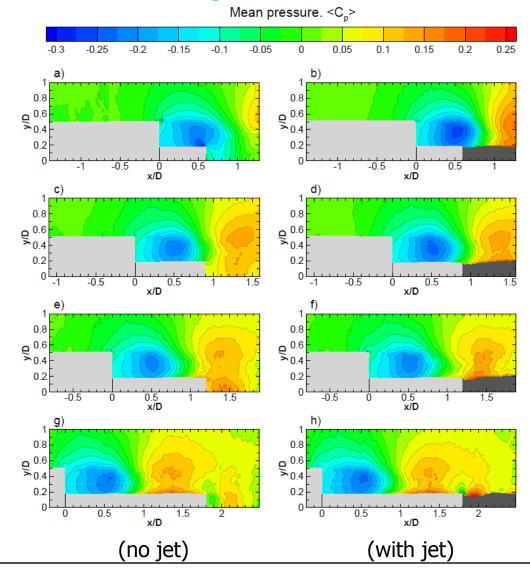
Longest nozzle (L/D = 1.8)



#### **Transonic case**

- Effect of nozzle length and jet on flow reattachment
- For L/D > 1.1 reattachment on after-body surface
- Flow unsteadiness reduces for longer afterbodies






#### **Transonic case**

- Effect of nozzle length and jet on flow reattachment
- For L/D > 1.1 reattachment on after-body surface
- Flow unsteadiness reduces for longer afterbodies

#### **Pressure fields:**

 Largest jet effect for the shortest nozzle





## Conclusions

#### **Operating principles**

• Pressure (fluctuations) can be "measured" non-intrusively with PIV

#### Implementation:

- For (predominantly) 2D flows planar PIV is sufficient
- Volumetric data required for 3D flows
- Instantaneous pressure requires time information: time-resolved (low flow speed) or multi-pulse (high flow speed)
- Multi-pulse approach challenging due to system complexity and synchronization issues
- Mean pressure requires no time information (velocity data statistics only)

#### **Applications:**

• Transonic base flows (many others can be found in literature)

