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SUMMARY

The enhancements in computation technologies in the last decades enabled businesses
to analyze the data that is collected through their systems which helps to improve their
services. However, performing data analytics remains a challenging task for small- and
medium-scale companies due to the lack of in-house experience and computational re-
sources. Data Analytics-as-a-Service (DAaaS) paradigm provides such companies out-
sourced data analytics, where a company that is specialized in data analytics serves its
knowledge and computational resources to the other companies, which need data ana-
lytics for their businesses.

A major challenge in DAaaS is preserving the privacy of the outsourced data, which
might contain sensitive customer or employee information or the intellectual property
of the outsourcing company. Leakage of sensitive information has several consequences
both for outsourcing and service provider companies as legal obligations, loss of rep-
utation, and financial loss. Therefore, a well functioning outsourced analytics service
should achieve several data protection measures such as confidentiality, integrity, and
availability.

In this thesis, we focus on the preservation of confidentiality in data analytics-as-a-
service applications. We select three analytics applications that are becoming popular
in outsourced data analytics, which are process analytics, machine learning, and mar-
keting analytics. Despite there exist several other techniques that are commonly used
in outsourced data analytics, we decide to focus on the algorithms of process analytics,
machine learning, and marketing analytics since the privacy concerns in these analytics
have not been investigated thoroughly.

In confidential data analytics-as-a-service, our goal is to achieve confidentiality by
protecting input/output privacy and maintaining the correctness and efficiency of ana-
lytics computations. To protect the privacy of data we use two secure computation tech-
niques, which are homomorphic encryption and secure multiparty computation. To as-
sure correctness, we propose several hybrid protocol designs that minimize the loss of
accuracy in computations. For the efficiency of our protocols, we use several optimiza-
tion techniques that reduce the computation and communication costs of private data
analytics. Our protocols show promising results for confidential data analytics in the
outsourced setting.
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SAMENVATTING

In de afgelopen decennia zijn de computatietechnologieën verbeterd. Dankzij deze ver-
betering hebben bedrijven gegevens kunnen analyseren die via hun systemen zijn ver-
zameld, wat helpt om hun diensten te verbeteren. Echter, het uitvoeren van gegevens-
analyse blijft een uitdagende taak voor het midden- en kleinbedrijf (MKB) te wijten aan
het gebrek aan ervaringin en computationele middelen. Het Data Analytics-as-a-Service
(DAaaS) paradigma biedt dergelijke bedrijven uitbestede gegevensanalyse, waarbij een
bedrijf dat gespecialiseerd is in gegevensanalyse zijn kennis en computationele midde-
len levert aan de andere bedrijven, die gegevensanalyse nodig hebben.

Een grote uitdaging bij DAaaS is het beschermen van de privacy van de uitbestede
gegevens, die gevoelige klant- of werknemersinformatie, of het intellectuele eigendom
van het uitbestedende bedrijf kunnen bevatten. Het lekken van gevoelige informatie
heeft verschillende gevolgen voor zowel uitbesteding als dienstverlenende bedrijven,
zoals wettelijke verplichtingen, reputatieschade, en financieel verlies. Daarom moet
een goed functionerende en uitbestede analyseservice verschillende gegevensbescher-
mingsmaatregelen treffen die leiden tot een gewenst niveau van vertrouwelijkheid, inte-
griteit en beschikbaarheid.

In dit proefschrift richten we ons op het behoud van vertrouwelijkheid in DAaaS ap-
plicaties. We selecteren drie analysetoepassingen die populair zijn in uitbestede gege-
vensanalyse, namelijk procesanalyse, machine learning, en marketinganalyse. Ondanks
dat er verschillende andere technieken bestaan die vaak worden gebruikt bij uitbestede
gegevensanalyse, concentreren we ons op de algoritmen van procesanalyse, machine
learning, en marketinganalyse, aangezien de privacykwesties in deze analyses niet gron-
dig zijn onderzocht.

Bij vertrouwelijke DAaaS is ons doel om vertrouwelijkheid te bereiken door de pri-
vacy van input en output te beschermen en de juistheid en efficiëntie van analytische be-
rekeningen te behouden. Om de privacy van gegevens te beschermen gebruiken we twee
veilige berekeningstechnieken, namelijk homomorfe versleuteling en veilige berekening
met meerdere partijen. Om de juistheid te verzekeren, stellen we verschillende hybride
protocolontwerpen voor die het verlies aan nauwkeurigheid in berekeningen minimali-
seren. Voor de efficiëntie van onze protocollen gebruiken we verschillende optimalisa-
tietechnieken die de berekenings- en communicatiekosten voor gegevensanalyse. Onze
protocollen laten veelbelovende resultaten zien voor vertrouwelijke gegevensanalyse in
de uitbestede setting.
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1
INTRODUCTION

Big data became a prominent term for businesses in the last decade with the dramatic
increase in the amount of data generated which is enabled by innovations in computa-
tion technologies. In 2016, people generated 2.5 quintillion bytes of data every day [1]. By
2020, this number is expected to reach 146880 GB per person [2]. The massive amount of
data generated by the computing systems does not remain idle. Companies collect and
analyze the data to improve their services and products, for example, to understand cus-
tomer behaviour, and reduce the risk of cybersecurity threats against their business [3].
Rather than seeing it as an auxiliary tool, companies have embraced data analytics as a
booster for their businesses. As of 2018, the percentage of enterprises that adopted data
analytics has reached to 59%, which goes over 90% in some industries, such as telecom-
munication [4].

Performing data analytics is not an easy task for companies. One challenge in utiliz-
ing data analytics is the lack of in-house experience. Especially small- and medium-size
companies do not have employees who are specialized in data analytics. Companies can
either recruit new employees, which incurs an additional financial cost, or train existing
employees, which requires investment in time. The additional time and money invest-
ment make managers reluctant to fund data analysis teams [5]. Another challenge in
in-house data analytics is the lack of computational resources. Without having the nec-
essary computational infrastructure, investing in human resources is not adequate to
perform successful data analytics. Furthermore, even if the enterprises have adequate
human and computational resources, it is still very challenging for them to follow the
latest advances in data analytics by themselves [6].

1.1. THE RISE OF DATA ANALYTICS-AS-A-SERVICE
Outsourcing data analytics tasks to an external company is a viable solution to over-
come the inability of in-house data analytics. Inspired by the cloud computing ser-
vices (Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-
a-Service (SaaS)), Data Analytics-as-a-Service (DAaaS) paradigm offers enterprises data

1
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analytics services in an outsourced manner [7]. In this paradigm, a company which is
specialized in data analytics serves its knowledge and computational resources to the
companies that need data analytics for their businesses. The decrease in financial cost
and the time spent makes data outsourcing attractive for companies. Delegating the an-
alytics to an expert company results in higher quality analytics since the data analytics
company owns the newest analytics tools and is aware of the innovations in the specific
domain [6]. Furthermore, it strengthens the public accountability of companies since
an external team can provide the correct results without any bias [6]. With all the advan-
tages, outsourced analytics is widely adopted by companies such that by 2019, almost
half of the data analytics tasks worldwide are outsourced [8].

It is important to note that data science specialists do not advise companies to out-
source their data analytics tasks fully. The best practices in DAaaS suggest outsourcing
certain type of analytics applications and build an in-house data analytics team for the
rest of applications [6]. In this way, they can take faster action in emergency cases and
still keep track of the newest technologies in data analytics. Below we discuss several
outsourced analytics applications purchased by companies.

PROCESS ANALYTICS

Process analytics provides organizations insights in the effectiveness of their business
processes [9]. By visualizing business processes companies can detect the bottlenecks
in their systems and take corresponding actions. Performing process analytics is use-
ful to analyze the workflow within the company, to clarify job functions for employees,
and to conduct internal auditing tasks. Assuring the efficiency of processes is a high
priority analytics task for many companies [10]. Process mining is a prominent mech-
anism to perform process analytics which aims to discover, monitor, and improve the
real-life processes by extracting knowledge from the event data generated by digital sys-
tems [11]. Process mining is used for process analytics in three ways that are 1. process
discovery which discovers a process model from raw event logs, 2. conformance checking
which compares a process model with an event log to observe if the real behaviour in the
log matches the expected behaviour in the process model, and 3. process enhancement
which extends a process model with additional information and perspectives [11].

Conducting process analytics is not an easy task for many companies since the un-
derlying techniques require them to have specific knowledge on process analytics which
should be updated with the changing business dynamics and technologies [10]. There-
fore, companies prefer to outsource the process analytics tasks to service providers that
are the experts in the field. Outsourcing process mining tasks is becoming popular for
many enterprises such that the market size is expected to easily triple or quadruple in
the upcoming few years [12].

MACHINE LEARNING

The advances in computation technologies enabled machine learning techniques, espe-
cially neural networks, to reduce the long computation times to a feasible range which
results in success in several fields such as image classification [13], voice recognition [14],
and problem-solving [15]. Nowadays, machine learning techniques are used by enter-
prises to automate business functions such as root-cause analysis, targeted advertising,
customer services, and forecasting [16].
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Despite the success of machine learning that promises significant improvement in
business functions, deploying machine learning is a big challenge for companies. Apart
from having the knowledge to implement the techniques, acquiring computational re-
sources and sufficient amount of data challenge companies to successfully use machine
learning in their businesses. The solution to overcome the difficulties in the deploy-
ment of machine learning is possible by outsourcing the tasks to the service providers.
The well-known technology companies such as Google [17], Amazon [18], IBM [19] lead
the outsourcing market by providing their resources to the enterprises. The outsourcing
market for machine learning services is promising such that it is expected to grow over
43% between 2019 and 2024 [20].

MARKETING ANALYTICS

Marketing is an important business function for companies to decide the best strategy
to make money from their products. Like many other business functions, the digital
era required companies to change their strategies for the marketing of their products.
Apart from using the classical means of marketing such as television advertisements,
billboards, or magazines, companies are now adopting online marketing practices to
provide targeted advertisements for their customers which are determined by the previ-
ously observed behavior of the customer [21]. Using online personalized advertisements
benefits companies by offering their services faster, easier and on a global range. The use
of data analytics is important in digital marketing to understand customer behaviour,
market trends, to decide pricing and also to get to know the competitors. Companies
use several machine learning techniques such as logistic regression [22], deep neural
networks [23], factorization machines [24] to match the right advertisement to the right
customers by observing customer behaviour.

For most companies, surviving in the competitive advertising environment is possi-
ble by investing significant amount of money on marketing analytics. Between 2017 and
2018, the share of marketing analytics in marketing budget was 9.2% which constitutes
the largest share of the budget [25]. Considering the drawbacks of performing in-house
data analytics, companies prefer to outsourced their marketing analytics. By outsourc-
ing marketing analytics, companies can save money with an improved quality of ana-
lytics [21]. Furthermore, outsourcing provides companies a fair competition area with
their competitors since the analytics are performed by professional service providers.

1.2. PRIVACY CONCERNS IN DATA ANALYTICS-AS-A-SERVICE
One big challenge in data analytics-as-a-service is assuring privacy protection of out-
sourced data. The privacy-protection is important to protect the outsourced data, which
can belong to the customers or employees of the company, the computation tasks, and
the intellectual property of the company. Outsourcing companies have mainly three
concerns when they are using DAaaS services [26]. The first one is trust in the service
provider company. The companies believe that they lose control over their data when
they share the data with external parties who are not necessarily trusted [26]. Since
the company, which outsources the data analytics, is responsible to its customers and
employees on the protection of sensitive data, a possible untrusted act by the service
provider implies the charges on the outsourcing company, as well. A second concern is
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leaking information to their competitors by sharing the same DAaaS service with mul-
tiple other customers. The service providers open their resources for multiple com-
panies and provide them analytics simultaneously. Although the service providers are
well aware of the regulations about the protection of each outsourcing companies’ data
and computation tasks, a possible breach can leak intellectual property to the competi-
tors [26]. The third concern of outsourcing companies is regarding the technical mech-
anisms used to protect the data and analytics. With the growth in data sizes and the
change in the complexity of analytics, the outsourcing companies want to assure the
right mechanisms are used by the service providers to protect their data [26].

Leaking customer data or intellectual property has several consequences for analyt-
ics outsourcing companies and service providers. The most crucial consequence is the
legal enforcements. Handling sensitive data requires conformance to several legal mech-
anisms; and a failure in data protection can cause sanctions and penalties imposed by
the governments or the unions. The legal enforcements lead to the loss of reputation and
public accountability for companies, which is followed by the financial consequences
that lead to the loss of business and company value. An example of such privacy inci-
dent is encountered by Facebook after the Cambridge Analytica scandal due to deceiving
the users about the control of their personal information [27]. The company is enforced
to modify the corporate structure, submit new privacy restrictions, and pay $5 billion
penalty, which is the largest ever imposed on any company for violating customer pri-
vacy [27]. After the announcement of the scandal, Facebook lost its market value by more
than $36 billion in a couple of days [28]. Furthermore, 3 million European users deleted
their accounts within a couple of months after the scandal leaked [29].

With all the lessons taken from the previous privacy incidents, as of May 2018, the
companies are required to pay even more attention to the protection of data with the
new General Data Protection Regulation (GDPR) in the EU [30]. Although there had been
several effective data protection directives, the European Union designed the GDPR as
a broader and deeper data protection regulation to protect individual’s privacy rights in
the digital era [31]. The regulation brings some changes in the extent of the application
of protection laws, consent, penalties, and privacy-by-design. Accordingly, any company
(inside or outside the EU) that works with the data related to the EU residents should
comply with the regulation [32]. It requires the companies to give the conditions of con-
sent in a clear and plain language [32]. The regulation handles the security breaches
more strictly by the requirement of notification within 72 hours and with fines of up to
e20 million or 4% of the annual global turnover [32]. Another important change intro-
duced by the GDPR is the requirement of privacy-by-design which requires the compa-
nies to implement technical mechanisms for the protection of data apart from the legal
contracts [32].

The changes required by the GDPR is valid for any type of activities that involves per-
sonal information. Therefore, it is important to look at what the GDPR implies for data
and analytics outsourcing. The regulation requires the companies that outsource their
analytics tasks to be more active in the control of the outsourced data and computations
by imposing several technical and organizational procedures on the service provider
company to protect the sensitive data [33, 34]. The service provider companies, on the
other hand, should take measurements on the assurance of privacy-by-design with the
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adoption of data protection techniques such as encryption or pseudonymization [35].
Selection of the appropriate data protection measure (encryption or psedonymization)
is important to guarantee flawless data protection. Confidentiality, integrity, and avail-
ability, a.k.a. CIA triad of information security, are three major elements that guides the
organizations in determining the technical data protection measures [36]. In Figure 1.1,
we explain each element of the CIA triad.

CIA Triad

Confidentiality

Confidentiality assures that access to data is provided only to authorized
parties. Outsourcing data and analytics to a service provider company
weakens the control over the data for the outsourcing company. Thus,
assuring confidentiality in data analytics-as-a-service requires hiding the
outsourcing company’s data and computation results from the service
provider company and other customers [26].

Integrity

Integrity assures only authorized parties can modify the data. In out-
sourced analytics, both computation integrity and data integrity should
be assured. Data integrity requires to preserve the trustworthiness of
data without modifying or compromising, while computation integrity
requires execution of computations without any interruptions that may
or may not lead in any incorrect output [26].

Availability

Availability assures that any authorized party can access the data. Avail-
ability is crucial for outsourced data analytics since providing on-
demand service is the core functionality of outsourcing [26]. A failure
to access data or analytics discourages the outsourcing company to use
outsourced analytics services.

Figure 1.1: Explanation of the elements of the CIA triad.

In a well functioning outsourced analytics service, achieving all elements of the CIA
triad, i.e., confidentiality, integrity, and availability, is equally important. However, con-
sidering the privacy concerns of outsourcing companies and the requirements of the
GDPR on data protection, guaranteeing confidentiality in DAaaS becomes a prominent
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challenge for both outsourcing and service provider companies. Therefore, in this thesis,
we focus on the design of protocols which target to achieve confidentiality in DAaaS. In
the following section, we provide more information about confidentiality in outsourced
data analytics.

1.3. CONFIDENTIAL DATA ANALYTICS-AS-A-SERVICE
In confidential data analytics-as-a-service, the goal is to enable outsourcing of data an-
alytics tasks while assuring the confidentiality of outsourced data and the computation
results. A typical confidential DAaaS setting consists of two parties which are an analyt-
ics outsourcing company and a service provider company as illustrated in Figure 1.2.

1

2
Analytics outsourcing  

company 
Service provider  

company 

Figure 1.2: Parties involved in confidential data analytics-as-a-service.

• Analytics outsourcing company is a company that lacks the necessary knowledge,
human power, or computational resources to apply data analytics. Therefore, the
company outsources its analytics tasks to a service provider company. The analyt-
ics outsourcing company desires to protect the sensitive content of the outsourced
data and computation results while benefitting from analytics services.

• Service provider company is a company that is specialized in performing several
data analytics techniques and owns computational resources to perform the ana-
lytics. Its goal is to maximize its profit by offering its knowledge and computational
resources to the outsourcing company by performing analytics for the company.
As important as the business intelligence of the outsourcing company, in the com-
putations of data analytics, the business intelligence of the service provider can
also be sensitive, so, the service provider company might want to keep their algo-
rithms confidential.

Designing a confidential data analytics protocol in the outsourced setting requires
to assure several specifications, which protect the protocol against possible adversar-
ial attempts. The first specification is to guarantee input and output privacy [37]. The
service provider company should not be able to retrieve any information observing the
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protected input provided by the analytics outsourcing company. Furthermore, after and
during the execution of the protocol, the service provider company should not be able
to obtain information about the output and the intermediary messages. If the service
provider prefers to keep the company’s business intelligence confidential, then the an-
alytics outsourcing company also should not be able to retrieve any information about
the business intelligence of the service provider.

The second specification is the correctness of the output, which necessitates verify-
ing that the returned output is correct [37]. Verifying correctness is important when a
corrupted service provider tries to alter the computation steps and the output. However
if the adversary does not interrupt the execution, verifying correctness is not necessary.
In some cases, even though the service provider does not maliciously interrupt the exe-
cution, the protocol may not return the expected output due to limitations on the flexi-
bility of some operations, which is caused by the chosen data protection technique [38].
In such cases, rather than assuring correctness, achieving the highest accuracy becomes
the goal of the service provider.

The third specification is providing efficiency in computation and communication
costs. If the analytics outsourcing company is included in computations, the company’s
tasks should be minimized since its computational power is limited compared to the
service provider. On the other hand, the cost of computations on the service provider
should also be feasible such that the implemented privacy protection mechanisms do
not add a significant overhead on computations [38].

The confidentiality specifications in DAaaS can be meet using cryptographic meth-
ods. Traditional encryption mechanisms, such as AES [39], are not sufficient for confi-
dential DAaaS since they do not enable processing on protected data. However, there
exist several modern cryptographic techniques that allow performing certain function-
alities on protected data. We can the cryptographic techniques that are used in confi-
dential DAaaS into three groups with respect to their functionalities as follows [38]:

• Secure search on protected data: Performing queries on protected data to retrieve
a set of records is one major functionality of outsourced computation and storage.
Searchable encryption [40] and order-preserving encryption [41] techniques pro-
vide efficient solutions to perform search on encrypted datasets with a trade-off of
certain level of information leakage. Private information retrieval [42] and obliv-
ious RAM [43] overcome the problem of information leakage in the former solu-
tions. However, these solutions are usually not practical due to their significant
computation and communication cost.

• Secure computation on protected data: Most data analytics operations require
more complex functions than searching on protected data. Homomorphic en-
cryption [44, 45] and secure multiparty computation [46, 47] are two techniques
which enable to perform computations on secured data. Using homomorphic en-
cryption, arithmetic operations can be computed on encrypted data without de-
cryption. However homomorphic cryptosystems usually expensive with respect
to the cost of computations. Secure multiparty computation, on the other hand,
provides more flexibility in computations by allowing linear and nonlinear oper-
ations. The drawback of secure multiparty computation is its interactive nature
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which might result in high bandwidth usage in computations.

• Access control on protected data: Restricting access to data or computation re-
sults is another important functionality of confidential DAaaS. Using public key
encryption [48] is one method to grant access to someone who possesses the cor-
responding secret key for the public key. Identity-based encryption [49] and at-
tribute-based encryption [50] are also used for access control which enables ac-
cess to certain identities or attributes, respectively. Finally, functional encryp-
tion [51] grants access to the result of a function on the encrypted data.

1.4. PROBLEM STATEMENT
In this thesis, we aim to preserve confidentiality in data analytics-as-a-service applica-
tions. We choose three analytics applications that are becoming popular in outsourced
data analytics, which are process analytics, machine learning, and marketing analytics.
Despite there exist several other techniques that are commonly used in outsourced data
analytics, we decide to focus on algorithms of process analytics, machine learning, and
marketing analytics since the privacy concerns in these analytics have not been deeply
investigated. For instance, in the field of process mining, no work achieves the confi-
dentiality requirements and provides an efficient solution for process mining tasks. Sim-
ilarly, the existing works in the online behavioral advertisement environment can only
achieve partial privacy preservation with a focus on anonymity protection but the con-
fidentiality of end-user data has not been achieved comprehensively. The research on
private neural network operations proposes a handful amount of work on the protection
of data and analytics results. However, the problems related to the accuracy, perfor-
mance, and practicality requires deeper investigation of the research on private neural
networks. In Chapter 2, we provide a detailed explanation related to these analytics ap-
plications and also review the existing literature that focuses on the protection of privacy
in these analytics.

Considering the shortcomings of the literature on confidential DAaaS protocols, in
this thesis, we aim to answer the following research question:

Which cryptographic techniques and optimization methods can be used to
improve the computation and communication performance in confidential
Data Analytics-as-a-Service while maximizing the accuracy of algorithms?

We detail our research question with several subquestions that focus on the analytics
applications we choose. Our subquestions are:

• How efficiently can a service provider company perform process analyt-
ics in confidential DAaaS, where the accuracy of process analytics algo-
rithms are maintained?

• How can the cost of computation and communication be balanced by a
service provider company who performs private neural network opera-
tions in confidential DAaaS?

• What is the feasibility of operating Real-Time Bidding mechanism for
online behavioral advertising using cryptographic techniques?
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1.5. CONTRIBUTION OF THE THESIS
The protocols we propose in this thesis offer privacy-preserving solutions for several
common data analytics-as-a-service applications. In all of our protocols, we use secure
computation techniques to protect and to process sensitive information of analytics out-
sourcing companies. The contributions of the thesis are as follows:

• To the best of our knowledge, we propose the first privacy-preserving protocols for
process mining and for online behavioral advertisement.

– In Chapter 3, we propose the first provably secure protocols for the discovery
of business processes which proposes a comprehensive solution.

– In Chapter 4, we propose the first protocol that executes conformance check-
ing under privacy preservation.

– In Chapter 6, we propose the first protocols that preserve privacy in online
behavioral advertising which allow the usage of detailed user profiles and
machine learning techniques.

• Our proposals are efficient with respect to computation and communication cost.
To improve the performance of our protocols, we utilize several techniques such
as data packing, single instruction multiple data operations, or multi-exponentia-
tions. To the best of our knowledge, our proposal in Chapter 5 is the first protocol
which optimizes the nonlinear layers of private neural networks.

• We propose to use hybrid approaches which brings together different cryptograp-
hic techniques or different variants of the same cryptographic techniques. Using
a hybrid mechanism, our protocols achieve higher accuracy since we are able to
perform more flexible operations. Furthermore, we improve the efficiency of our
protocols with respect to computation cost.

• We achieve the three requirements of confidentiality in analytics outsourcing in all
of our protocols. The solutions we propose guarantees

– input and output privacy by using provably secure cryptographic techniques
for data protection and processing,

– accuracy by successfully transforming analytics functions to protected do-
main or by combining different cryptographic mechanisms to increase flexi-
bility of functions,

– efficiency by minimizing the number of costly operations, using several op-
timization mechanisms and, when possible, utilizing a hybrid approach in
protocols design.

1.5.1. OUTLINE
The structure of the thesis is as follows:
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CHAPTER 2
CONFIDENTIAL DATA ANALYTICS-AS-A-SERVICE

Achieving privacy preservation in the outsourced data analytics is possible with a clear
knowledge of the type of data analytics used and the cryptographic technique used.
Therefore, in Chapter 2, first, we provide a preliminary explanation of the available cryp-
tographic techniques that can be used in secure computation. Then, we introduce the
most common algorithms used in the outsourcing of process analytics, marketing ana-
lytics, and machine learning. Furthermore, if available, we present the existing privacy-
preserving solutions for the given analytics types and discuss their advantages and dis-
advantages. We conclude the chapter with a summary of open challenges in the existing
solutions that are going to be addressed in the proceeding chapters.

CHAPTER 3
PROCESS DISCOVERY ON ENCRYPTED DATA

In process analytics, an important analytics task is to observe the processes within a
company with respect to the activities performed, employees involved, and resources
used in each process. Process mining offers several algorithms for discovering processes
from logged data. However, the existing algorithms for the discovery of processes require
privacy protection since the data might contain sensitive information of employees and
customers. In Chapter 3, we present two protocols which assure privacy preservation in
the discovery of processes. Our first protocol transforms a well-known process discov-
ery algorithm, Alpha algorithm [52], to a privacy-preserving variant using homomorphic
encryption. Our second protocol extends the first protocol by presenting a generalized
approach that can be used as a basis for all existing process discovery algorithms. This
chapter is an integral copy of the papers "Mining Encrypted Software Logs using Alpha
Algorithm" by G. Tillem, Z. Erkin, and R.L. Lagendijk in SECRYPT. (pp. 267-274) (2017)
and "Mining Sequential Patterns from Outsourced Data via Encryption Switching" by G.
Tillem, Z. Erkin, and R.L. Lagendijk in PST. (pp. 1-10) (2018).

CHAPTER 4
PRIVACY-PRESERVING CONFORMANCE CHECKING FOR INTERNAL AUDITING

Another important task in process analytics is checking the compliance of the real be-
haviour of a system to the expected behaviour to detect deficiencies. Conformance
checking is one technique, which checks whether the monitored behavior recorded in
an event log complies with the normative behavior represented as a process model.
In Chapter 4, we propose two protocols for privacy-preserving conformance checking
which enables the companies to outsource their internal audit analytics to specialized
service providers without leaking sensitive data of their employees. We use secure two-
party computation that achieves promising performance results. This chapter is an inte-
gral copy of the paper "Privacy-Preserving Conformance Checking for Internal Auditing"
by G. Tillem, N. Zannone, and Z. Erkin which is in preparation.

CHAPTER 5
PRIVATE NEURAL NETWORK PREDICTIONS

Artificial neural networks are one of the prominent techniques that are used in machine
learning. A successful neural network requires substantial amount of training data, com-
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putational resources and expertise on machine learning which urges small scale compa-
nies to outsource their analytics to big service providers. However, outsourcing poten-
tially sensitive data brings a privacy risk to the enterprises. In Chapter 5, we propose a
protocol to perform neural network predictions under privacy preservation. Our proto-
col brings together two well-known cryptographic techniques for secure computation:
partially homomorphic encryption and secure two-party computation, and computes
neural network predictions by switching between the two methods. The hybrid nature
of our protocol enables to maintain the accuracy of predictions and to optimize the
computation time and bandwidth usage. This chapter is an integral copy of the paper
"SwaNN: Switching among Cryptographic Tools for Privacy-Preserving Neural Network
Predictions" by G. Tillem, B. Bozdemir, and M. Önen which is under review.

CHAPTER 6
PRIVACY-PRESERVING ONLINE BEHAVIOURAL ADVERTISING

In marketing analytics, serving digital advertisements based on the customer’s interests
benefits both the customers and the product owners. However, data collected from the
customers for online behavioral advertising creates concerns over the privacy of the cus-
tomers. In Chapter 6, we propose two protocols for privacy preserving online behavioral
advertising which combines machine learning techniques with cryptographic mecha-
nisms. Our first protocol, uses homomorphic encryption to match the user profiles with
the right advertisement. Our second protocol improves the performance of the first pro-
tocol using a secret sharing scheme which distributes computations between multiple
advertising companies. This chapter is an integral copy of the papers "AHEad: Privacy-
preserving Online Behavioural Advertising using Homomorphic Encryption" by L. Hel-
sloot, G. Tillem, and Z. Erkin in IEEE Workshop on Information Forensics and Security,
WIFS 2017 (pp. 1-6) (2017) and "BAdASS: Preserving Privacy in Behavioural Advertising
with Applied Secret Sharing" by L. Helsloot, G. Tillem, and Z. Erkin in JoWUA (pp.23-41)
(2019).

CHAPTER 7
DISCUSSION

In Chapter 7, we summarize our solutions and evaluate the contributions of the thesis.
We discuss what has been achieved with our proposals and what are the open problems
for the future directions of research in the field of confidential data analytics-as-a-ser-
vice.

1.5.2. LIST OF EXCLUDED PUBLICATIONS
The following is the list publications that are published during the Ph.D. studies but not
included in this thesis since they are not directly related to confidential DAaaS.

1. Sheikh Alishahi, M. , Tillem, G., Erkin, Z., Zannone, N., Privacy-Preserving Multi-Party Ac-
cess Control, in ACM CCS Workshop on Privacy in the Electronic Society (in press).

2. Nandakumar, L., Tillem, G., Erkin, Z., Keviczky, T., Protecting the Grid Topology and User
Consumption Patterns during State Estimation in Smart Grids based on Data Obfuscation,
in 8th DACH+ Conference on Energy Informatics (in press).
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3. Setia, P. K., Tillem, G., Erkin, Z., Private Data Aggregation in Decentralized Networks, in 7th
International Istanbul Smart Grids and Cities Congress, ICSG 2019 (2019) pp.76–80.

4. Hoogervorst, R., Zhang, Y., Tillem, G., Erkin, Z., Verver, S., Solving bin-packing problems
under privacy preservation: possibilities and trade-offs, Information Sciences 500, 203–216
(2019).

5. Helsloot, L., Tillem, G., Erkin, Z., BAdASS: Preserving Privacy in Behavioural Advertising
with Applied Secret Sharing, in 12th International Conference on Provable Security, ProvSec
2018 (2018) pp.397–405.

6. Helsloot, L., Tillem, G., Erkin, Z., Privacy concerns and protection measures in online be-
havioural advertising, in 38th WIC Symposium on Information Theory in the Benelux (2017)
pp.89–96.

7. Tillem, G., Erkin, Z., Lagendijk, R. L., Privacy-Preserving Alpha Algorithm for Software Anal-
ysis, in 37th WIC Symposium on Information Theory in the Benelux (2016) pp.136–143.

1.5.3. ABOUT THE THESIS
Each technical chapter of the thesis (apart from Chapter 2) includes at least one pub-
lication which are referenced at the beginning of the chapter. We preserve the integral
copy of the publications with minor changes. The chapters are independent from each
other so they can be read without reading the previous chapters. As a consequence,
there might be overlapping parts and similarities in the introduction, preliminaries, and
related work sections. Also, due to the same reason, terminology and notation might
vary across publications and chapters.
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2
CONFIDENTIAL DATA

ANALYTICS-AS-A-SERVICE

2.1. INTRODUCTION
Confidential data analytics-as-a-service requires to meet several specifications that gua-
rantee the protection of data used for analytics and the analytics results. As introduced
in Chapter 1, these specifications are input/output privacy, correctness, and efficiency.
A protocol that satisfies these specifications can be designed in several ways depend-
ing on the number of parties involved in computations, adversarial behavior, and the
cryptographic technique used for the protection of data. In this chapter, we provide
the preliminary knowledge on the possible scenarios, adversarial behavior, and crypto-
graphic techniques used for confidential DAaaS. We continue with the presentation of
common analytics types used in DAaaS and summarize state-of-the-art solutions that
aim to achieve confidentiality in analytics outsourcing. We conclude the chapter with a
discussion of open issues and challenges in the existing literature that are addressed in
the succeeding chapters of this thesis.

2.2. PRELIMINARIES

2.2.1. SCENARIOS
The computation of outsourced analytics by the analytics outsourcing company and
the service provider company can be performed in different scenarios concerning the
computational capabilities of the outsourcing company and the flexibility of operations.
Below we describe three possible scenarios in confidential data analytics-as-a-service,
which are a standalone server scenario, client-server scenario, and a non-colluding servers
scenario. Figure 2.1 illustrates the interactions between the analytics outsourcing com-
pany and the service provider company for each scenario. In the figure and also in de-
scriptions, we refer to the analytics outsourcing company as the client and the service
provider company as the server.
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(a) Standalone server scenario
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(c) Non-colluding servers scenario

Figure 2.1: Commonly used scenarios in confidential data analytics-as-a-service.

STANDALONE SERVER SCENARIO

The trivial scenario in confidential data analytics-as-a-service is outsourcing all the an-
alytics computation to the server, which is illustrated in Figure 2.1a. In this scenario, the
client is responsible for the preparation of inputs and also deciding what information
is sensitive and what information can be shared with the server publicly. The server is
responsible to perform the computations on protected data and to return the results to
the client under protection. The standalone server scenario is the desired scenario for
outsourced computation since it delegates all the computations to the server and does
not require any computational power from the client.

CLIENT-SERVER SCENARIO

An alternative to the standalone server scenario is using a client-server scenario, where
some of the computations are delegated to the client, as illustrated in Figure 2.1b. This
scenario is feasible if the client has adequate computational resources but does not have
the knowledge for data analytics. The client outsources the data analytics tasks to the
server but helps the server to compute some intermediary operations in the protocol.
These operations are usually the ones that are required to be performed on unprotected
data. Thus, in the intermediary steps of computation, the client decrypts the protected
data, performs the necessary operations, sends the computation result under protection
back to the server.

NON-COLLUDING SERVERS SCENARIO

The client-server scenario is a convenient setting for confidential data analytics-as-a-
service as soon as the client has adequate computational capabilities. However, espe-
cially for the small scale enterprises, having computational resources is not always a re-
alistic assumption. Overcoming the computational cost on the client-side is possible
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with delegating the computations to two (or more) servers, as illustrated in Figure 2.1c.
In this scenario, the client distributes the protected data among the independent servers
according to some predefined rules. The servers collaboratively run the computations
and return the result of data analytics to the client under privacy preservation. Since
the computations are delegated to two servers, where the client has less control over
the computation process, a non-collusion assumption between the servers is important
to guarantee security. Accordingly, the servers should not collude during the computa-
tion, because otherwise, they can reveal partial or complete information about the input.
The collusion among servers can be prevented by law, conflicting interests, or physical
means [1].

2.2.2. ADVERSARIAL BEHAVIOR
In the design of a confidential data analytics protocol, it is crucial to determine the ad-
versarial behavior before choosing a data protection mechanism. In the secure compu-
tation, an adversary can behave in three possible ways:

• a semi-honest adversary (a.k.a. honest-but-curious or passive adversary) follows
the computation steps without any deviation. However, he observes the input,
output, and intermediary messages to retrieve additional information that should
remain private [2]. Although it is considered as a weaker adversarial model, a semi-
honest adversarial setting is useful in the cases where the parties trust each other
but do not want to leak any information beyond the public knowledge.

• a malicious adversary (a.k.a. active adversary) can arbitrarily deviate from the
computation specification [2]. Achieving security against malicious adversaries is
desired since the adversarial behavior is stronger. However, the performance over-
head of the protocols that are secure against malicious adversaries makes them
less practical compared to the alternatives under the semi-honest model.

• a covert adversary is an intermediate adversarial model which is proposed against
the weak security of the semi-honest model and the inefficiency of the malicious
model [2]. A covert adversary may behave maliciously. However, if he does so, it
will be caught by the honest parties with some probability.

In confidential DAaaS, an adversary can be internal adversary, i.e., the client or the
server, or an external adversary. In this thesis, we focus on the protection against the in-
ternal adversaries since the external adversaries can be prevented by other means such
as physical measures or firewalls. The internal adversary in our protocols is a semi-
honest adversary that does not deviate from protocol specification but curious to get
more information by observing messages.

2.2.3. CRYPTOGRAPHIC TECHNIQUES
In confidential data analytics, depending on the purpose of computations different cryp-
tographic techniques can be used. In Chapter 1, we list these functionalities as secure
search, secure computation and access control. In this thesis, our goal is to perform
secure computation for outsourced analytics. Therefore, in the following, we explain
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two techniques for secure computation which are homomorphic encryption and secure
multiparty computation.

HOMOMORPHIC ENCRYPTION

In cryptography, homomorphism is a property of encryption which allows to perform a
certain computation on the encrypted text without decrypting the text. Formally, given
the plaintext set M and ciphertext set C , an encryption scheme with encryption function
E(·) is homomorphic if

8m1,m2 2 M , E(m1 ©m2) = E(m1)ØE(m2) (2.1)

can be computed directly without intermediate decryptions by a single party [3]. The
concept of homomorphism is first introduced by Rivest et al. [4] as privacy homomor-
phisms, and since then many cryptographic schemes that support this property are pro-
posed. While the early proposals are limited to perform only one type of arithmetic op-
eration, which is either an addition or multiplication, the recent proposals for homo-
morphic encryption allow both additions and multiplications. Regarding the number of
operations allowed on the ciphertext, homomorphic cryptosystems can be divided into
three categories:

• Partially homomorphic encryption allows one type of arithmetic operation (i.e.
either addition or multiplication) on ciphertext which can be performed unlim-
ited number of times [5]. Depending on the allowed arithmetic operation, the
cryptosystem can be additively homomorphic such as Paillier [6], Goldwassser -
Micali [7], Damgård-Jurik [8] or DGK [9] cryptosystems, or it can be multiplica-
tively homomorphic as in RSA [10] and ElGamal [11] cryptosystems.

• Somewhat homomorphic encryption allows some type of arithmetic operations
on ciphertext which can be performed only limited number of times [5]. The type
of arithmetic operations allowed in somewhat homomorphic schemes are usu-
ally unlimited number of additions and limited number of multiplications. The
mutliplications are limited since the expansion in ciphertext makes the schemes
impractical. BGN [12], IP [13], Polly Cracker [14], and SYY [15] are some examples
of somewhat homomorphic cryptosystems.

• Fully homomorphic encryption allows any type of arithmetic operations (i.e. both
additions and multiplications) on ciphertext which can be performed unlimited
number of times [5]. Gentry’s proposal in [16] is the first cryptosystem that achie-
ves full homomorphism. The existing fully homomorphic cryptosystems are di-
vided into three groups with respect to the underlying mathematical constructions
as the schemes based on ideal lattices [16, 17], the schemes based on the hardness
of finding an approximate GCD of large integers [18], and the schemes based on
the learning with errors and ring learning with errors problems [19].

The main bottleneck in the deployment of homomorphic encryption schemes is the
computation and memory overhead. Since Gentry’s proposal of fully homomorphic en-
cryption, several techniques proposed to make fully homomorphic encryption practi-
cal that includes optimizations through the use of GPUs or FPGAs in the implementa-
tion [20]. Despite the optimizations, with the increasing number of multiplications, the
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performance of fully homomorphic schemes are still far from practical. Using a some-
what homomorphic cryptosystem can improve computation performance when it is
possible to limit the number of operations. Partially homomorphic cryptosystems of-
fer more efficient solutions concerning computation cost but their functionalities are
limited. Several works proposed a switching mechanism for partially homomorphic
cryptosystems that combines an additively homomorphic cryptosystem and a multi-
plicatively homomorphic cryptosystem with an interactive switching phase in a two-
party setting [21, 22]. Although the underlying cryptosystems are efficient in homomor-
phic operations, the proposed switching mechanisms are expensive in computation and
communication costs such that the repetitive usage of switching mechanism creates a
significant performance overhead.

SECURE MULTIPARTY COMPUTATION

Secure multiparty computation (MPC) enables multiple parties to jointly evaluate a fun-
ction on their private inputs without revealing anything other than the output such that

f (x1, x2, · · · , xn) = y, (2.2)

where f is the function on private inputs xi i 2 [1,n] of n parties, and y is the output
of the computation. In secure computation, privacy and correctness are the two funda-
mental requirements [2]. Guaranteeing privacy in MPC means the protocol does not leak
any information beyond the intended information, i.e. the output. On the other hand,
correctness in MPC guarantees each party to receive the correct output.

The concept of secure multiparty computation is formally introduced by Yao [23] in
a two-party setting as a solution to millionaires’ problem, where two parties try to de-
cide who is richer without leaking their actual wealth to each other. Goldreich et al. [24]
generalized Yao’s proposal to a multiparty setting and provided the feasibility results for
MPC for semi-honest adversaries and for malicious adversaries with honest majority.

Considering the fact that any polynomial time function can be represented as a com-
binatorial circuit of polynomial size [25], MPC protocols aim to design circuits that can
secretly evaluate the function f on the private inputs of the parties. There are three dif-
ferent circuit types that are used in secure computation which are Yao’s garbled circuits,
Boolean circuits, and arithmetic circuits.

• Garbled circuits: As the first proposal of MPC, Yao’s garbled circuits provide effi-
cient constructions for two-party secure computation [23, 25]. The two party in
the computations are called a garbler and an evaluator. In the computation of the
function f , the garbler encrypts the function to a garbled circuit along with his
input while the evaluator evaluates the circuit with his input. The result of evalua-
tion reveals the correct output which corresponds to the inputs of the garbler and
the evaluator. Garbled circuits use semantically secure symmetric encryption and
oblivious transfer as building blocks [25]. XOR and AND gates are primitive gates
of garbled circuits that can be used to construct the function f .

• Boolean circuits: GMW protocol in [24] generalizes garbled circuits to a multi-
party setting using Boolean sharing that describes the circuit as a binary circuit.
In Boolean sharing, each party holds an XOR-based secret share for each input
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wire [25, 26]. Since the circuit is binary, for an integer input value, the operations
should be performed on each bit of the input individually. Similar to garbled cir-
cuits, oblivious transfer is used as a building block in computations, and XOR and
AND gates are the primitive gates of computations [25].

• Arithmetic circuits: An alternative to GMW protocol is using arithmetic sharing
which evaluates the circuit on additive secret shares that are created on integers
instead of binary values [26, 27]. The primitive gates of arithmetic circuits are
addition and multiplication gates. Additions can be computed locally by each
party while the computation of multiplication requires to generate multiplication
triplets using Beaver’s method [28]. In the generation of the multiplication triplets,
homomorphic encryption [29] or oblivious transfer [30, 31] can be used as a build-
ing block.

Compared to homomorphic encryption, secure multiparty computation provides ef-
ficient solutions in computation time since the operations are performed on smaller in-
put sizes. Furthermore, MPC schemes are more flexible in computations since XOR and
AND gates are sufficient to form any complex logic function. This flexibility allows for
a structural design approach such that one can compile a function into an MPC circuit
while with homomorphic encryption, this is less obvious. The drawback of the MPC
schemes is its interactive nature which might cause high bandwidth usage in protocol
execution with the growing circuit size. However, since the introduction of MPC, many
optimizations are proposed to further improve the performance of MPC circuits regard-
ing their computation and communication cost [32–36]. Furthermore, several tools such
as FairplayMP [37], Sharemind [38], ABY [26], PICCO [39] which provide implementation
of different circuit types are proposed to design complex functions for secure computa-
tion protocols.

Despite the optimizations in the design of secure multiparty computation and ho-
momorphic encryption schemes, both techniques still incur overhead on computation
or communication cost compared to the original performance of computations. Ap-
plying these techniques directly to securely compute data analytics may not result in a
practical solution. The problem of practicality necessitates the design of tailored pro-
tocols for confidential data analytics that optimizes the overhead in performance while
guaranteeing data protection using homomorphic encryption or secure multiparty com-
putation.

2.3. APPLICATIONS OF DATA ANALYTICS-AS-A-SERVICE
In this section, we describe three analytics applications that are preferred by companies
in data analytics-as-a-service. The applications we choose are process analytics, ma-
chine learning, and marketing analytics. For each application, we also provide a sum-
mary of existing work that aims to achieve privacy preservation in the computation of
the analytics.

2.3.1. PROCESS ANALYTICS
Process analytics enables organizations to gain insights about the effectiveness of their
organizational processes through the observation of the process performance and com-
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pliance. The analysis on the process behavior can be performed to understand what
happened in the past, what is happening right now, and what might happen in the fu-
ture [40]. Process mining is one technique that provides an ex-post analysis of process
behavior by automatically constructing models that explain the behavior of previously
recorded event logs [41].

Process mining starts from an event log which keeps record of the events performed
during the execution of a process. An event log consists of several cases which are pro-
cess instances that are handled in the current execution of the process. Each case has
a trace of events that keeps information about the current operation performed. Each
event has several attributes such as the activity label of the operation performed, the
resource who performed the event, the timestamp of the time of occurrence [41]. Ta-
ble 2.1 illustrates an example event log for handling compensation requests [42]. Each
case in the example event log represents an individual who appealed for the compensa-
tion. Every step performed for the individual is recorded in the log as an event that can
be identified with a unique event id. Every event stores information about the activity
performed in that event, the timestamp of the event, the resource who performed the
event, and the cost associated with the event.

Given an event log, process mining can be performed in three steps which are process
discovery, conformance checking, and process enhancement.

Process Discovery: The first step of process mining is to discover a process model from
raw event logs to visualize the process behaviour seen in the log [42]. Regarding the
attributes in the event log, the discovery is performed on different perspectives such
as control-flow perspective which is based on the ordering of activities, organizational
perspective which is based on the relations of resources, and case perspective which is
based on the properties of cases [41]. The common practice in process mining is to use
control-flow perspective to discover the process models. The model can be represented
using different modelling languages such as BPMN [43], Petri nets [44], or EPC [45].

Figure 2.2 illustrates a process model for the example compensation request han-
dling event log using Petri nets. In the model process starts with a register request. Once
the register request is executed, three possible actions, i.e. examine thoroughly, exam-
ine casually, and check ticket, can be performed. Among these actions, there is a choice
relation between examine thoroughly and examine casually such that if one of them is
executed the other one is disabled. On the other hand, check ticket can be performed
concurrently with any of the two examine actions. The action decide is performed only
if both check ticket and one of the examine actions are executed. The decision leads
to three outcomes, which are pay compensation, reject request, and reinitiate request. If
the compensation is paid or the request is rejected, then the process ends. However,
if further processing is needed, then the request is forwarded back to ticket check and
examine actions.

There exist several algorithms for the discovery of processes from event logs. Al-
pha algorithm [46] is one of the earliest discovery algorithms which provides a baseline
for the successor discovery algorithms. The Alpha algorithm generates process models
by discovering sequential patterns, more specifically, direct-succession relations, in the
event logs. However, the algorithm is not practical since it cannot handle noise and in-
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Table 2.1: An example event log for handling compensation requests [42].

Case id Event id
Attributes
activity timestamp resource cost

1 35654423 register request 30-12-2010:11.02 Pete 50
35654424 examine thoroughly 31-12-2010:10.06 Sue 400
35654425 check ticket 05-01-2011:15.12 Mike 100
35654426 decide 06-01-2011:11.18 Sara 200
35654427 reject request 07-01-2011:14.24 Pete 200

2 35654483 register request 30-12-2010:11.32 Mike 50
35654485 check ticket 30-12-2010:12.12 Mike 100
35654487 examine casually 30-12-2010:14.16 Pete 400
35654488 decide 05-01-2011:11.22 Sara 200
35654489 pay compensation 08-01-2011:12.05 Ellen 200

3 35654521 register request 30-12-2010:14.32 Pete 50
35654522 examine casually 30-12-2010:15.06 Mike 400
35654524 check ticket 30-12-2010:16.34 Ellen 100
35654525 decide 06-01-2011:09.18 Sara 200
35654526 reinitiate request 06-01-2011:12.18 Sara 200
35654527 examine thoroughly 06-01-2011:13.06 Sean 400
35654530 check ticket 08-01-2011:11.43 Pete 100
35654531 decide 09-01-2011:09.55 Sara 200
35654533 pay compensation 15-01-2011:10.45 Ellen 200

4 35654641 register request 06-01-2011:15.02 Pete 50
35654643 check ticket 07-01-2011:12.06 Mike 100
35654644 examine thoroughly 08-01-2011:14.43 Sean 400
35654647 reject request 12-01-2011:15.44 Ellen 200

completeness [42]. Despite its impracticality, the idea of discovery of direct sequential
patterns in the Alpha algorithm inspired more advanced discovery algorithms such as
heuristic miner [47, 48] and inductive miner [49–51]. Using the direct-succession rela-
tions as the basis, these algorithms provide more robust solutions for process discovery
by overcoming the drawbacks of the former algorithms.

Conformance Checking: The second step of process mining is conformance checking
where the behaviour observed in the event log is compared with the expected behaviour
in the process model. The process model used for the conformance checking can be
generated beforehand using a process discovery algorithm or it can be designed manu-
ally. The goal of conformance checking is to find the commonalities and discrepancies
between the observed behaviour and the expected behaviour, which is useful for perfor-
mance analysis, compliance check, and internal auditing [42].

Checking the conformance of processes and event logs can be performed in sev-
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Figure 2.2: Compensation request handling process modelled with Petri net modelling language [42].

eral ways such as token-based replay [52], comparison of footprints [42], and align-
ments [53]. Alignments offers a robust solution for conformance checking by provid-
ing detailed diagnostics at the case level which can be aggregated into the process level.
Furthermore, alignments are not specific to a modelling language, rather they can be
used for any notation. The idea behind the alignments is to compare each trace with
the process model and assign a penalty cost for each deviation in the comparison. The
alignment with the lowest cost gives the optimal alignment between the process and the
trace.

Figure 2.3 gives three example alignments between the case id 4 in the example log in
Table 2.1 and the process model in Figure 2.2. The upper part of the alignment represents
the moves, i.e. actions, performed on the log while the lower part is for the moves on
the model. In the case of a misalignment between the log and the model, the move is
only performed on the model, and the move on the log is skipped with ¿, or vice-versa.
There is no fixed cost function for misalignments, rather different cost functions can be
defined depending on the severity and the likelihood of deviation [42]. For the example
alignments in Figure 2.3, considering that a cost of 1 is assigned for each deviation, the
alignment cost for ∞1 becomes 1, for ∞2 becomes 9, and for ∞3 becomes 5. Among the
example alignments, ∞1 is the optimal alignment with the lowest cost of alignment.

∞1 =
a b d ¿ g
a b d e g

∞2 =
a b d g ¿ ¿ ¿ ¿ ¿
¿ ¿ ¿ ¿ a c d e f

∞3 =
a b ¿ d g ¿ ¿
a ¿ c d ¿ e g

Figure 2.3: Example alignments between the case id 4 and the model in Figure 2.2.
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Process Enhancement: The third step of process mining is enhancement which aims
to repair or extend an existing process model with other information recorded in the
event log [42]. The reparation of the process model is necessary when the observed be-
haviour of the system differentiates from the modelled behaviour. Extension, on the
other hand, adds a new perspective to the process model such as organizational per-
spective or time perspective.

A common type of process enhancement is extending the process model with the re-
source information, which is known as organizational mining [54]. It is useful to observe
organizational structure, work distribution, and patterns. Organizational mining can be
represented as a social network which shows the interactions among different resources
with different frequencies, as in Figure 2.4a, or it can be integrated to the process model
to show the organizational structure as in Figure 2.4b.

Mining time perspective is another type of process enhancement which helps to ob-
serve the duration of activities, detect bottlenecks, monitor resource utilization, and es-
timate remaining execution time for the ongoing cases [42].
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dover of the work on the individ-
ual level [42].
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Figure 2.4: Organizational mining.

PRESERVING CONFIDENTIALITY IN PROCESS ANALYTICS

Process mining is an emerging discipline which is empowered with the recent omnipres-
ence of the event logs and the rise of data mining. Therefore, the main focus of the
research on process mining so far has become development and deployment of well-
established algorithms that can maturely perform process mining task. Despite the con-
siderable involvement of data in the process mining algorithms, privacy and security
aspects of process mining has not been discussed in the existing literature thoroughly.

In the general domain of business process management, majority of research is fo-
cused on proposing semantics or a language for security and privacy requirements in the
design of business processes. While some researchers aim to cover the requirements in a
broader sense such that confidentiality, integrity, and availability are all covered with the
proposed semantics [55–58], some target only the protection of personal data and pro-
pose privacy requirements for business processes [59–61]. Another line of the research
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focuses on the detection and measurement of information flow leakages in business pro-
cesses [62–65].

Below we discuss the existing works that aims to achieve protection of confidentiality
in process discovery and conformance checking. To the best of our knowledge, privacy
protection in process enhancement has not been addressed in any existing work.

Preserving Confidentiality in Process Discovery Existing works that aim to preserve
confidentiality in process discovery provide efficient solutions in computation time. Yet,
they suffer from the protection of inputs and outputs. In [66], Burattin et al. proposes to
use encryption for the protection of event logs such that categorical attributes like ac-
tivity name or resource name are encrypted with the symmetric cryptosystem AES [67]
and the numerical attributes like timestamp and cost are encrypted using the additively
homomorphic cryptosystem of Paillier [6]. The encrypted values are not used for any
process mining operation. The authors only report the encryption and decryption time
for event logs and discuss the possibility of using such encrypted logs in process min-
ing operations such as process discovery. As an initial attempt to preserve privacy in
process mining, Burattin et al.’s proposal, unfortunately, cannot achieve privacy. In the
encryption of categorical attributes, AES used in a deterministic way which means dif-
ferent encryptions of the same value results in the same ciphertext. Despite the authors
claim that this encryption mechanism anonymizes the dataset, the deterministic nature
of the encryption rather works as a pseudonym generator for the categorical attributes.
It does not assure the input and output privacy requirements of confidential data ana-
lytics. Although, the values are hidden, it is possible to perform frequency analysis and
background knowledge attacks on the encrypted values.

Rafiei et al. [68] extends [66] by proposing a framework for confidential process min-
ing and designing a process discovery protocol to discover directly follows relations from
encrypted data. Similar to Burattin et al., they also propose to use deterministic encryp-
tion for the protection of categorical attributes. To improve privacy protection, they re-
move the connection between each event and the case id that corresponds to the event.
While this approach prevents leaking the control flow of a single case, it still does not
protect against the information leakage by frequency analysis and susceptible to back-
ground knowledge attacks.

The underlying challenge in process discovery, which is mining the "directly follows
relations", is also related to sequential pattern mining techniques of data mining [69].
There exist several studies that aims to achieve confidentiality in sequential pattern min-
ing using homomorphic encryption and secure multiparty computation such as [70–74].
Unfortunately, these mechanisms cannot be directly applied to process discovery since
the directly follows relations is loosened in these techniques by removing the require-
ment of being direct successors. Therefore, we do not provide a detailed analysis of con-
fidential the sequential pattern mining solutions in this thesis.

Preserving Confidentiality in Conformance Checking To the best of our knowledge
there is no work that specifically focuses on the privacy aspects of conformance check-
ing in process mining domain. However, there exist techniques that are similar to con-
formance checking in the broader application of business process management which
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are log auditing and business process matching.
Guanciale et al. [75] proposes a protocol for log auditing under privacy preservation.

In their setting, two mutually distrustful parties such that one owns the event log and the
other one owns the business process, want to compute the mismatches between the log
and the process. They propose to use secure multiparty computation protocols in [36]
which are based on the universally composable arithmetic black box functionality that
allows users to store, retrieve and process values securely. Their proposal first transforms
a process model to a finite state automata and then checks whether the alphabet in the
log matches the alphabet of the finite state machine. Despite its efficiency, the solution
proposed in [75] is not applicable for conformance checking since it does not measure
the cost of misalignment. Rather the proposed solutions returns a binary value that in-
dicates a match or mismatch between the log and the process.

In [76], Gurov et al. uses the same arithmetic black box functionality to compute
business process matching. In business process matching, the goal is to measure simi-
larity of two business processes, rather than a comparison of an event log and a business
process. The matching performed by [76] is not a Boolean operation, rather they aim
to measure the misalignment between the two models. However, their misalignment
measurement technique differs from the classical techniques of conformance checking
for measuring the cost of misalignment. The authors propose to use a graph similarity
metric [77] to measure the the misalignment which may not be applied to conformance
checking setting.

2.3.2. MACHINE LEARNING
Many organizations are using machine learning techniques to improve their services
and increase their profit. Machine learning helps organizations in several tasks such
as decision making, forecasting, and recommenders. Artificial neural networks are one
popular technique in machine learning technology which aim to solve a classification
problem by correctly assigning a label to a new observation through the analysis of previ-
ous observations [78]. Artificial neural networks, as other machine learning techniques,
operate in two phases:

• a training phase, where a neural network model is trained through observation
of a training set. The quality of the trained networks is determined by its classi-
fication accuracy on the training set. However, finding the right parameters that
achieve high quality classification is not trivial. Computation of the network pa-
rameters require to solve an optimization problem. Gradient descent is a method
to solve the optimization problem in neural networks that is used together with a
backward propagation algorithm to find a high quality neural network [79]. Per-
forming training is an expensive operation with respect to computation time espe-
cially with the increasing training dataset size. With the advent of new technolo-
gies such as the usage of GPUs in computation, the training times can be reduced
to a feasible range.

• a prediction phase, where a new observation is assigned a class label using the
trained neural network. Compared to the training phase, prediction phase is less
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costly since the computation is only a feedforward operation that requires to op-
erate on the neural network once.

An artificial neural network consists of three main layers which are an input layer,
where the input is feed to the network, an output layer where the result of classification
is revealed, and the hidden layers, where the main classification operation is computed.
Figure 2.5 illustrates the main layers of artificial neural networks.

input layer hidden layers output layer

Figure 2.5: An example artificial neural network structure with input, output, and hidden layers.

With respect to the purpose of classification, there exists different types of artificial
neural networks such as convolutional neural networks, recurrent neural networks, or
feedforward neural networks. Convolutional neural networks are one common type of
neural networks which are used for image processing. There exists several kinds of hid-
den layers that are commonly used in convolutional neural networks. Below we briefly
describe some of them.

• Fully connected layer connects each neuron in the previous layer to each neuron
in the current layer with a certain weight. The connection between neurons can
be computed using matrix multiplication. Establishing connection among each
neurons causes an expansion in the network size.

• Convolutional layer aims to reduce the expansion caused by fully connected layer
using convolutional filters in image processing. Convolutional filter can be ap-
plied on the input by performing dot products.

• Activation layer computes a nonlinear function to improve classification accuracy
which is especially useful for complex classification problems [78]. The activation
function is computed on each neuron of the previous layer individually, so it does
not cause an expansion or reduction in the number of neurons. Sigmoid, rectified
linear unit (ReLU), and hyperbolic tangent are some well-known activation func-
tions used in neural networks.
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• Pooling layer is another layer that is used to reduce the number of neurons in the
network. The reduction is performed either by max pooling which outputs the
maximum value in a subset of the input or by average pooling which outputs the
average of the values in a subset of the input.

PRESERVING CONFIDENTIALITY IN MACHINE LEARNING

The expensive nature of machine learning algorithms triggered outsourcing of machine
learning applications by enterprises to cloud servers. With the increased usage of out-
sourcing in machine learning, privacy of the outsourced data and analytics also gained
importance. Despite the research on privacy-preserving neural network computations is
recent, it is growing fast and a handful of solutions that aim to achieve privacy in neural
networks have been proposed. Below we discuss several prominent proposals that focus
on protection of confidentiality in neural networks.

The research on confidential neural network trainings is very limited due to the ex-
pensive nature of training algorithms. To the best of our knowledge, SecureML by Mo-
hassel et al [80] is the only work that performs neural network trainings under protection.
They use secure two-party computation based on garbled circuits and Boolean circuits
to compute the hidden layers. Since secure computation on nonlinear activation is not
trivial, only ReLU and x2 functions are used in the activation layer. As stated previously,
due to the expensive nature of training, the secure computations can only be performed
on small network sizes.

On contrary to the high costs in training phase, there exists several proposals that
computes prediction phase of neural networks under privacy-preservation efficiently.
The existing solutions for private neural network predictions can be divided into three
categories such that the solutions based on fully homomorphic encryption, the solutions
based on secure multiparty computation, and hybrid solutions that combine homomor-
phic encryption with secure multiparty computation.

CryptoNets [81] presents one of the first algorithms that compute private neural net-
work predictions using fully homomorphic encryption. The authors use the standalone
server scenario, where all computations are delegated to the cloud server. In such a sce-
nario, the flexibility of the operations are limited to the types of operations allowed by
the underlying homomorphic cryptosystem. The authors propose to use a homomor-
phic encryption scheme which requires to know the number of arithmetic operations
to be used beforehand [82]. Using this cryptosystem, convolutional and fully connected
layers can be computed smoothly, but the computation of activation and pooling lay-
ers require some approximations. The authors propose to approximate the activation
function by using x2 as the activation function. For the pooling layer, they introduce
scale mean pooling which only aggregates the values in a subset of the input without
performing division. Using approximations induces the problem of loss of accuracy in
predictions. The experiment results show that using CryptoNets a prediction accuracy of
98.95% can be achieved on MNIST dataset [83] while the state-of-the-art accuracy rate
for the same dataset is 99.79% [84]. Despite the loss in accuracy, computations in Cryp-
toNets do not incur any computation cost on the client-side. However, the cost of per-
forming a single prediction takes around 300 seconds using CryptoNets. An advantage of
using CryptoNets in neural network computations is the ability to batch computations
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such that in a single computation, the prediction for 4096 images can be computed. This
is advantageous when the prediction dataset that the client holds is large.

An alternative solution to CryptoNets is MiniONN by Liu et al. [84] which computes
predictions using secure two-party computation. MiniONN uses a client-server setting,
where the computations are shared between the client and the server. The secure two-
party computation operations are performed on arithmetic circuits and garbled circuits.
The flexibility of garbled circuits enables MiniONN to work on more accurate activation
functions such that the protocol achieves an accuracy of 99.31% on MNIST dataset com-
pared to 98.95% accuracy of CryptoNets on the same dataset. Furthermore, MiniONN
can perform a single prediction on MNIST dataset using the same network structure in
CryptoNets in 1.28 seconds. The bottleneck of the MiniONN is the high bandwidth us-
age (ª48 MB for the sample network) that is caused by the interactive nature of secure
two-party computation.

A third approach in the computation of private neural network operations is using
a hybrid mechanism that combines homomorphic encryption with secure multiparty
computation. The motivation for a hybrid solution derives from high bandwidth usage
of secure multiparty computation and high computation cost and degraded accuracy
of fully homomorphic encryption. Gazelle [85] is one such protocol that combines an
additively homomorphic encryption system with garbled circuits. The homomorphic
cryptosystem used in Gazelle, packed additively homomorphic encryption (PAHE), is a
special system proposed by the authors which can perform fast matrix and vector mul-
tiplications and convolutions [85]. Thanks to the combination of PAHE with garbled cir-
cuits, Gazelle can outperform CryptoNets and MiniONN both in computation cost and
bandwidth usage such that a single prediction with Gazelle can be computed in 30 ms
with 0.5 MB bandwidth usage. The disadvantage of Gazelle lies in the practicality of the
protocol. The homomorphic cryptosystem proposed in the paper is specific to Gazelle
such that it is complex and there is no implementation available. This problem makes
the reproducibility of the proposed solution impractical.

2.3.3. MARKETING ANALYTICS
An important application of marketing analytics is online advertisements which enable
companies to serve their advertisements to targeted users based on their browsing be-
haviour. However, delivering the advertisements to the customers require to collaborate
with the publishers. Online advertisements can be delivered to the customers by using
real-time bidding mechanism of buying and selling advertisements [86]. Using the real-
time bidding mechanism, the companies can have a better control on their advertise-
ment budget and on the pages and the end users that their advertisements are shown.

In the online behavioral advertisement ecosystem, a company’s advertisement is de-
livered to a user when the users interest matches to the content of the advertisement.
Computing the probability of an end-user is interested in the advertisement of a com-
pany is possible using several machine learning techniques such as logistic regression or
factorization machines.

• Logistic regression is one technique to compute the likelihood of a user clicking
an advertisement. Given the user profile x as a feature vector and the vector of
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model parameters w , logistic regression estimates the binary output (click or no
click) ŷ using the sigmoid function as follows:

ŷ = 1

1+e°wT x
. (2.3)

To improve the accuracy of prediction, the model parameters w are updated once
the actual binary click y is observed. The stochastic gradient descent algorithm
can be used to update model parameters [87]. Despite its simplicity and efficiency,
logistic regression cannot handle the interactions between different features in
user profile which might affect the prediction quality.

• Factorization machines are an alternative to logistic regression for the prediction
of user interest by considering the interactions among different features. Factor-
ization machines can perform predictions efficiently by reducing the features into
a low-dimensional space with the use of feature interactions [88].

PRESERVING CONFIDENTIALITY IN MARKETING ANALYTICS

Different from the other analytics types, in online advertisements, the data that compa-
nies perform analytics are collected through the web history of customers and the pro-
tection of data directly relates to the protection of customer privacy. For this purpose,
several solutions proposed to protect privacy of end users.

One group of solutions aim to prevent tracking of users using ad-blocking mecha-
nisms that blocks requests of advertisers [89]. The blocking tools are installed on the
end users machine and does not require any cooperation with publishers or advertisers.
However, not all blocking tools guarantee blocking tracking, rather they prevent showing
the advertisements to the end users. Using ad blockers is not desired by publishers and
companies since companies cannot advertise their products and publishers lose their
revenue for offering free content [90].

Anonymizing user’s profile using several obfuscation and anonymization techniques
is another line of research in private online advertising [91–93]. While this solution ben-
efits the privacy of users, it is not desirable for companies which aim to target their ad-
vertisements to users since the obfuscation and anonymization methods add noise to
data and produce misleading prediction results for advertising companies [92].

Several solutions uses cryptographic techniques to protect confidentiality of user
data while enabling the companies to serve their advertisements under privacy preser-
vation. Juels [94] proposes a scheme which uses private information retrieval (PIR) to
deliver the advertisement to the user without leaking information about which adver-
tisement is delivered. The proposed solution is a client-server scenario where the client,
end user, computes the advertisement that matches to his/her profile locally. Instead
of a single server, the solution proposes to use a group of servers such that the num-
ber of honest servers are above a threshold. To anonymize the user who requested the
advertisement, a mix network is used. The main bottleneck of Juels’ scheme is the com-
putational overhead of PIR approach combined with mix networks that is not applicable
for the real-time nature of online advertising [95].

Backes et al. [95] proposes another scheme, ObliviAd, which uses Oblivious RAM
(ORAM) instead of PIR and combines it with secure coprocessor. In a client-server mo-
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del, using ORAM assures that the advertisement accessed by the client cannot be ob-
served by the server and secure coprocessor protects the client’s information from the
server. However, the advertising model proposed in ObliviAd does not match with the
existing real time bidding model of advertisements. Furthermore, the use of secure co-
processor may not be feasible without increasing the cost beyond the point of profitabil-
ity [96, 97].

Adnostic [98] is another scheme that uses cryptographic mechanisms to guarantee
the privacy of users by protecting the advertisements viewed by the user. It uses a voting
system based on homomorphic encryption such that for a set of advertisements down-
loaded to user’s system, it reports the binary information of advertisement (viewed/ not
viewed) to the server in an encrypted form. The proposed scheme needs a trusted third
party that should decrypt the aggregated statistic of the advertisements to report it to the
advertisers. The requirement of downloading the advertisements in advance makes the
scheme unsuitable for real time bidding mechanism [97].

2.4. OPEN ISSUES AND CHALLENGES
In this chapter, we provided the preliminary knowledge to design protocols for confiden-
tial data analytics-as-a-service applications and described three analytics applications
along with their existing privacy-preserving solutions. Considering the existing litera-
ture, we clearly see that there is a need for the assurance of confidentiality in process
analytics, machine learning, and marketing analytics when the algorithms of these ap-
plications performed in an outsourced setting. In this thesis, we propose several pro-
tocols that aim to achieve confidentiality in process discovery, conformance checking,
neural network predictions, and online behavioral advertisement. We use secure mul-
tiparty computation and homomorphic encryption to protect and process data in our
protocols. Depending on the computational capabilities of the analytics outsourcing
companies, we use either a client-server scenario or a non-colluding servers scenario in
our protocols. All of our protocols achieve security against semi-honest adversaries. In
each protocol, we aim to achieve the following requirements:

• Privacy: In the delivery of inputs to the service provider company and the delivery
of outputs to the analytics outsourcing company, and during the computation of
analytics the privacy of data should be assured.

• Accuracy: The result of secure computations should be correct. If achieving cor-
rectness is not possible due to the limitations of the underlying secure computa-
tion mechanism, the goal should be to maximize the accuracy of the computations
such that it is similar to the expected original results.

• Efficiency: The cryptographic mechanism applied for the analytics tasks should
not degrade the performance of original computations drastically. The overhead
of secure computation should be minimized.

Among these requirements, the privacy of input and output can be verified with the
use of provably secure cryptographic mechanisms for secure computation. Therefore,
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our main goal in the following chapters is to achieve accuracy and efficiency in the de-
sign of confidential data analytics-as-a-service protocols. There exists several challenges
that we should address in achieving accuracy and efficiency:

• Loss of precision: The analytics types described in this chapter uses small num-
bers which are not necessarily integers. However, the cryptographic mechanisms
for secure computation usually work on integer values. Therefore, in the design of
our protocols minimizing the loss of precision in transformation from real num-
bers to integers incurs a challenge on the accuracy of computations.

• Nonlinear functions: Both fully homomorphic encryption and secure multiparty
computation can perform arithmetic computations. However, computing nonlin-
ear functions using these secure computation techniques is not trivial. To maxi-
mize the accuracy of computations, we need protocols that can compute or ap-
proximate nonlinear functions.

• Trade-off between computation cost and bandwidth usage: As it is clear in the
existing works on secure computation, optimizing computation cost results in a
degraded bandwidth usage, or a lower bandwidth usage incurs high computa-
tion cost. Feasibility of both computation and communication cost is important
for outsourced computation. Therefore, balancing the computation cost and the
bandwidth usage is a challenge in the efficiency of our proposals.

In the following chapters, we try to overcome these challenges by designing privacy-
preserving protocols that are based on cryptographic techniques. We aim to propose
protocols that are clear, understandable, and reproducible by the research community
for fair validation and comparison of our protocols with future research attempts.
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3
PROCESS DISCOVERY ON

ENCRYPTED DATA

The increasing demand for data mining in business intelligence has led to significant
growth in the adoption of the data mining-as-a-service paradigm which enables com-
panies to outsource their data mining tasks to a cloud service provider. Process mining is
one recently investigated technique for data analysis which enables the discovery of pro-
cess models from event logs collected during software execution. Despite the popularity
of outsourcing in analytics, the companies hesitate to enable the cloud providers’ access
to their data considering customer privacy and intellectual property. In this chapter, we
propose two privacy-preserving protocols for the discovery of process models that assure
the privacy for analytics outsourcing companies. Both of our protocols use encryption to
protect and process the data using the homomorphic properties of the encryption. Our
first protocol, AlphaSec, provides a privacy-preserving solution for a fundamental process
discovery algorithm. Our second protocol, PriSM, generalizes AlphaSec to make it applica-
ble for any kind of process discovery algorithm. PriSM uses a novel switching mechanism
that allows using both multiplicative and additive homomorphism on the ElGamal cryp-
tosystem. We provide the experiment results for both protocols to show their feasibility in
privacy-preserving data analytics applications. To the best of our knowledge, our proto-
cols are the first attempts to achieve process discovery under privacy-preservation with the
help of provably secure cryptographic techniques.

This chapter has been published as

• "Mining Encrypted Software Logs using Alpha Algorithm" by G. Tillem, Z. Erkin, and R.L. Lagendijk in
SECRYPT. (pp. 267-274) (2017), which is presented in Section 3.1,

• "Mining Sequential Patterns from Outsourced Data via Encryption Switching" by G. Tillem, Z. Erkin,
and R.L. Lagendijk in PST. (pp. 1-10) (2018), which is presented in Section 3.2.
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3.1. MINING ENCRYPTED SOFTWARE LOGS USING ALPHA AL-
GORITHM

Software systems have an evolving nature which enables them to respond to the needs
of technological advances continuously [1]. While this evolution is advantageous to im-
prove service quality for users, the drawback is growing complexity which complicates
the management of software systems [2]. The complication occurs especially in the ver-
ification and validation of the system properties. Considering that current systems can
reach up to billions of lines of code [3], the classical analysis of software becomes imprac-
tical [1]. Overcoming the difficulties of classical approach is possible using model-based
analysis techniques. In these techniques, a formal model of a system is generated and
the conformance of properties are checked by automated tools to address defects in the
design [4].

A common approach in model-based analysis is modeling the system behavior thro-
ugh event logs that contain information about software execution [5]. A promising tech-
nique for such an analysis is process mining that aims to discover, monitor, and enhance
processes using the information in event logs [6]. The discovery, i.e. process discovery,
aims to generate a process model from the logs to observe system behavior. Monitoring,
or conformance checking, compares an existing model with real logs of the same process
to conform the real behavior to the expected behavior. Finally, enhancement, i.e. process
enhancement, improves an existing model with the real event logs, to replay the reality
on the existing model.

In every category of process mining, the content of event logs are crucial in the sys-
tem analysis. The logs may contain information about users (e.g. user id or e-mail),
duration of execution, system properties (e.g. memory usage, OS type) or component
interactions. Although this information is useful in modelling the behavior, the content
might leak sensitive information of owners; user and software company. For a user, shar-
ing sensitive data with third parties may pose a privacy threat. A recent discussion about
GHTorrent [7], a platform to monitor and publish GitHub events as dataset, exemplifies
such a threat in shared logs. In the dataset user e-mails used to be published since they
are already public on GitHub [8]. However, this situation initiated a displeasure when the
dataset is used by third companies to send survey e-mails to data owners [8]. The discus-
sion ended by removing personal data from the dataset [8]. Sharing logs is also arguable
for software companies regarding the intellectual property and confidential information
in logs. [9] shows that it is possible to reverse engineer software logs with process min-
ing. Considering the risk of piracy through reverse engineering [10], the companies are
not willing to share information with external parties.

The existing literature on software analysis for security and privacy approaches the
problem from several aspects. The studies for the protection of the intellectual property
are mostly focus on cryptographic solutions such as code obfuscation [11], watermark-
ing [12] and tamper-proofing [13]. For the protection of user privacy, some studies ap-
proach the problem as the privacy of data in testing applications [14, 15] and provide
solutions by applying anonymization. Several studies attempt to protect user privacy
during log generation by reducing the sensitive information in log reports [16, 17]. Fur-
thermore, the control of information flow between software components is also a con-
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cern. [18] and [19] address the problem of controlling sensitive information flow using
taint tracking and analysis mechanisms.

While there are many efforts for securing log-based software analysis in the literature,
no studies have focused on privacy issues in software analysis with process mining. In
this paper, we propose a protocol for privacy-preserving process discovery for software
analysis, namely AlphaSec. Thus, we select the alpha algorithm [20] which is a favorable
algorithm in understanding the mechanism of discovery with a relatively simple struc-
ture.

Our scenario has three parties namely, users, software company (SC) and process
miner (PM). The users send the event logs to SC and are not active in the rest of the proto-
col. PM executes the process discovery protocol on the logs under the supervision of SC.
We assume a semi-honest setting where PM and SC do not collude. In order to achieve
privacy, we encrypt the logs under a homomorphic cryptosystem. To identify the items
in the logs and the relations between them, we use several cryptographic protocols as se-
cure equality checking, secure multiplication and bit decomposition. Furthermore, we
use data packing to eliminate the repetition of same operations and to exploit encryp-
tion modulus optimally. During the protocol execution, PM and SC are not allowed to
directly decrypt the logs. Moreover, the decryptions on intermediate values are secured.
In this setting, our protocol guarantees the privacy of data owners. To the best of our
knowledge, our paper presents the first protocol for privacy-preserving software anal-
ysis with process mining which assures both user and software privacy. Our protocol
does not change the original structure of alpha algorithm and it can be adapted to other
discovery algorithms with slight modifications. While our proposal adopts well-known
cryptographic protocols, it reduces the cost of those protocols significantly by using data
packing. We provide computational and communication complexity analysis along with
experiments to show the improvement of our protocol.

3.1.1. PRELIMINARIES
In this section we summarize the alpha algorithm and and introduce the cryptographic
tools used in our protocol. Table 3.1 summarizes the notation.

THE ALPHA ALGORITHM

The alpha algorithm takes an event log L = {æ0, · · · ,æø} as input, where L is a set of traces
æi such that every æi is composed of events e jæi , scans it to find patterns and outputs
the result as a Petri net1 [20]. Moreover, every e jæi contains several attributes, such as
activity, timestamp or resource which determine the perspective of process discovery.
Following the common approach in process mining, in this work we assume that activ-
ity attribute is used for process discovery, so every e jæi has only one attribute which is
activity.

The algorithm runs in 8 steps [6]. In Steps 1-3, the set of activities appeared in L,
TL Ω T , and the sets of the first (TI Ω T ) and last (TO Ω T ) activities are discovered. Step
4 aims to discover the ordering relations between activities. The ordering is based on
direct succession, tb > tc , which means tc directly follows tb in æi . The direct successions
are used to define 3 ordering relations which are 1. Causality (tb ! tc or tc √ tb ): tb > tc ,

1A modeling language used in process mining. See [20] for details.
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Table 3.1: Explanation of the notation.

Symbol Explanation

T Set of activities ti s.t. T = {t1, t2, · · · , t¢}
æi A trace with !i events s.t. æi = he1æi , · · · ,e!iæi i
e jæi j th event of æi , where 1 ∑ j ∑!i and 1 ∑ i ∑ ø
L Event log with ø traces, s.t. L = {æ0, · · · ,æø}
≠ Secure multiplication operator
© Homomorphic addition operator
Mx£y A matrix M of size x £ y
Mx,y Index of matrix M in row x and column y
M§,y y th column of matrix M
µ Compartment size for data packing
N Plaintext modulus for Paillier cryptosystem
µX Number of packs for the packed array X

but not tc > tb , 2. Parallel (tb || tc ): both tb > tc and tc > tb , and 3. Choice (tb # tc ) :
neither tb > tc nor tc > tb . The result of orderings is represented as a footprint matrix.
Once the footprint matrix is created, the pairs with causality relation are collected in XL
and in Step 5 the maximal pairs of XL are assigned to YL . In Steps 6-7 the set of places
PL and the set of arches, FL , which connects the elements of PL are determined. Finally,
Step 8 returns the result Æ(L) as (PL , TL , FL).

To illustrate how the alpha algorithm works, we provide a toy example in the follow-
ing. Let L = {ha, b,e, f i, ha,b,e,c,d ,b, f i, ha,b,c,e,d ,b, f i, ha,b,c,d ,e,b, f i, ha,e,b,c,d ,
b, f i} be an event log. The 8 steps of the alpha algorithm for L is:

• TL = {a,b,c,d ,e, f }, TI = {a}, TO = { f }.

• XL = {({a}, {b}), ({a}, {e}), ({b}, {c}), ({b}, { f }), ({c}, {d}), ({d}, {b}), ({e}, { f }), ({a,d}, {b}),
({b}, {c, f }}. See the footprint matrix in Table 3.2 for orderings.

Table 3.2: Footprint matrix for L.

a b c d e f
a # ! # # ! #
b √ # ! √ || !
c # √ # ! || #
d # ! √ # || #
e √ || || || # !
f # √ # # √ #

• YL = {({a}, {e}), ({c}, {d}), ({e}, { f }), ({a,d}, {b}), ({b}, {c, f }}.

• PL = {iL ,oL , p({a},{e}), p({c},{d}), p({e},{ f }), p({a,d},{b}), p({b},{c, f }}.
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• FL =
©
(iL , a) ,

°
f ,oL

¢
,
°
a, p({a},{e})

¢
,
°
p({a},{e}),e

¢
,
°
c, p({c},{d})

¢
, · · · ,

°
p({b},{c, f }),c

¢
,°

p({b},{c, f }), f
¢™

.

• The output Æ(L) = (PL ,TL ,FL) as in Figure 3.1.

a
b

cd

e
f

iL oL

p({c},{d})

p({a},{e})

p({a,d},{b})

p({e},{f})

p({b},{c,f})

Figure 3.1: The output of the alpha algorithm for the example L as Petri net.

The output of the alpha algorithm is used in conformance checking and process en-
hancement, to observe the system behavior and to detect the deviations.

PAILLIER CRYPTOSYSTEM

For our protocol we select Paillier cryptosystem [21] for the encryption of L due to its
homomorphic property. In Paillier, encryption of a message m modulus N = p ·q is per-
formed as E(m) = g m · r N mod N 2, where p, q are large primes, g = N +1 and r 2R Z§

N .
We refer readers to [21] for details of decryption scheme. Paillier cryptosystem enables
to perform homomorphic addition on ciphertexts as E(m1)£E(m2) = E(m1+m2). In the
rest of the paper, we represent a Paillier ciphertext by [·] and a homomorphic addition
by ©, for the sake of simplicity.

DATA PACKING

In our protocol to eliminate the cost of repeated operations, we use data packing as
in [22]. The bit size of inputs in plaintext, determines the compartment size, µ, in packed
ciphertext. The number of items in one pack is computed as Ω =

•
log2 N /µ

¶
where

log2 N is the length of plaintext modulus. Let [W ] = {[w0], · · · , [ws°1]} be an encrypted
array of s elements, wi , we pack [W ] into µ =

ß
s/Ω

®
ciphertexts such that [Wpack ] =

{[Wpack0 ], · · · , [Wpackµ°1 ]} where data packing for every [Wpackt ] is performed as

[Wpackt ] =
Ω°1X

j=0
[w j ] · (2µ) j , s.t. 0 ∑ t ∑µ°1.

Using [Wpack ], we can simultaneously employ homomorphic addition and also reduce
the total cost of decryption. In the rest of the paper, we represent data packing as
pack([W ],µ, N ).
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HOMOMORPHIC PROTOCOLS

For encrypted data processing, we use secure equality check [23], secure multiplica-
tion [22], and bit decomposition [24] protocols.

Secure Equality Check (SEQ) The common approach to securely check whether [x] =
[y] is to check if [q] = [x ° y] is 0. One way to test if [q] = 0 is to use Hamming distance
as in [25]. In our work, we use NEL-I SEQ protocol from [23] that is an efficient version
of [25]. We refer reader to [25] and [23] for the details.

Secure Multiplication Protocol (SMP) [22] presents an SMP protocol, where Alice has
[a] and [b] and Bob holds the secret key as follows. Alice selects randoms ra , rb 2R ZN ,
blinds the inputs as [a0] = [a] · [°ra], [b0] = [b] · [°rb] and sends [a0], [b0] to Bob. After
decryption, Bob computes a0 ·b0, and sends [a0 ·b0] to Alice. Computing [a ·b] = [a0 ·b0] ·
[b]ra · [a]rb · [°ra · rb], Alice gets the encrypted multiplication.

Bit Decomposition (BD) Using BD protocol in [24], Alice and Bob can compute the
encrypted bits of an `-bit x as follows. Assume Alice has [x], and Bob holds the secret
key. Alice blinds [x] as [z] = [x ° r ], where r 2R {0,1}`+∑, and sends [z] to Bob. After
decryption, Bob sends the least significant ` bits of z to Alice in encrypted form. Us-
ing [ci ] = [zi ]ri · [ci°1]ri · [zi · ci°1], [xi ] = [zi ] · [ri ] · [ci°1] · [ci ]°2, Alice computes the set
{[x0], [x1], · · · , [x`°1]} which is BD of [x].

3.1.2. ALPHASEC: SECURE ALPHA ALGORITHM
In this section, we introduce the privacy-preserving alpha algorithm protocol, namely
AlphaSec.

SCENARIO

Our scenario has three parties:

1. Software Company (SC) is the owner of the software product who holds public and
private keys (pk, sk) and stores the encrypted logs.

2. Users are the users of the software who send the encrypted logs to SC and are not
active in the rest.

3. Process Miner (PM) is a service provider for SC who models the software. PM
has the knowledge and resources to perform process mining techniques, thus, SC
needs PM’s expertize to analyze the software.

Our goal is to minimize the information leakage for users and SC during the protocol
execution. Thus, PM must not access the content of encrypted logs and his statistical
observations should be restricted. He should not learn the frequencies, but can only ob-
serve the ordering relation between two encrypted activities. For instance, for activities
a and b, PM can see that [a] > [b] without knowing the values of [a] and [b] and the
frequencies of [a], [b] and [a] > [b]. On the other hand, SC is only allowed to decrypt
the intermediate blinded values and the output of the protocol which contains his own
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information. In this setting, our protocol is based on semi-honest security model where
PM and SC are non-colluding.

SETUP

In the setup phase, SC generates (pk, sk) and shares pk with PM and users. We as-
sume that SC shares T with PM as [T ] = {[t1], · · · , [t¢]}. Furthermore, SC collects [L] =
{h[e1æ1 ], · · · [e!1æ1 ]i, · · · ,h[e1æø ], · · · [e!øæø ]i} from users and shares it with PM to run Al-
phaSec.

PROCESS MODEL DISCOVERY

AlphaSec protocol focuses on the first 4 steps of the original alpha algorithm, since the
sensitive data is processed in these steps. Accordingly, the first task is the discovery of
activities TL ,TI and TF in encrypted domain, i.e. Steps 1-3. The second task is to find
the ordering relations, i.e. Step 4. Afterwards, a footprint matrix is constructed and Steps
5-8 of the original algorithm are operated in plaintext. Thus, our protocol is based on 3
subprotocols which are 1. Secure Activity Discovery, where the activities are discovered,
2. Secure Direct Succession Discovery where the orderings are determined and 3. Se-
cure Modeling where the eventual process model is generated.

Algorithm 1 shows how AlphaSec works. When SC requests a process model, in
Step 1, PM creates 3 matrices, namely R¢£¢, I D¢£1 and F D¢£1. While R is used to
store direct successions and discovered activities, I D and F D are used to store the initial
and final activities. Between Steps 2-4, for each [æi ] of [L], Secure Activity Discovery
and Secure Direct Succession Discovery subprotocols are operated subsequently. After
all [æi ]s are scanned, a Petri net is generated in Step 5, by Secure Modelling subprotocol.

Algorithm 1 AlphaSec

Input: [L] , [T ]
1: R, I D,F D
2: for all [æi ] 2 [L] do
3: (ADæi , I D,F D) =SecureActivityDiscovery([æi ])
4: R = SecureDirectSuccessionDiscovery(ADæi )

5: Æ([L]) = SecureModelling(R, I D, F D)
Output: Æ([L])

Secure Activity Discovery The first subprotocol aims to securely discover TL , TI and
TO as shown in Algorithm 2. Accordingly, PM collaborates with SC to compare every
[e jæi ] with every [tm] using SEQ and the result is stored in ADæi

¢£!i
. As showed in Step 3,

if [e jæi ] = [tm], ADæi
m, j is set to [1], else to [0]. Finally, in Step 4, I D and F D are updated

with ADæi
§,1 and ADæi

§,!i
, respectively. In Figure 3.2a, we illustrate the procedure for the

sample [L].
Since SEQ is an expensive protocol that has to be repeated ¢ ·!i times for each æi ,

we use data packing in our protocol. Notice that only a number of intermediate steps of
the adopted SEQ protocol [23] can be modified for data packing. We use pack([e jæi °
tm],µ, N ) as packing function where µ = (

ß
log2¢

®
+∑), µ=¢ ·!i /Ω and Ω =

•
log2 N /µ

¶
.
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Algorithm 2 Secure Activity Discovery

Input: [æi ] , I D , F D
1: for all [e jæi ] 2 [æi ] where 1 ∑ j ∑!i do
2: for all [tm] 2 [T ] where 1 ∑ m ∑¢ do
3: ADæi

m, j = ([e jæi ]
?= [tm]) ? [1] : [0]

4: I D = I D © ADæi
§,1 , F D = F D © ADæi

§,!i

Output: ADæi , I D,F D

[a] [b] [c] [d] [e] [f]
[a] [0] [4] [0] [0] [1] [0]

[b] [0] [0] [3] [0] [2] [4]

[c] [0] [0] [0] [3] [1] [0]

[d] [0] [3] [0] [0] [1] [0]

[e] [0] [2] [1] [1] [0] [1]

[f] [0] [0] [0] [0] [0] [0]

[a] [b] [c] [d] [e] [f]

[a] 0 1 0 0 1 0

[b] 0 0 1 0 1 1

[c] 0 0 0 1 1 0

[d] 0 1 0 0 1 0

[e] 0 1 1 1 0 1

[f] 0 0 0 0 0 0

[a] [b] [c] [d] [e] [f]
[a] # # # #

[b] # ||

[c] # # || #

[d] # # || #

[e] || || || #

[f] # # # #

[a] [b] [e] [f]
[a] [1] [0] [0] [0]

[b] [0] [1] [0] [0]

[c] [0] [0] [0] [0]

[d] [0] [0] [0] [0]

[e] [0] [0] [1] [0]

[f] [0] [0] [0] [1]

(a) ADæ1 for æ1 of L.

[a] [b] [c] [d] [e] [f]
[a] [0] [4] [0] [0] [1] [0]

[b] [0] [0] [3] [0] [2] [4]

[c] [0] [0] [0] [3] [1] [0]

[d] [0] [3] [0] [0] [1] [0]

[e] [0] [2] [1] [1] [0] [1]

[f] [0] [0] [0] [0] [0] [0]

[a] [b] [c] [d] [e] [f]

[a] 0 1 0 0 1 0

[b] 0 0 1 0 1 1

[c] 0 0 0 1 1 0

[d] 0 1 0 0 1 0

[e] 0 1 1 1 0 1

[f] 0 0 0 0 0 0

[a] [b] [c] [d] [e] [f]
[a] # # # #

[b] # ||

[c] # # || #

[d] # # || #

[e] || || || #

[f] # # # #

[a] [b] [e] [f]
[a] [1] [0] [0] [0]

[b] [0] [1] [0] [0]

[c] [0] [0] [0] [0]

[d] [0] [0] [0] [0]

[e] [0] [0] [1] [0]

[f] [0] [0] [0] [1]

(b) Final R matrix.

[a] [b] [c] [d] [e] [f]
[a] [0] [4] [0] [0] [1] [0]

[b] [0] [0] [3] [0] [2] [4]

[c] [0] [0] [0] [3] [1] [0]

[d] [0] [3] [0] [0] [1] [0]

[e] [0] [2] [1] [1] [0] [1]

[f] [0] [0] [0] [0] [0] [0]

[a] [b] [c] [d] [e] [f]

[a] 0 1 0 0 1 0

[b] 0 0 1 0 1 1

[c] 0 0 0 1 1 0

[d] 0 1 0 0 1 0

[e] 0 1 1 1 0 1

[f] 0 0 0 0 0 0

[a] [b] [c] [d] [e] [f]
[a] # # # #

[b] # ||

[c] # # || #

[d] # # || #

[e] || || || #

[f] # # # #

[a] [b] [e] [f]
[a] [1] [0] [0] [0]

[b] [0] [1] [0] [0]

[c] [0] [0] [0] [0]

[d] [0] [0] [0] [0]

[e] [0] [0] [1] [0]

[f] [0] [0] [0] [1]

(c) Result of zero-check.

[a] [b] [c] [d] [e] [f]
[a] [0] [4] [0] [0] [1] [0]

[b] [0] [0] [3] [0] [2] [4]

[c] [0] [0] [0] [3] [1] [0]

[d] [0] [3] [0] [0] [1] [0]

[e] [0] [2] [1] [1] [0] [1]

[f] [0] [0] [0] [0] [0] [0]

[a] [b] [c] [d] [e] [f]

[a] 0 1 0 0 1 0

[b] 0 0 1 0 1 1

[c] 0 0 0 1 1 0

[d] 0 1 0 0 1 0

[e] 0 1 1 1 0 1

[f] 0 0 0 0 0 0

[a] [b] [c] [d] [e] [f]
[a] # # # #

[b] # ||

[c] # # || #

[d] # # || #

[e] || || || #

[f] # # # #

[a] [b] [e] [f]
[a] [1] [0] [0] [0]

[b] [0] [1] [0] [0]

[c] [0] [0] [0] [0]

[d] [0] [0] [0] [0]

[e] [0] [0] [1] [0]

[f] [0] [0] [0] [1]

(d) Footprint matrix.

Figure 3.2: Illustrating AlphaSec protocol on the sample log.

Secure Direct Succession Discovery The next step in AlphaSec is to identify direct suc-
cessions between activities. To detect subsequent events in [æi ], we merge two subse-
quent columns of ADæi by SMP. Thus, every element in the former column, ADæi

§, j is

securely multiplied with every element in the transpose of latter column (ADæi
§, j+1)T .

Then, the result is added to corresponding index of R.
This subprotocol has two bottlenecks in terms of efficiency. First, the inputs of SMP

are encrypted bits, so the plaintext space is not optimally used. Second, for everyæi SMP
protocol runs ¢2 · (!i °1) times. These bottlenecks require us to use data packing. Ac-
cordingly, we pack the column ADæi

§, j+1 as pack(ADæi
§, j+1,µ, N ), where µ =

ß
log2°

®
and

the column ADæi
§, j as pack(ADæi

§, j ,µ, N ), where µ =
ß

log2°
®
·¢ and ° is the number of

events in L. Since the protocol requires to add the result to R, we select a larger compart-
ment size, which is the total number of events in the worst case. The result of SMP is a
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packed ciphertext with µ =
ß

log2°
®
·¢. The number of compartments in one pack and the

number of packs are Ω1 =
•

log2 N /
ß

log2°
®
·¢

¶
, µ1 =¢ ·!i /Ω1 and Ω2 =

•
log2 N /

ß
log2°

®¶
,

µ2 =¢ ·!i /Ω2, respectively. In this setting, SMP runs µ1 ·µ2 ·(!i °1) times for everyæi . In
Algorithm 3, we show how to perform secure direct succession discovery with packing.
The result of SMP, mul t , is stored in Rpack, whose size is µ1 ·µ2.

Algorithm 3 Secure Direct Succession Discovery

Input: ADæi

1: for 1 ∑ j ∑!i °1 do
2: ADp

1 = pack(ADæi
§, j ,µ, N ), ADp

2 = (ADæi
§, j+1,µ, N )

3: for 1 ∑ k ∑µ1 do
4: for 1 ∑ m ∑µ2 do
5: mul t = ADp

1k
≠ ADp

2m
6: Rpackk,m

= Rpackk,m
©mul t

Output: Rpack

After the execution of subprotocol, the result Rpack is unpacked using BD to create
R. It is important to mention that BD outputs individual bits, but every index of R is aß

log2°
®

-bit integer. Thus, after BD, we perform data packing for every
ß

log2°
®

bits to
create R. Figure 3.2b shows R matrix for the sample L.

Secure Modelling In the last step of AlphaSec, the output Æ([L]) is generated using
R, I D , F D . Here PM needs to know which activity pairs have an ordering relation, but
the frequency of the relation should be hidden from him. Thus, we perform a zero-check
function on the inputs to observe whether two encrypted activities has an ordering re-
lation, also, whether an activity is first or last activity. For zero-check, PM blinds Ri , j
with r 2R ZN as [R 0

i , j ] = [Ri , j ]r where 1 ∑ i , j ∑¢ and sends [R 0
i , j ] to SC for a secure de-

cryption. If the result of the decryption is non-zero, which means the activity pairs have
a direct succession relation, then SC sends 1 and otherwise sends 0 to PM. Hence, PM
can only observe the relation between two encrypted activities, but nothing else. Using
the result of zero-check, the footprint matrix can be constructed and then the output
is generated as in the original alpha algorithm. The only difference is that activities are
encrypted and only SC can decrypt them. In Figure 3.2c-3.2d, we illustrate the result of
zero-check on R and the footprint matrix, respectively.

3.1.3. PROTOCOL ANALYSIS
In this section, we first provide a security analysis for our protocol, then analyze its
computational and communicational complexity and show experimental results. In Ta-
ble 3.3, we summarize the notation.

SECURITY ANALYSIS

The privacy considerations in our protocol are twofold: user privacy and software com-
pany privacy. On one hand, users want to protect their sensitive information from PM
and SC. On the other hand, SC wants to protect the intellectual property of his product
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Table 3.3: Summary of the notation for complexity analysis.

Notation Explanation

° Total number of events in L, s.t. °=Pø
i=1!i

HAD Homomorphic addition
HSM Homomorphic scalar multiplication
ZCF Zero check function
SEQ Secure Equality Check
SMP Secure Multiplication
BD Bit Decomposition
SAD Secure Activity Discovery
SDS Secure Direct Succession Discovery
MD Secure Modelling

from PM. In the following, we analyze how these concerns are overcome against each
party.

Users are not active during protocol execution. They only take part in generation of
[L], so they do not have an active adversarial role in our setting.

PM has access to [L] and the results of SEQ, SMP and HAD. The cryptographic pro-
tocols are proven to be secure, thus, we assume that PM cannot infer any additional in-
formation. Furthermore, to prevent statistical inferences, we hide the frequencies from
PM by zero-check. PM can only observe the ordering between two encrypted activities.
However, it is not an advantage for PM since the real values are unknown.

SC holds sk and collaborates with PM to operate SEQ and SMP protocols. As the
owner of sk, he does not have direct access to [L] to assure user privacy. During SMP,
decryption result is blinded, thus, SC cannot infer the original values. For SEQ, we rely
on the security of the underlying protocol.

COMPUTATIONAL ANALYSIS

Prior to the analysis of AlphaSec, we analyze the computational complexity of the origi-
nal alpha algorithm. The operations in the original algorithm are mostly integer or string
comparisons which detect distinct activities and the orderings. Thus, TL , TI and TO can
be discovered in ° comparisons. For the discovery of direct successions, every e jæi can
be paired with its successor in ° operations. Then, the footprint matrix can be generated
with at most ¢2 comparisons.

For the analysis of AlphaSec, we count the number of operations in every subproto-
col and illustrate them in Table 3.4 without packing (w/o Packing) and with packing (w/
Packing). Apart from the operations in Table 3.4, ° and ¢ encryptions are performed
to encrypt L and T in setup. In AlphaSec, SDS dominates the computations by the
quadratic complexity of SMP and HAD. Using data packing, the number of SMP reduces
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from ¢2 to
ß

(¢/Ω1)
®
·
ß

(¢/Ω2)
®

, where

Ω =
•

log2 N /(∑+
ß

log2¢
®

)
¶

,

Ω1 =
•

(log2 N °∑)/(
ß

log2°
®
¢)

¶
,

Ω2 =
•

(log2 N °∑)/(
ß

log2°
®

)
¶

.

Table 3.4: The number of operations performed in AlphaSec.

w/o Packing w/ Packing

SAD
SEQ ¢°

ß
¢°/Ω

®

HAD 2 · (ø°1)¢ –

SDS
SMP ¢2(!i °1)ø

ß
(¢/Ω1)

®ß
(¢/Ω2)

®
(!i °1)ø

HAD ¢2(!i °1)ø
ß

(¢/Ω1)
®ß

(¢/Ω2)
®

(!i °1)ø
BD –

ß
(¢/Ω1)

®ß
(¢/Ω2)

®

SM
HSM ¢2 –
ZCF ¢2 –

COMMUNICATIONAL ANALYSIS

In Table 3.5, we summarize the communication complexity of AlphaSec in terms of the
number of ciphertexts exchanged both for packed and unpacked version. The numbers
show that data packing cannot reduce the bandwidth usage for SEQ proportional to the
number of packed ciphertext but it reduces the bandwidth usage in intermediate steps.
On the other hand, for SMP, the reduction in bandwidth usage is directly proportional to
the number of packs.

Table 3.5: Bandwidth usage of AlphaSec in terms of the number of exchanged ciphertexts, where ¬ =
(log2 log2¢).

w/o Packing w/ Packing

SEQ ¢°(3+
ß

log2¢
®
+2

ß
¬
®

) 3¢°/Ω+¢°(
ß

log2¢
®
+2

ß
¬
®

)
SMP 3¢2(!i °1) ·ø 3

ß
¢/Ω1

®ß
¢/Ω2

®
(!i °1)ø

BD – (3(log2 N °∑)°1)
ß
¢/Ω1

®ß
¢/Ω2

®

ZCF ¢2 –

For numerical analysis, we measure the bandwidth usage for a dataset with°= 10000
events, ¢ = 20 activities, ø = 1000 traces and wi = 10 with and without packing, where
ciphertext size 4096 bits. The comparison results in Figure 3.3a show that data packing
can reduce the communication cost significantly. The total improvement in communi-
cation cost is 83%, which is mainly based on SDS, where the bandwidth usage of SMP
is reduced by a factor of 133. We provide a zoom in to show the communication cost of
SDS and BD for w/ Pack, but SM is not visible due to its insignificant cost.
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Figure 3.3: Evaluating the performance of AlphaSec protocol.

EXPERIMENTS

To measure the real time performance of AlphaSec, we implemented it in C++ with GMP-
6.1.2 library. The machine we use runs OSX El Capitan with Intel Core i5 2.7 GHz proces-
sor. We choose log2 N = 2048 for Paillier and ∑= 80 as security parameter. As dataset, we
select 3 synthetic datasets (D1,D2,D3) from the event log dataset of IEEE TF on Process
Mining2, where for D1 ° = 109, ø = 13 and ¢ = 10, for D2 ° = 1,226, ø = 100 and ¢ = 16,
and for D3 °= 10696, ø= 1000 and ¢= 20.

As the first experiment, we measure the effect of packing on performance. Thus, we
run AlphaSec on D1 to compare the timing for SAD, SDS, and BD on packed and un-
packed inputs. Since BD is only used when data is packed, we separate it from SDS.
Furthermore, we do not include SM in results, since it is same for packed and unpacked
data. As the results in Figure 3.3b show applying packing in SDS reduces the computa-

2http://data.4tu.nl/repository/collection:event_logs

http://data.4tu.nl/repository/collection:event_logs
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tion time significantly. The improvement in the computation of SDS is 96% while the
total improvement is 71% approximately. On the other hand, SAD is not affected signifi-
cantly by packing, since it cannot be fully adapted to SEQ.

In the second experiment, we observe the performance on different dataset sizes.
Thus we compare the timing of AlphaSec on D1,D2,D3. We run this experiment only
on the packed version and measure the time required for SAD, SDS, BD, SM and the
total time as illustrated in Figure 3.3c. For D3 it takes 65133 seconds to run AlphaSec, of
which 61885 seconds are spent for SAD, i.e. SEQ. However, performing SDS requires 3135
seconds including BD which takes around 210 seconds. Finally, SM can be performed
approximately in 3 seconds.

3.1.4. CONCLUSION
In this paper, we present the first privacy-preserving protocol in process mining for mo-
del-based software analysis with the alpha algorithm. The output of our protocol can be
used as an input for other process mining techniques such as conformance checking or
process enhancement under a privacy-preserving setting. As a first attempt to provide
dual privacy for users and SC, we propose a solution based on cryptographic primitives,
which provides provable security and privacy. To achieve our goal we use homomorphic
encryption along with two-party cryptographic protocols. To reduce the number of op-
erations, we applied data packing on our computations. The performance analyses show
that the employment of cryptographic techniques on log analysis provides encouraging
results. Furthermore, applying data packing improves the performance significantly.

Although the state-of-the-art process mining techniques are efficient in plaintext do-
main, our protocol proposes a way to protect sensitive data with additional computa-
tional overhead which is promising for the future of this research line. The research chal-
lenge is to improve the efficiency of our protocol further by designing custom-tailored
cryptographic protocols to replace costly operations such as SEQ and deploying our
ideas on more complex process discovery algorithms. With our proposal, we aim to at-
tract the attention of the research community to the privacy aspects of model-based soft-
ware analysis, which is a distinct and important topic that deserves to be investigated.

3.2. MINING SEQUENTIAL PATTERNS FROM OUTSOURCED

DATA VIA ENCRYPTION SWITCHING
Data mining has gained a significant importance in business intelligence with the in-
creasing availability of data collected from information systems. Companies are eager to
apply data mining in their businesses to analyze the trends, improve customer satisfac-
tion, and detect problems in their services. However, especially for small-scale compa-
nies, obtaining the capabilities and experience for data storage and mining is both chal-
lenging and costly [26]. Fortunately, the emergence of data mining as a service paradigm
has relieved companies in performing data mining tasks. This paradigm enables a com-
pany to outsource its data and data mining tasks to a cloud service provider [27]. It is
highly appreciated by companies such that the size of the market is expected to reach
$5.9 billion by 2020 [28].

Despite the increasing popularity of data mining-as-a-service, the protection of pri-
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vacy sensitive outsourced data is a main concern for companies [27, 29, 30]. The com-
panies hesitate to share their data considering their customers’ privacy and intellectual
property of their systems [27, 30]. The concern of privacy was triggered further by GDPR
in the EU, and the research in the field of privacy-preserving data mining has gained
significant importance. A number of works in the field adapt k°anonymity [31] as an
approach for mining association rules and frequent itemsets [32–35]. Data perturba-
tion and differential privacy are alternatives to k-anonymity for privacy-preserving min-
ing of frequent patterns [36–39]. Moreover, several works adapt differential privacy and
data perturbation to achieve privacy in decision tree mining [40, 41], k-means cluster-
ing [42], and support vector machines [43]. As an alternative to aforementioned ap-
proaches which come with the trade-off of utility and privacy, a number of cryptographic
approaches are considered. The cryptographic solutions mostly based on secure multi-
party computation [44–49] along with several works based on encryption [50–52]. How-
ever, these approaches are usually more expensive in terms of communication and com-
putation, since the operations require mostly two or more parties to mutually perform
computations on larger bit sizes.

In this paper, we present a protocol, PriSM (Privacy-preserving Sequential pattern
Mining), which aims to mine direct sequential patterns from outsourced data in privacy-
preserving manner. We focus on direct sequential pattern mining since it is a commonly
used primitive in business process analysis. The ultimate aim of our protocol is to gen-
erate a graph from the mined patterns which visualises the behaviour of a business pro-
cess. Accordingly, the data type we consider here is event logs collected from business
enterprise systems. To the best of our knowledge, this problem is studied in two other
works by Burattin et al. [53] and Tillem et al. [52]. Burattin et al. [53] present an approach
to hide sensitive data in the discovery of process using encryption. While it is an initial
attempt in the field, the explanation of approach, its performance, and security are not
well-detailed. Tillem et al. [52] have proposed a protocol - AlphaSec - for the discovery of
processes under encryption. The protocol adapts an existing discovery algorithm, Alpha
algorithm [20], to a privacy-preserving setting. It utilizes expensive two-party protocols
based on homomorphic encryption such as secure equality check and secure multipli-
cation. The drawback is that such two-party protocols demands high computation cost
along with large number of communication rounds which affects the efficiency of the
protocol.

To overcome the drawback of high computation cost in the existing works with for-
mal security guarantees, we design PriSM protocol which is executed between a data
owner and a data analyst. The data owner outsources its data to the data analyst under
protection. Data analyst runs PriSM protocol to mine direct sequential patterns under
supervision of the data owner. The result of mining is delivered to the data owner as a
direct sequential patterns graph. In this scenario, to protect sensitive information and
at the same time to process the protected information, we propose encryption of the
logs under a homomorphic cryptosystem. The protocol requires both additive and mul-
tiplicative homomorphism. Different from the state-of-the-art, we propose an encryp-
tion switching mechanism with a partially homomorphic cryptosystem which enables to
utilize both additive and multiplicative homomorphism by eliminating the necessity to
use expensive alternatives. For this purpose, we select ElGamal cryptosystem [54] that is
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originally multiplicatively homomorphic, but with a modification in encryption can be
converted to an additive homomorphic scheme. As a result, our protocol outperforms
the existing works in terms of computation with a similar level of communication cost.
While providing efficiency, our protocol guarantees the protection of sensitive informa-
tion in the logs. We can summarize our contributions as follows:

• We present PriSM protocol which aims to mine direct sequential patterns for busi-
ness process analysis on outsourced data. Our protocol guarantees privacy pro-
tection for data owners in accordance with GDPR.

• Our proposal is based on encryption switching to avoid expensive alternatives. To
the best of our knowledge, our protocol is the first work which uses both additive
and multiplicative variant of ElGamal cryptosystem with a switching phase. Our
protocol outperforms the existing works by using encryption switching mecha-
nism which is at least 80% more efficient than the state-of-the-art in terms of com-
putation cost.

• We present a security analysis for our protocol through formal security proofs that
is not provided in the existing works.

In the rest of the paper, we first explain the building blocks of our protocol in Sec-
tion 3.2.1. In Section 3.2.2, we explain our protocol in detail. In Section 3.2.3, we provide
the analyses of our protocol with respect to security and complexity, and then we present
the results of our experiments. Finally, we conclude the paper in Section 3.2.4.

3.2.1. BUILDING BLOCKS
In this section, we introduce the building blocks of our protocol. Before that we summa-
rize the notation used throughout the paper in Table 3.6.

Table 3.6: Summary of the notation.

Symbol Explanation

A Set of activities s.t. A = {a1, a2, · · · , a¢}.
æi A case with !i events, s.t. æi = hei ,1, · · · ,ei ,!i i.
ei , j An event in æi where 1 ∑ j ∑!i and 1 ∑ i ∑ ø .
L An event log with ø cases, s.t. L = {æ1,æ2, · · · ,æø}.
x >L y Directly-follows relation between activities x and y .
G(L) Directly-follows graph of event log L.
Mx£y A matrix of x rows and y columns, where the size is x £ y .
Mx,y Index of matrix M in row x and column y .
M:,y A column matrix for the y th column of M .
Mx,: A row matrix for the xth row of M .
[·]£ An encryption with the multiplicative variant of ElGamal.
[·]+ An encryption with the additive variant of ElGamal.
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MINING EVENT LOGS

An event log L is a collection of actions of a system that contains information about a
business process P . L is a set of cases æi where every event ei , j 2 æi is unique in L, i.e.,
no two cases can contain the same ei , j [6]. Each æi is an instance of the process P . An
event ei , j is an instance of activity performed by the system at any time. It can have sev-
eral attributes such as the name of activity, timestamp, or the resource who performed
the activity. Table 3.7 illustrates an example event log L 2 L which contains 6 cases and
23 events. The event attributes in the example log are activity name, timestamp, and
resource.

Table 3.7: An example event log, L .

Case id Event id
Event Attributes

Activity Timestamp Resource · · ·
æ1 e1,1 a 30-06-2016:11.02 Rose · · ·

e1,2 c 30-06-2016:13.47 Rose · · ·
e1,3 b 30-06-2016:16.20 Mike · · ·
e1,4 e 02-07-2016:10.31 Carol · · ·

æ2 e2,1 a 30-12-2015:08.25 Rose · · ·
e2,2 b 31-12-2015:11.10 Carol · · ·
e2,3 c 01-01-2016:09.50 Bob · · ·
e2,4 d 01-01-2016:09.52 Mike · · ·

æ3 e3,1 a 01-12-2015:13.15 Alice · · ·
e3,2 b 01-12-2015:14.00 Rose · · ·
e3,3 c 01-12-2015:14.04 Mike · · ·
e3,4 d 02-12-2015:10.34 Mike · · ·

æ4 e4,1 a 27-03-2016:11.15 Rose · · ·
e4,2 e 27-03-2016:11.45 Mike · · ·
e4,3 d 27-03-2016:13.00 Carol · · ·

æ5 e5,1 a 31-03-2016:10.50 Alice · · ·
e5,2 b 31-03-2016:14.00 Bob · · ·
e5,3 c 31-03-2016:14.29 Carol · · ·
e5,4 d 31-03-2016:17.10 Carol · · ·

æ6 e6,1 a 06-02-2016:16.00 Rose · · ·
e6,2 c 06-02-2016:16.20 Mike · · ·
e6,3 b 06-02-2016:17.06 Bob · · ·
e6,4 e 06-02-2016:21.19 Carol · · ·

A behaviour graph of a process can be generated from any attribute depending on
the aim of behaviour analysis. A common practice is to generate the graph from activity
names and then extend it with additional attributes such as time or resource. Then, L
can be simplified as follows:

Definition 3.2.1. A simple event log L is a multi-set of cases, where every æi is formed
by a set of activities, i.e., ei , j = ak , such that [6]:

L =
©
he1,1, · · · ,e1,!1iz1 , · · · ,heø,1, · · · ,eø,!øizø

™
, (3.1)
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where zi is the frequency of æi . Regarding Definition 3.2.1, we can formulate the log in
Table 3.7 as a simple event log:

L =
©
ha,c,b,ei2,ha,b,c,di3,ha,e,di

™
. (3.2)

Discovering a behaviour graph for a business process P requires to mine direct se-
quential patterns, a.k.a directly-follows relations, in L. An activity pair (x, y) has directly-
follows relation, x >L y , if x is directly followed by y in æi . The set of the directly-follows
relations of L can be represented as a directly-follows graph, G(L), which represents the
behaviour of P . G(L) consists of

• AL , the set of activities in L,

• >L , the set of directly-follows relations in L,

• AL
start, the set of start activities in L,

• AL
end, the set of end activities in L [6].

The directly-follows graph of L , G(L), is represented as G(L) = (AL ,>L , AL
start, AL

end)
such that

AL = {a,b,c,d ,e} , Astart
L =

©
{a}6™ , Aend

L =
©
{d}4, {e}2™ ,

>L=
©
(a,b)3, (a,c)2, (a,e)1, (b,c)3, (c,b)2, (b,e)2, (c,d)3, (e,d)1™ .

Figure 3.4 illustrates G(L). The activities are represented by square nodes and directly-
follows relations between activity pairs are represented as arrows. The numbers on ar-
rows show the frequency of directly-follows relation. The dashed arrows belong to start
and end activities.

a b

c

d

e

6 4

2

2

3

1

32

2

3

1

Figure 3.4: Illustration of the directly-follows graph G(L).

In this paper, our aim is to design a protocol which mines the direct sequential pat-
terns from an event log L and combines them to generate directly-follows graph G(L).
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ELGAMAL ENCRYPTION

Our protocol relies on ElGamal cryptosystem [54]. The security of ElGamal cryptosystem
depends on the decisional Diffie-Hellman assumption. In the setup of the encryption
scheme, three parameters p, q , and g are selected such that p and q are two large primes,
where q |(p°1), and g is a generator of a group Gq , where q is the order of G in modulus p.
For key generation, the private key s 2R Zq is selected randomly and the corresponding
public key h = g s is computed. To encrypt a message m 2 Gq one selects r 2R Zq and
computes the ciphertext c as c = (x, y) = (g r ,m ·hr ). For decryption of c, one computes
y

xs = m·g r s

g r s and retrieves the message m.
In this setting, ElGamal encryption satisfies partial homomorphism on multiplica-

tion operation. Given encryption of two messages m1, m2 as c1 = (x1, y1) = (g r1 ,m1 ·hr1 )
and c2 = (x2, y2) = (g r2 ,m2 ·hr2 ), the inner product of two messages (x1 ·x2, y1 ·y2) results
in their multiplication:

(x1 · x2, y1 · y2) = (g r1+r2 , (m1 ·m2) ·hr1+r2 ). (3.3)

Additive homomorphism can be also achieved in ElGamal cryptosystem by modify-
ing the encryption function as c = (g r , g m ·hr ), where m 2 Zq [55]. Since c1 = (x1, y1) =
(g r1 , g m1 ·hr1 ) and c2 = (x2, y2) = (g r2 , g m2 ·hr2 ), addition under encryption is performed
as

(x1 · x2, y1 · y2) = (g r1+r2 , g (m1+m2) ·hr1+r2 ). (3.4)

The shortcoming of the additive homomorphic variant is that the decryption results in
g m1+m2 , which incurs a discrete logarithm problem. Decryption can be performed with
brute-force mechanism but it limits the message space. Thus, additive homomorphism
in ElGamal is feasible only for small message spaces.

A common problem in the practicability of ElGamal cryptosystem is message encod-
ing. Since the message space in ElGamal is Gq , the plaintext values should be mapped
to the group elements before encryption. To overcome the message encoding problem,
we use m ! g m as encoding function. This encoding has a shortcoming due to limited
message space. Since our input size is significantly shorter compared to parameters of
ElGamal encryption, such an encoding is feasible for our scheme. To clarify the notation,
for the multiplicative variant of ElGamal m is first encoded to g m and the encryption is
represented as [m]£. For the additive variant of the cryptosystem, m does not change
but encryption function is computed as g m and the encryption of additive variant is
represented as [m]+.

3.2.2. PRISM: PRIVACY-PRESERVING SEQUENTIAL PATTERN MINING
In this section, we describe our Privacy-preserving Sequential pattern Mining protocol,
PriSM. Our scenario consists of two parties which are a data owner (DO) and a data ana-
lyst (DA). DA runs PriSM protocol under the supervision of DO to mine all direct sequen-
tial patterns in L. The goal of the PriSM protocol is to generate an encrypted directly-
follows graph G(L)+ from encrypted L. We assume that the input L is a simplified event
log as explained in Section 3.2.1 following the common practice in behaviour model dis-
covery. Besides, we are aware of the fact that there can be other information in event logs
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which are privacy sensitive. Since our protocol is based on the simplified event log, all
other information stored in L is not within the scope of our paper. We assume that DA
is not allowed to access any information in L apart from the activity names, which are
shared with DA only under encryption.

Our setting assumes a semi-honest security model, where DO and DA do not col-
lude. In this security model, parties exactly follow the requirements of a protocol, but
they might try to obtain some information by observing the intermediary messages they
receive. It is a sufficient security model when the parties trust each other in following
the requirements of the protocol but they do not want to leak any inadvertent infor-
mation [56]. Semi-honest security is an appropriate assumption in our setting, since
both DO and DA are corporations that avoid malicious acts considering their reputation
and legal restrictions. In this setting, the adversarial power is limited to computation-
ally bounded, nonadaptive adversaries. In Section 3.2.3 we discuss the security of PriSM
protocol with respect to these assumptions.

PRISM PROTOCOL

In the setup phase of PriSM protocol, DO generates the key pair for ElGamal as (s,h) and
shares h with DA together with other public parameters p, q , and g . Every event ei , j is
encrypted with the multiplicative ElGamal as [ei , j ]£ = (g r , g ei , j ) before it is included in
L. The encrypted form of L becomes

[L]£ =
£
h[e1,1]£, . . . , [e1,!1 ]£i, . . . ,h[eø,1]£, . . . , [eø,!ø ]£i

§
. (3.5)

Similarly, DO encrypts activities as [A]£ =
©
[a1]£, . . . [a¢]£

™
and sends [L]£ and [A]£ to

DA. Using [L]£ and [A]£ as inputs, DA runs PriSM protocol as explained in Algorithm 4.
Regarding the homomorphic property of ElGamal, the protocol consists of three phases
which are multiplication phase, switching phase, and addition phase. In the multiplica-
tion phase every [æi ]£ in [L]£ is analyzed to identify the activities and direct sequential
patterns secretly. In the switching phase the multiplicative variant of ElGamal cryptosys-
tem is converted to the additive variant. In the addition phase the results are aggregated
into the output [G(L)]+.

Algorithm 4 PriSM

Input: [L]£ , [A]£

1: for all [æi ]£ 2 [L]£ do
2: /*Multiplication phase*/
3: [I¢£!i ]£ √ Identification([æi ]£, [A]£)
4: for all [I:, j ]£ 2 [I¢£!i ]£ do
5: [S¢£¢]£ √ Succession([I:, j ]£)
6: /*Switching phase*/
7: [S¢£¢]+ √ SwitchEncryption([S¢£¢]£)
8: /*Addition phase*/
9: [G(L)]+ √ Aggregation([S¢£¢]+)

Output: [G(L)]+



3

62 3. PROCESS DISCOVERY ON ENCRYPTED DATA

Multiplication Phase In this phase, first the distinct activities (AL , Astart
L , Aend

L ) in each
[æi ]£ are identified by an Identification subprotocol. The result of this subprotocol is
used to discover direct succession relations (>L) for every [æi ]£ in a Succession subpro-
tocol.
Identification: The first task in PriSM is to discover AL , Astart

L , and Aend
L from [L]£ in a

privacy-preserving manner. The naive approach to discover these sets under encryption
is to compare every [ak ]£ 2 [A]£ to every [ei , j ]£ 2 [L]£ using a secure equality check pro-
tocol. Performing such a protocol is expensive in terms of computation and communi-
cation, and its repetition in large numbers creates a significant bottleneck in the perfor-
mance [52]. In the Identification subprotocol (Algorithm 5), we overcome this bottleneck
by performing arithmetic operations which enable us to secretly identify the activities.
The subprotocol takes [æi ]£ and [A]£ as input and multiplies every [ei , j ]£ 2 [L]£ with
the multiplicative inverse of each [ak ]£ 2 [A]£. The result of the multiplication, stored in
[I¢£!i ]£, becomes [1]£ if and only if the activity name of [ei , j ]£ is equal to [ak ]£. If an
index in row matrix [Ik,:]£ is equal to [1]£, then an activity [ak ]£ is observed in [æi ]£. The
inverse values for [A]£ can be computed in the setup phase.

Algorithm 5 Identification

Input: [æi ]£, [A]£

1: for all [ak ]£ 2 [A]£ do
2: for all [ei , j ]£ 2 [æi ]£ do
3: [Ik, j ]£ = [a°1

k ]££ [ei , j ]£

Output: [I¢£!i ]£

Figure 3.5 shows the result of Identification subprotocol which we run on æ1 of L as
matrix I5£4. For the sake of simplicity, we encode the letters into integers with respect
to their alphabetical order such as a = 1,b = 2,c = 3. Since we use m ! g m as message
encoding function in ElGamal, the original plaintext values are different than the ones
illustrated in Figure 3.5. It is important to note that in the illustrations we represent the
operations with simple integer arithmetic instead of the real encryption values.

[I ]£ [a]£ [c]£ [b]£ [e]£

[a°1]£ [1]£ [3]£ [2]£ [5]£

[b°1]£
£ 1

2

§£ £ 3
2

§£
[1]£

£ 5
2

§£

[c°1]£
£ 1

3

§£
[1]£

£ 2
3

§£ £ 5
3

§£

[d°1]£
£ 1

4

§£ £ 3
4

§£ £ 2
4

§£ £ 5
4

§£

[e°1]£
£ 1

5

§£ £ 3
5

§£ £ 2
5

§£
[1]£

Figure 3.5: Performing Identification subprotocol on æ1 2 L .

Succession: The second task in PriSM protocol is to find direct sequential patterns be-
tween activities. Since every column of [I ]£ matrix carries information about one iden-
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tified activity, correlation of two subsequent columns with a function can give us the
directly-follows relation between two activities. One way to do that is to multiply two
columns such that in the output matrix only the index corresponding to the discovered
activity pair becomes 1 and the rest of indices are dummy values. As demonstrated in
Algorithm 6, we multiply every j th column of [I ]£ with the transpose of ( j +1)th column.
To prevent false positives in the multiplication, we apply an interpolation which shifts
every value in [I:, j ]£ by 2¢+1. We select 2¢+1 as the shifting factor to avoid collusions.
Since the value for every index of [I ]£ is either in [0,¢) or [q °¢, q), shifting the opera-
tions to [¢, q °¢), which is achieved by 2¢+1, can prevent false positives. Since q ¿¢,
we guarantee that [S]£ contains a single [1]£.

Algorithm 6 Succession

Input: [I¢£!i ]£

1: for 1 ∑ j ∑!i °1 do
2: [S¢£¢] √ ([I:, j ]£)2¢+1 £ ([I:, j+1]£)T

Output: [S¢£¢]£

In Figure 3.6, we apply Succession subprotocol on the first two columns of [I ]£. No-
tice that in Figure 3.5 activities a and c are secretly discovered in the first two columns.
By assigning ¢= 5 for the interpolation, in [S ]£ only the index (1,3), which corresponds
to (a,c) pair, becomes [1]£ and the rest becomes dummy.

[S ]£ [3]£
£ 3

2

§£
[1]£

£ 3
4

§£ £ 3
5

§£

[111]£ [3]£
£ 3

2

§£
[1]£

£ 3
4

§£ £ 3
5

§£

£ 1
2

11§£ £ 3
211

§£ £ 3
212

§£ £ 1
211

§£ £ 3
213

§£ £ 3
5·211

§£

£ 1
3

11§£ £ 1
310

§£ £ 1
2·310

§£ £ 1
311

§£ £ 1
4·310

§£ £ 1
5·310

§£

£ 1
4

11§£ £ 3
411

§£ £ 3
2·411

§£ £ 1
411

§£ £ 3
412

§£ £ 3
5·411

§£

£ 1
5

11§£ £ 3
511

§£ £ 3
2·511

§£ £ 1
511

§£ £ 3
4·511

§£ £ 3
512

§£

Figure 3.6: Performing Succession subprotocol on the two columns of [I ]£.

Switching Phase During the multiplication phase, we discover the set of activities and
the set of directly-follows relations using homomorphic properties of encryption. The
final task for creating a directly-follows graph is to calculate the frequency of directly-
follows relations, the start, and end activities. Since in the current state ElGamal is in
multiplicative variant, performing additions to calculate frequencies is not trivial. Thus,
we introduce an interactive switching phase which transforms the cryptosystem from
multiplicative variant to the additive variant through a secure decryption.

As demonstrated in Algorithm 7, DA blinds every index of [S]£ with a fresh ri , j 2R Zq
and sends the blinded [Sr ]£ to DO for secure decryption. Before sharing [Sr ]£ with DO,
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Algorithm 7 SwitchEncryption

DA ([S]£) DO (s)

1) blind:

[Sr ]£ ( [S]£ such that

[S
ri , j
i , j ]£ √ ([Si , j ]£)ri , j , ri , j 2R Zq

2) shuffle:

[Sr
p ]£ ( p([S]£)

[Sr
p ]£

°°°°°°°!
3) decrypt:

Sr
p ( Dec([Sr

p ]£, s)
4) map:

if Sr
p i , j

= 1 ! [Sp i , j ]+ = [1]+

[Sp ]+
√°°°°°°° else ! [Sp i , j ]+ = [0]+

5) revert shuffling:

[S]+ ( p(°1)([Sp ]+)

DA shuffles [Sr ]£ with a shuffling function p(·) where the shuffled matrix is [Sr
p ]£. The

decryption works as a mapping function. If the result of decryption is 1, then DO en-
crypts 1 in the additive variant, i.e., [1]+, else he encrypts 0 as [0]+. The result of decryp-
tion is 1 only for the index which contains the direct succession relation as blinding does
not change its value. The result is random for the other indices so decryption does not
leak any information about them. Since by default [S]£ contains a single [1]£, revealing
it to DA does not degrade the security as soon as its location is hidden by shuffling. In
Figure 3.7, we illustrate the result of switching phase for [S ]£ of Figure 3.6.

[S ]+ a b c d e

a [0]+ [0]+ [1]+ [0]+ [0]+

b [0]+ [0]+ [0]+ [0]+ [0]+

c [0]+ [0]+ [0]+ [0]+ [0]+

d [0]+ [0]+ [0]+ [0]+ [0]+

e [0]+ [0]+ [0]+ [0]+ [0]+

Figure 3.7: [S ]+ matrix as the result of encryption switching phase.

Addition Phase The final task of our protocol is to calculate the frequencies of direct
sequential patterns. Since the encryption is switched to the additive variant, performing
additions is now feasible. In this phase, every [S]+ as the output of switching phase is
aggregated into one matrix by homomorphic addition. The result is [G(L)]+ which con-
tains the activities, their directly-follows relations, and frequencies under encryption. In
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Figure 3.8 we show the result for L . Notice that to avoid the complication in representa-
tion, we do not include the sets Astart

L and Aend
L in the figure. However, they are discovered

along with AL by only excluding Succession subprotocol.

[G(L)]+ a b c d e

a [0]+ [3]+ [2]+ [0]+ [1]+

b [0]+ [0]+ [3]+ [0]+ [2]+

c [0]+ [2]+ [0]+ [3]+ [0]+

d [0]+ [0]+ [0]+ [0]+ [0]+

e [0]+ [0]+ [0]+ [1]+ [0]+

Figure 3.8: [G(L)]+ matrix as the output of the protocol.

3.2.3. PROTOCOL ANALYSES
In this section we analyze PriSM protocol for its security and complexity in terms of com-
munication and computation, then provide the timing results of experiments.

SECURITY OF PRISM
Our protocol aims to securely process the sensitive data in event logs. In the semi-honest
setting, parties DA and DO should not be able to retrieve any additional information
apart from their inputs, outputs, and intermediary messages. During the non-interactive
phases of our protocol, multiplication and addition, security is guaranteed by the se-
mantic security of ElGamal cryptosystem under decisional Diffie-Hellman assumption.
In the interactive switching phase, however, a security analysis is necessary to formally
prove the security despite semi-honest assumption limits the adversarial power. In the
rest, we prove the security of the switching phase based on simulation paradigm [56].

The goal in simulation paradigm is to show the security of a protocol by comparing
the view of an adversary in the real world to the simulated view in the ideal world, where
the security is guaranteed [57]. If an adversary A can attack the protocol in the real world,
the attack can be also performed by the adversary of the ideal world, S . Since the attacks
of S are not successful in the ideal setting, the attacks in the real world also fail and the
protocol is proved to be secure in the real world.

Computational Indistinguishability [56]: Let X (a,∑) and Y (a,∑) are two distribution
ensembles where a 2 {0,1}§ is input and ∑ is the security parameter. X (a,∑) and Y (a,∑)
are computationally indistinguishable (X (a,∑)

c¥ Y (a,∑)) if there exist a negligible fun-
ction µ(∑) for every nonuniform polynomial time algorithm D such that

|Pr[D(X (a,∑)) = 1]°Pr[D(Y (a,∑)) = 1]|∑µ(∑). (3.6)

Definition of Security [56]: Letº be a two-party protocol between parties P1 and P2 to
compute functionality f (x, y) on the inputs x and y , where f1(x, y) and f2(x, y) represent
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the result of f (x, y) for the parties. During the execution of º the view of the parties are:

viewº
1 (x, y,∑) = (x,r1;m1,m2, · · · ,mt ), (3.7)

viewº
2 (x, y,∑) = (y,r2;m1,m2, · · · ,mt ), (3.8)

where r1,r2 are the randomness of the parties, ∑ is the security parameter and mi s are
the intermediary messages of the parties. Let

outputº(x, y,∑) = (outputº1 (x, y,∑),outputº2 (x, y,∑)) (3.9)

represent the joint output of º, where outputº1 (x, y,∑) and outputº2 (x, y,∑) are the local
outputs of P1 and P2, respectively. The protocol º securely computes f (x, y) in the semi-
honest setting against nonadaptive, computationally bounded adversaries, if there exist
probabilistic polynomial time simulators S1 and S2 such that

©
S1(1∑, x, f1(x, y)), f (x, y)

™ c¥
©

viewº
1 (x, y,∑),outputº(x, y,∑)

™
, (3.10)

©
S2(1∑, y, f2(x, y)), f (x, y)

™ c¥
©

viewº
2 (x, y,∑),outputº(x, y,∑)

™
. (3.11)

In the switching phase, º is a protocol between DA and DO which computes a func-
tionality f . DA’s input is [S]£ while SC’s input is an empty string, ?. f computes [S]+

from [S]£ such that f ([S]£,?) = ([S]+,?), where [S]+ and ? are the outputs of DA and
DO, respectively.

Theorem 3.2.1. The encryption switching protocol º securely computes the functional-
ity f ([S]£,?) = ([S]+,?) in the presence of semi-honest adversaries.

Proof. To prove the security we show that the view of adversary A in the real world is
computationally indistinguishable from the view of a simulator Si where i 2 {DA, DO} in
the ideal world.
DA is corrupted by A : Given that SDA has access to the input and output of DA, SDA
simulates the view of the messages DA receives as follows:

1. SDA choses a uniformly distributed random, r1.

2. SDA creates a matrix S§ of size¢£¢which contains a single 1 and (¢2°1) 0s where
the location of 1 is chosen randomly.

3. SDA shuffles S§, such that S§
p √ p(S§;r1).

4. SDA encrypts S§
p under additive variant of ElGamal cryptosystem as [S§

p ]+.

The simulated view of SDA is

SDA(1∑, [S]£, [S]+) =
≥
[S]£,r1; [S§

p ]+
¥

, (3.12)

and the output is f ([S]£,?) = ([S]+,?). On the other hand, the view of A is

viewº
DA([S]£,?) =

°
[S]£,rDA;[Sp ]+

¢
, (3.13)
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where outputº([S]£,?) =
°
[S]+,?

¢
. Then,

©
SDA(1∑, [S]£, [S]+), f ([S]£,?)

™ c¥
©

viewº
DA([S]£,?)outputº([S]£,?)

™
, (3.14)

if for every nonuniform polynomial time distinguisher D there exists a negligible fun-
ction µ(∑) such that
ØØØPr

h
D

≥≥
[S]£,r1; [S§

p ]+
¥
^

°
[S]+,?

¢¥
= 1

i
°Pr

£
D

°°
[S]£,rDA;[Sp ]+

¢
^

°
[S]+,?

¢¢
= 1

§ØØØ ∑µ(∑).

(3.15)

Equation 3.15 holds if a semantically secure cryptosystem is chosen for the encryption
which is ElGamal in our protocol. The indistinguishability guarantees that SDA gains no
advantage on correctly guessing the location of [1]£ in [S]£. The probability of [1]£ lo-
cated in [Si , j ]£ is equal to 1

¢2 . Similarly, when creating S§, the probability of SDA selecting
(i , j ) as the index of 1 is 1

¢2 .
DO is corrupted by A : Different from the former case, DO does not have an input and
output, thus, SDO can only receive an auxiliary input which is the private key of DO, s.
With the provided information SDO behaves as follows:

1. SDO choses uniformly distributed randoms, r2,r3.

2. SDO creates a matrix S§ of size¢£¢which contains a single 1 and (¢2°1) 0s where
the location of 1 is chosen randomly.

3. SDO encrypts S§ under the multiplicative variant of the ElGamal cryptosystem as
[S§]£.

4. SDO blinds every index of [S§]£ with a fresh random ri , j which is uniformly sam-
pled from r2 and obtains [Sr§]£.

5. SDO shuffles [Sr§]£ such that [Sr§
p ]£ √ p([Sr§]£;r3).

The simulated view of SDO is

SDO(1∑,?,?) =
≥
?,r2,r3; [Sr§

p ]£
¥

(3.16)

and the view of A is viewº
DO([S]£,?) =

≥
?,rDO;[Sr

p ]£
¥
. Since the security definition requi-

res the indistinguishability of joint outputs, the output of f ([S]£,?) in SDO’s view and the
output of º in DO’s view are the same with the former case, i.e., f ([S]£,?) = ([S]+,?) and
outputº([S]£,?) =

°
[S]+,?

¢
. We can prove the indistinguishability as follows:

©
SDO(1∑,?,?), f ([S]£,?)

™ c¥
©

viewº
DO([S]£,?),outputº([S]£,?)

™
(3.17)

if for every nonuniform polynomial time distinguisher D there exists a negligible fun-
ction µ(∑) such that
ØØØPr

h
D

≥≥
?,r2,r3; [Sr§

p ]£
¥
^

°
[S]+,?

¢¥
= 1

i
°Pr

h
D

≥≥
?,rDO;[Sr

p ]£
¥
^

°
[S]+,?

¢¥
= 1

iØØØ ∑µ(∑).

(3.18)
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The indistinguishability guarantees that SDO has no advantage on correctly guessing the
real location of 1 in [Sr

p ]£. The probability of 1 located in [S
rp

i , j ]£ is equal to 1
¢2 . Similarly,

when creating [Sr§
p ]£, the probability of SDO selecting (i , j ) as the index of 1 is 1

¢2 . Due
to the semantic security of ElGamal, observing [Sr

p ]£ does not give SDO any additional
advantage on correctly guessing the location.

COMPLEXITY ANALYSIS

In the following subsections we present a complexity analysis for PriSM protocol to eval-
uate its feasibility. Furthermore, we compare our protocol with the AlphaSec protocol
in [52] to analyze the efficiency of both protocols. We could not provide a comparison
with [53] since no analysis is shown apart from the cost of encryptions and decryptions.
To clarify the comparison, we use a similar notation with [52], which is summarized in
Table 3.8.

Table 3.8: notation used for complexity analyses.

Symbol Explanation

¢ The number of elements in activity set A.
p The modulus for ElGamal encryption.
!i The number of elements in æi .
ø Total number of cases (æi ’s) in L.
° Total number of events in L s.t. °=Pø

i=1!i .

Communication Complexity During encryption switching phase our protocol requi-
res an interactive protocol between DO and DA. For one encryption switching, DA sends
[S]£ matrix whose size is 2 ·¢2 · |p| bits where |p| is the size of encryption modulus. In re-
ply, DO sends [S]+ matrix whose size is also 2·¢2 ·|p| bits. For one execution of switching
phase the bandwidth usage is 4 ·¢2 · |p| bits. The total bandwidth usage of the protocol
becomes 4·¢2 ·(!i °1)·ø·|p|, which means the communication cost is dominated by the
number of activities, i.e., ¢.

The dominant factor in the bandwidth usage of AlphaSec protocol [52] is also ¢.
However, with the help of data packing, the communication cost of AlphaSec protocol
can be reduced significantly. To compare how PriSM performs compared to packed (w/
Pack) and non-packed (w/o Pack) versions of AlphaSec protocol we perform a commu-
nication cost analysis for different log sizes as demonstrated in Figure 3.9. To measure
the performance of AlphaSec we use the formulas provided in Table 5 of the correspond-
ing paper [52]. We perform the analysis on 3 different datasets where ¢ = 200 activities
for all of them and °= 10 000, °= 100 000, and °= 1 000 000, respectively.

The results show that our protocol surpasses non-packed AlphaSec algorithm but
it cannot perform better than the packed version. The reason is that data packing re-
duces the complexity of AlphaSec protocol almost to linear degrees in practice while it
is quadratic in theoretic bounds. Although our protocol infers less interaction, only for
encryption switching, the amount of exchanged data is more than the packed version of
AlphaSec.
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Figure 3.9: Comparison of bandwidth usage for AlphaSec and PriSM.

Table 3.9: Analysis of computational complexity for PriSM in terms of the number of operations.

Operation

Phase Encryption Decryption Mult. Exponent. ModInv.

Setup °+¢ – – – ¢

Mult.-Ident. – – ° ·¢ – –

Mult.-Succ. – – ¢2·(!i °1)·ø ¢ · (!i °1) ·ø –

SwitchEnc ¢2·(!i °1)·ø ¢2 ·(!i °1)·ø – ¢2·(!i °1)·ø –

Aggregation – – ¢2·(!i °1)·ø – –

Computational Complexity Our protocol achieves sequential pattern mining through
homomorphic properties of underlying cryptosystem. In Table 3.9 we provide an anal-
ysis for the computational complexity of our protocol. The complexity of the protocol
is quadratic with respect to ¢. Computing modular inverse can be performed in plain-
text which incurs less computational cost. Selecting a smaller exponentiation size while
setting ElGamal parameters such that p = Æ · q + 1 where 224 bits q and 2 048 bits p,
according to current security standards [58], reduces the cost of exponentiations. Al-
though multiplication is the most frequent operation, it is cheaper compared to expo-
nentiation. Thus, performing encryptions and decryptions during the switching phase
becomes most costly operations.

In [52], the number of operations are demonstrated with respect to the number of
two-party protocols. Although the number of invocations for the protocols in AlphaSec
is less than PriSM, since each cryptographic two-party protocol in AlphaSec requires sev-
eral encryptions and decryptions, AlphaSec becomes less practical compared to PriSM.
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EXPERIMENTAL EVALUATION

We implemented PriSM protocol to evaluate its real time performance and to compare
it with the state-of-the-art. We run two sets of experiments such that in the first one we
compare the performance with existing work and in the second one we run it on a larger
real dataset using a parallel version of our protocol. We choose C++ programming lan-
guage for the implementation. For big integer operations we use GNU Multiple Precision
Arithmetic library (GMP-6.1.2). We use two different machines to run our experiments.
First machine runs an OSX El Capitan operating system with an Intel Core i5 2.7 GHz
processor. To run experiments on larger datasets with a parallel implementation we use
a second machine which runs 64-bit CentOS 7.3.1611 on 8 cores where each core is an
Intel Xeon E5345 clocked at 2.33 GHz. We use OpenMP to perform parallel operations.
To meet current security standards [58], we choose p as 2048 bits and q as 224-bits for
ElGamal cryptosystem.
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Figure 3.10: Comparison of computation cost for AlphaSec and PriSM.

In the first experiments, we compare the performance of PriSM protocol to AlphaSec
protocol. We generate 3 synthetic datasets with the same properties as in [52] such that
° = 109, ° = 1 226, and ° = 10 696 events. Figure 3.10 demonstrates the results of com-
parison. As the size of data increases the difference between the computational perfor-
mance of AlphaSec and PriSM becomes more clear. For a dataset of 10 696 events while
AlphaSec protocol requires 61 885 seconds, our protocol can be executed in 12 679 sec-
onds which results in a 80% improvement in the computation cost.

In PriSM protocol most of the operations are performed independently and these in-
dependent operations are repeated in large numbers. Using a parallel implementation
of the protocol can reduce the cost of computations by performing the independent op-
erations simultaneously. As a second experiment we analyze the performance of PriSM
protocol on larger data sizes using a parallel variant of the protocol. As dataset we se-
lected BPI Challenge dataset [59] which contains real logs from an incident and problem
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management system. The dataset contains °= 65 533 events, ø= 7 554 cases, and¢= 13
activities. Average length of a case is !º 9 events. Considering the computational com-
plexity of PriSM protocol, ¢2 · (!i °1) ·ø, we adapt two different approaches for parallel
implementation. First, we apply parallelism on!i -level, i.e., operations on every column
of I matrix (lines 4-9 in Protocol 4) are distributed on multiple cores. Second, we apply
parallelism on ¢-level so the for loop between lines 4-9 in Protocol 4 runs sequentially
but the intermediate operations are performed in parallel. We do not consider paralleli-
sation on ø-level, since it requires larger memory usage in implementation. The timing
results for two parallel implementations and the estimation for serial implementation
are:

• !i -level ! 20 533 seconds,

• ¢i -level ! 16 743 seconds, and

• serial (est.) ! 101 094 seconds.

As expected, performing a parallel computation can reduce the computation time of
PriSM protocol significantly. While the machine we use in our experiments runs only 8
cores, with the existing computation technologies it is realistic for a data analysis com-
pany to have machines with larger amount of cores. Computation time can be reduced
gradually by increasing the number of cores. According to the results, ¢-level paral-
lelism performs better than !i -level parallelism. The reason is that since the value of !i
changes from 1 to 62 in the dataset, the utilization of cores is not as balanced as ¢-level
parallelism where cores are always distributed on 13 activities. Thus, for any dataset,
depending on the the size of ¢ and !i , either ¢-level or !i -level parallelism can be se-
lected. Moreover, with greater amount of available cores a nested parallelism can also be
implemented.

3.2.4. CONCLUSION
With the rise of data mining as a service paradigm more and, more companies have
adapted data analytics in their businesses. However, the paradigm has brought the pri-
vacy concerns of collected data along with itself. To overcome the privacy challenges
in outsourced data analytics, we present a protocol which mines direct sequential pat-
terns on the protected data. Specifically, our protocol models the behavior of business
processes. Accordingly, we use a probabilistic cryptosystem to protect the sensitive data
and, moreover, we use homomorphic properties of the underlying cryptosystem to pro-
cess the protected data. However, working under encryption requires interactive com-
putations which induce a heavy computation cost with the existing primitives. The nov-
elty of our proposal is to use an encryption switching mechanism between multiplicative
and additive homomorphic variants of encryption which optimizes the cost of compu-
tation by reducing the number of interactive steps. Our experiments show that using
encryption switching, we can gain an improvement of 80% in computational perfor-
mance compared to the alternatives based on two-party homomorphism based pro-
tocols. While there exist initial attempts to address the challenge of discovering direct
sequential patterns from protected event logs, our proposal presents a generic solution



3

72 3. PROCESS DISCOVERY ON ENCRYPTED DATA

for the discovery of the relations that can be adapted to renowned algorithms for busi-
ness process analysis, by outperforming the state-of-the-art with respect to computation
cost.
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4
PRIVACY-PRESERVING

CONFORMANCE CHECKING FOR

INTERNAL AUDITING

Organizations often use data analytic techniques to automate internal auditing tasks and
monitor their processes. Conformance checking is an example technique, which checks
whether the monitored behavior (recorded in an event log) complies with the norma-
tive behavior represented as a process model. Using such techniques, however, requires
domain-specific knowledge and investment in resources and time, which cannot be af-
forded by every organization. Outsourcing audit tasks to specialized companies is thus
becoming a common practice for many organizations to overcome the cost of in-house au-
diting. However, the disclosure of audit data to external parties raises serious privacy risks
since this data often contains sensitive information. In this chapter, we propose two ap-
proaches for conformance checking under privacy preservation, which enables an organi-
zation to outsource detecting nonconformity in process executions while assuring the con-
fidentiality of event logs. Our proposals rely on secure two-party computation to protect
and process the event logs. We evaluated their performance using two real-life datasets,
achieving promising results. To the best of our knowledge, our proposal is the first attempt
that performs conformance checking under privacy preservation.

This chapter is based on the paper "Privacy-Preserving Conformance Checking for Internal Auditing" by G.
Tillem, N. Zannone, and Z. Erkin (in preparation).
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4.1. INTRODUCTION
The necessity of providing faster and localized services to customers requires technol-
ogy companies to operate with multiple headquarters and offices around the globe. Al-
though providing localized services simplifies the delivery of services to end-users, the
maintenance of businesses becomes challenging with the increasing number of employ-
ees and the increasing complexity of processes. To verify the quality of operations in
large scale companies, internal auditing is thus becoming an essential task. Internal au-
dits aim to verify whether processes are executed within certain boundaries and legal
requirements (such as Sarbanes-Oxley Act1), which is crucial for public accountability
and defense against legal accusations [1]. A prominent example of using internal au-
dits for public accountability is Google’s investigation on employee salaries to defend
the company against the accusations of wage discrimination based on gender [2].

Due to the obvious benefits of conducting systematic auditing, more and more com-
panies have started employing data analytics tools to support their audit tasks [3]. Pro-
cess mining provides a comprehensive solution to auditing by covering the whole pro-
cess and data [1]. In particular, conformance checking has been proposed to evalu-
ate the relation between an event log and a process model [4]. In this work, we focus
on alignment-based conformance checking as alignments provide a robust approach to
conformance checking by detecting the commonalities and deviations between the be-
havior recorded in the process model and the behavior recorded in the event log [5].

Although the use of data analytics such as alignment-based conformance checking
allows automating the audit process, achieving high quality auditing is not trivial. One
difficulty for companies is the lack of expertise that is required for special audit tasks [6].
Especially with the involvement of data analytics in audit processes, companies are in
need of personnel specialized in the usage of analytics [7]. The availability of resources
is also a main difficulty in auditing [6]. Shortage of employees, computational, or storage
resources can hinder the audit process for companies. An approach to overcome these
problems is to outsource audit tasks to external specialized parties [8]. Outsourcing audit
tasks reduces the need for resources while assuring the necessary expertise.

As pointed out in [6], although outsourcing relieves companies from the burden of
in-house audit, it introduces privacy concerns associated with the disclosure of sensi-
tive information (e.g., customer and employee data). Especially with the introduction
of the GDPR in the EU, organizations have become even more cautious in data sharing
due to the legal implications of data misuse. Similarly, the leakage of the corporate in-
formation, which might be inferred from logs, can threaten the intellectual property of
organizations. To mitigate these risks, there is a need of solutions that allow organiza-
tions to outsource their audit tasks while protecting the confidentiality of log data.

Privacy considerations in outsourced data is a popular research area, where many
solutions based on statistical and cryptographic mechanisms are proposed to perform
well-known data analytics techniques. A group of solutions use differential privacy [9]
to anonymize data in mining frequent patterns [10, 11], learning decision trees [12], or
training neural networks [13]. However, these approaches are not suitable for the analy-
sis of process executions as they are not able to account for the control-flow perspective,

1http://www.soxlaw.com



4.1. INTRODUCTION

4

81

which is essential for the analysis of processes. Moreover, the accuracy of the analysis
might be degraded due to the noise added to ensure anonymity. Another approach to
protect the confidentiality of sensitive data is the use of homomorphic encryption (HE),
which enables computation of arithmetic operations on encrypted data without inter-
mediate decryption [14]. Several solutions based on HE have been proposed for data
mining and machine learning [15–18]. However, these solutions suffer from high com-
putation costs due to the expansion in data size. An efficient alternative to HE is secure
multiparty computation (MPC), where multiple parties compute a function on their pri-
vate inputs without revealing any information about their inputs [19]. MPC enables to
design interactive solutions that are not restricted to arithmetic operations, yet, signifi-
cantly more efficient in computation cost compared to HE-based alternatives [20–22].

In this paper, we propose a solution for privacy-preserving alignment-based con-
formance checking that enables an organization to outsource the analysis of its log for
detecting nonconformity in process executions while assuring the confidentiality of log
data. Our solution operates in a server-aided setting, in which an auditee outsources its
computations to two non-colluding auditors who are responsible to perform operations
and return the result to the auditee. This setting is well-known for privacy-preserving
data analytics since it significantly reduces the computation cost on the auditee side [22–
25]. We choose secure multiparty computation as the underlying privacy-preserving
technology since it achieves an efficient computation performance compared to HE-
based alternatives, and maintains the accuracy of computations in contrast to differen-
tial privacy. Under the semi-honest security assumption, our solution guarantees the
confidentiality of log data while process diagnostics is only revealed to the data owner.
To the best of our knowledge, our solution is the first proposal that performs confor-
mance checking under privacy preservation.

Our contribution can be summarized as follows:

• We propose two protocols for secure alignment-based conformance checking.

– Our first protocol – SCORCHEXH – guarantees privacy using an exhaustive
approach. It computes all possible alignments between the event log and the
process model under privacy preservation.

– Our second protocol – SCORCHPQ – provides an efficient alternative to the
first protocol by reducing computation and communication complexity. It
uses a priority queue, which eliminates the need of computing all possible
alignments. However, reducing the number of computed alignments might
weaken the security of the protocol. To minimize the information that can be
inferred from the computation, we set a threshold for the number of align-
ments to be computed.

• We show that our protocols are secure with respect to the information theoretical
security of secure multiparty computation.

• We evaluate the feasibility of our protocols on two real-life event logs [26, 27]. The
results show that our protocols can perform conformance checking with reason-
able computation and communication costs while assuring the confidentiality of
log data.
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The remainder of the paper is organized as follows. The next section provides pre-
liminary knowledge on conformance checking and on the cryptographic primitives. Sec-
tion 4.3 presents our protocols and Section 4.4 analyzes their security. Section 4.5 pre-
sents an experimental evaluation of our protocols. Section 4.6 discusses related work
and Section 4.7 concludes the paper.

4.2. PRELIMINARIES
This section provides preliminary knowledge on conformance checking and the crypto-
graphic techniques used for the design of our protocols.

4.2.1. CONFORMANCE CHECKING
Conformance checking aims to verify whether the observed behavior recorded in an
event log matches the intended behavior represented as a process model. In this work,
we consider process models in the form of Labeled Petri nets.

Definition 4.2.1 (Labeled Petri Net). A Labeled Petri net is a tuple (P,T,F, A,`, mi ,m f )
where P is a set of places; T is a set of transitions; F µ (P £T )[ (T £P ) is the flow rela-
tion between places and transitions (and between transitions and places); A is the set of
labels for transitions; ` : T ! A is a function that associates a label with every transition
in T ; mi is the initial marking; m f is the final marking.

The label of a transition identifies the activity represented by such a transition. Mul-
tiple transitions can be associated with the same activity label. Some transitions can
be invisible. Invisible transitions do not correspond to actual activities but are used for
routing purposes and, thus, their execution is never recorded in event logs. Given a Petri
net N , InvN µ A indicates the set of labels associated to invisible transitions. Follow-
ing convention, given a node x 2 P [ T , we denote its preset (i.e., the set of its input
nodes) as •x = {x 0 2 P [T | (x 0, x) 2 F } and its postset (i.e., the set of its output nodes) as
x• = {x 0 2 P [T | (x, x 0) 2 F }.

The state of a Petri net is represented by a multi-set of tokens on the places of the
net, i.e. the marking. A transition is enabled if all its input places contain at least one
token. When an enabled transition is fired, a token is taken from each of its input places
and a token is added to all its output places. A process run is a sequence of (instances of)
transitions such that firing the transitions in the sequence from the initial marking mi
leads to a proper termination state, i.e. to the final marking m f . ™N denotes the set of
all process runs allowed by N . Figure 4.1 shows an example Petri net that visualizes the
Italian road fine management process [27].

The execution of activities is often logged by information systems. A logged instance
of an activity is called event.

Definition 4.2.2 (Event, Attribute). Let E be the set of all possible events. An event
can have attributes. Let U be the attribute universe. For all events e 2 E and attribute
at t 2U , ºat t (e) is the value of att for e.

In this work, we assume that (instances of) transitions and events have at least the
following attributes: case, for the process instance to which the event belongs; act, for
the activity associated to the event; time, for the timestamp of the event.
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Figure 4.1: A sample process model representing the management of road traffic fines. Green boxes repre-
sent transitions associated to activities and black boxes invisible transitions. The text below the transitions
represent the label, which is shortened with a single letter inside the transitions.

Definition 4.2.3 (Event Trace, Event Log). An event trace æ = he1, . . . ,eni 2 E
§ is a finite

sequence of events e1, . . . ,en 2 E recorded for a process instance (case) such that, for
every ei ,e j 2æ with 1 ∑ i < j ∑ n, (1) ei 6= e j and (2) ºt i me (ei ) ∑ºt i me (e j ). An event log L
is a finite set of event traces.

Table 4.1 shows some sample traces from the road traffic fine management log. Each
trace is associated with a case id. Each event within a trace has several attributes that in-
clude activity name, timestamp, the officer id associated with the event and the payment
amount for the corresponding event.

Most of the state-of-the-art techniques for computing the conformance of event tra-
ces with a process model are based on the notion of alignment [5]. Alignments provide a
robust approach to conformance checking, which is able to pinpoint deviations causing
nonconformity. If an event trace perfectly fits the net, each “move” in the event trace can
be mimicked by a “move” in the model, i.e. a transition fired in the net. After all events
in the event trace are mimicked, the net reaches its final marking. In cases where devia-
tions occur, some moves in the event trace cannot be mimicked by the process model or
vice versa. We explicitly denote “no move” by ¿.

Given a Petri net N = (P,T,F, A,`,mi ,m f ) and an event trace æ, let SM = A[ {¿} and
SL = Eæ[ {¿} with Eæ the set of events occurring in æ. A legal move for æ and N is a pair
(mL ,mM ) 2 (SL £SM ) \ {(¿,¿)} such that

• (mL ,mM ) is a synchronous move if mL 2 Eæ, mM 2 A and ºact (mL) = mM ,

• (mL ,mM ) is a move on log if mL 2 Eæ and mM =¿,

• (mL ,mM ) is a move on model if mL =¿ and mM 2 A.

ß(æ,N ) denotes the set of legal moves for an event trace æ and a Petri net N .
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Table 4.1: Sample traces from the road traffic fine management event log.

Case ID
Event Attributes

ID Activity Timestamp Officer ID Amount · · ·
æ1 e1 Create fine (c) 02.08.2006 541 35.0 · · ·

e2 Send fine (s) 12.12.2006 561 · · ·
e3 Notification (n) 15.01.2007 557 · · ·
e4 Add Penalty (a) 16.03.2007 550 71.5 · · ·
e5 Send for credit coll.

(d)
30.03.2009 537 · · ·

æ2 e1 Create fine (c) 19.03.2007 541 36.0 · · ·
e2 Send fine (s) 17.07.2007 561 · · ·
e3 Notification (n) 25.07.2007 557 · · ·
e4 Appeal to prefecture

(t )
02.08.2007 558 74.0 · · ·

e5 Add penalty (a) 23.09.2007 550 · · ·
e6 Send appeal (l ) 24.09.2007 559 · · ·

æ3 e1 Create fine (c) 20.03.2007 561 22.0 · · ·
e2 Send fine (s) 17.07.2007 541 · · ·
e3 Notification (n) 23.07.2007 557 · · ·
e4 Add Penalty (a) 21.09.2007 550 44.0 · · ·
e5 Payment (p) 01.10.2007 550 · · ·
e6 Payment (p) 31.10.2007 550 · · ·

æ4 e1 Create fine (c) 24.07.2006 541 35.0 · · ·
e2 Send fine (s) 05.12.2006 561 · · ·

æ5 e1 Create fine (c) 11.09.2006 561 21.0 · · ·
e2 Send fine (s) 29.12.2006 561 · · ·
e3 Notification (n) 09.01.2007 557 · · ·
e4 Add Penalty (a) 10.03.2007 550 42.5 · · ·
e5 Send appeal (l ) 05.04.2007 559 · · ·

Definition 4.2.4 (Alignment). Let ß(æ,N ) be the set of legal moves for a Petri net N =
(P,T,F, A,`,mi ,m f ) and event trace æ. An alignment of æ and N is a sequence ∞ 2ß§

(æ,N )
such that, ignoring all occurrences of ¿, the projection on the first element yields æ and
the projection on the second element yields a sequence ha1, . . . , ani such that there exists
a firing sequence √0 = ht1, . . . , tni 2 prefix(√) for some √ 2™N where, for every 1 ∑ i ∑ n,
ºact (ti ) = ai . If √0 2™N , ∞ is called a complete alignment of æ and N .

There can exist multiple (possibly infinite) alignments for a given event trace and
process model. Figure 4.2 illustrates different possible alignments between the event
trace æ5 = hc, s,n, a, li in Table 4.1 and the model in Figure 4.1. The top row of an align-
ment shows the sequence of activities in the event trace, and the bottom row shows the
sequence of activities in the process model (both ignoring ¿).

To determine the quality of alignments, a cost is assigned to each move in the align-
ment. The cost is defined as the sum of the costs of the individual moves in the align-
ment. An optimal alignment of an event trace and a process model is one of the align-
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∞1 =
c s n a ¿ l ¿
c s n a t l i6

∞2 =
c s n a l ¿
c s n a ¿ d

∞3 =
c s n a ¿ l ¿ ¿ ¿
c s n a t l r o i3

Figure 4.2: Sample alignments between æ5 and the model in Figure 4.1

ments with the lowest cost for the given cost function. As an example, consider a cost
function that penalizes all moves on model for visible transitions and moves on log (i.e.,
it assigns cost 1 to those moves and 0 otherwise). If moves on model for invisible tran-
sitions ik are ignored, ∞1 has one move on model, ∞2 has one move on model and one
move on log, and ∞3 has three moves on model. Since there does not exist an alignment
with lower cost, ∞1 is an optimal alignment for æ5 and the process model.

4.2.2. SECURE TWO-PARTY COMPUTATION
Secure two-party computation enables two parties to evaluate a function f jointly on
their private inputs x, y without revealing any information about their inputs apart from
the result of the function f (x, y) [28]. Since its introduction [29], secure two-party com-
putation has been largely investigated and practical frameworks implementing it have
been developed [30–32].

We implement secure two-party computation protocols using the ABY framework
in [30]. ABY contains three types of secure two-party circuits: arithmetic circuits [33],
Boolean circuits [19], and Yao’s garbled circuits [29]. In our work, we use only arithmetic
circuits and Boolean circuits. Given parties P1 and P2, ABY creates secret shares for each
party, denoted [·]A

i for arithmetic circuits and [·]B
i for Boolean circuits (with i 2 {1,2}),

and evaluates f on these shares. The shares are created as follows:

• Arithmetic circuit: Let x be an `-bit value, the arithmetic shares of parties P1,P2
are [x]A

0 , [x]A
1 such that [x]A

0 + [x]A
1 = x mod 2`. The parties can compute addition

and multiplication on their private `-bit inputs x and y as follows:

– addition of [x]A and [y]A is [z]A √ [x]A + [y]A mod 2`,

– multiplication of [x]A and [y]A is [z]A √ [x]A £ [y]A mod 2`.

• Boolean circuit: Let x be a single bit value, the Boolean shares of parties P1,P2 are
[x]B

0 , [x]B
1 such that [x]B

0 ^[x]B
1 = x mod 2, where ^ represents the bitwise XOR op-

eration. ABY implements XOR and AND gates for Boolean circuits, which is suffi-
cient to design every efficiently computable function [30]. We use Boolean circuits
to compute the following operations on the private `-bit inputs x and y :

– addition of [x]B and [y]B such that [z]B √ [x]B + [y]B mod 2`,

– multiplication of [x]B and [y]B such that [z]B √ [x]B £ [y]B mod 2`,
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– comparison of [x]B and [y]B such that [z]B √ [x]B ?
> [y]B , where z = 1 if x > y

and 0 otherwise,

– equality of [x]B and [y]B such that [z]B √ [x]B ?= [y]B , where z = 1 if x = y and
0 otherwise.

In the ABY framework, performing additions and multiplications with arithmetic cir-
cuits are much cheaper than the ones with Boolean circuits. Thus, in our implementa-
tion we use arithmetic circuits to perform additions and multiplications, and Boolean
circuits for the other operations. ABY provides conversion functions between Boolean
sharing and arithmetic sharing such that B2A is a conversion function from Boolean to
arithmetic sharing, and A2B is a conversion function from arithmetic to Boolean shar-
ing.

4.3. SCORCH: SECURE CONFORMANCE CHECKING
In this section, we present two protocols to securely compute optimal alignments. Our
first protocol, SCORCHEXH, computes alignments exhaustively while our second proto-
col, SCORCHPQ computes the alignments using a private priority queue.

4.3.1. SETTING AND THREAT MODEL
We consider a server-aided setting such that a client outsources its operations to two
non-colluding semi-honest servers who perform computations together. Our scenario
contains three entities, which are an auditee and two non-colluding semi-honest au-
dit companies. The auditee is a company who lacks expertise or resources for auditing,
thus, outsources the audit task to external parties. To compensate its limited computa-
tional power, auditee delegates the computations to two non-colluding auditors. More
specifically, the auditee shares a protected event log with the auditors that contains the
workflow information of the company. The goal of auditors is to securely check if the
employees of auditee conform with the prescribed behavior (i.e. the process model) by
computing the alignments between the process model and the event log.

The inputs of our protocols are a protected query [æ]A and a protected Petri net [N ]A ,
which are created by the auditee using arithmetic sharing and sent to the auditors before
the start of execution. The protection assures the activity label of places in [N ]A and
activity label of events in [æ]A are confidential. However, the number of events in [æ]A ,
the number of places in [N ]A are not hidden from the auditors. The output is revealed
to an authorized entity only if there is a nonconformity between [æ]A and [N ]A . The
nonconformity is detected by checking if the alignment cost is greater than zero.

In the design of a privacy-preserving conformance checking protocol, we aim at sev-
eral goals related to correctness, privacy, and efficiency. Our protocols should:

• correctly compute optimal alignments for each protected trace,

• protect the content of the trace from the auditors,

• protect the output and its length from the auditors,

• hide the execution order of the places to prevent tracking on Petri net,
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• be feasible in computation and communication cost,

• minimize the computations on the auditee’s side.

Existing techniques for privacy preservation enable us to protect the content of the
trace and the output from auditors while achieving a realistic computation and commu-
nication cost. We can also minimize the auditee’s computation cost by using a server-
aided scenario. However, hiding the execution order of places is not a trivial task. There
exists several techniques to prevent tracking, such as private information retrieval (PIR)
[34] or oblivious RAM (ORAM) [35]. Considering their expensive nature, using PIR/O-
RAM repetitively might increase the computation and communication cost drastically.
Therefore, to hide the execution order of the places in an efficient way, we design two
protocols such that the first protocol computes the solution exhaustively to cover all pos-
sible access patterns; the second protocol computes the solution using a private priority
queue, which eliminates the need for PIR/ORAM operations.

4.3.2. ALIGNMENT NODE
Computing optimal alignments requires maintaining information about alignment se-
quences. To handle this information, we introduce a node structure, alignment node,
which stores the information in every step of the protocol. These nodes are organized in
a tree structure, where every node has at most three child nodes. An alignment node n
has:

• an index (i , j ) that is assigned to each node such that i represents the depth of the
node in the tree and j represents the order of the node in depth i ,

• a cost c, which is the cost of the alignment in the current node n, and

• an alignment sequence ∞, which stores the alignment between the Petri net N and
(a prefix of) the event trace æ.

A node has at most three children nodes which are nL for a move on log, nM for a move
on model, and nS for either a synchronous move (ºact (mL) = mM ) or an illegal move
(ºact (mL) 6= mM ). In Figure 4.3 we represent an alignment node n with its children.
The indices of child nodes are set w.r.t. the index of the parent node. The alignment
sequence and its cost are determined w.r.t. the relation between activity labels of events
aæ =ºact (ea), s.t. ea 2æ, and activity labels of transitions aN = `(tb), s.t. tb 2 T .

The cost of nM and nL are always greater than the cost of parent node n by 1 when the
transition is not invisible. In case of an invisible transition, the cost of nM remains the
same. The cost of nS depends on the relation between aæ and aN . If the two activities are
equal then the cost is equal to the cost of ni , j since it is a synchronous move. Otherwise,
the cost is set to ni , j .c + INT_MAX. The alignment sequence ∞ is updated for each child with
an append operation (©). For nM , ∞ becomes ni , j .∞©(aæ,¿) since only the activity label
of the trace is executed. For nL , ∞ is ni , j .∞© (¿, aN ) since only the activity label of the
Petri net is executed. For nS , ∞ becomes ni , j .∞© (aæ, aN ) since both the corresponding
activities were executed. Additionally, a node can have several flags such as n.endN and
n.endT, which are used to signal the end of activities from N or æ, respectively. When an
alignment node is created these flags are set to false. If N reaches to its final state, then
n.endN is set to true. If all events in æ are executed, then n.endT is set to tr ue.
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ni , j
c
∞

nM
i , j : ni+1,3 j°2

ni , j .c +1

ni , j .∞© (aæ,¿)

nS
i , j : ni+1,3 j°1

ni , j .c + c§

ni , j .∞© (aæ, aN )

nL
i , j : ni+1,3 j

ni , j .c +1

ni , j .∞© (¿, aN )

Figure 4.3: Alignment node. For nS if aæ = aN , then c§ = 0, otherwise c§ = INT_MAX.

4.3.3. SCORCHEXH: SECURE CONFORMANCE CHECKING VIA EXHAUTIVE

SEARCH

Our first protocol computes an optimal alignment nOPT exhaustively by generating all
possible alignments. The input of the protocol is a trace [æ]A and a Petri Net [N ]A . We
summarize the flow of the protocol in Algorithm 8. The iteration of the protocol is recur-
sive. It starts with a null node n, recursively calls functions CALCULATE_NEXT, MOVE_-
ON_MODEL, MOVE_SYNCHRONOUS, and MOVE_ON_LOG until all possible alignments are
computed. In each iteration, CALCULATE_NEXT function checks if N and æ are com-
pleted. If they are both completed, then it performs a secure comparison between nOPT

and the new alignment. Since the secure comparison is performed under Boolean shar-
ing, the sharing type should be switched from arithmetic to Boolean beforehand. If ei-
ther æ or N (or none of them) have not been completed, then the move functions, i.e.
MOVE_ON_MODEL, MOVE_SYNCHRONOUS, and MOVE_ON_LOG, are executed (lines 7-14
in Algorithm 8). It is worth noting that, in the move functions, the cost and the alignment
of the child nodes are computed under privacy preservation using secure addition and
multiplication. The indices and the flags n.endT and n.endN are kept as plaintext since
the algorithm generates all possibilities with a deterministic order.

In SCORCHEXH, we assume no loops in N . Since the protocol considers all possible
process runs allowed by the process model, the presence of loops in the model would
lead to the generation of an infinite number of process runs, and the protocol would not
terminate. Furthermore, during the protocol execution, if there is more than one ele-
ment in the postset or preset of a place or a transition, the protocol has to choose one of
the elements to continue the next move. We handle this issue by computing MOVE_ON_-
MODEL and MOVE_SYNCHRONOUS functions for each possible elements in the postset or
preset. This operation is not needed in MOVE_ON_LOG since the move is performed only
on the trace, not on the process model.

Figure 4.4 illustrates the nodes generated by SCORCHEXH for trace æ5 in Table 4.1.
Starting from the root node, the protocol generates a tree using the recursive functions.
The sub-trees that are connected by red dashed lines show the clones created during the
execution when there are more than one elements in the preset or postset of a transi-
tion. Once all possible alignments have been computed, the protocol returns the opti-
mal alignment, which is highlighted in the figure with a green border.
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Algorithm 8 SCORCHEXH([æ]A , [N ]A)

1: n √ null , nOPT √ null , nOPT .c √ INT_MAX , n.endN = false , n.endT = false
2: nOPT √ CALCULATE_NEXT(n)
3: return nOPT

4: procedure CALCULATE_NEXT(n)
5: if n.endN = true and n.endT = true then
6: nOPT √ (nOPT .[c]B > n.[c]B ) ? n : nOPT

7: else if n.endN = true and n.endT = false then
8: MOVE_ON_LOG(n)
9: else if n.endN = false and n.endT = true then

10: MOVE_ON_MODEL(n)
11: else
12: MOVE_ON_MODEL(n)
13: MOVE_SYNCHRONOUS(n)
14: MOVE_ON_LOG(n)
15: return nOPT

16: procedure MOVE_ON_MODEL(n)
17: for all |N .•x| or |N .x•| do
18: nM

i , j √ ni+1,3 j°2 , nM .endT √ n.endT

19: nM .[c]A √ n.[c]A + [1]A

20: nM .[∞]A √ n.[∞]A © ([¿]A , [aN ]A)
21: if N completed then nM .endN √ tr ue
22: CALCULATE_NEXT(nM )
23: procedure MOVE_SYNCHRONOUS(n)
24: for all |N .•x| or |N .x•| do
25: nS

i , j √ ni+1,3 j°1

26: nS .[c]A √ n.[c]A + ([aN ]A ° [aæ]A) · [INT_MAX]A

27: nS .[∞]A √ n.[∞]A © ([aæ]A , [aN ]A)
28: if N completed then nS .endN √ tr ue
29: if [æ]A completed then nS .endT √ tr ue
30: CALCULATE_NEXT(nS )
31: procedure MOVE_ON_LOG(n)
32: nL

i , j √ ni+1,3 j , nL .endN √ n.endN

33: nL .[c]A √ n.[c]A + [1]A

34: nL .[∞]A √ n.[∞]A © ([aæ]A , [¿]A)
35: if [æ]A completed then nL .endT √ tr ue
36: CALCULATE_NEXT(nL)

COMPLEXITY ANALYSIS

Given the length k of the trace and the length ` of longest path in the Petri net, the com-
plexity of SCORCHEXH is O (3k+`). It is important to remind that for our first protocol, we
consider loop-free processes. In the existence of loops, the length of the longest process
run becomes infinite in theoretical bounds. The overhead of the privacy preservation in
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Figure 4.4: Execution of Protocol 8 onæ5 = hc, s,n, a, li. The optimal alignment is outlined in green. Red dashed
lines show the cloning points for multiple elements in the postset or preset.

computation is caused by secure addition, multiplication and comparison. Secure ad-
dition can be performed locally by each auditor; thus, it does not have any additional
computation cost. Performing multiplication and comparison is not straightforward
under privacy preservation since it adds several rounds of computation and commu-
nication on the original operation. However, it is important to note that the number of
secure multiplication and secure comparison operations are much less than secure ad-
ditions. Secure multiplication is only performed in synchronous move operation, and
secure comparison is only performed on the leaf nodes.

4.3.4. SCORCHPQ: SECURE CONFORMANCE CHECKING VIA

PRIORITY QUEUES

Exhaustively computing all possible alignments is successful in hiding the length of the
output and the execution order of places since all possible options are covered. However,
using an exhaustive approach is not desired because of the high computation cost and
memory usage. As an alternative, we design a second protocol, SCORCHPQ, that uses a
priority queue to keep track of the alignment with minimum cost. The use of a prior-
ity queue enables us to compute the optimal alignment with less number of iterations.
In SCORCHPQ, the auditee should interrupt the protocol to finish the execution. The
reason is that all values are computed privately and, thus, the auditors cannot observe
when an optimal alignment is found. On the other hand, terminating the protocol in
less number of iterations might leak information about the length of the output and the
alignment cost. Therefore, we limit the auditee’s interruption to a certain interval, T , to
check if an optimal alignment has been found. In the worst case, the protocol has the
same complexity as the first protocol.

Algorithm 9 provides an overview of SCORCHPQ. In addition to [æ]A and [N ]A , it
requires a threshold T as input, which can be determined by the auditee with respect to
the number of events in æ and the number of places in N . The protocol uses two private
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priority queues Q and QR to keep track of the optimal alignment. Each element of the
priority queues is an alignment node. Q is the main priority queue in which newly cre-
ated alignment nodes are inserted. QR stores the nodes that are removed from Q. Before
presenting the protocol, we briefly explain the functions of private priority queues.

Private Priority Queue: In a private priority queue, we denote the front node of the
queue as Qfront and the rear node of the queue as Qr ear . The nodes are connected via a
pointer called next . A private priority queue implements the following functions:

• ENQUEUE(n) adds a new node n to the rear such that Qr ear = n.

• DEQUEUE(n) removes the node n at the front such that Q f r ont = n.next .

• IS_EMPTY checks if Qfront and Qr ear are null.

• PRIVATE_REORDER reorders the nodes in Q such that the node with the least align-
ment cost is moved to the front.

• PRIVATE_REORDER_R reorders the nodes in QR such that the node with a com-
pleted alignment sequence (i.e. n.endT = true and n.endN = true) and with the least
alignment cost is moved to the front.

• SWAP(n1,n2) takes two alignment nodes n1 and n2 as input and swaps their loca-
tion in the queue privately.

The protocol starts by inserting an empty node n into Q and it iterates until Q is
empty (lines 4-19 in Algorithm 9). An important remark is that in practice the queue
never becomes empty since the protocol keeps generating new alignments although
bothæ and N are completely executed. However, as explained previously, with the inter-
ruption of the auditee, the protocol can terminate in a realistic number of iterations.

At every iteration, n =Qfront is dequeued and it is enqueued into QR . If the number of
iterations reach T or a multiple of T (line 8), then the protocol dequeues the front node
of QR , i.e. nR , and checks whether nR corresponds to a completed alignment sequence,
i.e. both æ and N are completely executed (line 10). If so, the protocol returns nR as the
optimal alignment and terminates. Otherwise, nR is enqueued into QR and the execu-
tion continues with the move functions MOVE_ON_MODEL(n), MOVE_SYNCHRONOUS(n),
MOVE_ON_LOG(n), and the private reordering of Q.

The move functions work slightly different than the ones described in Algorithm 8.
At the end of each function, the newly created node is inserted into Q, instead of calling
CALCULATE_NEXT(n) function. Another difference is deciding the next place in the exe-
cution. The information about the next place should be kept hidden since it can reveal
the execution order of places. To hide the next place and the activity executed, we use
private lookup tables. The tables are secret shared between the two auditors. By receiv-
ing the index value of the current place, the auditors can compute the next place and the
activity associated with it using secure equality checks.

4.3.5. EXPLANATION OF LOOKUP TABLES
In this section, we provide more details about the move functions used in SCORCHPQ.
Different from the ones in SCORCHEXH, the move functions in SCORCHPQ do not make
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Algorithm 9 SCORCHPQ([æ]A , [N ]A , T )

1: n √ null , nR √ null , Q √ null , QR √ null , i tr √ 0
2: nOPT √ null , nOPT .[c]A √ [INT_MAX]A

3: Q.ENQUEUE(n)
4: while Q.IS_EMPTY() = false do
5: Q.DEQUEUE(n)
6: QR .ENQUEUE(n)
7: QR .PRIVATE_REORDER_R()
8: if i tr mod T = 0 then
9: QR .DEQUEUE(nR )

10: if true √ reveal(nR .[endN]B ?= [true]B and nR .[endT]B ?= [true]B ) then
11: nOPT √ nR

12: return nOPT

13: else
14: QR .ENQUEUE(nR )

15: MOVE_ON_MODEL(n)
16: MOVE_SYNCHRONOUS(n)
17: MOVE_ON_LOG(n)
18: Q.PRIVATE_REORDER()
19: i tr √ i tr +1
20: return nOPT

21: procedure PRIVATE_REORDER()
22: n √Q f r ont , nM I N √ null , nM I N .[c]B √ [INT_MAX]B

23: while n 6= null do
24: nM I N √

°
nM I N .[c]B > n.[c]B ¢

? n : nM I N

25: n √ n.next
26: Q.SWAP(Qfront , nM I N )

27: procedure PRIVATE_REORDER_R()
28: n √QR

f r ont , nM I N √ null , nM I N .[c]B √ [INT_MAX]B

29: while n 6= null do
30: nM I N √ n.[endN]B ?= [tr ue]B and n.[endT]B ?= [tr ue]B and

°
nM I N .[c]B > n.[c]B ¢

? n :
nM I N

31: n √ n.next
32: QR .SWAP(QR

front , nM I N )

33: procedure SWAP(n1, n2)
34: ntmp √ n1
35: n1 √ n2
36: n2 √ n1

recursive calls to CALCULATE_NEXT function with the newly created alignment node,
rather they insert the new node into Q. Furthermore, to prevent leakage of execution
order of the nodes x 2 P [T on the Petri net, the functions use private look up tables
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which securely computes:

• the next node to be executed xnext ,

• the activity label associated with the transition between the current node and the
next node aN ,

• the activity label of the executed event in the trace aæ,

• if the transition is invisible isInv,

• if the Petri net has reached its final state endN, and

• if the trace has completed endT.

To implement the secure look up operations, we introduce two more attributes to the
alignment node. The first attribute xcur r is an index value that maintains information
about the current transition to be executed. The second attribute is ecur r , which is the
index of the current event inæ. We perform look up operations on the process model and
on the trace in two functions separately. The first function LOOKUP_N receives n.[xcur r ]
as input and computes [xnext ], [aN ], [isInv], and [endN]. The second function LOOKUP_T

takes [ecur r ] 2æ as input and computes [aæ] and [endT] privately.
The secure look up operation on N is performed using four look up tables which are

I N D , P LU T , ALU T , and I LU T . I N D is an index table that keeps track of the current node
xcur r . If a node has multiple elements in its postset (|x•| > 1), then its index is repeated
as the number of elements in the postset. P LU T maintains information about transi-
tions between the places of N . ALU T stores the activity labels executed along with the
transitions. Finally, I LU T is a Boolean table that checks whether the executed transition
is invisible.

In Table 4.2, we present the sample tables I N D , P LU T , ALU T , and I LU T for the pro-
cess model in Figure 4.1. The process model has nine places which are represented as
p1, p2, . . . , p9. In I N D and P LU T tables, we encode this places to indices 0,1, . . . ,8. For in-
stance, the first index in I N D corresponds to p1, for which the index value is 0, and the
first index of P LU T is 1, which corresponds to p2 as the successor of p1. Indices 1, 2, and
3 in I N D represents p2 with all elements in its postset, which are represented in the cor-
responding indices of P LU T as 1,2,8, i.e. p2, p3, p9. ALU T lists the activity labels that are
associated with the current transition. In the implementation, we encode these string
values as integers. Finally, in I LU T , an index value is set to 1 if the transition associated
with that index is invisible.

In Algorithm 10 we present the pseudocode for the private look up functions which
are LOOKUP_N and LOOKUP_T. In function LOOKUP_N, apart from [xcur r ]A , we also pro-
vide an order value [or d ]A as input. The order value represents the order of [xcur r ]A

within the postset |N .x•|. Using [or d ]A as a flag, we assure the look up function LOOKUP_-
N returns information related to a single node xk in every iteration. To preserve pri-
vacy during look up operation, we store the tables I N D , P LU T , ALU T , and I LU T in secret
shared format under arithmetic sharing. The sharing type is converted to Boolean shar-
ing when necessary. LOOKUP_N function performs a secure equality check operation for
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Table 4.2: Sample look up tables for the Italian traffic road fine management process in Figure 4.1.

I N D P LU T ALU T I LU T

0 0 1 c 0

1 1 1 p 0

2 1 2 s 0

3 1 8 i1 1

4 2 2 p 0

5 2 3 n 0

6 2 8 i2 1

7 3 3 p 0

8 3 3 a 0

9 3 4 j 0

10 3 5 t 0

11 3 8 d 0

12 3 8 i3 1

13 4 8 i4 1

14 4 3 i5 1

15 5 6 l 0

16 6 7 r 0

17 6 8 i6 1

18 7 3 o 0

each index of I N D table. If the result of equality is [1]A for index k, then it copies the in-
dex values [P LU T

k ]A , [ALU T
k ]A , and [I LU T

k ]A into auxiliary variables [xk ]A , [ak ]A , and [ik ]A .
To assure that copying is performed only for the intended index, it performs a secure
equality check in line 10 and discards the other indices by assigning the values of [xk ]A ,
[ak ]A , and [ik ]A for those indices as [0]A . Then, it aggregates the values into [xnext ]A ,
[aN ]A , and [isInv]A . Before terminating, the function checks whether [xnext ]A is the final
transition of N , x f i nal and, if so, it sets the value of [endN]A to [1]A .

LOOKUP_T works similar to LOOKUP_N. However, additional look up tables are not
needed for this function. The secure equality check operation is performed on the secret
shared index value [ecur r ]B for each index of æ. If the result of equality check is [1]A for
index k, then it copies the activity label of [æk ]A . Finally, it checks whether [ecur r ]A is the
last index of æ, and updates [endT]A accordingly.

In Algorithm 11, we provide the pseudocode for the move functions MOVE_ON_MO-
DEL, MOVE_SYNCHRONOUS, and MOVE_ON_LOG operates. Different from the move func-
tions in SCORCHEXH, we store all attributes of the alignment nodes under privacy preser-
vation since their values can leak information about the output. MOVE_ON_MODEL and
MOVE_SYNCHRONOUS operate on all elements in the postset of current transition x. For
each element, they assign the index values n[i ]A ,[ j ]A , and then call LOOKUP_N function.
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Algorithm 10 Look up functions

1: procedure LOOKUP_N([xcur r ]A , [or d ]A)
2: [xnext ] √ [0], [aN ] √ [0], [isInv] √ [0], [endN] √ [0]
3: [cnt ]A √ [0]
4: for k = 0 ! |I N D| do
5: [eq]B √ [I N Dk ]B ?= [xcur r ]B

6: [xk ]A √ [eq]A · [P LU T
k ]A

7: [ak ]A √ [eq]A · [ALU T
k ]A

8: [ik ]A √ [eq]A · [I LU T
k ]A

9: if [eq]B ?= [1]B then

10: if [cnt ]B
?
6= [or d ]B then

11: [xk ]A √ [0]A

12: [ak ]A √ [0]A

13: [ik ]A √ [0]A

14: [cnt ]A √ [cnt ]A + [1]A

15: [xnext ]A √ [xnext ]A + [xk ]A

16: [aN ]A √ [aN ]A + [ak ]A

17: [isInv]A √ [isInv]A + [ik ]A

18: [endN]B √ [xnext ]B ?= [x f i nal ]B

19: return [xnext ]A , [aN ]A , [isInv]A , [endN]A

20:

21: procedure LOOKUP_T([ecur r ]A)
22: for k = 0 ! |æ| do
23: [eq]B √ [k]B ?= [ecur r ]B

24: [ak ]A √ [eq]A · [æk ]A

25: [aæ]A √ [aæ]A + [ak ]A

26: [endT]B √ [ecur r ]B ?= [|æ|°1]B

27: return [aæ]A , [endT]A

The values returned from the look up function are used to assign n.[endN]A , n.[xcur r ]A ,
n.[c]A , and n.[∞] for the child nodes nM and nS . In MOVE_ON_MODEL, w use [isInv]A in
the calculation of the alignment cost such that if the transition is invisible then the cost
remains the same, otherwise it is increased by 1. LOOKUP_T is not necessary in this fun-
ction, since the move is performed only on the process model. In MOVE_SYNCHRONOUS,
[isInv]A is not needed since invisible transitions are not recorded in event log, and the
alignment of an invisible transition with an activity label results in an illegal move. Fur-
thermore, in synchronous move function, LOOKUP_T is performed since the move is per-
formed on the log as well. In MOVE_ON_LOG, only LOOKUP_T function is performed since
there is no move executed on the process model.
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Algorithm 11 SCORCHPQ([æ]A , [N ]A) - cont.

1: procedure MOVE_ON_MODEL(n)
2: for k = 0 ! |N .x•| do
3: nM

[i ]A ,[ j ]A √ n[i+1]A ,[3 j°2]A

4: {[xnext ]A , [aN ]A , [isInv]A , [endN]A} √ LOOKUP_N(n.[xk ]A , [k]A)
5: nM .[endT]A √ n.[endT]A

6: nM .[endN]A √ [endN]A

7: nM .[xcur r ]A √ [xnext ]A

8: nM .[c]A √ [isInv]A ·n.[c]A + ([1]A ° [isInv]A) · (n.[c]A + [1]A)
9: nM .[∞] √ n.[∞]A © ([¿]A , [aN ]A)

10: Q.ENQUEUE(nM )

11: procedure MOVE_SYNCHRONOUS(n)
12: for k = 0 ! |N .x•| do
13: nS

[i ]A ,[ j ]A √ n[i+1]A ,[3 j°1]A

14: {[xnext ]A , [aN ]A , [endN]A} √ LOOKUP_N(n.[xk ]A , [k]A)
15: {[aæ]A , [endT]A} √ LOOKUP_T([ecur r ]A)
16: nS .[endT]A √ [endT]A

17: nS .[endN]A √ [endN]A

18: nS .[xcur r ]A √ [xnext ]A

19: nS .[c]A √ n.[c]A + ([aN ]A ° [aæ]A) · [INT_MAX]A

20: nS .[∞]A √ [n.∞]A © ([aæ]A , [aN ]A)
21: Q.ENQUEUE(nS )

22: procedure MOVE_ON_LOG(n)
23: nL

[i ]A ,[ j ]A √ n[i+1]A ,[3 j ]A

24: {[aæ]A , [endT]A} √ LOOKUP_T([ecur r ]A)
25: nL .[endT]A √ [endT]A

26: nL .[endN] √ n.[endN]
27: nL .[c]A √ n.[c]A + [1]A

28: nL .[∞]A √ n.[∞]A © ([aæ]A , [¿]A)
29: Q.ENQUEUE(nL)

4.4. SECURITY ANALYSIS
We design two privacy-preserving protocols for conformance checking under semi-hon-
est security assumption. In this assumption, the parties involved in the computation
follows the protocol execution without deviation, but they try to get extra information
from the inputs, outputs, and intermediary messages. In our scenario, there are three
parties involved in the computations, which are two non-colluding auditors and an au-
ditee. The auditee does not have an active role in computations; rather he provides the
secret shared inputs to both auditors. In the second protocol, the auditee can interrupt
the protocol to pause execution and checks if an optimal alignment has been computed.
When an interruption occurs, the auditee can only access the value of a flag, which in-
dicates whether an optimal alignment has been computed. He cannot access any other
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information such as the alignment sequence, the alignment cost, or the index.
The auditors, on the other hand, are responsible for all computations. After receiv-

ing the secret shared inputs from the auditee, they collaboratively compute the optimal
alignment without colluding. We use a server-aided setting in both our protocols. In
this setting, our goal is to hide the content of the input trace, the output alignment (in-
cluding its length), and the execution order of the places in process model from the au-
ditors. In both protocols, the input and output data are protected and processed using
arithmetic circuits and Boolean circuits, which guarantee information-theoretic secu-
rity against semi-honest adversaries and against malicious adversaries in the existence
of honest majority [19, 30, 33]. To hide the execution order, in SCORCHEXH, we exhaus-
tively compute all possible alignments and find the optimal one among them securely.
Since the protocol is exhaustive, it does not leak any information about the execution
order.

In SCORCHPQ, we compute alignments using a priority queue where hiding the exe-
cution order of the places is more challenging, since the protocol chooses the alignment
node with the minimal cost at every iteration. To guarantee the security of the protocol,
we should hide the executed place and the activity name in each iteration. By using se-
cure lookup tables, we achieve our goal of hiding the place and activity information. A
second challenge in SCORCHPQ is hiding the number of iterations. The advantage of the
priority queue is to reduce the number of iterations that enable to compute alignments
on larger Petri nets and traces. However, reducing the number of iterations might leak
information about the length of the output, which violates our security goal. Thus, to
prevent the leakage of the output length, we set a threshold for the number of iterations,
which should be greater than the length of the longest possible alignment. This thresh-
old guarantees that the number of iterations is adequate to generate the longest possible
trace in the best case. Despite using a threshold reduces the efficiency of computations,
it improves the security of the protocol.

4.5. EXPERIMENTS
To measure the performance of our protocols, we implemented them in C++ using the
ABY library. We chose 32-bit secret shares for ABY operations. We evaluated the proto-
cols through two experiments using two real-life datasets which are the Italian road fine
management process dataset [27] and a credit requirement (CR) process of a bank [26].
In the first experiment, we compare the two protocols with respect to their computa-
tion and communication cost. In the second experiment, we measure the scalability of
SCORCHPQ. We performed our experiments on a machine running Ubuntu 18.04 LTS
with a 64-bit microprocessor and 16 GB of RAM, with Intel Core i7-4770, 3.40 GHz x 8.

4.5.1. EXPERIMENT 1: SCORCHEXH VS SCORCHPQ
In the first experiment, we compared the performance of the two proposed protocols
with respect to their computation and communication cost. The dataset we used in the
first experiment is the credit requirement event log of a bank [26].

Due to the limitations of SCORCHEXH protocol, the Petri net and the event log used
in the experiment should have certain restrictions. Specifically, the Petri net should not
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Table 4.3: Comparison of the performance of SCORCHEXH and SCORCHPQ on CR event logs for a single opti-
mal alignment computation.

SCORCHEXH SCORCHPQ

#alignment nodes 54271 57
Computation (ms) 21528.90 558.38
Communication (MB) 752.10 21.66

contain any loops and the number of transitions and the length of trace should not be
too large. Thus, we modified the CR dataset by reducing the number of activities in the
Petri net and the event log, and removing the loops. The modified event log contains
10035 traces, each of which contains approximately 8 events. Figure 4.5 illustrates the
process model for CR process. It is worth noting that, even if the log is relative small, we
encountered performance issues when applying the SCORCHEXH protocol. Therefore,
to be able to compare the two protocols, we filtered out the first two activities from the
Petri net and from the log, resulting into traces consisting of 6 events.
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Figure 4.5: The credit requirement process of a bank.

We executed SCORCHEXH and SCORCHPQ to compare their performance on memory
usage, computation time, and communication cost. We measured the average computa-
tion time in milliseconds and the bandwidth usage in MB for the computation of a single
alignment. To measure the memory usage, we computed the average number of align-
ment nodes generated in the computation of a single alignment. Table 4.3 summarizes
the results of comparison.

The results show that SCORCHPQ outperforms SCORCHEXH in computation, com-
munication and memory cost. Finding an optimal alignment among all possible align-
ment sequences requires to generate 54271 alignment nodes. However, using a private
priority queue, we can reduce the number of nodes by almost a factor of 1000. Re-
garding the computation cost, SCORCHPQ approximately 38 times more efficient than
SCORCHEXH in the computation of the optimal alignments. Finally, in communica-
tion cost, SCORCHPQ needs 35 times less bandwidth usage. The exhaustive nature of
SCORCHEXH degrades the feasibility of the protocol despite its complete security guar-
antees.
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4.5.2. EXPERIMENT 2: MEASURING THE SCALABILITY OF SCORCHPQ
In the second experiment, we measure the scalability of SCORCHPQ to assess the fea-
sibility of our protocol on larger datasets. We performed the experiment on the event
logs of the Italian road traffic fine management dataset [27]. The Petri net correspond-
ing to the event log is shown in Figure 4.1. As it can be observed from the figure, the net
contains loops, which can only be handled with SCORCHPQ. It contains 9 places with
11 unique activity labels and 6 invisible transitions. The event log of the road traffic fine
management process contains a total of 1122940 events on 150370 traces. The number
of the events in a single trace ranges between 2 and 20. We set the threshold value for for
the number of iterations as 20 (See line 8 in Algorithm 9).

We measured the computation time and the bandwidth usage to observe scalability
of our protocol. The plots in Figure 4.6 and in Figure 4.7 show the computational and
communication performance with respect to the size of the optimal alignment, respec-
tively. As shown in the plots, the change in the computation and communication cost is
not always directly proportional to the increase in the optimal alignment size. Indeed,
for larger alignment sequences, such as 18 or 19, the computations are almost 5 times
faster than the alignments of half of their length. This situation holds for the bandwidth
usage, as well. Thus, to better understand the change in the performance of SCORCHPQ,
we analyzed the average number of alignment nodes generated to compute the align-
ment. The bar charts in Figure 4.6 and Figure 4.7 show the average number of alignment
nodes generated for all possible alignment sizes. The results show that the performance
of SCORCHPQ is directly affected by the number of generated alignment nodes, rather
than the size of the alignments. Our experiment on the road traffic fine management log
show that in a worst case performance, which requires the generation of 521 alignment
nodes, SCORCHPQ can compute an optimal alignment approximately in 22 seconds with
980 MB bandwidth usage.

Our experiments show that our protocols can compute optimal alignments with re-
alistic computation and communication cost while guaranteeing privacy preservation.
While the performance of SCORCHEXH is limited to smaller datasets without loops, our
second protocol SCORCHPQ can scale well for larger datasets and can handle loops in
the process.

4.6. RELATED WORK
In this paper, we propose two protocols to compute conformance checking under pri-
vacy preservation. Our research is motivated by the need of assuring the confidentiality
of audit logs, which is a well-suited application for secure conformance checking. To
the best of our knowledge, our proposal is the first attempt in privacy-preserving con-
formance checking. However, there exist several proposals for privacy preservation in
auditing. Below we discuss the relevance of our proposal with respect to the existing
work in privacy-preserving auditing.

A solution for privacy-preserving auditing, which is closely related to our protocols,
is proposed by Guanciale et al. in [36]. The authors deal with the problem of log auditing
and process fusion in business process engineering using secure multiparty computa-
tion (MPC). Rather than focusing on internal auditing, they use log auditing in the com-
parison of the logs of business partners to detect failures, inefficiencies, and errors in the
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Figure 4.6: Computation cost of SCORCHPQ with respect to the size of the optimal alignment and the number
of nodes generated.
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Figure 4.7: Bandwidth usage of SCORCHPQ with respect to the size of the optimal alignment and the number
of nodes generated.

process. Different from our protocol, the MPC technique used in [36] is performed by
three parties using the universally composable arithmetic black box model [37]. Their
proposal first transforms a process model to a finite state automata and then checks
whether the alphabet in the log matches the alphabet of the finite state machine. Despite
its efficiency, the solution proposed in [36] is not applicable for conformance checking
since it does not measure the cost of misalignment. Rather the proposed solutions re-
turns a binary value that indicates a match or mismatch between the log and the process.
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A common research field in secure auditing is assuring forward security of audit logs,
i.e. preventing the modification of the logs by a malicious attacker [38–42]. Rather than
confidentiality, the main goal of these works is to assure integrity and authentication in
logging through the use of cryptographic hashes and signatures [38–40, 42]. If the con-
fidentiality of logs is required, the logs are encrypted using identity based encryption
(IBE) schemes [39, 41]. Using IBE schemes, efficient keyword search operation can be
performed on encrypted logs. Despite their efficiency in search, the aforementioned IBE
schemes are not suitable for the type of analysis supported by our protocols since these
schemes do not usually support homomorphic operations that are necessary for secure
computation on protected data. There exists several homomorphic cryptosystems that
also support IBE such as [43, 44]; however, these schemes are not practical for the imple-
mentation of our protocols.

4.7. CONCLUSION
Conformance checking is a promising technique for auditing with its comprehensive,
automated solutions. However, existing conformance checking mechanisms do not pro-
vide privacy protection of logs. In this paper, we proposed two protocols for secure con-
formance checking, SCORCHEXH and SCORCHPQ. Both protocols aim to hide the input,
output and execution order in the computation of optimal alignments. The output of
the conformance checking is revealed only to an authorized party. To the best of our
knowledge, we present the first protocols for secure conformance checking using prov-
ably secure cryptographic primitives.

Our first protocol, SCORCHEXH, guarantees privacy preservation with an exhaustive
computation strategy. Our second protocol SCORCHPQ, on the other hand, uses a pri-
vate priority queue to reduce the number of alignments to be computed to find an opti-
mal alignment. However, eliminating the need to compute all possible alignments might
leak some information about the output of SCORCHPQ. To minimize the information
leakage, we set a lower limit for the number of alignments to be computed. The per-
formance evaluation of our protocols on real datasets shows promising results for the
application of privacy preservation in conformance checking. SCORCHPQ can scale well
with the growing data size and can handle complex processes with loops.

The current design of our protocols requires some information about the process
model and the event log, such as the number of transitions in the Petri net and the num-
ber of events in a trace, in plaintext. This information can be considered public, and its
leakage is not a severe risk for security. However, in the future, we aim to extend our
work by protecting the number of transitions and traces to improve the security of our
protocols.
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5
PRIVATE NEURAL NETWORK

PREDICTIONS

The rise of cloud computing technology led to a paradigm shift in technological services
that enabled enterprises to delegate their data analytics tasks to cloud servers which have
domain-specific expertise and computational resources for the required analytics. Ma-
chine Learning as a Service (MLaaS) is one such service which provides the enterprises to
perform machine learning tasks on a cloud platform. Despite the advantage of eliminat-
ing the need for computational resources and domain expertise, sharing potentially sen-
sitive data with the cloud brings a privacy risk to the enterprises. In this chapter, we pro-
pose SwaNN, a protocol to perform neural network predictions for MLaaS under privacy
preservation. SwaNN brings together two well-known techniques for secure computation:
partially homomorphic encryption (PHE) and secure two-party computation (2PC), and
computes neural network predictions by switching between the two methods. The hybrid
nature of SwaNN enables to maintain the accuracy of predictions and to optimize the
computation time and bandwidth usage. Our experiments show that SwaNN achieves a
good balance between computation and communication cost in neural network predic-
tions compared to the state-of-the-art proposals.

This chapter is based on the paper "SwaNN: Switching among Cryptographic Tools for Privacy-Preserving Neu-
ral Network Predictions" by G. Tillem, B. Bozdemir, and M. Önen (under review).
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5.1. INTRODUCTION
Neural networks are a method of supervised machine learning which aims to solve a
classification problem. It computes the classification in two phases: a training phase in
which a model is trained from previous observations whose classifications are known
beforehand; a prediction phase in which a classification is computed for a new observa-
tion using the trained model [1].

Although the research on neural networks dates back to 1980s [2], they had not been
commonly used due to their long training times. With the recent technological advances
and the adaptation of GPUs in computation systems, the training time for neural net-
works is reduced significantly [3]. The improvement in performance triggered the popu-
larity of neural networks, which in turn provided an outstanding success in certain fields
such as image classification [3, 4], face recognition [5], and board games [6].

The success of neural networks attracted many companies to apply it to their busi-
nesses. However, it is difficult for companies to successfully benefit from neural net-
works without having adequate computational resources and expertise in machine le-
arning. Machine Learning as a Service (MLaaS) emerged as a solution to this problem.
MLaaS enables the clients to outsource their machine learning tasks to a cloud platform
which has computational resources and machine learning expertise [7]. A major risk that
is challenging enterprises in using MLaaS is the sensitivity of the data sent to the cloud.
The concern of exposing privacy-sensitive data in MLaaS services requires the design of
privacy-preserving protocols for machine learning methods.

In this paper, we aim to design one such protocol for MLaaS to compute neural net-
work predictions under privacy preservation. We assume that the network model has
already been computed during a previous training phase, and we only focus on the pri-
vacy of data items during the prediction phase. Indeed, this problem drew the attention
of researchers recently and several mechanisms that provide privacy protection in neu-
ral network predictions are proposed. The existing solutions that rely on cryptograp-
hic tools can be regrouped mainly in two categories. The solutions that are based on
homomorphic encryption (HE) [1, 8–10] enable computation of linear operations and
low-degree polynomials non-interactively, where computations are performed by an ex-
ternal semi-trusted server. These solutions usually incur high computational cost due
to the expensive nature of homomorphic encryption systems. Also, the restriction of
linear and low-degree polynomial operations degrades the accuracy of prediction. Se-
cure two-party computation (2PC)-based solutions [11–13], on the other hand, provide
more realistic computation performance and seem better in maintaining the accuracy
of predictions. However, the interactive nature of 2PC-based solutions leads to a higher
bandwidth usage compared to HE-based alternatives.

Having studied existing solutions, we aim to take the best of both worlds and opti-
mize the computational and the communication overhead at the same time. We pro-
pose a hybrid protocol, SwaNN, which switches the computations between HE and 2PC.
Instead of using leveled or somewhat homomorphic encryption, we make use of par-
tially homomorphic encryption (more specifically the additively homomorphic Paillier
encryption) to perform linear operations over encrypted data. This also helps the so-
lution reduce the computational cost. Non-linear operations are supported thanks to
the use of 2PC. We show how to easily switch from one cryptographic tool to the other.
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The combination of these two cryptographic tools helps maintain the accuracy of pre-
dictions. The idea of using a hybrid protocol for private neural network predictions is
proposed in Gazelle [14] as well, which combines Yao?s garbled circuits with a dedicated
lattice-based additively homomorphic encryption scheme. Our proposal differs from
Gazelle by using well-known simple cryptographic tools, which make the adoption of
our proposal more practical.

SwaNN is designed to support two different settings: a client-server setting and a
non-colluding two-server setting. In the client-server setting, the majority of operations
are delegated to the server, and the client helps the server in intermediate steps. In the
two-server setting, the servers are provided the data beforehand, and they perform the
computations simultaneously, with a balanced workload on both servers. Our contribu-
tions can be summarized as follows:

• We propose a hybrid protocol for neural network predictions, which is based on
the additively homomorphic Paillier encryption scheme and secure two-party com-
putation. We show how each underlying operation can be supported easily with
the use of these two schemes only.

• Our protocol is flexible since it is suitable both for the client-server setting and the
non-colluding two-server setting.

• Compared to existing works, our protocol proposes several optimizations for the
computations in the linear layers of neural networks which improves the efficiency
in terms of computation cost. These optimisations consist of some data packing
dedicated to the Paillier cryptosystem and the use of multi-exponentiation algo-
rithm to reduce the cost of multiplications.

• The empirical results show that our protocol can compute the prediction on a neu-
ral network with two activation layers in 10 seconds with 1.73 MB bandwidth us-
age which is 30-fold better in computation cost than the state-of-the-art HE-based
solution and 27-fold more efficient in bandwidth usage than the state-of-the-art
2PC-based solution.

Section 5.2 introduces neural networks and the underlying cryptographic tools used
in SwaNN. In Section 5.3, we discuss the contribution of our work along with the prior
work. We describe our protocol in Section 5.4. In Section 5.5, we present the empirical
evaluation of our work. We conclude our paper in Section 5.6.

5.2. PRELIMINARIES
In this section, we present the necessary background information on convolutional neu-
ral networks and the cryptographic primitives we use in our design. Table 5.1 summa-
rizes the notation we use throughout the paper.

5.2.1. CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks are specifically designed for image recognition. They
combine a series of layers to perform classification. Each layer takes an input X, eval-
uates a function f on the input along with a weight matrix W, and returns an output Y to
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Table 5.1: Notation table.

Symbol Explanation

X = {x0,0, x0,1, . . .} Input matrix
Y = {y0,0, y0,1, . . .} Output matrix
W = {w0,0, w0,1, . . .} Model weight matrix
B = {b0,0,b0,1, . . .} Bias matrix
f (X,W) = Y Function f that operates on inputs X,W and returns out-

put Y
N Plaintext modulus of the Paillier cryptosystem
N 2 Ciphertext modulus of the Paillier cryptosystem
` Bit size for 2PC operations
∑ Security parameter
a 2R A a is chosen uniformly randomly from A
Ø Dot product symbol
≠ Matrix multiplication symbol
[·] Paillier ciphertext
h·ii Input share of party i for 2PC operations

the subsequent layer. Figure 5.1 illustrates an overview of the neural network structure.
The first layer of the neural network is the input layer, where the input is provided to
the network. The last layer is the output layer, where the result of the classification is re-
vealed. The layers between input and output are called hidden layers. Each hidden layer
evaluates the function associated with that layer on its input and delivers the output to
the next layer.

Below we describe the most common hidden layers used in convolutional neural
networks.
Convolutional Layer (Conv) is based on convolutional filtering in image processing. It
applies a filter, W, on the input X by sliding the filter every time to work on each index
of the input matrix. The sliding factor is called stride (s). The size of the input can be
adjusted to fit to filter size by appending some border values which is called padding
(p). The operation performed in convolutional layer is a dot product such that

f (X,W) = WØX+B (5.1)

=
X

wi , j £xi , j +bi , j . (5.2)

Figure 5.2 shows the operation of convolutional filter on the input.
Fully Connected Layer (FC) connects each neuron in the current layer to each neuron in
the previous layer along with a weight value. The operation is a matrix multiplication

Xt = Xt°1 ≠W, (5.3)

where Xt are the neurons of the current layer and Xt°1 are the neurons of the previous
layer.
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Figure 5.1: An overview of the neural network structure with input, output, and hidden layers.

�

X W Y
Figure 5.2: Convolutional filtering in convolutional layer.

Pooling Layer (Pool) is a scaling layer which reduces the size of the input matrix. Reduc-
tion is performed by sliding a filter on the input and performing the pooling operation
on each area that is covered by the filter. The two common types of pooling are

• max pooling where the maximum value within the area covered by the filter is
selected.

• average pooling where the average of the values within the area covered by the
filter is selected.

Unlike previous layers, the pooling operations are nonlinear.
Activation Layer (Act) is also a nonlinear layer. In this layer, a nonlinear activation fun-
ction f (xi , j ) = yi , j is applied to each neuron of the input layer. The size of the output is
same with the size of the input. Most commonly used activation functions are

Sigmoid:
1

1+e°xi , j
, (5.4)

Hyperbolic tangent (tanh):
e2xi , j °1

e2xi , j +1
, (5.5)

Rectified Linear Units (ReLU): max(0, xi , j ). (5.6)
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5.2.2. HOMOMORPHIC ENCRYPTION
Homomorphic property enables a cryptosystem to perform operations on the encrypted
input without decryption. If a cryptosystem enables both additions and multiplications
under encryption, it is called fully homomorphic whereas if it supports a single type of
operation, it is called partially homomorphic. Despite their flexibility on performing
both types of operations, fully homomorphic cryptosystems are expensive in computa-
tion. In contrast, partially homomorphic schemes are more efficient with their reason-
able computation cost.

In this paper, we use a partially homomorphic cryptosystem, namely the Paillier
cryptosystem [15] which supports additive homomorphism. The public key of the Pail-
lier cryptosystem is (N , g ), where N is the product of two large primes p and q , and
g 2Z§

N 2 . The private key is (∏,µ), where ∏= lcm(p °1, q °1) and µ= (L(g∏ mod N 2))°1

mod N . The encryption function of the Paillier cryptosystem is probabilistic such that
every encryption of the same plaintext results in a different ciphertext. Encryption of a
message m 2ZN on modulus N is computed as E(m) = g m ·r N mod N 2, where r 2Z§

N 2 .

An encrypted message E(m) can be decrypted using the formula m = L(c∏ mod N 2) ·µ
mod N . As it is described in [16], the decryption function of the Paillier cryptosystem
supports threshold decryption. In our paper, when necessary, we use a 2-out-of-2 vari-
ant of the threshold decryption which distributes the private key among two parties.
Successful decryption requires both parties to compute the decryption function.

Using the Paillier cryptosystem, it is possible to compute addition and scalar multi-
plication on encrypted messages as depicted in the following equations

E(m1)£E(m2) = g m1 · r N
1 £ g m2 · r N

2 mod N 2

= g m1+m2 · (r1 · r2)N mod N 2

= E(m1 +m2), (5.7)

E(m)c = g cṁ · (r c )N mod N 2

= E(c ·m). (5.8)

We refer readers to [15] for the details of the cryptosystem. In the rest of the paper, we
represent a Paillier ciphertext with [·] symbol.

5.2.3. SECURE TWO-PARTY COMPUTATION
Secure two-party computation enables two parties to jointly compute a function f on
their inputs without revealing the inputs to each other. In our work, we use two different
methods for secure two-party computation which are arithmetic secret sharing [17] and
Boolean secret sharing [18].
Arithmetic secret sharing: Given two parties P1,P2, their arithmetic shares on an `-
bit value m are hmi1 and hmi2 such that hmi1 + hmi2 ¥ m mod 2`. Arithmetic shar-
ing enables computation of addition and multiplication operations on secretly shared
values. The addition of two secret shared values is computed locally by each party as
hzii = hxii + hyii . Computing multiplication is, however, more complicated. It can be
computed using Beaver’s multiplication triplet technique [17]. We refer readers to [17]
for a detailed explanation of the technique.
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Boolean secret sharing: Given the parties P1,P2, their Boolean shares on a single bit
value m are hmi1 and hmi2 such that hmi1 ©hmi2 ¥ m mod 2, where © is the XOR oper-
ation. Boolean circuits can compute both linear and nonlinear operations.

In arithmetic sharing, additions can be computed locally without any additional cost.
A multiplication operation requires some additional computation and communication
cost; however, it is less expensive than the multiplication in Boolean sharing [19]. There-
fore, in our protocol, we use arithmetic sharing for addition and multiplication opera-
tions. When other types of operations such as comparisons are needed, we use Boolean
sharing.

5.3. PRIOR WORK
In this section, we regroup existing privacy preserving neural networks into several cate-
gories based on the underlying privacy enhancing technology. We further highlight their
relevance with respect to our protocol.

The first category of solutions consists of solutions based on secure multi-party com-
putation. In [11], SecureML designs a privacy-preserving neural network training and
classification method using 2PC, where clients secretly share their own private data am-
ong two non-colluding servers. SecureML builds the model with the stochastic gradient
descent method. Authors compute ReLU using garbled circuits and implement polyno-
mial approximations of nonlinear functions such as the sigmoid and softmax functions.
Additionally, a solution for switching between arithmetic and Yao’s sharing is proposed.
As an extension to SecureML, authors [12] propose ABY3 which shares the private in-
puts between three non-colluding servers. To securely share sensitive data among three
servers, the authors redefine arithmetic, Boolean and Yao’s sharings of the ABY frame-
work [19]. MiniONN, proposed by Liu et al. [13], also uses 2PC for privacy-preserving
neural network operations. Different from [11] and [12], MiniONN focuses on the pre-
diction phase only. The authors propose a 2PC protocol between the client and the
cloud. The client and the cloud additively share each of their input and output values
for each layer of the neural network. To ensure data privacy, MiniONN defines oblivious
transformations for each CNN operation and implements the transformations using the
ABY framework. Furthermore, Rouhani et al. [20] propose DeepSecure which is based
on Yao’s garbled circuits to securely compute the deep learning model. The authors
are able to use sigmoid and tanh as activation functions thanks to the optimization of
garbled circuits. Another study which uses 2PC is Chameleon by Riazi et al. [21]. Au-
thors propose a protocol that switches among sharing circuits for secure function evalu-
ation, where two parties jointly perform a computation without disclosing their inputs.
Chameleon can be considered as an alternative protocol to ABY [19]. TFEncrypted [22]
is another framework which enables secure computation in TensorFlow [23] using se-
cret sharing and secure channels between the parties. Moreover, a very recent scheme
named SecureNN [24] uses secure three-party computation for the training and classifi-
cation phases with convolutional neural networks using the MNIST dataset. SecureNN
shares the input and output among two parties using 2-out-of-2 arithmetic shares, and
the third party joins the protocols during the online computation. In comparison to Se-
cureNN, SwaNN requires interaction with the client for the computation of the square
function only, which is less than compared to the interactions of three parties in Se-
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cureNN.

In the second category, we analyze fully homomorphic encryption (FHE)-based solu-
tions. To the best of our knowledge, CryptoNets [8] is the first privacy-preserving neural
network protocol which is based on FHE. Authors in [8] use the SEAL library [25] to com-
pute convolutional neural network predictions on encrypted images. Similar to Cryp-
toNets, CryptoDL [26], Chabanne et al. [1] and Ibarrondo et al. [27] use FHE for privacy-
preserving neural networks. The main difference with CryptoNets is the fact that they
approximate nonlinear functions with higher degree polynomials using different tech-
niques such as Taylor series, numerical methods or Chebyshev polynomials. The use of
batch normalization is also proposed to obtain some performance gain. The goal of all
these solutions is to keep a good level of accuracy while using FHE to protect the input
data. Later on, Bourse et al. [28] uses a conversion of a trained neural network to a Dis-
cretized Neural Network (DiNN) using an efficient FHE called TFHE [29]. Authors claim
that DiNN can be used for deep neural networks with large number of neurons. Similarly,
TAPAS [30] also proposes binary neural networks over TFHE-encrypted data. However,
TAPAS differs from [28] mainly due to the ability of the server to update the neural net-
work at any time without the need for the data being re-encrypted by the client. More
recent works, namely [31] and [32] propose the idea of training neural networks over
FHE-encrypted data and classifying encrypted predictions. In their studies, the client
supplies the training data in its encrypted form using its own public key, and the server
trains this encrypted data to build the encrypted model. This model is further used by
its owner to classify a new encrypted input. Because both the training data and the mo-
del are encrypted, the server cannot discover any information on both phases. Authors
claim to achieve a reasonable performance. Moreover, Faster CryptoNets [33] is a sys-
tem employing the sparse encodings over the neural network model and data when it
remains encrypted under the FHE scheme. The authors propose some efficient polyno-
mial approximations for activation functions. The scheme also includes a training phase
that uses differential privacy to protect the data.

In comparison with existing solutions from these two categories, we propose a hy-
brid protocol that combines 2PC with partially HE. Our goal in SwaNN is to come up
with private neural network predictions by making use of more simple cryptographic
tools, where the client can obtain the prediction result without disclosing its input to the
server, and the privacy of server’s neural network against the client is ensured. There-
fore, we propose to take advantage of both privacy enhancing technologies and opti-
mize their respective costs (computational and/or communication cost). To reduce the
computational cost, FHE is replaced with the additively homomorphic Paillier encryp-
tion scheme. This algorithm is used to compute linear operations and the x2 function.
Additionally, we obtain better performance results for computing nonlinear operations
thanks to the use of 2PC.

Few early approaches, such as [9] and [10], also use the Paillier encryption scheme
and Yao’s garbled circuits. Although these solutions seem similar to our proposal, they
study very small neural networks and suffer from significant communication overhead
due to frequent client-server interactions. Furthermore, authors in [9] and [10] do not
provide any performance results of their solution executed over the encrypted data. Ad-
ditionally, Gazelle [14] is a secure neural network inference scheme implemented under
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a dedicated lattice-based additively homomorphic encryption scheme proposed in the
paper. This solution also makes use of Yao’s garbled circuits to perform ReLU and to
reduce the noise in the ciphertext. Unfortunately, this results in linear growth in compu-
tation and communication costs, and it also increases the depth of the circuit. Instead,
we make use of a secure square protocol to compute the activation function without
Yao’s garbled circuits.

Lastly, there exist several works, such as [34], [35], and [36], which propose to com-
bine some machine learning techniques, including neural networks, with trusted hard-
ware.

5.4. SWANN
In the Machine Learning as a Service (MLaaS) model, the client has limited computation
capabilities or knowledge of machine learning. Thus, he outsources the computations
to the server who has expertise in performing machine learning with adequate compu-
tation power. In a desirable scenario, the workload on the client side should be mini-
mized. In this paper, we consider two different scenarios both of which aim to minimize
the computations at the client side and the overall computation cost while maintaining
privacy.
1st Scenario - Client-Server: In this scenario, a client shares a private image with a
server. The server, which holds the neural network model, computes the prediction re-
sult on the private image. The majority of the computations are performed by the server.
The client helps the server perform decryptions and/or circuit evaluations when it is
necessary.
2nd Scenario - Two-Server: To reduce the workload on the client side further, we design a
two-server setting where two semi-honest non-colluding servers perform the computa-
tions together. The client provides the servers their shares on the input and private keys.
Thus, the computations on the client side are completely delegated to the servers. In
such a setting to fully utilize the capabilities of both servers, one image can be provided
to each server such that at one execution they evaluate two images simultaneously.

In both scenarios, we assume a semi-honest security model, where the parties do not
collude. In this security model, parties exactly follow the protocol steps. However, they
are curious to obtain some information from their output and intermediary messages.
In both of our scenarios, the client’s goal is to hide the image content and the result of
classification from the server. On the other hand, the server does not want to reveal the
model parameters used during computations to the client. In the rest, we explain the
computation of private neural network predictions for both scenarios individually.

5.4.1. SCENARIO 1: CLIENT - SERVER

In the client-server scenario, the majority of computations are performed by the server,
and the client is involved when intermediary decryptions are needed. Figure 5.3 illus-
trates our first scenario. The client encrypts an image with his public key and sends it to
the server who computes the secret prediction result using the neural network param-
eters. Depending on the operation performed by the server, the client might involve in
the computations.
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Client Server

Figure 5.3: Client-server scenario for SwaNN with a single input image.

In Section 5.2.1, we summarize the common layers for convolutional neural net-
works and the necessary operations to compute the functions in these layers. Below we
explain how we can compute these layers under privacy preservation in the client-server
scenario. Essentially, we separate the computations into two phases as non-interactive
phase and interactive phase. In the non-interactive phase, the operations are performed
by the server without the client’s involvement. The interactive phase, however, requires
the collaboration of the server and the client for computations. By convention, convo-
lutional neural networks start with a convolutional layer. Therefore, we assume that the
computations always start with an image that is encrypted under the Paillier cryptosys-
tem by the client. This encrypted image is sent to the server.

NON-INTERACTIVE PHASE

In this phase, the server, who has received the encrypted image, computes the linear
layers of the neural network as follows.
Convolutional Layer: The main operation in the convolutional layer is the dot product.
Given an input image X and a weight matrix W, their dot product is computed as Y =P

xi , j £wi , j . When the input image is encrypted with the Paillier cryptosystem and the
weight matrix is in plaintext, using the homomorphic property of encryption, the dot
product is computed as

[Y] =
£X

xi , j £wi , j
§
=

Y£
xi , j

§wi , j . (5.9)

Since this computation does not require any decryption, it can be performed noninter-
actively by the server.
Fully Connected Layer: Fully connected layer requires to compute a matrix multipli-
cation. The underlying operation for matrix multiplication is the dot product, but it has
to be performed for each column and row pair. Given an encrypted image as input, the
fully connected layer is computed by performing Equation 5.9 repetitively.
Mean Pool Layer: Despite the computation of pooling layer is nonlinear, following
the convention in the state-of-the-art works [8, 13] we use a linear approximation of
the mean pooling operation. Originally, the computation of mean pooling requires the
summation of the values within a subgroup and then a division by the subgroup size.
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Following the approach in [8, 13], we compute scaled mean pool instead of the mean
pool, where the summation is performed, but the division is omitted. The scaled mean
pool can be computed by additive homomorphic property of the Paillier cryptosystem
without interaction.

INTERACTIVE PHASE

In this phase, the server computes the nonlinear layers of the neural network in collabo-
ration with the client as follows.
Activation Layer: Computing the nonlinear activation function in neural networks is a
challenging task when privacy preservation is required. Since the Paillier homomorphic
encryption supports only additions, activation functions cannot be computed without
performing decryption. In the existing literature on privacy-preserving neural networks,
there are two approaches to compute the activation function.

The first approach is to compute a polynomial approximation of the function. Cryp-
toNets [8] and MiniONN [13] use x2 as the approximation of the sigmoid function. In
SwaNN, we propose two solutions to compute the approximation function x2. Since
the Pailler cryptosystem does not support multiplications, as a first solution, we design
an interactive secure square function using the additively homomorphic property of the
Paillier cryptosystem. Our solution adapts the secure multiplication protocol in [37] to a
secure square protocol (see Algorithm 12). Our second solution for the computation of
x2 uses a multiplication operation under arithmetic sharing. The multiplication requires
to switch the computations from homomorphic encryption to arithmetic sharing. Later
in this section, we explain how we can perform such a switching operation.

Algorithm 12 Secure Square Protocol

Client (pk, sk) Server (pk)

[x],r 2R {0,1}`+∑

[xr ] √ [x] · [r ]
[xr ] √ [x + r ]

[xr ]√°°°°°
xr √ decr([xr ])

x2
r √ xr · xr

[x2
r ] √ enc(x2

r )
[x2

r ]
°°°°°!

[x2
r ] ·

°
[r 2] · [x]2r ¢°1

[x2] √
£
x2

r ° r 2 °2xr
§

The second approach to compute the ReLU activation function using secure two-
party computation techniques. MiniONN [13] and SecureML [11] are the state-of-the-
art solutions which use arithmetic circuits and Yao’s garbled circuits [38] to compute the
ReLU activation function. In SwaNN, we adapt a similar approach and use the circuit-
based approach when the computation of ReLU is required. We compute ReLU using a
comparison gate under Boolean sharing.
Max Pool Layer: Unlike the mean pool layer, we do not use an approximation function
for the computation of the max pool layer. Instead, we implement the maximum pooling
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using the comparison gates under Boolean sharing. We perform the max pool layer right
after the activation layer to reduce the number of switching operations between 2PC and
PHE.

Switching between HE and 2PC In the previous subsections, we describe how to com-
pute linear and nonlinear layers of neural networks using partially homomorphic en-
cryption (PHE) and secure two-party computation (2PC). Since linear and nonlinear op-
erations follow each other repetitively, we need a secure switching mechanism between
the two cryptographic techniques. We design a protocol for secure switching which is
similar to the secure decryption mechanism described in [39]. Algorithm 13 and 14
demonstrate the steps of switching from PHE to 2PC and 2PC to PHE, respectively.

Algorithm 13 PHE to 2PC Secure Switching Protocol

Client (pk, sk) Server (pk)

[x], r 2R {0,1}`+∑

[x + r ] √ [x] · [r ]
[x+r ]√°°°°

x + r √ decr([x + r ])
x + r !hx + r ic + hx + r is hx+r is°°°°°!

r !hr ic + hr ishr ic√°°°hxic √hx + r ic °hr ic hxis √hx + r is °hr is

Switching from PHE to 2PC (Algorithm 13) requires to perform a secure decryption
by masking the encrypted value with a random r . Once the client securely decrypts the
masked value x + r , he creates the secret shares of it for himself and for the server as
hx + r ic and hx + r is . In the mean time, the server creates the secret shares of the random
r as hr ic and hr is to remove the mask from the original value x. Finally, both parties
perform a local subtraction on their shares hx + r i and hr i to compute the secret shared
value hxi which is going to be used in 2PC computations.

Algorithm 14 2PC to PHE Secure Switching Protocol

Client (pk, sk) Server (pk)

hxic hxis , r 0 2R {0,1}`+∑

r 0 ! hr 0ic + hr 0ishr 0ic√°°°°
hx + r 0ic √hxic + hr 0ic

hx + r 0is √hxis + hr 0ishx+r 0is√°°°°°°
x + r 0 √ hx + r 0ic + hx + r 0is

[x + r 0] √ enc(x + r 0)
[x+r 0]°°°°°!

[x] √ [x + r 0] · [r 0]°1

Switching from 2PC to PHE (Algorithm 14) reverses the former procedure. It starts
with a secret shared value hxi. Similar to the previous protocol, to prevent the leakage
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of the original value the parties reveal it after masking. Thus, the server generates a ran-
dom mask r 0 and sends a secret share of the random hr 0ic to the client. Both parties
perform an addition operation to mask hxi, and then the server sends the masked value
hx + r 0is to the client. Client reveals x + r 0 by adding the two shares and encrypts it with
his public key. In the final step, the server removes the random mask from [x + r 0] with a
homomorphic subtraction.

5.4.2. SCENARIO 2: TWO-SERVER
The client-server scenario necessitates a certain level of computation power from the
client, despite the majority of the operations are performed by the server. To reduce the
workload from the client’s side, we design a second scenario which outsources the com-
putations to two non-colluding servers. In this scenario, the client provides the input to
both servers, and the servers perform the operations and return the result to the client.
However, if only a single image is provided to the servers one of the servers is going to
be idle during the non-interactive phase of the computations. Thus, we propose to pro-
vide one different image to each server to fully utilize the computation capabilities of the
servers and classify two images at once.

Client

Server 2

Server 1

Figure 5.4: Two-server scenario for SwaNN with two input images.

Figure 5.4 illustrates our scenario. The client encrypts two images with his public key
and provides one image to each server. Furthermore, he creates shares of the private key
for each server as described in [16] and sends the shares to each server. Similar to the
first scenario, we divide the computations into two phases as non-interactive and inter-
active phases. In the non-interactive phase, the servers compute the linear operations
on their inputs as the same way described in Section 5.4.1. The interactive phase and the
switching phase are also similar to the description in Section 5.4.1, but they differ in the
decryption procedure. In the first scenario, the client is responsible for performing the
decryption operations. However, in the two-server scenario, the decryption task is also
delegated to the servers along with their shares on the secret key. Therefore, the decryp-
tion function decr([·]) in Algorithm 12 and Algorithm 13 is performed by both servers.
To clarify the procedure, in Protocol 15 we illustrate how secure square protocol works
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when the computations are delegated to the two servers.

Algorithm 15 Secure Square Protocol in the two-server scenario

Server 1 (pk, sk1) Server 2 (pk, sk2)

[x],r 2R {0,1}`+∑

[xr ] √ [x] · [r ]
[xr ] √ [x + r ]

[xr ]0 √ decr2([xr ])
[xr ]0√°°°°°

xr √ decr1([xr ]0)

x2
r √ xr · xr

[x2
r ] √ enc(x2

r )
[x2

r ]
°°°°!

[x2
r ] ·

°
[r 2] · [x]2r ¢°1

[x2] √
£
x2

r ° r 2 °2xr
§

While the execution of non-interactive phase can be done by each server locally, the
interactive phase requires the involvement of both parties. The servers can execute this
phase sequentially based on a predetermined order, or they can execute it in parallel
which improves the computation cost further.

5.4.3. SECURITY ANALYSIS
SwaNN aims to compute neural network predictions under the privacy preservation as-
sumption in the semi-honest adversarial model. We assume the semi-honest adversary
is non-adaptive and computationally bounded. In this security model, for both of the
scenarios we propose, the two parties should not be able to retrieve any additional in-
formation from the protocol execution apart from their inputs, outputs, and intermedi-
ary messages. We achieve our security goal thanks to the security of the cryptographic
techniques we use in the design of SwaNN. Both the Paillier cryptosystem and secure
two-party computation are proven to be secure. In the non-interactive phase of SwaNN,
the security is guaranteed by the semantic security of the Paillier cryptosystem. The
Paillier cryptosystem satisfies semantic security against chosen plaintext attacks under
decisional composite residuosity assumption [15]. Thus, in the computation of convo-
lutional, fully connected, and mean pool layers, the server(s) cannot reveal any valuable
information from the encrypted messages on the condition that the encryption is per-
formed with a key that meets the current security requirements.

The activation and max pool layers, on the other hand, requires interactive proto-
cols between two parties during which the computations might be switched from ho-
momorphic encryption to secure two-party computation, and vice-versa. Besides the
security of the Paillier cryptosystem, arithmetic secret sharing and Boolean secret shar-
ing, which are used in the interactive phase of SwaNN as secure two-party computa-
tion techniques, achieve indistinguishability given that the shares are generated from a
uniformly random distribution [18]. Assuming that the Paillier cryptosystem and secure
two-party computation are secure, the security of the interactive phase of SwaNN can be
deduced to the security of switching or decryption operations. In the rest of this section,
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we provide a formal security proof using the simulation paradigm [40] to show that the
switching and decryption operations can be performed securely. Due to limited space,
we provide the proof only for Algorithm 13, which switches the operations from homo-
morphic encryption to secure two-party computation in the client-server scenario.

In the simulation paradigm, the ideal security setting is outsourcing inputs of both
parties to a trusted third party who can perform the computations and return the output.
In the real-world setting, the security goal is to show that if an adversary A can attack the
protocol in the real world, then the attack can be also performed by an adversary S in
the ideal world. Since the attacks of S are not successful in the ideal setting, the attacks
in the real world also fail and the protocol is proved to be secure in the real world. In
Definition 5.4.1 and Definition 5.4.2, we provide the formal definitions for security and
indistinguishability from [40].

Definition 5.4.1 (Computational Indistinguishability). Let X (a,∑) and Y (a,∑) are two
probability ensembles where a 2 {0,1}§ is the input of the parties and ∑ is the secu-
rity parameter. X (a,∑) and Y (a,∑) are computationally indistinguishable (i.e. X (a,∑) ¥
Y (a,∑)) if there exists a negligible function µ(∑) for every nonuniform polynomial time
algorithm D , and for every a 2 {0,1}§ and ∑ 2K such that

|Pr[D(X (a,∑)) = 1]°Pr[D(Y (a,∑)) = 1]|∑µ(∑). (5.10)

Definition 5.4.2 (Definition of Security). P1 and P2 are two parties who want to run
a protocol º on their inputs x and y to compute a functionality f (x, y) which outputs
f1(x, y) and f2(x, y) for each party. In the execution of º, the view of parties are

viewº
1 (x, y,∑) = (x,r1;m1,m2, · · · ,mt ), (5.11)

viewº
2 (x, y,∑) = (y,r2;m1,m2, · · · ,mt ), (5.12)

where r1,r2 are the randomness of the parties, ∑ is the security parameter and mi ’s are
the intermediary messages received by each party. The output of º is outputº(x, y,∑) =
(outputº1 (x, y,∑), outputº2 (x, y,∑)), such that outputº1 (x, y,∑) and outputº2 (x, y,∑) are the
local outputs of P1 and P2. We say that º securely computes f (x, y) in the presence of
semi-honest, non-adaptive, computationally bounded adversaries, if there exist proba-
bilistic polynomial-time simulators S1 and S2 such that

©
S1(1∑, x, f1(x, y)), f (x, y)

™
¥

©
viewº

1 (x, y,∑),outputº(x, y,∑)
™

, (5.13)
©
S2(1∑, y, f2(x, y)), f (x, y)

™
¥

©
viewº

2 (x, y,∑),outputº(x, y,∑)
™

. (5.14)

Accordingly, Algorithm 13 is a protocol º between a server and a client which com-
putes the functionality f that switches the computations from PHE to 2PC. The client
does not provide an input for º (i.e. his input is an empty string ?) apart from the
auxiliary inputs encryption and decryption keys (pk, sk). The server’s input is an `-bit
value x which is encrypted under the Paillier cryptosystem [x]. Given [x], f computes
f (?, [x]) = (hxic ,hxis ) which are secret shares of x for the client and the server.

Theorem 5.4.1. The switching protocol º (Algorithm 13) securely computes the func-
tionality f (?, [x]) = (hxic ,hxis ) in the presence of semi-honest, non-adaptive, computa-
tionally bounded adversaries.
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Proof. In the following, we prove Theorem 5.4.1 for a corrupted server and client sep-
arately, by showing that the view of adversary A in the real world is computationally
indistinguishable from the simulated views of Si , where i 2 {c, s} is for the client and the
server.

• Server is corrupted by A : Ss is given the input and output of the server which
are [x],hxis , and the security parameter 1∑. In simulation, we need to show that
Ss can generate the view of incoming messages to the server, which is hx + r is . Ss
works as follows:

1. Ss chooses a uniformly distributed random tape, r1.

2. Ss picks an `+∑-bit random value r 0 using the random tape r1.

3. Ss creates the secret shares hr 0ic and hr 0is .

4. Using the output hxis , Ss computes hx + r 0is = hxis + hr 0is .

The view of the server in the real world is

viewº
s (?, [x]) = ([x],rs ;hx + r is ) , (5.15)

while the view generated by the simulator

Ss (1∑, [x],hxis ) =
°
[x],r1;hx + r 0is

¢
. (5.16)

Since Ss does not have access to the decryption key sk, it cannot simulate decr([x+
r ]). On the other hand, it can generate the intermediary message hx + r 0is , but if r 0

is uniformly sampled from r1, then

©
Ss (1∑, [x],hxis ), f (?, [x])

™
¥

©
viewº

s (?, [x]),outputº (hxic ,hxis )
™

, (5.17)

if for every nonuniform polynomial time distinguisher D there exists a negligible
function µ(∑) such that

ØØØPr
£
D

°°
[x],r1;hx + r 0is

¢
^ (hxic ,hxis )

¢
= 1

§
°

Pr[D (([x],rs ;hx + r is )^ (hxic ,hxis )) = 1]
ØØØ∑µ(∑). (5.18)

Equation 5.18 holds due to the security of secure two-party computation and the
uniformity of the random tape. The indistinguishability guarantees that a cor-
rupted server has no advantage on differentiating hx + r 0is from hx + r is .

• Client is corrupted by A : Different from the server, the client does not have an
input for º. Sc is only provided the output hxic and the public and private keys
pk, sk. To simulate the intermediary messages [x+r ] and hr ic , Sc works as follows:

1. Sc chooses uniformly distributed random tapes r1 and r2.

2. Sc picks an `-bit random value x 0 and an (`+∑)-bit random value r 0 using
the random tapes r1,r2.
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3. Sc encrypts x 0+ r 0 as [x 0+ r 0] using the public key pk.

4. Sc creates secret shares for r 0 such that r 0 ! hr 0ic + hr 0is .

The view of the client in the real world and the view generated by the simulator are

viewº
c (?, [x]) = (?,rc ; [x + r ],hr ic ) , (5.19)

Sc (1∑,?,hxic ) =
°
?,r1,r2; [x 0+ r 0],hr 0ic

¢
, (5.20)

respectively. Then,

©
Sc (1∑,?,hxic ), f (?, [x])

™
¥

©
viewº

c (?, [x]),outputº (hxic ,hxis )
™

(5.21)

in the existence of a negligible function µ(∑) for every nonuniform polynomial
time distinguisher D such that

ØØØPr
£
D

°°
?,r1,r2; [x 0+ r 0],hr 0ic

¢
^ (hxic ,hxis )

¢
= 1

§
°

Pr[D ((?,rc ; [x + r ],hr ic )^ (hxic ,hxis )) = 1]
ØØØ∑µ(∑). (5.22)

Equation 5.22 is correct when a semantically secure encryption scheme and secret
sharing scheme are used in securing messages [x+r ] and hr ic which eliminate the
advantage of distinguishing [x+r ] from [x 0+r 0] and hr ic from hr 0ic . Using the Pail-
lier encryption scheme, which satisfies the semantic security under the decisional
composite residuosity assumption, and arithmetic secret sharing, which guaran-
tees information theoretic security, a corrupted client cannot break the indistin-
guishability. Furthermore, the adversary cannot reveal any information about x
from the decryption of [x + r ], given that a sufficiently large, uniformly random
value (`+∑ bits) is selected for masking x.

5.5. PERFORMANCE EVALUATION
We implemented SwaNN to evaluate its performance in different settings and to com-
pare it with the state-of-the-art. We used the C++ programming language for the im-
plementation and GMP 6.1.2 library for big integer operations. We used the ABY frame-
work [19] for secure two-party computation operations. For the homomorphic opera-
tions, we used the Paillier implementation of ABY due to its efficiency. We selected 2048
bits modulus size in Paillier operations to meet the current security standards. For the
ABY operations we selected 32-bit shares. The machine we used in the experiments runs
Ubuntu 16.04 operating system with Intel Core i5-3470 CPU@3.20GHz.

5.5.1. OPTIMIZING COMPUTATIONS
In each layer of neural networks, the same operations are repeated for each index of the
input independently. Thus, in our implementation we use several optimization tech-
niques which help reduce the computation time and communication usage by enabling
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simultaneous execution. To optimize 2PC computations, we use single instruction mul-
tiple data (SIMD) techniques [41] which are provided in the ABY framework. SIMD
techniques cannot be fully utilized for the computations with the Paillier cryptosystem.
Therefore, to improve the efficiency in homomorphic encryption, we adapt two tech-
niques to the Paillier encryption which enables simultaneous computation.

The first technique we use is data packing. It packs multiple data items into a single
ciphertext as described in [42]. Accordingly, we create slots of t+∑ bits for each data item
where ∑ is the security parameter and t is the length of the data item. Given the plaintext

modulus N , we can pack Ω =
j

log2 N
t+∑

k
items in a single ciphertext as in Equation 5.23.

[x̂] =
Ω°1X

m=0

£
xi , j

§
· (2t+∑)m (5.23)

Using data packing we can use the full plaintext domain in the Paillier cryptosystem and
perform additions on the packed ciphertext simultaneously. Furthermore, in interactive
protocols, using data packing helps reduce the bandwidth usage and the cost of decryp-
tion operations.

The second technique we use to improve efficiency of homomorphic encryption is
using a multi-exponentiation algorithm to simultaneously perform the operations in the
form of

wY

i=1
abi

i = ab1
1 ·ab2

2 . . . abw
w . (5.24)

Lim-Lee’s multi-exponentiation algorithm [43, 44] enables to perform Equation 5.24 si-
multaneously by modifying the binary exponentiation algorithm using several precom-
putation techniques. In our work, we can apply multi-exponentiation for the computa-
tion of dot product (Equation 5.9) over encrypted data thanks to the additive homomor-
phism of the Paillier cryptosystem. We summarize the optimizations used in each layer
of neural networks as follows:

• Conv: Multi-exponentiation technique is used to reduce the cost of dot products.

• Act: Data packing is used before performing the activation function. If activation
is performed with 2PC operations, then SIMD optimization is used.

• Pool: No optimization technique is needed.

• FC: Multi-exponentiation technique is used to reduce the cost of matrix multipli-
cations.

5.5.2. EXPERIMENTS
We design two experiments with respect to the activation function used in the neural
network. In the first experiment we used x2 as the activation function and re-trained
the neural network structure used in CryptoNets [8]. In the second experiment we used
ReLU as the activation function and re-trained the neural network structure used in Min-
iONN [13]. The properties of the neural networks are detailed in Appendix 5.6.
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EXPERIMENT 1
In the first experiment, we measured the performance of SwaNN with x2 activation fun-
ction in the client-server and the two-server scenario. For each scenario, we designed
two different cryptographic setting. The first setting is an only-PHE setting which is to-
tally based on the Paillier cryptosystem. We implemented the activation function x2 as
described in Algorithm 12. The second setting is a hybrid setting where the computa-
tion switches between PHE and 2PC. We implemented the secure switching protocols
in Algorithm 13 and Algorithm 14 for this setting and implemented x2 using the ABY
framework. Table 5.3 demonstrates the performance of SwaNN for both scenarios in the
only-PHE and the hybrid setting for each layer of the network. For the only-PHE set-
ting we provide the timings with and without optimizations. For the hybrid setting, we
provide only optimized timing values.

The results show that in the client-server scenario when no optimizations are used,
the prediction of one image is computed approximately in 43 seconds. However, when
we use optimization techniques, we can reduce the computation time to 27 seconds. In
a hybrid setting, this cost is reduced to 10 seconds. Furthermore, in the two-server sce-
nario with a slight increase in computation time, two images can be processed simulta-
neously. More particularly in an optimized hybrid setting the two servers can compute
the prediction result for two images in 10 seconds simultaneously.

Table 5.2: Detailed computation time for the activation layer in the client-server and the two-server scenario
for the hybrid setting (in ms).

Operation Client Server Server-1 Server-2

Packing – 3544 3551 3553
Decryption 73 – 142 146
Unpacking 0.1 – 0.1
ABY 11 14 27 27
Encryption 2282 156 2358 2437

Total 6069 6078*

In Table 5.2 we provide the details of the computation time for the activation layer
in the hybrid setting. The packing, decryption and unpacking operations are performed
during the switching from PHE to 2PC. The encryptions are computed by both parties
when switching the operations from 2PC to PHE. In the client-server scenario, the client
spends 2.36 seconds for the computations while the server spends approximately 3.7
seconds. In the two-server scenario, both servers spend approximately 6 seconds for the
computation of the activation layer of two images.

Apart from computation time, we also analyzed the bandwidth usage of SwaNN for
different settings. Table 5.4 shows the communication cost in both scenarios for the
only-PHE setting and the hybrid setting. The packing technique used in the activation
layers helps reduce the bandwidth usage by half. Besides due to the interactive nature
of 2PC, the bandwidth usage in the hybrid setting is higher than the only-PHE setting for
both scenarios.
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Table 5.4: Bandwidth usage of SwaNN in different settings (in MB).

Client-Server Two-Server

PHE only (w/o opt.) 0.97 0.96
PHE only (w/ opt.) 0.51 0.51
Hybrid (w/ opt.) 1.63 1.73

As a final analysis, in Table 5.5 we compare SwaNN with the state-of-the-art works
CryptoNets [8] and MiniONN [13] with respect to computation time and bandwidth us-
age. CryptoNets, which uses fully homomorphic encryption for computations, requires
297.5 seconds for one prediction. The protocol enables simultaneous computation by
packing 4096 images into a single ciphertext. This is an advantage when the same client
has very large number of prediction requests. MiniONN can compute the prediction
result for the same network in 1.28 seconds. However, this computation requires 47.6
MB bandwidth usage. SwaNN can compute the same prediction result in 10 seconds.
Although the computation time of SwaNN is higher than MiniONN, SwaNN achieves a
27-fold less bandwidth usage.

Table 5.5: Comparison with the state-of-the-art in Experiment 1.

Computation time (s) Bandwidth usage (MB)

CryptoNets [8] 297.5 372.2
MiniONN [13] 1.28 47.6
SwaNN 10.1 1.73

EXPERIMENT 2

As the second experiment, we measured the performance of SwaNN with ReLU activa-
tion function for the network described in Table 5.9 in Appendix 5.6. We used maximum
operation for pooling layers. We provide the timings for the max pooling along with
ReLU function since we implemented them together. We measure the timings in the
client-server and the two-server scenario only with optimizations. Table 5.6 details the
computation time for each layer. Due to larger number of input size in each layer of
the network, the computation cost of SwaNN reaches to 61 seconds. The first activation
layer is the dominant layer in the run time. As expected, the high computation cost is
caused by the decryption operations which are performed during the switching phase
from PHE to 2PC.

In Table 5.7, we compare the performance of SwaNN with MiniONN. Clearly, Min-
iONN outperforms SwaNN almost 7-fold in computation time. However, in terms of
communication, SwaNN is more efficient with a bandwidth usage of 228 MB (compared
to 657 MB in MiniONN).
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Table 5.6: Computation time per layer in the client-server and the two-server scenario (in ms).

Layer Client Server Server-1 Server-2

Conv – 4118 4102 4098
Act+Pool 6855 46795 48777 48869
Conv – 460 457 457
Act+Pool 766 4418 5602 5597
FC – 1318 1329 1331
Act 277 506 815 815
FC – 6 6 6

Total 57824 61173

Table 5.7: Comparison with the state-of-the-art in Experiment 2.

Computation time (s) Bandwidth usage (MB)

MiniONN [13] 9.32 657.5
SwaNN 61.17 228.1

5.6. CONCLUSION
We have proposed a privacy preserving neural network prediction protocol that com-
bines the additively homomorphic Paillier encryption scheme with secure two-party
computation. Thanks to the use of the Paillier encryption algorithm for linear opera-
tions and also the x2 activation function, the solution achieves better computational cost
compared to existing HE-based solutions. Different computation optimisations based
on the use of data packing and the multi-exponentiation algorithm have been imple-
mented. Furthermore, the communication cost is also minimized since 2PC is only used
for non-linear operations (max pooling and/or RELU). SwaNN can be executed in the
two-server setting, in case the client lacks resources. Experimental results show that
SwaNN actually achieves the best of both worlds, namely, better computational over-
head compared to HE-based solutions and, better communication overhead compared
to 2PC-based solutions.

NEURAL NETWORK STRUCTURES
In our experiments, we use two neural network structures which are previously trained
by CryptoNets [8] and MiniONN [13] to perform image classification on MNIST data.
Table 5.8 summarizes the structure of the neural network proposed in CryptoNets. The
accuracy of the networks is 98.95%. The network has 9 layers. Since the last layer of
the network, the sigmoid activation, is applied only in the training phase, we did not
include it in our experiments. The activation function of the network is x2. As pooling
operation, scaled mean pooling is used. Secondly, we used the neural network structure
proposed in MiniONN (Figure 12) [13]. The accuracy of the network is 99.31%. Table 5.9
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demonstrates the layers of the network. The activation function of the network is ReLU.
Max pooling is used in the pooling layer.

Table 5.8: CryptoNets Neural Network structure [8].

Layer Input size Output size Filter Stride

Conv 28£28 5£13£13 5£5 (2,2)

Act 5£13£13 5£13£13

Pool 5£13£13 5£13£13 3£3 1

Conv 5£13£13 50£5£5 5£5 (2,2)

Pool 50£5£5 50£5£5 3£3 1

FC 50£5£5 100£1

Act 100£1 100£1

FC 100£1 10£1

Table 5.9: MiniONN Neural Network structure [13].

Layer Input size Output size Filter Stride

Conv 28£28 16£24£24 5£5 (1,1)

Act 16£24£24 16£24£24

Pool 16£24£24 16£12£12 2£2 2

Conv 16£12£12 16£8£8 5£5 (1,1)

Act 16£8£8 16£8£8

Pool 16£8£8 16£4£4 2£2 2

FC 16£4£4 100£1

Act 100£1 100£1

FC 100£1 10£1
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6
PRIVACY-PRESERVING ONLINE

BEHAVIOURAL ADVERTISING

Online advertising is a multi-billion dollar industry, forming the primary source of in-
come for many publishers offering free web content. Serving advertisements tailored to
users’ interests greatly improves the effectiveness of advertisements, and is believed to be
beneficial to publishers and users alike. The privacy of users, however, is threatened by the
widespread collection of data that is required for behavioural advertising. In this chap-
ter, we present two privacy-preserving protocols for online behavioural advertising that
combine machine learning methods with secure computation techniques. The first pro-
tocol uses a threshold variant of an additively homomorphic cryptosystem to distribute
trust between parties while allowing computations on encrypted data, such that adver-
tisements can be served based on detailed user profiles. The second protocol distributes
trust between advertising companies using an additively homomorphic threshold secret
sharing scheme, allowing collaborative computations on user profiles while preventing
a coalition of colluding parties smaller than a predefined threshold from obtaining any
sensitive information. Both protocols achieve performance multi-linear in the size of user
profiles and the number of advertising campaigns, and show promising initial results in
terms of privacy and performance. To the best of our knowledge, our two protocols are the
first protocols that preserve user privacy in behavioural advertising while allowing the use
of detailed user profiles and machine learning methods.

This chapter has been published as

• Section 6.1

"AHEad: Privacy-preserving Online Behavioural Advertising using Homomorphic Encryption" by L.
Helsloot, G. Tillem, and Z. Erkin in IEEE Workshop on Information Forensics and Security, WIFS 2017
(pp. 1-6) (2017)

• Section 6.2

"BAdASS: Preserving Privacy in Behavioural Advertising with Applied Secret Sharing" by L. Helsloot, G.
Tillem, and Z. Erkin in JoWUA (pp.23-41) (2019).
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6.1. AHEAD: PRIVACY-PRESERVING ONLINE BEHAVIOURAL

ADVERTISING USING HOMOMORPHIC ENCRYPTION
Online advertising is a pervasive phenomenon on the Internet, backed by a multi-billion
dollar industry with a worldwide spend of $178 billion in 2016 [1]. Advertisements al-
low publishers to offer web services free of charge, forming a primary financial pillar
supporting free web content [2]. An increasing number of people object to being sh-
own advertisements on web pages they visit, however, resulting in a rapid adoption of
technological measures to block advertisements. In early 2017, it was estimated that ad
blocking tools were installed on 615 million devices, amounting to 11% of the Internet
population, and the adoption of such tools is predicted to increase in the future [3]. The
use of ad blockers has lead to a significant loss of revenue from advertising space of-
fered by publishers. The worldwide cost of ad blocking, in terms of missed revenue, was
estimated to be $41.4 billion, or 23% of the total ad spend, in 2016 [4]. These develop-
ments threaten the business models of many free web services, necessitating measures
to alleviate objections against advertising in order to attain a sustainable advertisement-
supported Internet economy.

One of the objections people have to online advertisements is that widespread data
collection by advertising companies infringes on user privacy [5]. 32% of respondents to
a recent survey among ad blocker users indicated that privacy concerns were a reason
for their use of an ad blocker [6]. In a similar survey on privacy and advertising, 94% of
respondents indicated that online privacy was an important issue, and according to 70%
of respondents, online advertising networks and online advertisers should be respon-
sible for users’ online privacy [7]. The widespread collection of user data that sparks
privacy concerns is a key element of behavioural targeting, in which the advertisements
that are shown to a user are selected based on the user’s browsing behaviour. Although
such tailored advertisements are recognized by users as being useful for both publishers
and users, acceptance of behavioural advertising is hindered by a mistrust of advertising
companies and a lack of control over the collection of information [5].

ONLINE BEHAVIOURAL ADVERTISING

Online Behavioural Advertising (OBA) is the practice of serving advertisements based on
individuals’ interests. These interests are inferred from users’ browsing behaviour, us-
ing data such as visited web pages, search queries, and online purchases. OBA allows for
advertisements to be targeted at individual users, greatly improving the Click-Through
Rate (CTR) and thus the expected effectiveness of advertisements [8]. Personalization of
advertisements is typically performed using campaign-specific supervised machine le-
arning models that predicts users’ responses to advertisements. Users benefit from OBA

by being served less irrelevant advertisements, whereas advertisers benefit from accu-
rate targeting as it allows them to reach the desired audience. Finally, publishers experi-
ence an increased value of the advertising space they offer.

The current trend in OBA is the Real-Time Bidding (RTB) mechanism of buying and
selling ads [9]. In the RTB model, ad exchanges (AdX) provide marketplaces where adver-
tising space is auctioned in real time for individual impressions. When a user visits a
web page containing advertising space, the publisher offers the ad impression for bids
at one or more ad exchanges, after which advertisers place their bids within a fraction
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of a second. Other platforms emerged along with ad exchanges to manage the complex-
ity of RTB. Demand-Side Platforms (DSPs) bid on impressions from multiple inventories
on behalf of advertisers, who may not possess the expertise required to partake in pro-
grammatic real-time auctions. Supply-Side Platforms (SSPs) assist publishers in reaching
a large number of advertisers by offering advertising space to multiple inventories.

Existing literature proposes a number of methods to address privacy concerns in OBA.
These methods include blocking advertisements altogether [10], obfuscating browsing
behaviour [11], and anonymization [12], as well as exposing only generalized user pro-
files to advertising companies [13]. However, limiting the data available to advertising
companies is expected to decrease the accuracy of targeted advertisements [14], and
thus the value of advertisements to users, advertisers, and publishers. Finally, some work
proposes cryptographic approaches to aggregate ad click statistics [13] or perform ad-
vertisement selection using secure hardware [15]. These approaches, however, assume
the existence of centralized advertising networks performing simple keyword-based ad-
vertisement selection, and are thus unsuitable for use within the highly distributed RTB

model.

OUR CONTRIBUTIONS

In this paper, we present AHEad, a novel protocol that preserves user privacy in OBA, is
compatible with the RTB mechanism of buying ads, and supports highly detailed user
profiles. To the best of our knowledge, this is the first protocol making use of machine
learning on encrypted data for preserving user privacy in OBA tasks. AHEad is based upon
machine learning techniques commonly encountered in existing OBA systems, and al-
lows multiple data processors, specifically DSPs, to operate on the same encrypted user
data. Our protocol distributes trust between parties using threshold homomorphic en-
cryption, such that no single party can decrypt sensitive information. We achieve per-
formance linear in the size of user profiles, and see room for further performance im-
provements.

6.1.1. PRELIMINARIES

LOGISTIC REGRESSION

Although a variety of machine learning algorithms has been proposed for user response
estimation tasks, logistic regression has recently been used in production systems by
many advertising companies, such as Google [16], Facebook [17], and Criteo [18], and is
considered a state-of-the-art model [19]. A logistic regression model is used to estimate
the probability of a binary outcome y (click or no click) based on a d-dimensional pre-
dictor vector x (the user profile) [9]. Given a feature vector x and model parameters w ,
the model predicts the click probability ŷ using the sigmoid function:

ŷ =æ(w÷x) = 1

1+e°w÷x . (6.1)

After observing the actual binary click label y , we use the gradient of the logistic loss to
update model parameters w using an online Stochastic Gradient Descent (SGD) method
as in [16]. Given the gradient of the loss g = (ŷ ° y)x , we perform the model update
w √ w °¥g , where ¥ is the learning rate. Note that the learning rate can be a constant,
but may also be set to decay per iteration and per coordinate of the gradient.
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FEATURE HASHING

Many of the features considered in OBA are categorical. The high cardinality of some of
these features results in a very large feature space, particularly if feature conjunctions are
used. To encode categories from a user profile into a vector of fixed dimensionality for
use in logistic regression, we use the hashing trick [20], which showed promising results
in e.g. [18]. The hashing trick maps values from our high-dimensional user profile into
a lower-dimensional vector x by setting xi to a count of the values whose hash is i . The
resulting d-dimensional vector x (in [18], d = 224 is used) is the input feature vector to
the logistic regression model.

THRESHOLD HOMOMORPHIC ENCRYPTION

Our protocol relies on an additively homomorphic cryptosystem, such as Paillier [21].
The homomorphic properties of Paillier allow the computation of

Epk (m1 +m2) = Epk (m1) ·Epk (m2)

by any party with access to public key pk, where Epk (x) is the encryption of a message
x under public key pk. Likewise, one can compute Epk (c ·m1) = Epk (m1)c for a public
constant c.

In our protocol, we use a two-party threshold version of Paillier as described in [22],
such that trust is distributed between parties. We denote an encryption using thresh-
old Paillier as [·], and have omitted share decryption steps from our protocol descrip-
tions. We use [·]u and [·]DSP to represent encryptions using any asymmetric encryption
scheme under the public key of the user or DSP, respectively.

6.1.2. PROTOCOL DESIGN
For our privacy-preserving online advertising protocol, we consider a setting that is com-
patible with the existing RTB landscape. We assume that DSPs are the only parties that per-
form operations on user data, i.e. that personalization of advertisements is performed
solely by DSPs. The majority of our protocol is therefore performed at the DSPs, and ad
exchanges are responsible only for collecting bids and selecting the highest bid. SSPs are
assumed to only offer advertising space to multiple ad exchanges, and are not consid-
ered in our protocol for simplification purposes.

Since some existing companies act as both ad exchange and DSP, we assume that ad
exchanges and DSPs collude. To preserve privacy in the presence of colluding parties, we
introduce an additional entity into our setting called Privacy Service Provider (PSP). The
PSP is assumed not to collude with any party, but is not trusted with user data. Therefore,
we use a threshold version of Paillier, where one share of the private key is held by the PSP,
and each of the DSPs and ad exchanges holds a copy of the other share. An advertising
company must thus collaborate with the PSP to decrypt and vice versa. We consider the
following parties in our protocol:

• Users are the actors to whom advertisements are shown when they visit web pages.
A user visits web pages using a web browser, which maintains a profile describing
the user’s behaviour. Whenever a web page containing advertising space is visited,
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the web browser requests an advertisement from an ad exchange. After display-
ing the ad, the web browser sends click feedback to the ad exchange, indicating
whether the ad was clicked or not.

• Ad exchanges offer a marketplace where advertising space is auctioned in real
time. Ad exchanges send bid requests to DSPs, and pick the highest bid from the
responses.

• DSPs bid on advertising space on behalf of one or more advertisers. For every re-
ceived bid request, a DSP generates a bid for each of its campaigns by running a
response prediction model on the received input, and submits these bids and the
associated advertisement to the ad exchange.

• PSP is a service provider that assists in performing computations in a privacy-pre-
serving manner.

Our protocol is based on a semi-honest security model, where ad exchanges and DSPs

execute the protocol together with the PSP. The ad exchanges, DSPs and PSP should not
learn any information about the contents of the user profile, nor which ads were viewed
or clicked, from the protocol execution. Moreover, ad exchanges and the PSP should not
learn any information about the parameters of the models run by DSPs, nor the bid values
submitted by DSPs.

Table 6.1: Explanation of Symbols

Symbol Explanation

x Input feature vector obtained by feature hashing.

K∞ Set of campaigns run by a DSP ∞.

w k Model parameters for a campaign k, where wk,i is the i th coordinate
of w k .

¥k,i Learning rate parameter for campaign k and coordinate i .

º(·) Random permutation function.

º°1(·) Inverse permutation of º(·), such that º°1(º(x)) = x .

Bk (·) Bidding function for campaign k.

bk Bid value for campaign k.

ak Advertisement associated with campaign k.

k Unique campaign identifier.

INITIAL SETUP

Prior to protocol execution, a key pair for the two-party Paillier scheme is generated, ei-
ther by a Trusted Third Party (TTP) or using a distributed protocol as outlined in e.g. [22].
The private key is secret shared, such that the PSP holds one part of the key, and each DSP
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and ad exchange holds a copy of the other part of the key. Moreover, each DSP generates a
key pair for use in the profile update protocol. Finally, advertisers set up their campaigns
such that DSPs can bid on their behalf.

USER PROFILING PHASE

Browsing behaviour is recorded within the user’s web browser to form a local user pro-
file, such that privacy can be preserved during the user profiling phase. Local profiling
can be performed using existing techniques, such as RePriv [23]. The resulting profile
information is captured into a d-dimensional feature vector x using feature hashing.

Since sending the full d-dimensional feature vector during each advertisement re-
quest would incur prohibitively high communication costs, feature vectors are cached
at DSPs. Caching significantly reduces the amount of communication required during
the time-sensitive advertisement selection phase, and allows feature vectors to be up-
dated in the background to minimize delays experienced by the user. To further decrease
communication costs, profile updates are periodically sent by the user. Depending on
the expected size of user profiles, profile updates can be performed in either an incre-
mental fashion or by completely replacing the user profile. Incremental updates may
be less costly to encrypt and transmit for users, but require computationally expensive
operations at DSPs. AHEad takes the latter approach of replacing the user profile. How-
ever, it can easily be modified to process incremental updates by using the additively
homomorphic properties of the encryption scheme.

The steps performed during a periodic profile update are outlined in Algorithm 16.
An explanation of the symbols used in the protocol descriptions is given in Table 6.1. The
user with unique identifier u generates a d-dimensional feature vector x from their local
profile information.

Due to feature hashing, x is expected to be a very sparse high-dimensional vector.
To reduce the communication costs for the user, the profile update is encoded as a set
of pairs P = {(i + r (mod d), [xi ])} for non-zero xi , where r 2R Zd . This compressed rep-
resentation is sent to the PSP, along with encryption [(u,r )]DSP . The PSP then expands
P into an element-wise encryption of the original vector x , with its elements rotated r
times due to the randomization of indices performed by the user, setting any element
not present in P to [0]. This expansion is sent to the relevant DSPs, along with [(u,r )]DSP .
The DSPs decrypt the user’s identifier to select the relevant user profile, and the random
number to rotate the received expansion back to its original indices. Finally, the DSPs

replaces the previous profile information of the user with the encrypted feature vector.

BIDDING PHASE

During the bidding phase, every DSP calculates a bidding price for each of their cam-
paigns, based on a cached user profile. The bidding phase is initiated by the user con-
tacting an ad exchange with a request for an advertisement. The ad exchange sends
a bid request to every DSP, each of which executes the bidding protocol. For each ad-
vertising campaign k, the user response ŷ is assumed to be estimated using a logistic
regression model. The bidding price is derived from ŷ using a linear bidding function
B(ŷk ) = c1 ŷk + c2 for campaign-specific constants c1 and c2. Although a linear bidding
function may not be capable of fully capturing complex bidding strategies used in prac-
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Algorithm 16 Profile update protocol, initiated by every user

Input: x ,u
1: Pick r 2R Zd
2: P √ {(i + r (mod d), [xi ]]) | xi 6= 0}
3: invoke EXPAND(P, [(u,r )]DSP ) at PSP

4: procedure EXPAND(P, [(u,r )]DSP )
5: for j √ 1,d do

6:
£
x̃ j

§
√

(
[v] if ( j , [v]) 2 P

[0] otherwise

7: invoke UPDATE([x̃] , [(u,r )]DSP ) at DSP

8: procedure UPDATE([x̃] , [(u,r )]DSP )
9: Decrypt [(u,r )]DSP

10: Select profile [x] for user u
11: for i √ 1,d do
12: [xi ] √ [x̃(i°r (mod d))]

tice, it is used for illustrative purposes, and could be replaced by another bidding fun-
ction.

The bidding protocol, as executed by the DSPs, is outlined in Algorithm 17. The sig-
moid function that is used to make predictions in logistic regression models is non-trivial
to compute under additively homomorphic encryption. Existing literature uses two dif-
ferent approaches to compute the result of the sigmoid function: approximation [24, 25],
or computation in the clear [26, 27]. We argue that in our setting, revealing the input to
the sigmoid function w÷x to the PSP is acceptable, since it does not leak information
about the user’s profile as w is not known to the PSP. (Note that, if w is known to the PSP,
it could be possible to extract information about x . Similarly, if x is known to the PSP,
it could be possible to extract information about w .) The result of the sigmoid function
may leak information about the degree to which the user is interested in a particular
topic. However, no information about the identity of the user is passed to the PSP during
the bidding phase, and thus the PSP can not infer any more information than that there
is a user who is interested in a particular topic. Finally, the result of the sigmoid fun-
ction does not reveal information about bid values to the PSP, as the bidding functions
are unknown to the PSP.

AUCTION PHASE

During the auction phase, the PSP and the ad exchange engage in a secure comparison
protocol, such as described in e.g. [28], to select the highest bid and associated advertise-
ment without either party learning which bid won the auction. At the start of the auction
phase the PSP holds encryptions of all bids submitted by the DSPs through the bidding
protocol. These bids consist of encryptions of the bid value, the advertisement, the pre-
dicted response, and the campaign identifier. The bids are randomly permuted by the
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Algorithm 17 Bidding protocol, initiated by every DSP

Input:
©
(w k ,Bk , ak ) | k 2 K∞

™
, [x]

1: for all k 2 K∞ do

2: [sk ] √
dQ

i=1
[xi ]wk,i

3: Pick random permutation function ºs (·)
4: [s 0] √ºs ([s])
5: invoke [ŷ 0] √ CALCULATE-SIGMA([s 0]) at PSP

6: [ŷ] √º°1
s ([ŷ 0])

7: for all k 2 K∞ do
8: Re-randomize [ŷk ]
9: [bk ] √ Bk ([ŷk ])

10: send [ak ]u , [bk ], [ŷk ], [k] to PSP

11: procedure CALCULATE-SIGMA([s 0])
12: Decrypt [s 0]
13: for all s0i 2 s 0 do
14: ŷ 0

i √æ(s0i )

15: return [ŷ 0]

PSP and sent to the ad exchange. After execution of the secure comparison protocol, the
ad exchange holds an encryption of the index of the highest bid, which is decrypted by
the ad exchange. This allows the ad exchange to forward the encrypted bid information
to the user, who decrypts and displays the advertisement.

MODEL UPDATE PHASE

After an advertisement is shown to a user, the response prediction model associated with
the shown advertisement can be updated to learn from the observed user action y , which
is either click (1) or no click (0). In the current non-privacy-preserving setting, only clicks
are reported, and non-clicks are inferred from the absence of clicks. Since we want to
hide whether a user clicked on an advertisement, however, we always report something.
Note that we cannot reveal ŷ°y , since its value leaks information about y , and we cannot
reveal ŷ to the PSP as the PSP could link that to values observed during the bidding phase.
Therefore, we must rely on users to calculate the gradients used for model updates.

The model update protocol is outlined in Algorithm 18. The user calculates the gra-
dient of the loss function g = (ŷ ° y)x in the encrypted domain. DSPs have their model
parameters w in the clear, so an update of w based on a single user’s response reveals
information about the user’s profile x to the DSP. Therefore, the user sends g to the PSP,
where gradients of multiple users are aggregated before revealing the resulting vector to
the DSP. The DSP can then update the response prediction model based on the aggregated
gradients of a small batch of users. Moreover, the PSP aggregates bid values received by
users on a per-campaign basis, such that advertisers can be billed without revealing in-
dividual bid values.
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Algorithm 18 Model update protocol, initiated by a user after viewing an advertisement

Input: x , y, [ŷ], [b], [k]
1: [±] √ [ŷ] · [°y]
2: for i √ 1,d do

3:
£
gi

§
√

(
[±]xi if xi 6= 0

[0] otherwise

4: Re-randomize [b] , [k]
5: invoke AGGREGATE([g ], [k], [b]) at PSP

6: procedure AGGREGATE([g ], [k], [b])
7: Decrypt [k]
8: for i √ 1,d do
9:

£
ĝk,i

§
√

£
ĝk,i

§
·
£
gi

§

10:
£
b̂k

§
√

£
b̂k

§
· [b]

11: if sufficient values are aggregated for campaign k then
12: invoke UPDATE(

£
ĝ k

§
,k) at DSP

13: procedure UPDATE([g ],k)
14: Decrypt [g ]
15: for i √ 1,d do
16: wk,i √ wk,i °¥k gi

6.1.3. COMPUTATIONAL ANALYSIS
To evaluate the computational complexity of the proposed protocol, we provide both a
theoretical analysis in terms of the number of cryptographic operations performed by
parties participating in the protocol, and a set of measurements obtained from a proof-
of-concept implementation.

Table 6.2: Symbols Used in Computational Analysis

Symbol Description

∫ Number of non-zero elements in the user’s profile.

d Dimensionality of user profiles.

∑ Number of campaigns of a DSP.

K Total number of campaigns.

≥ Number of model updates aggregated per campaign.

COMPUTATIONAL COMPLEXITY

The variables used in the computational analysis are described in Table 6.2. Note that
∫, ∑, K and ≥ are expected to be several orders of magnitude smaller than d . Table 6.3
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lists the amortized number of operations performed by each party for each subprotocol.
While the proposed protocol requires a large number of cryptographic operations, all
subprotocols have a complexity at most linear in the number of campaigns and size of
user profiles. The bidding protocol requires the largest number of operations due to the
computation of [w÷x]. However, this computation is trivially parallelizable and can thus
be greatly sped up. Moreover, the required number of operations can be reduced by
employing a sparsity-inducing model such as the Follow The (Proximally) Regularized
Leader (FTRL) model described in [16]. Further speed improvements can be achieved by
packing multiple values into a single ciphertext in the model update phase, reducing the
number of encryptions performed by the user, the number of multiplications performed
by the DSP and the number of share decryptions performed by the DSP and PSP. Moreover,
packing reduces the amount of communication required between the parties.

Table 6.3: Number of Operations Performed per Subprotocol

Protocol Operation User AdX DSP PSP

Profile
update

Encryption ∫ d °∫
Decryption 1

Bidding

Encryption 2∑ K

Share decryption ∑ K

Multiplication ∑(d °1)

Exponentiation ∑d

Randomization ∑

Bidding function ∑

Auction
Comparison K °1 K °1

Decryption 1

Model
update

Exponentiation ∫

Encryption d °∫
Multiplication 1 1+d

Share decryption 1+ d
≥ 1+ d

≥

IMPLEMENTATION

To measure the runtime of the protocol, we made a proof-of-concept implementation
in C++. The implementation simulates all parties within a single process thread, thus
performing all operations sequentially. All cryptographic operations use a key length of
2048 bits, and real values such as model weights are represented as 16-bit fixed-point
numbers. Furthermore, data packing is used to speed up model updates.

The runtime tests were executed on a mobile workstation running Arch Linux on an
Intel® Core™ i7-3610QM 2.3 GHz quad-core processor with 8 GB RAM. Figure 6.1 shows
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the impact of the number of DSPs, and thus the total number of campaigns, on the total
computation time. The time spent in the profile update protocol increases linearly with
the number of DSPs since a profile update must be processed by each DSP. In a realistic
setting, DSPs would operate in parallel, resulting in constant-time performance of the
profile update protocol. The bidding and auction protocols cannot be fully parallelized
due to the operations performed by the PSP and ad exchange, and thus scale linearly in
the number of DSP. Since the model update protocol is only performed once for every
advertisement shown, its runtime is independent of the number of DSPs.

2 4 6 8 10
0

0.1

0.2

T
im

e
 (

s)

Profile update

2 4 6 8 10
0

25

50

75

T
im

e
 (

s)

Ad selection

2 4 6 8 10

Number of DSPs

0.1

0.2

0.3

T
im

e
 (

s)

Model update

Figure 6.1: Total computation time required by a single run of each subprotocol for an increasing number of
DSPs, with a fixed profile size d = 212 and number of campaigns per DSP ∑= 10. Model update time is averaged
using ≥= 10.

Figure 6.2 shows the impact of profile dimensionality on the total computation time.
It is apparent that, although all subprotocols scale linearly with profile size, high-dimen-
sional profiles as used in practice result in dozens of seconds of computation time for
every shown advertisement if not parallelized.

6.1.4. CONCLUSION AND FUTURE WORK
In this paper we present, to the best of our knowledge, the first protocol using machine
learning over encrypted data to preserve privacy in OBA. DSPs must work together with a
semi-honest, non-colluding PSP to estimate a user’s response and the corresponding bid
price within the encrypted domain, after which the PSP and ad exchange run a privacy-
preserving auction to select the winning bid. Encrypted reports of ad clicks or views are
aggregated by the PSP for billing and model update purposes. At no point are the contents
of the user profile or the shown advertisement revealed to any party other than the user
themselves, nor are model parameters revealed to any party other than the DSP. Finally,
individual bid prices are revealed to no party at all.

The computation time required by AHEad quickly increases with profile dimension-
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Figure 6.2: Total computation time required by a single run of each subprotocol for an increasing profile size
d , with a single DSP running a single campaign. Model update time is averaged using ≥= 10.

ality, resulting in over 100 seconds of computation per bid for d = 220 on our modest
hardware. Moreover, an encrypted user profile of size 220 requires 4 Gib of storage space
and communication bandwidth between DSPs and the PSP. Nevertheless, our work shows
promising initial results in terms of user privacy and achieves performance linear in the
profile size, and calls for future research to provide further performance improvements.
We are confident that, combined with sufficiently powerful hardware, the resulting pro-
tocols could spark a revolution in user privacy in OBA.

6.2. BADASS: PRESERVING PRIVACY IN BEHAVIOURAL

ADVERTISING WITH APPLIED SECRET SHARING
Online advertising is a pervasive phenomenon on the Internet, forming one of the driv-
ing economic factors behind free web services. With a global spend of $178 billion in
2016 [1], online advertising forms a primary financial pillar supporting free web con-
tent by allowing publishers to offer content to users free of charge [2]. In recent years,
however, an increasing number of people object to advertisements being shown on web
pages they visit, resulting in a sharp increase in the use of technological measures to
block advertisements. According to a 2017 report, an estimated 615 million devices have
ad blocking tools installed, amounting to 11% of the Internet population, and the use of
such tools is expected to grow further in the future [3]. The consequence of the increased
use of ad blockers is that publishers experience a significant loss of revenue from the ad-
vertising space they offer. The global loss of advertising revenue due to ad blocking was
estimated to be $41.4 billion in 2016, or 23% of the total ad spend [4]. Some publishers
request that users disable ad blockers on their web pages, or deny access to ad blocker
users altogether, in an effort to limit revenue loss due to ad blocking [6]. The conse-
quence of such practices is an arms race between ad blocking technologies, and cir-
cumvention of ad blockers. These developments pose a threat to the business models of
many free web services, necessitating measures to alleviate the objections against online
advertising in order to attain a sustainable advertisement-supported Internet economy.

One of the objections people have against online advertising is the widespread data
collection by advertising companies, which infringes on user privacy [5]. In a recent
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survey among users of an ad blocking tool, 32% of respondents indicated that privacy
concerns were among the reasons for their use of an ad blocker [6]. A similar survey on
privacy and advertising showed that 94% of respondents considered online privacy an
important issue, and 70% of respondents indicated that online advertising networks and
online advertisers should be responsible for users’ online privacy [7]. The widespread
collection of user information that raises privacy concerns is a key element of behaviou-
ral targeting, in which a user’s browsing behaviour determines which advertisements are
shown to the user. Although such behavioural advertising is recognized as being bene-
ficial to both users and publishers, a mistrust of advertising companies and a lack of
control hinders acceptance of behavioural advertising [5].

ONLINE BEHAVIOURAL ADVERTISING

Online advertising is forming one of the driving economic factors behind free web ser-
vices. With a global spend of $178 billion in 2016 [1], online advertising forms a primary
financial pillar supporting free web content by allowing publishers to offer content to
users free of charge [2]. In recent years, however, an increasing number of people ob-
ject to advertisements being shown on web pages they visit, resulting in a sharp increase
in the use of technological measures to block advertisements. According to a 2017 re-
port, an estimated 615 million devices have ad blocking tools installed, amounting to
11% of the Internet population, and the use of such tools is expected to grow further
in the future [3]. The consequence of the increased use of ad blockers is that publish-
ers experience a significant loss of revenue from the advertising space they offer. The
global loss of advertising revenue due to ad blocking was estimated to be $41.4 billion
in 2016, or 23% of the total ad spend [4]. Some publishers request that users disable ad
blockers on their web pages, or deny access to ad blocker users altogether, in an effort
to limit revenue loss due to ad blocking [6]. The consequence of such practices is an
arms race between ad blocking technologies, and circumvention of ad blockers. These
developments pose a threat to the business models of many free web services, necessi-
tating measures to alleviate the objections against online advertising in order to attain a
sustainable advertisement-supported Internet economy.

A major concern for the users is their privacy which is threatened by the widespread
data collection of advertising companies [5]. The collected data is used in behaviou-
ral targeting to determine which advertisements are shown to a user based on the user’s
browsing behaviour. Although such behavioural advertising is recognized as being bene-
ficial to both users and publishers, a mistrust of advertising companies and a lack of con-
trol hinders acceptance of behavioural advertising [5]. In a recent survey among users
of an ad blocking tool, 32% of respondents indicated that privacy concerns were among
the reasons for their use of an ad blocker [6]. A similar survey on privacy and advertising
showed that 94% of respondents considered online privacy an important issue, and 70%
of respondents indicated that online advertising networks and online advertisers should
be responsible for users’ online privacy [7].

The practice of showing advertisements based on previously exhibited behaviour is
known as OBA. In OBA, user interests are inferred from data such as visited web pages,
search queries, and online purchases. Based on these user interests, advertisements
are typically personalized using campaign-specific supervised machine learning mod-
els that predict users’ responses to advertisements. Behavioural advertising greatly im-
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proves the expected advertising effectiveness by targeting advertisements at individual
users [8]. Users benefit from OBA by being served more relevant advertisements, and ad-
vertisers can reach a specific desired audience by using accurate targeting. Moreover,
publishers benefit from an increased value of their advertising space.

OBA utilises the RTB model of buying and selling advertisements [9]. RTB facilitates
real-time auctions of advertising space through marketplaces called ad exchanges (AdX),
allowing buyers to determine bid values for individual ad impressions. The real-time na-
ture of such auctions, in which bids are to be placed in a fraction of a second, allows fine-
grained control over allocation of advertising budgets, but also requires the whole auc-
tion process to be carried out programmatically. Along with ad exchanges, other types
of platforms emerged to manage the added complexity of RTB. DSPs provide advertisers,
who may not possess the expertise required to accurately estimate impression values,
with technologies to bid on individual impressions from multiple inventories. Likewise,
SSPs support publishers in optimizing advertising yield.

In existing literature, a number of methods is proposed to address privacy concerns
in OBA. These methods include blocking advertisements altogether [10], obfuscating
browsing behaviour [11], and anonymization [12], as well as exposing only generalized
user profiles to advertising companies [13]. Limiting the data that is available to adver-
tising companies, however, is expected to decrease the targeting accuracy [14], and thus
the value of advertisements to users, advertisers, and publishers. Other work proposes
cryptographic approaches to aggregate click statistics [13] or select advertisements us-
ing secure hardware [15]. These approaches, however, are based on advertising models
in which centralized networks perform simple keyword-based advertisement selection,
and as such are unsuitable for use within the highly distributed RTB model. Recently,
Helsloot et al. [29] proposed a protocol that uses threshold homomorphic encryption
to preserve privacy in OBA within the RTB model. However, the use of expensive crypto-
graphic operations throughout the protocol results in prohibitively large computational
costs.

In this paper, we present BAdASS, a novel privacy-preserving protocol for OBA that is
compatible with the RTB mechanism of buying ads and supports behavioural targeting
based on highly detailed user profiles. BAdASS achieves significant performance improve-
ments over the state of the art, using machine learning on secret-shared data to preserve
privacy in OBA tasks. Our protocol uses the highly fragmented nature of the OBA land-
scape to distribute trust between parties, such that no single party can obtain sensitive
information. We achieve performance multilinear in the size of user profiles and the
number of DSP s, and perform the highly time-sensitive advertisement selection task in
a fraction of a second.

In the rest of the paper, we summarize the preliminary methods in Section 6.2.1. In
Section 6.2.2 we explain BAdASS in detail. In Section 6.2.3 we provide the performance
analyses for our protocol based on communication and computation complexity and
real-time experiments. We analyze the security of BAdASS in Section 6.2.4 and, we con-
clude the paper in Section 6.2.5.
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6.2.1. PRELIMINARIES

LOGISTIC REGRESSION

Logistic regression is one possible technique for user response estimation which has
been commonly used by advertising companies such as Google [16], Facebook [17], and
Criteo [18]. Given a d-dimensional feature vector x and model parameters w , it esti-
mates the probability of a binary outcome using the sigmoid function:

ŷ =æ(w÷x) = 1

1+e°w÷x . (6.2)

In the concept of OBA, x contains the user profile while the binary output y indicates
click or no click. Although a variety of machine learning algorithms has been proposed
for user response estimation tasks, logistic regression has recently been used in produc-
tion systems by many advertising companies, such as Google [16], Facebook [17], and
Criteo [18], and is considered a state-of-the-art model for response prediction [19]. A
logistic regression model is used to estimate the probability of a binary outcome y (click
or no click) based on a d-dimensional predictor vector x (the user profile) [9]. Given a
feature vector x and model parameters w , the model predicts the click probability ŷ us-
ing the sigmoid function: The model parameters are updated as w √ w °¥g using the
gradient of the logistic loss g = (ŷ°y)x as in [16]. ¥ in the update function is the learning
rate which can be a constant or can be set to decay per iteration and per coordinate of
the gradient vector. After observing the actual binary click label y , we use the gradient
of the logistic loss to update model parameters w using an online SGD method as in [16].
Given the gradient of the loss g = (ŷ ° y)x , we perform the model update w √ w °¥g ,
where ¥ is the learning rate. Note that the learning rate can be a constant, but may also
be set to decay per iteration and per coordinate of the gradient vector.

FEATURE HASHING

The feature space in logistic regression may become too large when categorical features
with high cardinality are used. To avoid a high dimensional user vector, we use the hash-
ing trick in [20] which enables to map the user profile into a lower-dimensional vector x
by setting xi to a count of the values whose hash is i . Many of the features considered
in OBA are categorical. The high cardinality of some of these features results in a very
large feature space, particularly if feature conjunctions are used. To encode categories
from a user profile into a vector of fixed dimensionality for use in logistic regression, we
use the hashing trick [20], which showed promising results in e.g. [18]. The hashing trick
maps values from our high-dimensional user profile into a lower-dimensional vector x
by setting xi to a count of the values whose hash is i . The resulting d-dimensional vector
x (in [18], d = 224 is used) is the input feature vector to the logistic regression model.

SHAMIR SECRET SHARING

Shamir’s secret sharing scheme [30] is a t-out-of-n threshold scheme in which a secret
s 2Zp for a prime p is shared among n parties, from which any subset of size at least t can
reconstruct the secret. We use the notation hsi to indicate a (t ,n) Shamir secret sharing of
a value s, for some predefined t and n, and hvi denotes an element-wise Shamir sharing
of the vector v . Shamir’s secret sharing scheme is additively homomorphic, such that



6

150 6. PRIVACY-PRESERVING ONLINE BEHAVIOURAL ADVERTISING

hs1i+hs2i= hs1+s2i. Parties holding shares of two secret values can thus compute shares
of the sum of the two values, without interaction with other parties. Furthermore, a
public value c can be added to a shared secret s without interaction by adding c to each
of the shares, i. e. hsi+c = hs+ci. Likewise, a shared secret can be multiplied with a public
value c by multiplying each of the shares with c, i. e. hsi · c = hcsi.

Multiplication of the shares of two secret values s1 and s2 results in a (2(t °1) ,n)
sharing of s1 · s2, thus requiring 2t °1 shares to reconstruct the secret. Ben-Or et al. [31]
describe a multiplication protocol in which the resulting polynomial is reduced to de-
gree t ° 1 and randomized. Given a sharing of a value s, where hsii is held by party i ,
the degree reduction step is performed by each party splitting their share hsii into a new
(t ,n) sharing hsii ,1, . . . ,hsii ,n . Each party i distributes their subshares among all parties,
such that party j is given the subshare hsii , j . Each party j then combines the received
subshares hsi1, j , . . . ,hsin, j into a new share hsi0j . The resulting sharing hsi0 is a new (t ,n)
sharing of the value s. Gennaro et al. [32] simplify the degree reduction and random-
ization steps into a single step, requiring a single round per multiplication. Note that n
needs to be at least 2t °1 for degree reduction to work.

UNIVERSAL RE-ENCRYPTION

Universal re-encryption, presented as a technique for mix networks by Golle et al. [33],
allows re-randomization of a ciphertext without access to the public key that was used
during encryption. In BAdASS, we use the universal re-encryption technique presented
in [33], based on a multiplicatively homomorphic cryptosystem such as ElGamal [34].
We use the notation [[x]]u to denote the encryption of a value x under the public key of
user u using a universal re-encryption scheme.

6.2.2. PROTOCOL DESIGN
In designing a privacy-preserving online advertising system, we aim to satisfy three go-
als. The first goal is to ensure profile privacy, such that information from which the inter-
ests of a user can be inferred is not revealed to any party other than the user. Moreover,
we aim to ensure model privacy, such that model parameters used by a bidder are not
revealed to any party other than the bidder. Finally, the system must be applicable to
the RTB model and integrated into the online advertising landscape, allowing bidders to
estimate the value of an ad impression based on historic observations.

Our protocol is based on a semi-honest security model. Since some existing com-
panies act as both AdX and DSP, we assume that the AdX colludes with DSPs. To assist in
privacy-preserving computations in the presence of colluding parties, we introduce an
additional entity into our setting called PSP. The PSP is not trusted with private data in
unencrypted form, but is assumed to follow the protocol specification without colluding
with any other party. We assume that targeting is performed only by DSPs, such that DSPs

are the only parties that operate on user data. The AdX only collect bids, and from these
bids select the winner. SSPs only offer advertising space to multiple ad exchanges, and
are not considered in our protocol.

Parties collaboratively compute bid values based on a logistic regression model using
secret-shared user profiles and model parameters. We define a DSP group °i to be a set
of DSPs of size at least m = 2t °1 for a given reconstruction threshold t . Computations on
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behalf of a DSP ∞i , j 2 °i are performed entirely within °i . In our protocol descriptions,
any operations performed by DSPs on secret-shared values are assumed to be performed
by all DSPs in a DSP group °i . Plaintext values and encrypted values are generated by
the DSP responsible for the campaign on which computations are performed and, where
necessary, published within °i .

BAdASS is divided into four different phases: user profiling, bidding, auction, and mo-
del update. Prior to protocol execution, advertisers set up campaigns such that DSPs

can bid on their behalf, and the PSP splits DSPs into groups of at least m parties. More-
over, each DSP shares campaign-specific parameters among the DSPs in their group. Fi-
nally, each user generates a key pair using any multiplicatively homomorphic asymmet-
ric cryptosystem and publishes their public key. In the following subsections, we explain
the four phases of BAdASS. A summary of symbols used in the description of the protocol
is provided in Table 6.4.

Table 6.4: Explanation of symbols used in BAdASS

Symbol Explanation

u Unique user identifier.

v Unique bid request identifier.

k Unique campaign identifier.

°i DSP group i .

∞i , j Unique DSP identifier, where ∞i , j is the j
th

DSP of DSP group °i

K°i Set of campaigns run by DSP group °i .

x Input feature vector obtained by feature hashing.

w k Model parameter vector for a campaign k, where wk,i is the i th coor-
dinate of w k .

c k Bidding function parameters for a campaign k.

¥k Learning rate parameter for campaign k.

bk Bid value for campaign k.

ak Advertisement associated with campaign k.

º(x) Random permutation function, which re-orders the elements of vec-
tor x .

º°1(·) Inverse permutation of º(·), such that º°1(º(x)) = x .

M List of vectors containing information associated with bid values for
use in the auction protocol.

USER PROFILING PHASE

To preserve privacy during the user profiling phase, browsing behaviour is recorded lo-
cally within the user’s web browser using an existing technique such as RePriv [23]. The



6

152 6. PRIVACY-PRESERVING ONLINE BEHAVIOURAL ADVERTISING

resulting profile is captured in a d-dimensional feature vector x using feature hashing.
To reduce the communication costs associated with sending the full d-dimensional fea-
ture vector for each request, feature vectors are cached at DSPs. Caching allows periodic
background updates of feature vectors, minimizing delays experienced by the user dur-
ing the time-sensitive advertisement selection phase. To securely share a feature vector
among DSPs without knowing the topology of the OBA landscape, the user splits their pro-
file into two additive shares, one of which is given to the AdX, the other to the PSP. Both the
AdX and the PSP, in turn, create Shamir shares from their additive shares, which are dis-
tributed among the DSP groups for which the profile update is intended. Every DSP within
the group thus receives two Shamir shares, one from each additive share created by the
user, which are combined into a single Shamir share of the original value by calculating
the sum of the two shares. The user profiling phase is illustrated in Algorithm 19.

Algorithm 19 Profile update protocol, executed jointly between a user, AdX, PSP and DSP

group, and initiated periodically by every user.
1: procedure USER:SEND-PROFILE-SHARE(x ,u)
2: Pick r 2R Z

d
p

3: hhxii1 √ x ° r
4: hhxii2 √ r
5: invoke SHARE-PROFILE(u,hhxii1) at AdX

6: invoke SHARE-PROFILE(u,hhxii2) at PSP

7:

8: procedure SHARE-PROFILE(u,hhxiim)
9: hhhxiimi√ SHAMIR-SHARE(hhxiim)

10: for all ∞i , j 2 °i do
11: invoke DSP:COMBINE-PROFILE(u,hhhxiimi∞i , j ) at DSP ∞i , j

12:

13: procedure DSP:COMBINE-PROFILE(u,hhhxiimi)
14: store hhhxiimi for user u
15: if hhhxii1i and hhhxii2i are both stored then
16: hxui√ hhhxii1i+ hhhxii2i

Depending on the feature hashing method used, the feature vector x is either binary
or contains only small values. Assuming the use of a binary feature vector, it would be
ideal from the user’s perspective to create additive shares of the feature vector in Z2,
rather than Zp , as smaller shares reduce the required communication bandwidth. Sub-
sequent computations on the user profile, however, must be performed in Zp to repre-
sent real values with sufficient precision. In our setting with two additive shares, securely
converting shares in Z2 to shares in Zp requires an invocation of the multiplication pro-
tocol for every feature vector dimension, resulting in high computation and communi-
cation costs for DSPs. We therefore favour sharing the user profile in Zp .

BIDDING PHASE

The bidding phase starts when a users contacts an AdX with an ad request. Receiving
the ad request, AdX sends a bid request to DSP groups each of which cooperatively calcu-



6.2. BADASS: PRESERVING PRIVACY IN BEHAVIOURAL

ADVERTISING WITH APPLIED SECRET SHARING

6

153

lates the bidding prices for the campaigns they are responsible for. For each campaign,
the user response ŷ is estimated using a logistic regression model, and bidding values
are derived from response estimations using linear bidding functions B(ŷ) = c1 ŷ + c2 for
campaign-specific constants c1 and c2. A challenge in logistic regression is to compute
sigmoid function within the secret-shared domain. In existing literature the sigmoid fun-
ction is computed either by approximation [24, 25] or in clear [26, 27, 29]. In this work,
we let the PSP compute the sigmoid function in the clear, as approximation leads to a
degradation of predictive performance and incurs additional computational costs. The
input to the sigmoid function w÷x is thus revealed to the PSP. In our setting, this is ac-
ceptable as the PSP knows neither the user, nor the campaign a value is associated with.
Therefore, the PSP cannot infer any more information than that there exists a user who is
interested in a topic. Moreover, a DSP group could submit additional randomly generated
values to mask real inputs.

During the bidding phase, every DSP group cooperatively calculates bidding prices
for each of the campaigns the group is responsible for. When a user contacts an AdX with
an ad request, the AdX sends a bid request to every DSP group, each of which executes the
bidding protocol.

The bidding protocol is outlined in Algorithm 20. The model parameters w k for cam-
paigns k 2 K°i , where K°i is the set of campaigns run within °i , and the user profile xu
of a user u, are shared within °i . The multiplications that are required for the calcula-
tion of the inner product of w k and xu in line 3 are performed locally, without degree
reduction. Since the results of these local multiplications are not used in further multi-
plications, the sum of all multiplied values is a single sharing hski of degree 2t °2. As the
PSP subsequently collects and combines all m ∏ 2t °1 shares of sk , no degree reduction
step is required in calculating w÷x .

Since campaign parameters ck,1 and ck,2 are private to the DSP responsible for cam-
paign k, they are secret-shared among the parties in the DSP group. Calculation of the bid
price bk = ck,1 ŷk +ck,2 therefore requires a single invocation of the multiplication proto-
col for every campaign, which can be parallelized such that all bid values are calculated
in a single round of communication. To ensure profile privacy, each advertisement ak
is encrypted using the user’s public key. The encrypted advertisement is submitted to
the PSP, via the AdX such that the PSP cannot link the submission to a specific DSP, along
with a random number rk and the group descriptor °i . Finally, the PSP stores a mapping
rk ! ([[ak ]]u ,°i ), which is used in the auction phase to retrieve the advertisement.

AUCTION PHASE

The auction protocol uses a hierarchical auction in which each DSP group engages in a
secure comparison protocol to select the highest of the bids within the DSP group, along
with associated information that is used in the model update phase. Shares of the in-
formation associated with the highest bid are stored for later use, after which each DSP

group submits their highest bid to a global auction to select the final winner. Note that,
due to the use of secret sharing, the global auction cannot be performed by the AdX alone.
In order to maintain the same level of trust as in the bidding protocol, at least m parties
are required in the auction protocol. Therefore, the global auction is not performed by
the ad exchange, but by a randomly selected DSP group °§.
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Algorithm 20 Bidding protocol, executed jointly by a DSP group °i and the PSP, and in-
voked by the AdX for a user u at every DSP group.

1: procedure DSP:CALCULATE-BID({hwk i,hc ki | k 2 K°i },u)
2: for all k 2 K°i do

3: hski√
dP

i=1
hxu,i i · hwk,i i

4: Pick a unique random value rk
5: Store mapping rk ! ([[ak ]]u ,°i ) at PSP via AdX

6: Pick random permutation function º(·)
7: hs 0i√º(hsi)
8: invoke hŷ 0i√ PSP:CALCULATE-SIGMA(hs 0i) at PSP

9: hŷi√º°1(hŷ 0i)
10: for all k 2 K°i do
11: hbki√ hck,1i · hŷki+ hck,2i

12: procedure PSP:CALCULATE-SIGMA(hsi)
13: s √ combine hsi
14: for all si 2 s do
15: ŷi √æ(si )

16: return hŷi

The auction protocol is shown in Algorithm 21. The protocol relies on a secure com-
parison protocol that takes as input shares of two values a and b, and gives as output
shares of 1 if a ∏ b, and shares of 0 otherwise. Such a protocol is described by e. g. Reis-
tad and Toft [35]. During the procedure to find the maximum bid, shares of the highest
bid and additional information associated with the highest bid are obtained via mul-
tiplication with the result of the comparison. After the global comparison, shares of a
random identifier r associated with the highest bid are sent to the PSP, where the shares
are combined to retrieve the encrypted advertisement and group descriptor associated
with the highest bid. To ensure unlinkability between the encrypted advertisement re-
trieved from the PSP after the auction and the values submitted prior to the auction, the
PSP performs re-randomization of the encrypted advertisement on line 23 using univer-
sal re-encryption. Finally, the encrypted ad and the group descriptor, as well as the bid
request identifier v , are sent via the AdX to the user, who decrypts and displays the adver-
tisement.

MODEL UPDATE PHASE

During the model update phase, the response prediction model associated with the sh-
own advertisement is updated using the update rule from Section 6.2.1. In order to en-
sure unlinkability between users and campaigns, the model update protocol is split into
three stages. During the first stage, the user identifier is revealed to the DSP group re-
sponsible for the shown advertisement in order to calculate shares of the update gra-
dient g = ¥(ŷ ° y)x . In the second stage, each DSP submits a set of multiple gradient
shares to the PSP, which mixes the received shares via random rotation. The PSP then re-
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Algorithm 21 Auction protocol, executed jointly by every DSP group °i , an auction group
°§, and the PSP.

1: procedure DSP:PREPARE-AUCTION(v,hbi,hr i,hŷi,h¥i,hki)
2: for all °i do
3: hMi i√

°
hri i,hŷi i,h¥i i,hki i

¢

4:
°
hbmax

i i,hr max
i i,hŷmax

i i,h¥max
i i,hkmax

i i
¢
√ MAX-BID(hbi i,hMi i)

5: Store mapping v ! (hbmax
i i,hŷmax

i i,h¥max
i i,hkmax

i i)
6: invoke PERFORM-AUCTION(v,hbmax i,hr max i) at °§

7: procedure PERFORM-AUCTION(v,hbi,hr i)
8: (?,hr maxi) √ MAX-BID(hbi,hr i)
9: invoke PSP:SEND-AD(hr maxi) at PSP

10: procedure MAX-BID(hbi,hMi)
11: hb̂i√ hb1i
12: for j √ 1, [hMi] do
13: hM̂ j i√ hM j ,1i
14: for i √ 2, [hbi] do
15: hΩi√ hbi i ∏ hb̂i
16: hb̂i√ hΩi · hbi i+ (1°hΩi) · hb̂i
17: for j √ 1,[hMi] do
18: hM̂ j i√ hΩi · hM j ,i i+ (1°hΩi) · hM̂ j i
19: return hb̂i,hM̂i

20: procedure PSP:SEND-AD(hr i)
21: r √ combine hr i
22: ([[a]]u ,°i ) √ lookup r
23: Re-randomize [[a]]u
24: Send ([[a]]u ,°i ) to user via AdX

shares the set of gradient shares among the DSP group. In the final stage, the campaign
identifiers of the set of gradients are revealed to the DSP group, allowing the DSP group
to apply the gradients calculated in the first stage to the correct parameter vector. Since
the gradient shares have been mixed, the DSP group cannot link values revealed in the
third phase to values revealed in the first phase. The model update protocol, described
in detail in Algorithm 22, is initiated by a user u, who reports shares of their response
y directly to the responsible DSP group based on the group descriptor °i received along
with the advertisement.

In the first phase, each DSP in °i calculates shares of ±= ¥(ŷ ° y), which is multiplied
with each element of the user profile to form g . These multiplications are performed
locally, without reducing the degree of the result. The update gradient shares, bid value
shares, and campaign identifier shares are locally stored as lists hGi, hBi, and hK i un-
til sufficient values are aggregated for mixing. When sufficient values are accumulated,
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Algorithm 22 Model update protocol, invoked by the user at the DSP group responsible
for the displayed advertisement.

1: procedure DSP:PREPARE-MODEL-UPDATE(v,u,°i ,hyi)
2:

°
hbi,hŷi,h¥i,hki

¢
√ lookup v

3: h±i√ TRUNCATE(h¥i · (hŷi°hyi))
4: for i √ 1,d do
5: hgi i√ hxu,i i · h±i
6: (hGi,hBi,hK i) √

°
hGi[hg i,hBi[hbi,hK i[hki

¢

7: if sufficient values are accumulated then
8: for all ∞i , j 2 °i do
9: Pick random ri , j

10: Rotate
°
hGii , j ,hBii , j ,hK ii , j

¢
ri , j times

11: invoke PSP:MIX-SHARES(°i ,hGi,hBi,hK i) at PSP

12: procedure PSP:MIX-SHARES(°i ,hGi,hBi,hK i)
13: if shares from all ∞i , j 2 °i have been received then
14: Rotate (hGi,hBi,hK i) by a random value
15: Re-share (hGi,hBi,hK i) as

°
hG 0i,hB 0i,hK 0i

¢

16: invoke UPDATE-MODEL(hG 0i,hB 0i,hK 0i) at °i

17: procedure DSP:UPDATE-MODEL(hG 0i,hB 0i,hK 0i)
18: for all ∞i , j 2 °i do
19: Rotate

°
hG 0ii , j ,hB 0ii , j ,hK 0ii , j

¢
back ri , j times

20: K √ combine hK 0i
21: for all hg 0i 2 hG 0i, hb0i 2 hB 0i, k 2 K do
22: for i √ 1,d do
23: hwk,i i√ hwk,i i°hg 0

i i
24: hb̃ki√ hb̃ki+ hb0i

each DSP sends its shares to the PSP for mixing. To prevent recombination of shares by
the PSP, each DSP ∞i , j rotates their lists of shares by a random number ri , j . Given a suffi-
ciently large aggregation threshold, the average number of attempts needed for the PSP

to successfully combine the received shares becomes prohibitively large. The PSP subse-
quently picks a random number rPSP , and rotates each of the lists of shares rPSP times,
such that the positions of output values cannot be linked to the positions of input values.

The share values themselves need also be randomized before being sent back to the
DSPs to prevent linking input values to output values. Since the PSP does not know which
received shares belong to the same value due to the rotation by DSPs, randomization can-
not be performed by adding shares of zero. Instead, the PSP splits each received share hsii
into a new sharing hsii ,1, . . . ,hsii ,n . These subshares are distributed among the DSPs in °i
in a manner analogous to the degree reduction step described in 6.2.1, such that each
party j receives subshares hsi1, j , . . . ,hsin, j . The DSPs then recombine the received sub-
shares to obtain new shares of the original values hsii . To match subshares originating
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from the same value, each DSP rotates the subshares originating from DSP ∞i , j back ri , j
times. After recombining the rotated subshares, each DSP has lists hG 0i, hB 0i, and hK 0i,
where each of the lists contains shares of the same values as were submitted to the PSP,
rotated rPSP times.

The DSPs combine hK 0i to reveal the list of campaign identifiers to which the gradi-
ent and bid shares belong. Due to the mixing of the lists, DSPs cannot link the campaign
identifiers revealed in the third phase to user identifiers revealed in the first phase, pro-
vided a sufficiently large mixing threshold is chosen. Finally, each DSP locally updates
their shares of the model parameter vectors with the list of gradient shares, and adds the
received bid shares to the bid value aggregates.

6.2.3. PERFORMANCE ANALYSIS
To evaluate the performance of BAdASS, we provide both a theoretical analysis of the com-
putational and communication complexities of the subprotocols, and a set of measure-
ments obtained from a proof-of-concept implementation. The theoretical analysis pro-
vides an overview of the performance impact incurred by the use of secret sharing for
each of the parties, whereas measurements from the implementation show the actual
performance of the protocol, taking into account all required computations.

COMPUTATIONAL COMPLEXITY

The computational complexity of BAdASS depends on a number of variables, in particular
the user profile dimensionality d , the number of campaigns K , and the update aggrega-
tion threshold ≥. The used variables are summarized in Table 6.5.

In the profile update protocol, the user creates d additive sharings, and the AdX and
PSP both create d Shamir sharings. Moreover, each DSP performs d additions. If the pro-
file update protocol is invoked for all DSP groups at once, the computational complexity
is therefore O(dn), where n is the total number of DSPs. In the bidding protocol, each
DSP performs a multiplication for every campaign within its DSP group to calculate the
bid value, and an encryption of the advertisement for all its own campaigns. Calculation
of shares of the inner product hw÷xi is performed locally, as explained in Section 6.2.2,
and since the resulting value is reconstructed by the PSP, no degree reduction step is nec-
essary. The multiplications involved in calculating the inner product are thus ‘free’. In
the auction protocol, each DSP group °i performs Ki ° 1 comparisons, where Ki is the
number of campaigns of °i , followed by a single DSP group °§ performing g °1 compar-
isons, where g is the number of groups. Since the group °§ is chosen at random out of g
groups for every auction, the amortized complexity of the the auction phase is O(K ). In
the model update protocol, the d multiplications to compute the update gradient need
no degree reduction step because the shares are mixed at the PSP, and are thus ‘free’. The
mixing step is performed for a batch of ≥ updates once every ≥ invocations, resulting in
an amortized cost equal to that of processing a single update. To process a single update,
the PSP re-shares all m shares of the d-dimensional update gradients, where m is the size
of DSP groups, followed by the DSP performing d local recombinations of the created sub-
shares. The total cost of the re-sharing, in terms of sharing and reconstructing secrets,
is equal to that of dm multiplications. The group size m, however, can be considered
a constant determined by the recombination threshold, resulting in an amortized com-
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Table 6.5: Symbols used in the computational analysis of BAdASS.

Symbol Description

d Dimensionality of user profiles.

n Number of DSPs.

g Number of DSP groups.

m Size of a DSP group.

∑ Number of campaigns of a DSP.

K Total number of campaigns.

Ki Number of campaigns within a DSP group °i .

≥ Number of model updates accumulated per DSP group.

æ Size in bits of a secret share.

ª Size in bits of an advertisement tuple, consisting of an encrypted adver-
tisement, a group descriptor, and a random identifier.

∏ Total number of comparisons required to find the maximum bid. Equal
to

ß
log2 (Ki °1)

®
+

ß
log2

°
g °1

¢®
.

Ω Number of rounds required by a single run of the comparison protocol.

∞ Number of bits transmitted in a single run of the comparison protocol.

T Number of rounds required by a single run of the truncation protocol.

ø Number of bits transmitted in a single run of the truncation protocol.

plexity of O(d) for the model update phase.

COMMUNICATION COMPLEXITY

Table 6.6 lists the amortized number of bits transmitted by each party for each subpro-
tocol, as well as the number of rounds of communication required by each subprotocol.
The round complexities of the profile update and bidding protocols are constant. Since
the group size m is bounded by a constant, and the share sizeæ is constant, the commu-
nication complexity of the profile update phase can be considered linear with respect to
the profile size d . Note that if the user profile is distributed among multiple DSP groups,
the complexity of the user profiling phase becomes multilinear in the profile size and the
number of DSPs. During the bidding phase, the AdX acts as a proxy to transmit a total of K
advertisement tuples, and the PSP transmits K sharings of the estimated user response.
Each DSP performs Ki multiplications, each requiring m shares to be transmitted, sends
Ki shares of inner products to the PSP, and sends an advertisement tuple for each of its
∑ own campaigns to the PSP via the AdX. The total communication complexity of the
bidding phase is thus O(K ), or linear in the number of campaigns.

The auction protocol consists of ∏ comparisons, where ∏ is logarithmic with respect
to the number of campaigns within a group and the number of groups. The round com-
plexity of the auction phase is thus O(log2 K ), or logarithmic in the number of cam-
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Table 6.6: Communication bandwidth in bits and number of rounds of communication per invocation of each
subprotocol of BAdASS. ∞ and ø denote the number of bits transferred in the comparison and truncation pro-
tocols. Ω is the round complexity of the comparison protocol, and T is the round complexity of the truncation
protocol.

Protocol Rounds User AdX DSP PSP

Profiling 2 2dæ dmæ dmæ

Bidding 2 K ª (m +1)Kiæ+∑ª K mæ

Auction ∏(Ω+1)+3 ª (5Ki °3)mæ+Ki∞+2 1
g æ ª

Update T +1 3
≥ mæ (d +1)mæ+ø+ (d +3)æ (d +2)m2æ

paigns, provided the round complexity of the comparison protocol is constant. Since
each DSP performs an average of Ki comparisons per invocation of the auction proto-
col and transmits a fixed number of shares for each multiplication, the communication
complexity of the auction protocol is linear in the number of campaigns, provided the
communication complexity of the comparison protocol is constant.

The model update protocol contains a single invocation of the truncation protocol,
of which the number of rounds is considered constant, as well as one round of multipli-
cation. Every ≥ invocations, three more rounds for mixing and combining are performed.
The amortized round complexity of the model update protocol is therefore constant. Al-
though the amount of bits transmitted by the PSP contains a factor m2, we can assume
this to be a small constant due to the small upper bound on m. The average commu-
nication complexity of the model update protocol is O(d), provided the communication
complexity of the truncation protocol is constant and the group size m is bounded by a
constant.

IMPLEMENTATION

To measure the runtime of BAdASS, we made a proof-of-concept implementation of the
protocol in C++. The secure comparison protocol is based on the protocol by Reistad and
Toft [35] as implemented in VIFF1 [36]. Real values, such as model weights, are repre-
sented as 16-bit fixed-point numbers. All operations using Shamir shares are performed
in a prime field of order p = 231 °1, such that share values can be represented as 32-bit
integers. The reconstruction threshold t is set to 3, resulting in a DSP group size m of 5.
The key length for the ElGamal cryptosystem is set to 2048 bits to achieve a sufficiently
high security level2.

The setup used for runtime measurements is similar to that used in [29]. The tests
were executed on a mobile workstation running Arch Linux on an Intel® Core™ i7-
3610QM 2.3 GHz quad-core processor with 8 GB RAM. Similar to [29], all parties are
simulated within a single process thread, thus performing all operations sequentially.
Figure 6.3 shows a comparison between the runtimes of BAdASS and the state-of-the-art

1VIFF. Available online at https://github.com/kljensen/viff/blob/master/viff/comparison.py
2See e. g. https://www.keylength.com for key lengths as recommended by various organizations. The NIST

considers a key length of 2048 sufficiently secure until 2030.

https://github.com/kljensen/viff/blob/master/viff/comparison.py
https://www.keylength.com
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Figure 6.3: Performance comparison between BAdASS and the state-of-the-art AHEad protocol. The runtimes
are measured in similar settings, using profile dimensionality d = 220 for both protocols. Note that the runtime
measurements for AHEad are performed using a single DSP running a single campaign, whereas 5 DSPs with a
total of 5 campaigns are simulated on a single process thread for BAdASS due to the recombination threshold.

AHEad protocol for the different protocol phases. The comparison makes it evident that,
for a realistically large profile size d = 220, BAdASS provides significant performance im-
provements over AHEad for every subprotocol, with the time-sensitive bidding phase re-
quiring less than 150 ms for a DSP group. The computation time required by the model
update protocol of BAdASS far exceeds that of the profile update, bidding, and auction
protocols, due to the large number of subshare recombinations performed by the DSPs

as well as the large number of sharings created by the PSP. Note that the computation
time of the model update protocol is averaged, since the expensive mixing and update
steps are only performed once every ≥= 10 invocations of the protocol.

Table 6.7: Runtime measurements for each step of each model update for BAdASS in ms. Mix shares and update
model steps are executed once every ≥ = 10 invocations while the update preparation step is performed for
every viewed ad. The total shows the average of ≥ invocations.

Protocol DSP PSP

Prepare
update

16.87 —

Mix shares — 2399.67

Update mo-
del

23406.70 —

Total 2597.51

Specifically, as shown in Table 6.7, one invocation of these steps is more expensive
than the preparation step by a factor of 140 and 1400, respectively. The cost of perform-
ing the model update protocol when the computation time is averaged becomes

10£16.87+2399.67+23406.70
10

= 2597.51 ms, (6.3)
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which is approximately 2.6 seconds, as shown in Figure 6.3. Based on our measurements,
we estimate that if the computations performed by the DSPs are parallelized, the average
time spent on the model update protocol for a profile dimensionality of d = 220 drops
from 2.6 seconds to about 750 ms per invocation. The computation times of the bidding
and auction phase and the profile update phase are both below 150 ms for large pro-
file sizes, even when DSPs are simulated sequentially, and thus seem very well suited for
use in a real-time setting as required by the RTB advertising model. The relatively large
amount of computation performed in the model update phase is less time sensitive, and
can thus be periodically performed as a background task without harming the user ex-
perience.

In Table 6.8, we list the average communication bandwidth of our protocol for spe-
cific parameters used in our implementation. We use a share sizeæ= 32 bits, and a group
size of m = 5 DSPs. Each DSP is responsible for ∑ = 10 campaigns, and with two groups
the total number of campaigns is K = 100. The profile dimensionality is d = 220, and
the size of an advertisement descriptor is assumed to be 4160 bits, of which 4096 bits
are the encrypted advertisement, 32 bits the random identifier, and 32 bits the group de-
scriptor. From the table, it is evident that the profile update and model update require a
significant amount of communication, with up to 100 MiB per invocation, on average, of
the model update protocol. The time-sensitive bidding and auction protocols, however,
require very little bandwidth. Moreover, very little bandwidth is used by the user, with
only the periodically executed profile update protocol requiring more than a few dozen
bytes at 8 MiB per invocation, making the bandwidth use of the user very acceptable for
modern unmetered connections.

Table 6.8: Bandwidth usage of BAdASS in KiB per invocation of each subprotocol, based on realistic parameters
used in our implementation of BAdASS.

Protocol Rounds User AdX DSP PSP

Profiling 2 8192 20480 0 20480

Bidding 2 — 51 6.25 2

Auction ∏(Ω+1)+3 — 0.5 5+Ki∞ 0.5

Update T +1 3
≥ 0.02 — 24576+ø 102400

6.2.4. SECURITY OF BADASS
The security requirements of BAdASS are satisfied by the security of the underlying secret-
sharing and encryption schemes in the semi-honest setting. In the non-interactive pha-
ses of the protocol, both the user profile and model parameters are shared among a DSP

group using Shamir’s secret sharing scheme, which provides information-theoretic se-
curity as long as no more than t °1 parties collude.

In the profile update protocol, the user profile is shared between the PSP and the
AdX using a two-party additive secret sharing scheme, which, given the assumption that
the PSP does not collude with any party, provides information-theoretic security. The
additive shares are split into Shamir shares before being sent to a DSP group, where the
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additive shares are combined into a single Shamir share. Since the PSP and the AdX only
receive additive shares, and DSPs obtain a single Shamir share of each additive share, the
PSP, AdX and DSPs gain no knowledge of the contents of user profiles.

In the bidding protocol, the PSP obtains values w÷
k xu and ŷ k from DSP groups, but

does not know the campaign k or user u to which the values belong, nor the specific
DSP responsible for the campaign. Since the PSP knows neither w k nor xu , inferring the
individual values of w k or xu from w÷

k xu is equivalent to the hardness of solving the
subset-sum problem. Given a set of positive integers S = {a1, a2, · · ·an} and an integer
b, the subset-sum problem aims to find whether there exist a subset of S, for which the
summation equals to b [37]. Finding such a subset, however, is an NP-complete prob-
lem. In BAdASS, xu is a vector with binary or small values, and w k contains 16-bit fixed-
point numbers. Assuming a binary xu the multiplication w÷

k xu is actually a selection of
indices of w k based on the value in every index of xu . Finding a subset of w k , where the
sum of the subset is equal to w÷

k xu is hard, when w k and xu are private and both of them
have size d = 220.

If the PSP receives multiple values of w÷
k xu for the same w k and xu , the PSP can link

these values to the same user, but cannot learn any information about the user’s interests
as the PSP cannot link response predictions to campaigns. The PSP also receives a map-
ping between a randomly generated number and an advertisement encrypted using the
universal re-encryption scheme, which is semantically secure under the DDH assump-
tion [33]. The use of universal re-encryption provides key privacy, such that the PSP does
not learn the identity of the user, and the randomization of ciphertexts in the ElGamal
cryptosystem ensures that different submissions of the same advertisement cannot be
linked. During the auction protocol, the PSP learns the random number associated with
the winning bid in order to retrieve the winning advertisement, but since the mappings
are anonymized by the AdX, the PSP cannot link this value to a DSP.

In the model update protocol, the PSP obtains rotated shares of update gradients,
bid values, and campaign identifiers. Given unbounded computational power, the PSP

can perform an exhaustive search of rotation coefficients until recombination of shares
results in likely values. Choosing sufficiently large values for the update period ≥ and
recombination threshold t makes exhaustive searches infeasible. After the PSP mixes the
shares, DSPs receive shares of the same values submitted earlier in the model update
phase. Since the shares are re-shared by the PSP, however, DSPs cannot link the shares
received after mixing to shares submitted before mixing. Moreover, the random rotation
performed by the PSP prevents DSPs from linking inputs to outputs.

6.2.5. CONCLUSION
In this paper we present a novel protocol using machine learning over secret-shared data
to preserve privacy in OBA with minimal user-noticeable delays. Trust is distributed am-
ong DSPs using threshold secret sharing, allowing DSPs to collaboratively compute bid
prices and determine the highest bid without gaining any knowledge of a user’s inter-
ests. Reports of individual clicks and views of advertisements are secret-shared among
DSPs, where they are used to privately update model parameters via a mixing step at the
PSP. At no point are the contents of user profiles, shown advertisements, and actual user
responses revealed to any party other than the user, nor are model parameters revealed
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to any party other than the DSP responsible for the campaign. Individual bid prices are
not revealed to any party, but are aggregated for billing purposes. Finally, the protocols
are integrated into the RTB setting by forming DSP groups from existing DSPs, with the
addition of a single new party.

BAdASS achieves significant performance improvements over previous work. AHEad

protocol presented in [29] requires more than 100 seconds of computation time to cal-
culate a single bid value in the time-sensitive bidding phase. In comparison, BAdASS sim-
ulates the calculation of 5 bid values in less than 150 milliseconds in a similar setup, even
without parallelization across DSPs. BAdASS is even efficient enough to serve advertise-
ments in real time as required by the RTB model, provided the communication between
DSPs incurs minimal latency. Despite the overhead of the model update protocol, the
results obtained with BAdASS show that by applying secret sharing techniques a level of
performance can be achieved in the time-sensitive bidding and auction phases that does
not degrade the perceived responsiveness.

To the best of our knowledge, BAdASS is the first protocol to allow sub-second be-
havioural targeting of advertisements while preserving user privacy. The heavily frag-
mented shape of the online advertising landscape lends itself particularly well to the use
of efficient secret-sharing techniques, giving advertising companies the opportunity to
cooperatively move towards acceptable forms of behavioural advertising. Although the
presented protocol should be adapted to the malicious setting, as DSPs may have an in-
centive to modify competitors’ bid values, the results obtained with BAdASS show that it is
possible to serve behaviourally targeted advertisements without disclosing those inter-
ests to any party, all within a fraction of a second. We believe that these results provide
a first step towards adoption of privacy-preserving methods in the online advertising
ecosystem.
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7
DISCUSSION

Outsourced data analytics benefit small- and medium-sized companies that do not have
sufficient computational resources and knowledge in performing data analytics by en-
abling an external party, a service provider, to perform the analytics for these companies.
However, leaking sensitive information through the outsourced data or computation re-
sults is a major concern for the analytics outsourcing companies. Considering the legal
and financial outcomes of data breaches, the analytics outsourcing companies desire an
outsourced data analytics service that can assure the protection of their sensitive data
and results.

In this thesis, we investigated the confidentiality concerns in data analytics-as-a-
service. We defined several specifications that assure confidentiality in data analytics-as-
a-service, which are input & output privacy, accuracy, and efficiency. We selected three
applications of data analytics-as-a-service whose privacy concerns have not been inves-
tigated thoroughly in the existing literature, namely process analytics, machine learning,
and marketing analytics. We provided privacy-preserving protocol designs for each an-
alytics type that aim to assure the confidentiality specifications. Our protocols focus on
the secure computation of data analytics. Thus, we used two cryptographic techniques
for the protection and processing of sensitive data, which are homomorphic encryption
and secure multiparty computation. Below we summarize the proposed protocols for
each analytics type.

PROCESS ANALYTICS

Among the three steps of process analytics defined in Chapter 2, in this thesis, we fo-
cused on the design of privacy-preserving protocols for process discovery and confor-
mance checking. In Chapter 3, we proposed two protocols for the discovery of processes
from encrypted data using homomorphic properties of encryption. Both of our proto-
cols based on a client-server scenario, where the client helps the server for the interme-
diate steps of computation.

Our first protocol, AlphaSec, transforms an existing process discovery algorithm, the
alpha algorithm, to a protected domain. In the design of AlphaSec, we used two-party
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protocols that are based on homomorphic encryption. To the best of our knowledge,
our protocol is the first protocol that performs process discovery under data protection,
but it has several limitations. One limitation is the practicability of the alpha algorithm,
which cannot handle noise and incompleteness. Another limitation of the protocol is its
efficiency. The two-party protocols based on homomorphic encryption incurs a signifi-
cant computation cost on the client’s side, which may not be affordable by every analyt-
ics outsourcing company.

Considering the limitations of AlphaSec, we proposed a second protocol, PriSM, wh-
ich generalizes our first protocol to more robust process discovery algorithms. Instead
of limiting our solution to a specific discovery algorithm, our protocol aims to discover
directly-follows graphs that can be used as a basis for the well-known process discov-
ery algorithms. Furthermore, to get rid of the high computation cost of the two-party
homomorphic encryption-based protocols, we proposed to use two variants of ElGamal
encryption, i.e. additively homomorphic and multiplicatively homomorphic, such that
the computations switch from multiplicative variant to additive variant. With a similar
bandwidth usage of the first protocol, in PriSM, we can improve the computation per-
formance of the process discovery under encryption.

In Chapter 4, we proposed two protocols for conformance checking considering the
privacy-efficiency trade-off in computations. We proposed our protocols in a two-server
setting such that the two servers share the computation tasks among them. We used se-
cure two-party computation, more specifically arithmetic sharing and Boolean sharing,
to protect and process the sensitive data. Both of our protocols aim to compute the op-
timal alignment between a log trace and a process model by solving the shortest path
problem. Our first protocol, SCORCHEXH, uses an exhaustive approach that computes
all possible paths to find the optimal alignment. While it guarantees complete privacy
protection, for larger process models or longer traces the solution can be inefficient. As
an alternative, our second protocol, SCORCHPQ, solves the shortest path problem using
a private priority queue. The solution based on the private priority queue might leak in-
formation about the length of the output, however, the computation time is significantly
less compared to SCORCHEXH.

MACHINE LEARNING

In Chapter 5, we proposed SwaNN, a protocol for private neural network predictions that
focuses on convolutional neural networks. Our protocol can work in two different sce-
narios: a client-server scenario and a non-colluding server scenario. In a non-colluding
server scenario, our solution can perform predictions for two images simultaneously.
We used a hybrid mechanism for the protection and processing of sensitive data such
that the computations switch between homomorphic encryption and secure two-party
computation. We used homomorphic encryption for the computation of arithmetic op-
erations such as additions or scalar multiplications. For the non-linear operations, such
as comparisons, we used arithmetic and Boolean circuits. The experimental results show
that our solution can provide a good balance for the trade-off between computation cost
and bandwidth usage. While balancing the computation and communication cost, our
solution uses well-known cryptographic techniques that enable the reproducibility of
the computation tasks conveniently.
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MARKETING ANALYTICS

In Chapter 6, we proposed two protocols for online behavioral advertising which are
used as a part of marketing analytics. Our protocols are in a non-colluding servers sce-
nario such that a semi-trusted party, privacy service provider (PSP), collaborates with
data service providers (DSPs) or ad exchanges to perform computations without collud-
ing. Both of our protocols combine machine learning with secure computation tech-
niques to match the right advertisement for a given user profile. Our first protocol,
AHEad, uses an additively homomorphic cryptosystem to protect and process sensitive
user data. To distribute the trust between parties it uses a threshold variant of the homo-
morphic cryptosystem. Due to the usage of homomorphic encryption with large cipher-
text sizes, the computations can be significantly expensive. Therefore, as an alternative,
we propose BAdASS, a protocol based on secret-sharing in a multiparty setting. Since
in secret-sharing the expansion in the message size is not significant, we can achieve a
significant improvement in computation cost compared to AHEad.

7.1. ACHIEVEMENTS
Our review of the existing literature in Chapter 2 shows that the research efforts that aim
to meet the confidentiality specifications for the selected applications are limited. To
respond to the inadequacy of privacy-preserving protocols for the selected analytics ap-
plications, in this thesis, we propose protocols that aim to achieve input/output privacy,
accuracy, and efficiency in confidential DAaaS. We observed that we are able to achieve
input and output privacy with the selection of provably secure cryptographic techniques
in our protocols. However, achieving efficiency and accuracy in secure computation is
not trivial. Thus, in the design of the protocols, our focus was to assure accuracy and
efficiency as stated in the following research question:

Which cryptographic techniques and optimization methods can be used to
improve the computation and communication performance in confidential
data analytics-as-a-service while maximizing the accuracy of algorithms?

In the design of our protocols, we use two main cryptographic techniques which
are partially homomorphic encryption and secure multiparty computation. In our de-
signs, we saw that with the repetitive usage of these techniques, the cost of computation
and communication increases drastically. Therefore, we use several optimization tech-
niques, such as data packing or multi-exponentiation. In the following, we clarify how
the techniques we use in our designs address our research question by elaborating on
the subquestions designed in Section 1.4.

• How efficiently can a service provider company perform process analytics in confi-
dential DAaaS, where the accuracy of process analytics algorithms are maintained?

We deal with the efficiency of computations in process analytics in two different
types of process mining by using different cryptographic techniques. In Chapter 3,
we use homomorphic encryption to perform process discovery. We propose two
protocols, such that the first protocol AlphaSec uses the additively homomorphic
Paillier cryptosystem [1], whereas the second protocol PriSM uses the ElGamal
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cryptosystem [2] with the additive and the multiplicative homomorphic variants.
In AlphaSec, we are able to handle homomorphic additions efficiently. However,
for other types of operations, such as multiplications or equality checks, we use
two-party protocols that require some intermediate decryption. To eliminate the
computation overhead of the two-party protocols, we use data packing that re-
duces the computation and communication cost incurred by the intermediate de-
cryptions. In PriSM, on the other hand, we change the protocol design such that
the operations can be performed using only homomorphic additions and multipli-
cations, which are efficiently performed with the homomorphic properties of the
ElGamal cryptosystem. The only computation bottleneck in PriSM is the switching
phase from the multiplicatively homomorphic variant to the additively homomor-
phic variant, where data packing operations are not feasible.

In Chapter 4, we perform conformance checking under privacy preservation us-
ing arithmetic circuits and Boolean circuits [3] in a two-party setting. We choose
secure two-party computation over homomorphic encryption since the compu-
tations in conformance checking require the repetitive amount of equality checks
and comparisons, which can be performed efficiently using Boolean circuits com-
pared to homomorphic encryption. In the design of our secure conformance chec-
king protocols, we use arithmetic circuits to perform additions and multiplica-
tions. We switch the circuit type to Boolean type when a secure comparison or
equality check is necessary. By reducing the usage of Boolean circuits to only non-
linear operations, we reduce the computation time and bandwidth usage in our
protocols significantly.

• How can the cost of computation and communication be balanced by a service
provider company who performs private neural network operations in confidential
DAaaS?

In Chapter 5, we propose SwaNN for private neural network predictions which
brings together two cryptographic techniques, additively homomorphic encryp-
tion and secure two-party computation with a switching phase. We observed that
the convolutional and fully connected layers of neural networks can be computed
efficiently using homomorphic encryption since the underlying operation is a dot
product which can be computed with scalar multiplications and additions. On the
other hand, the activation and pooling layers require computation of non-linear
operations such as comparisons or multiplications. Thus, to compute these lay-
ers, we use arithmetic and Boolean circuits as implemented in [4] in a two-party
setting.

To reduce the cost of computations, we applied some optimization techniques
to secure two-party computation and homomorphic encryption. We used single
instruction multiple data operations (SIMD) [5] to simultaneously perform com-
putations in secure two-party computation. To improve the computation perfor-
mance of homomorphic encryption, we used two techniques which are data pack-
ing and multi-exponentiations. Data packing enables us to reduce the number
of decryptions performed in switching from homomorphic encryption to secure
two-party computation. On the other hand, using the multi-exponentiation tech-
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nique in [6], we can perform the dot products in the convolutional layer and the
fully connected layer simultaneously.

• What is the feasibility of operating Real-Time Bidding mechanism for online behav-
ioral advertising using cryptographic techniques?

In Chapter 6, we used additively homomorphic Paillier encryption and Shamir’s
secret sharing scheme [7] for online behavioral advertising. The nature of Real-
Time Bidding mechanism requires to serve advertisements to users in real-time
which cannot tolerate significant overhead on computation and communication
cost. We observed that using additively homomorphic encryption we can perform
the operations in a two-party setting, where PSP collaborates with a DSPs or an ad
exchange without colluding. However, the computation overhead of the homo-
morphic encryption may not be tolerated in RTB setting, since the computation
cost can exceed 100 seconds for a single bid. Instead, using secret sharing, we ob-
served that we can reduce the computation time less than a second which is more
suitable for the real-time setting.

To improve the performance further, in our protocols, when it is possible, we chose
to perform computations locally in plaintext. For instance, the computation of
the sigmoid function for linear regression is delegated to PSP to prevent the loss in
accuracy and the additional computation. However, it is important to remark that
doing so does not affect the privacy of the protocol. The value provided to PSP is
an aggregate and inferring the individual values requires to solve the subset sum
problem. Furthermore, with the given information, PSP is not able to associate the
value with a user or a specific ad campaign.

Above we discussed how our protocols achieve accuracy and efficiency for each se-
lected application type specifically. In the rest of this section, we summarize how our
designs handle the challenges related to accuracy and efficiency that are introduced in
Section 2.4.

• Loss of precision: The mechanism we use in secure computation, i.e. homomor-
phic encryption and secure multiparty computation, work with integer values.
Therefore, in our computations minimizing the accuracy loss due to a conversion
from real values to integer values was an important task. In the computation of
process analytics, the values used in process discovery and conformance checking
are categorical values. Therefore, to be able to perform computations on these val-
ues we use a mapping function that maps the categorical values to integer values.
Doing so, we were able to maintain the accuracy of our computations. Similarly,
in online behavioral advertising, the user inputs provided to the protocols we cat-
egorical attributes and we used binary values to represent them. However, in neu-
ral network predictions the weight values and the result of activation functions are
not necessarily integers. Thus, in Chapter 5, we used scaling on input values to
maintain the precision of input values.

• Nonlinear functions: For the computation of nonlinear functions, we used three
different approach in our protocols. The first approach is to use a polynomial ap-
proximation of the function as discussed in Chapter 5. However, we observed that
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the approximation can reduce the accuracy of the computations. Thus, as an al-
ternative we switched the mechanism that is used for secure computation. More
specifically, knowing that we can perform more flexible operations using Boolean
circuits, when necessary, we switched the computation from homomorphic en-
cryption to secure two-party computation to perform non-linear operations. We
observed that we can maintain the accuracy of computations with the switching
mechanism while achieving feasible computation and communication cost with
the use of several optimization techniques such as data packing and SIMD oper-
ations. The third approach that we use for nonlinear functions is to perform the
function in plaintext as proposed in Chapter 6. This approach might not be secure
if the data in plaintext leaks information about users. However, in our setting, the
plaintext data is an aggregate value and inferring individual values from it requires
to solve subset sum problem.

• Trade-off between computation cost and bandwidth usage: All of the protocols
we propose require at least two parties to perform computations. Thus, minimiz-
ing both computation and communication cost is the major goal in our designs.
As described above, we used several techniques such as data packing, SIMD, or
multi-exponentiations to reduce both computation and communication cost.

7.2. REFLECTION
We showed that our proposals assure confidentiality in data analytics-as -a-service us-
ing cryptographic techniques and optimization methods to optimize the accuracy and
efficiency. However, we are aware of the fact that the proposed techniques and scenar-
ios can have limitations, and there can be alternative mechanisms. In this section, we
elaborate on the limitations and discuss what could have done alternatively.

SELECTION OF THE SCENARIOS

In confidential DAaaS, we presented three possible scenarios to perform secure compu-
tations, which are a standalone server scenario, a client-server scenario, and a non-col-
luding servers scenario. Despite these scenarios provide certain advantage for the an-
alytics outsourcing company to reduce computational cost on the client side, they can
have several drawbacks. Below we discuss possible limitations of these scenarios.

• Standalone server scenario: This scenario is the desired scenario for the analyt-
ics outsourcing companies since it does not require a computation cost from their
side. However, the computations performed in this scenario can be performed by
a single party, i.e. service provider company, which might limit the flexibility of
computations. In such a scenario, using homomorphic encryption is a reasonable
choice for the protection and processing the data by a single party. As we discussed
previously, using homomorphic encryption, a single party can perform only addi-
tions and/or limitations without decryption. Thus, the accuracy of computations
is degraded.

• Client-server: As an alternative to the standalone server scenario, in this scenario,
the computation tasks can be shared between a client and a server. Such a sce-
nario enables the two parties to compute nonlinear operations since the client
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(who hold the secret keys) can perform decryptions. However, in the distribution
of computations, the workload on the client-side is important. Since the client
does not have the same computational capabilities as the server, this scenario is
feasible when the computation tasks on the client do not exceed the client’s ca-
pacity.

• Non-colluding servers: This scenario enables two servers with similar computa-
tional resources to perform computations on the clients’ behalf. It is a useful sce-
nario by reducing the computational costs on the client-side while providing more
accurate computation results compared to a standalone server scenario. However,
it is suitable for the applications in which the collaboration of two or more service
providers to perform analytics without colluding is feasible.

The protocol we propose in this thesis use either a client-server scenario or a non-
colluding servers scenario. Since we want to maximize the accuracy in computations
we did not prefer to use standalone server scenario. However, we believe that the so-
lutions we propose can be applied in different scenarios as well. For instance, the so-
lutions proposed in Chapter 3, which are in a client-server scenario, can be performed
in a non-colluding servers scenario, using a threshold variant of chosen cryptosystems.
Furthermore, the PriSM protocol in Chapter 3 can also be adapted to a standalone server
scenario using a fully homomorphic cryptosystem since the required operations are only
additions and multiplications. However, while using such a setting can eliminate the
communication cost, the expensive nature of fully homomorphic encryption might in-
crease the computation cost drastically.

SELECTION OF THE ADVERSARIAL BEHAVIOUR

All protocols we propose achieve security against semi-honest adversaries. In this set-
ting, we assume the parties involved in the computations follow the tasks assigned to
themselves without deviating from the protocol, but they are curious to get additional
information from the intermediary messages and output they receive. We think that this
is a realistic assumption in confidential data analytics-as-a-service since the companies
are bonded with business contracts whose violation can have significant financial and
legal consequences for the companies.

Designing protocols that are secure against malicious adversaries can provide better
security guarantees. However, achieving security against malicious adversaries requires
to use several additional techniques such as commitments or zero-knowledge proofs [8]
whose implementations create overhead in computation and communication cost. Since
the companies involved in DAaaS are bonded with business contracts, they are not ex-
pected to act maliciously. Thus, we believe assuring security against semi-honest adver-
saries is sufficient in confidential data analytics-as-a-service.

SELECTION OF THE ANALYTICS APPLICATIONS

In this thesis, we focus on three applications of data analytics-as-a-service, which are
process analytics, machine learning, and marketing analytics. As stated previously, we
observed that the existing literature that investigates the privacy concerns in these ap-
plications is not extensive. Therefore, with this thesis, we aim to contribute to research
in confidential DAaaS with a focus on the selected analytics types.
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However, the applications that we use in the thesis are also related to other types of
data analytics applications. For instance, in process discovery, the challenge of mining
directly sequential patterns is a subfield of frequent pattern mining algorithms. Thus,
it can be related to several other techniques such as association rule mining [9] or se-
quential rule mining [10]. Similarly, the underlying problem in the computation of con-
formance checking with alignments is significantly related to the shortest path compu-
tation. Therefore, our contribution to secure conformance checking can be associated
with graph mining algorithms that focus on shortest path problems. Our proposal on
private neural network predictions focuses on convolutional neural networks. However,
the proposed solutions can be also useful for other types of artificial networks. Finally,
our proposal in Chapter 6 is based on logistic regression which is one of the well-known
machine learning algorithms. The proposed solution can be adapted to other data ana-
lytics applications that make use of logistic regression.

7.3. FUTURE WORK
With this thesis, we contributed to confidential data analytics-as-a-service by design-
ing protocols based on secure computation techniques. Our contributions are specific
to three analytics applications which are process analytics, machine learning, and mar-
keting analytics. We are aware of the fact that the protocols proposed in this thesis are
open to improvements and extensions. Below we discuss future directions of research in
confidential DAaaS.

We proposed the first protocols for process mining that achieves privacy preserva-
tion using provably secure cryptographic mechanisms. While our proposals are the first
attempts in process discovery and conformance checking, we see that there is a need
to extend the research in privacy-preserving process mining. For instance, our PriSM
protocol in Chapter 3, which proposes a generic algorithm for process discovery, can be
specialized to the commonly used process discovery algorithms. Similarly, our proposal
for secure conformance checking can be extended with different cost functions. Fur-
thermore, in this thesis, we have not focused on the third type of process mining which
is process enhancement. A future direction of research can be to investigate the privacy
challenges in process enhancement.

Regarding the privacy concerns in private neural network predictions, we see several
possible directions for future research. One possible direction is to increase the accu-
racy of computations in predictions. Although the existing proposals for private neural
network predictions can have a high accuracy rate, since the nonlinear functions such
as sigmoid or hyperbolic tangent cannot be performed efficiently under data protection,
the accuracy of predictions is still less than the accuracy of original computations. Thus,
increasing the accuracy with a better design of non-linear functions requires further in-
vestigation. Another research direction is related to the efficiency and scalability of pri-
vate neural network predictions which are currently limited to smaller neural networks
and datasets. More efficient designs that can work on larger datasets are needed for more
realistic neural network operations. Furthermore, investigating the privacy challenges in
different neural network types can be another direction of future research.

Finally, achieving real-time computations in the online behavioral advertisements is
an important challenge. With our proposals, we showed that the computation time can



7.3. FUTURE WORK

7

175

be reduced significantly with the use of secret-sharing mechanisms. However, the heavy
bandwidth usage in real-time bidding mechanism under privacy-preservation is still a
bottleneck on the computations. The research on private online behavioral advertising
can be extended with a focus on the improvement of communication performance.
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