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The best-worst method (BWM) is a multi-criteria decision-making method which finds the optimal
weights of a set of criteria based on the preferences of only one decision-maker (DM) (or evaluator).
However, it cannot amalgamate the preferences of multiple decision-makers/evaluators in the so-called
group decision-making problem. A typical way of aggregating the preferences of multiple DMs is to use
the average operator, e.g., arithmetic or geometric mean. However, averages are sensitive to outliers and
provide restricted information regarding the overall preferences of all DMs. In this paper, a Bayesian BWM
is introduced to find the aggregated final weights of criteria for a group of DMs at once. To this end, the
BWM framework is meaningfully viewed from a probabilistic angle, and a Bayesian hierarchical model is
tailored to compute the weights in the presence of a group of DMs. We further introduce a new rank-
ing scheme for decision criteria, called credal ranking, where a confidence level is assigned to measure
the extent to which a group of DMs prefers one criterion over one another. A weighted directed graph
visualizes the credal ranking based on which the interrelation of criteria and confidences are merely un-
derstood. The numerical example validates the results obtained by the Bayesian BWM while it yields
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much more information in comparison to that of the original BWM.

© 2019 Published by Elsevier Ltd.

1. Introduction

Multi-criteria decision-making (MCDM) is a sub-discipline of
Operations Research, which has growingly gained momentum
since its genesis. In a typical MCDM problem, a number of alter-
natives are evaluated based on a handful number of criteria. The
evaluation is usually performed based on the elicitation of prefer-
ences of a decision maker (DM) and commonly results in sorting,
ranking, or selecting the alternative(s). In order to do the evalu-
ation, we need to find the performance of the alternatives with
respect to the criteria, which is called the performance matrix,
and the importance (weight) of the criteria. Finding the perfor-
mance matrix usually follows a simple yet crucial data collection
approach. Weight determination is usually done based on the pref-
erences of the actual DM. There exist several preference elicita-
tion methods to infer the weights of the decision criteria based on
the preferences of the DM, including the analytic hierarchy pro-
cess (AHP) [1], the analytic network process (ANP) [2], the sim-
ple multi-attribute rating technique (SMART) [3,4], Swing [5], FARE
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[6], CILOS and IDOCRIW [7], to name just a few (see [8] for more
MCDM methods). One of the most recently developed preference
elicitation methods is the best-worst method (BWM) developed by
Rezaei in 2015 [9,10], which is a pairwise comparison-based MCDM
method.

When we have a single DM, the elicited preferences are directly
used in the decision analysis while incorporating the elicited pref-
erences is not a straightforward step when there are several DMs.
The latter case is usually called group MCDM [11-13]. We can clas-
sify group MCDM problems into two categories. In the first cate-
gory, which has a normative approach, a group of DMs seeks a so-
lution which somehow represents the opinion of the whole group.
In the second category, which is of a descriptive approach, we want
to have a clear understanding of the preferences of the DMs. An
example of the first category is when a number of DMs from a
supply chain management department of a company decides on
selecting the best suppliers for some materials used in the com-
pany [14], while an example from the second category is when a
researcher tries to understand the importance of the criteria which
define the quality of passenger transport transit nodes [15]. The
main focus of this study is on group MCDM, where we have the
preferences of a group of DMs, whether it is used for a normative
or a descriptive approach.
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For the weight elicitation methods that are based on the pair-
wise comparison (PC), there are two classes of techniques which
can be used to reconcile the discrepancy among DMs [16,17].
The first approach is the aggregation of individual judgment (Al])
[18,19], in which the PCs of different DMs are first integrated into
one, and the resulting aggregated PC is then treated as a single DM
problem and evaluation is performed accordingly. The other class
is the aggregation of individual priorities (AIP) [20-24]. In the AIP,
a weight vector is first calculated for each DM, and the consequent
weights are combined to result in a single weight vector. The most
popular technique to find the optimal weight for the AIP is the
arithmetic mean [25] (for other techniques of aggregation, see, for
instance [26]). Both AlJ and AIP approaches result in a weight vec-
tor which represents the preferences of the whole group. Although
both are practically simple, we lose much information due to the
aggregation. That is to say, we use the centrality feature and ignore
the dispersion property. On top of that, averages are sensitive to
outliers. Therefore, even if one decision-maker has different pref-
erences from the entire group, he/she will significantly influence
the overall aggregated preferences of all DMs.

In this study, we propose a novel approach for group MCDM.
The proposed approach is particularly presented for the BWM due
to its particular features. The pairwise comparison vectors associ-
ated with each DM in the BWM contain integers only; hence, they
can be modeled using the multinomial distribution. Nevertheless,
the proposed approach can be extended for other MCDM meth-
ods with some efforts. More specifically, the Bayesian BWM is in-
troduced which can solve the group MCDM problem. The inputs
to the Bayesian BWM are identical to those of the original BWM,
which are the pairwise comparisons. The output is, on the other
hand, the optimal aggregated final weights reflecting the total pref-
erences of all DMs along with the confidence level for ranking the
criteria.

Since the Bayesian BWM is stochastic, the inputs and outputs of
the method need to be modeled using probability distributions. In
particular, we model the pairwise comparisons using the multino-
mial distribution, and the final aggregated weights by the Dirichlet
distribution. We further demonstrate that such modeling, though
different, is identical to what is expected in the MCDM, and the
BWM in particular.

Based on the inputs and required outputs, a Bayesian hierar-
chical model is developed to find the optimal weights of all DMs
and the aggregated final weight at once. The proposed model is
distinct from that of the AlJ in which various PCMs are combined
to reach a consensus matrix. In the Al], one needs to accept that
some DMs compromise in order to get a unanimous ranking. How-
ever, we merely view various DMs as statistical samples based on
which the criteria are probabilistically evaluated. The credal ranking
is further introduced in which each pair of criteria has a relation,
e.g., < or >, with a confidence level. The confidence level repre-
sents the extent to which one can be certain about the superiority
of a criterion over one another. The confidence level is computed
based on the Bayesian test that is especially-tailored based on the
proposed hierarchical model. A weighted directed graph visualizes
the outcome of the credal ranking.

The main contribution of this study is to propose a novel ap-
proach in group MCDM and to apply Bayesian statistics to MCDM.
This approach is used for the BWM, which is a significant empow-
erment for the method for its use in the context of group decision-
making. The proposed Bayesian BWM is particularly very powerful
when the goal is to describe the preferences of a group of DMs
(who can be the actual DMs, experts, or users).

The remainder of this article is structured as follows.
Section 2 contains the original best-worst method and the corre-
sponding optimization problem to obtain the optimal weights of
the criteria for one DM only. In Section 3, we provide the proba-

bilistic interpretation of the BWM inputs and outputs and justify
that such an interpretation would preserve the underlying ideas in
the original BWM. Section 4 is dedicated to the proposed Bayesian
model, and we present the credal ranking in Section 5. The numer-
ical example regarding the proposed model is given in Section 6,
and the article is concluded in Section 7.

2. Best-worst method

The BWM is a relatively new MCDM method [9,10]. One of
the most popular pairwise comparison-based MCDM methods
is the AHP [1] which needs to have the pairwise comparison of all
the n decision criteria together, i.e., n(n-1)/2 pairwise comparisons.
In contrast, the BWM needs only the so-called reference pairwise
comparisons, i.e., 2n-3 pairwise comparisons. Other than this fea-
ture of the BWM, which makes it a more data efficient method
compared to AHP, it has several other interesting features. By first
selecting the best and the worst criteria and then comparing all
the other criteria with these two criteria, it gives a structure to
the problem. Such structure helps the DM to provide more reliable
pairwise comparisons [9]. Furthermore, the particular structure of
the BWM leads to two vectors containing only integers, which pre-
vents a fundamental distance problem associated with the use of
fractions in pairwise comparisons [27]. The original BWM is pre-
sented as a non-linear optimization problem [9], while there exists
a linear approximation [10], a multiplicative version [28], and some
hybrid versions such as BWM-MULTIMOORA [29] and BWM-VIKOR.
The method has also been extensively used in many real-world
applications including, but not limited to, transport and logistics
[30-32], supply chain management [33-39], technology manage-
ment [40], risk management [41], science and research assessment
[42,43], and energy [44,45] (see [46] for more recent advances in
the BWM and its applications).

Since the two vectors provided by each DM in the BWM might
represent different comparisons (with different bests and worsts),
the AlJ is not a proper way of aggregating the preferences of a
group of DMs for this method. Almost all applications presented
in existing literature use the AIP for the aggregation, i.e., the arith-
metic mean of the weights of the criteria obtained from the indi-
vidual DMs. There exists a number of researchers who have pro-
posed different ways for the case of group decision-making with
the BWM [47,48]. However, none of them has proposed a way to
find the overall weights of the group in a probabilistic environ-
ment.

The steps required for the original BWM are as follows [9].

Step 1: The DM needs to provide a set of decision criteria C =

{c1.¢2,....cn).
Step 2: The DM selects the best (cg) and the worst (cyy) criteria
from C.

In this step, the DM only selects the best and the worst
from the criteria set C identified in the first step. The
DM does not conduct any pairwise comparison in this
stage. Based on the DM’s preference, the best criterion
is the most important or the most desirable while the
worst criterion is the least important or the least de-
sirable criterion among others.

Step 3: The DM conducts the pairwise comparison between
the best (cg) and the other criteria from C.
In this step, the DM calibrates his/her preferences of
the best criterion to the other criteria by a number
between one and nine, where one means equally im-
portant and nine means extremely more important.
The pairwise comparison leads to the “Best-to-Others”
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vector Ag as

Ap = (aBl’aBZw-waBn) )]

where ag; represents the preference of the best (cp) to
the criterion ¢j e C.

Step 4: The DM conducts the pairwise comparison between
the worst (cy,) and the other criteria from C.
Similar to Step 3, the DM needs to calibrate his/her
preferences of the other criteria over the worst crite-
rion by a number between one and nine. The result of
this step is the “Others-to-Worst” vector Ay, as

AW = (Chw,azw,...,anw)T (2)

where a;, represents the preference of the criterion
¢j € C over the worst (cy).

Step 5: Obtaining the optimal weights w* = (W}, w3, ..., wp).
Given Ag and Ay, a weight vector w* must be com-
puted. The weight vector must be in the neighbor-
hood of the equations wg/w; = ag; and w;/wy = aw
for j =1,2, ., n. Thus, one can minimize the maximum
absolute differences |“:Vv—‘; —ag;j| and |% —ajy| for all
ji=12,..., n. Besides, the non-negativity and sum-to-
one property of the weight vector must be fulfilled. As
a result, the following optimization problem can find
the optimal weight vector w* [9]

ol
Ww w

n
st. Y wi=1, w;>0 Vj=12,....n.  (3)
j=1

)

. Wpg
minmax { | — — ag;
woj w;j

Similarly, the weight vector can also be calculated by
the following problem [10]

T ¢
Wpg .

£t |— —agj Vi=1,2,...

s.t ‘Wj ag;j Ss ] y £y , N
w;j .
‘m—ajw’gf Vi=12,....n

n
ZW}-:], WjZO Vj=1,2,...,n. (4)
j=1

To check the reliability of the optimal weights, the
veracity between the input pairwise comparisons and
their associated weight ratios are checked using the
following consistency ratio (CR):

E*

R=5 (3)
where £* is the optimal objective value of model (4),
and CI (consistency index) is a fixed value per agy,
which can be read from Table 1.

CR is a number between 0 and 1, where 0 means full
consistency and by increasing the value of CR the con-
sistency of the pairwise comparison system is decreas-
ing.

3. Probabilistic interpretation of BWM

In this section, we provide a probabilistic interpretation of the
BWM inputs and outputs, and then review two schools of thoughts
in the probability estimation, e.g., frequentist and Bayesian, in the
context of the BWM.

3.1. Modeling inputs and outputs: multinomial and Dirichlet
distributions

As stated before, the typical outcome of the MCDM methods is
the weight vector w = [wy, ..., wy] such that w; > 0, Z'}:l wj=1.
The magnitude of each w; indicates the importance of the corre-
sponding criteria ¢;.

From a probabilistic perspective, the criteria are seen as the
random events, and their weights are thus their occurrence like-
lihoods. Mathematically speaking, such an interpretation is in line
with the MCDM since w;>0 and Z?:l w;j =1 according to the
probability theory as well. It is further of the essence to illustrate
that probabilistic modeling makes sense from a decision-making
point of view.

For the probabilistic reasoning, one needs to model all the in-
puts and the outputs as the probability distributions. First, consider
Ag and Ay, which are the inputs to the BWM. From a mathematical
point of view, the multinomial distribution can model the vectors
since all of their elements are integers. The probability mass func-
tion (PMF) of the multinomial distribution for a given Ay, is [49]

n )
Peawiw) = 31 (6)

mg j
[Tjz1 ajw! =1

where w is the probability distribution.

In the multinomial distribution, the weight vector is the prob-
ability distribution and Ay contains the number of occurrence of
each event. Apparently, it is completely different from what is ex-
pected for the BWM represented in Section 2. Interestingly, we
show that modeling with multinomial would fulfill the underlying
idea of the BWM.

Based on the multinomial distribution, the probability of the
event j is proportionate to the number of occurrence of the event
to the total number of trials, i.e.,

i
X =n - J )
> ic1 Giw
Similarly, one can write the same equation for the worst crite-
rion as

w;j Vi=1,...,n (7)

1
~ gww S (8)
Yic1Gw iy Gw

Using Eqgs. (7) and (8), one obtains

Ww

W]' .
— xay, Vji=1,....n, 9
Wwo<a,w, J n (9)

which is precisely the relation we seek in the original BWM pre-
sented in Step 5 of Section 2.

Similarly, Ag can be modeled using the multinomial distribu-
tion. However, Ag is different from Ay since the former represents
the preferences of the best over the other criteria while the lat-
ter denotes the preferences of the others over the worst. Thus, Ag

Table 1

Consistency Index (CI) Table [9].

apw 1 2 3 4 5 6 7 8 9
Consistency Index (CI) 000 044 100 163 230 3.00 373 447 523
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yields the inverse of the weight, i.e.,
Ag ~ multinomial (1/w) (10)

where w is the probability distribution, and | represents the
element-wise division operator. Identical to the worst criterion,
one can write

1 ag; 1 agp 1
WSS g we XS S = .
i izt Osi B Dic10pi 2i—1 s
w .
:>WBO<GB;', Vi=1,...,n, (11)

J

which is again the exact relation we seek in the BWM.

So far, we showed that the multinomial distribution could
meaningfully model the inputs to the BWM. The problem of find-
ing the weights in the MCDM problem is thus transferred to the
estimation of a probability distribution. Therefore, one can use the
statistical inference techniques to find w in the multinomial distri-
bution.

A weight vector for the MCDM must satisfy the non-negativity
and sum-to-one properties. Therefore, an appropriate distribution
to model the weights is to use the Dirichlet distribution. Given a
parameter « € R", the Dirichlet distribution of the weights w is de-
fined as [49]

Dir(w|a) = % [Twy ™ (12)
j=1

The distribution has only a vector parameter «, and w meets
the constraints of an optimal weight vector of MCDM since it is a
probability distribution.

3.2. Estimation of the weight vector: statistical inference

For a moment, assume that there is only Ay, in the BWM, then
we consider two widely-accepted inference techniques: frequentist
and Bayesian. The underlying idea of the frequentist approach is
that there is a precise yet unknown optimal point, and the effort is
to estimate it based on the observations. As a result, the outcome
of the frequentist inference is a precise weight vector for a set of
criteria. The maximum likelihood estimation (MLE) is arguably the
most popular inference technique which finds the optimal weight
vector using the following optimization

w=arg max P(Aw|w). (13)

w,Z]:1 w]v=]

The optimum of (13) yields at

wi = G
= — ;
oY liaw

which is indeed the normalized A,y. The same solution will be ob-
tained by the BWM if the preferences of the DM are fully consis-
tent. Thus, (14) shows that the MLE bears the same result as the
BWM under specific circumstances.

The second approach is the Bayesian estimation, in which the
parameters are approximated by using a distribution rather than
a precise point as is in the MLE. Thus, we first need to specify a
prior distribution for the weight vector. In the Bayesian inference,
the Dirichlet distribution is used as the prior to the multinomial.
The Dirichlet distribution can perfectly represent the weight vec-
tor since it satisfies both its non-negativity and sum-to-one prop-
erties. Using Dirichlet as the prior and multinomial as the likeli-
hood, the posterior distribution would also be Dirichlet with the
posterior parameter o post = & + Ay Since the prior should be un-
informative so that its impact on the posterior is minimal, we set
the prior parameter o = 1.

Yi=1,....n, (14)

As a result of the Bayesian estimation, the values of w is shown
by a Dirichlet distribution. The mode of the posterior distribution
1 €R" with the parameter o/post

_ Opost; — 1

X Otpost; — 11
1+aw—1

YL @w+D-n

-G yi—1,.n

2iz1 Giw

Thus, the mode of the posterior distribution would provide the
exact MLE. As a result, the Bayesian paradigm would yield more
information regarding the events under study since its outcome is
a distribution, not a point. The standard deviation of such a dis-
tribution, for instance, is an indicator of uncertainty regarding the
inference problem, which can have distinct interpretations with re-
spect to the problem under study.

So far, we merely considered Ay, for estimating the weights;
however, it is critical to use both Ag and Ay, according to the BWM.
The MLE inference containing both Az and Ay does not bear an an-
alytical solution due to the complexity of the corresponding opti-
mization problem. Further, the simple Dirichlet-multinomial con-
jugate cannot encompass the Ap and Ay together. The problem
compounds when it comes to having the preferences of multiple
DMs. Considering these issues, a Bayesian hierarchical model is
presented in the next section to estimate the optimal weight of
the criteria considering both Ag and Ay of multiple DMs.

Hj

(15)

4. Bayesian best-worst method

This section presents a Bayesian hierarchical model to find the
optimal weights of a set of criteria based on the preferences of
multiple DMs using the best-worst framework.

4.1. Group decision-making: a joint probability distribution

Assume that the k™ DM, k=1,..., K, evaluates the criteria
Ci.....cp by providing the vectors A% and AX,. We show the set
of all vectors of K DMs by ALK and A}X. From now on, the super-
script K would indicate the total of all vectors in the base. We
also represent the overall optimal weight by ws,

The estimation of w8 entails using several auxiliary variables.
In particular, w98 is computed based on the optimal weights of K
DMs shown by wk, k=1, ..., K. Thus, the proposed Bayesian model
would simultaneously compute w8 and w':X, Prior to conducting
any statistical inference, it is required to write the joint probability
distribution of all random variables given the available data. In the
group decision-making within the BWM, A}X and ALX are given,
and w'K and w?E& must be estimated accordingly. Thus, the fol-
lowing joint probability distribution is sought

P<Wagg’ wik ‘Aé:K’A‘lA}K)_ (16)
If the probability in (16) is computed, then the probability

of each individual variable can be computed using the following
probability rule

P(x) =) P(x.y) (17)
y

where x and y are two arbitrary random variables.

4.2. Bayesian hierarchical model

To develop a Bayesian model, we first need to identify the in-
dependence and conditional independence of variables. Fig. 1 plots
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Ay A

k

Fig. 1. The probabilistic graphical model of the Bayesian BWM.

the graphical model corresponding to the proposed method. The
nodes in the graph are the variables. As a convention, the rectan-
gles are the observed variables, which are the inputs to the origi-
nal BWM. The circular nodes are the variables which must be es-
timated. Also, arrows denote that the node in origin is dependent
on the node at the other end. That is to say, the value of wy is de-
pendent on A";, and Ag, and the value of w%S$ is also dependent on
Wg.

The plate, which covers a set of variables, means that the cor-
responding variables are iterated for each DM, and w%S$ is not in
the plate since there is only one w8 for all DMs.

The conditional independence between various variables is
clear based on Fig. 1. For instance, A(jv is independent of w8 given
wy, ie.,

P(A"jv wk) (18)

Considering all independence among different variables, apply-
ing the Bayes rule to the joint probability (16) follows

WasE, W") - P(A{jv

P(Wagg’ wiiK AE:K,A‘}‘:/K> ~ P(All;:K’A‘}l:/K WAEE, Wl:K)P(Wagg’ W1:1<)
K
:P(W“%HP(A&, w")P(Aﬁ w")P(wk ’ w“gg>. (19)

k=1

where the last equality is obtained using the probability chain
rule and the conditional independence of different variables, and
the fact that each DM provides his/her preferences independently.
Since the estimation of the parameters in Eq. (19) is reliant on the
estimation of other variables, there is a chain between different pa-
rameters. The existence of the chain is the reason that the model
is called hierarchical.

We now need to specify the distributions of each and every el-
ement in Eq. (19). We have already shown that Ag and Ay can be
perfectly modeled using the multinomial distribution in the sense
that it preserves the underlying idea of the BWM. There is only one
difference between Ag and Ay since the former shows the prefer-
ence of all the criteria over the worst, while the latter contains
the preference of the best over all the other criteria. Thus, one can
model them as

AR Wk ~ multinomial(l/wk), Vk=1,... K,
Aly|w* ~ multinomial(w¥), Vk=1,...,K. (20)

Given w9, one can expect that each and every w* be in its
proximity. To this end, we reparameterize the Dirichlet distribu-
tion with respect to its mean and a concentration parameter. The

models of wk given w98 are

WKW ~ Dir(y x w), Vk=1,... K, (21)

where w8 is the mean of the distribution and y is the concentra-
tion parameter.

The equation in (21) says that the weight vector w¥ associated
with each DM must be in the proximity of w? since it is the
mean of the distribution, and their closeness is governed by the
non-negative parameter y. Such a technique is used in different
Bayesian models as well [50]. The concentration parameter also
needs to be modeled using a distribution. A reliable option is the
gamma distribution which satisfies the non-negativity constraints,
ie.,

y ~ gamma(a, b), (22)

where a and b are the shape parameters of the gamma distribu-
tion.

We finally supply the prior distribution over w%S$ using an un-
informative Dirichlet distribution with the parameter o =1 as

wE ~ Dir(a). (23)

The specified model does not bear a closed-form solution. As
a result, Markov-chain Monte Carlo (MCMC) techniques [51] must
be used to compute the posterior distribution. For the MCMC sam-
pling, we use the “just another Gibbs sampler” (JAGS) [52], which
is one of the best available probabilistic languages to date, to sam-
ple and compute the posterior determined in (19). The useful out-
come of the model is the posterior distribution of weights for ev-
ery single DM and the aggregated ws.

The proposed Bayesian model will replace Step 5 of the origi-
nal BWM explained in Section 2. In fact, the optimization problem
is substituted with a probabilistic model while the inputs to both
methods are identical. However, the proposed model would pro-
vide more information regarding the confidence of the relation be-
tween each pair of criteria. The excessive information is obtained
by devising a new Bayesian test based on the approximated distri-
bution from the model, which is explained in the next section.

5. Credal ranking

The modus operandi in the MCDM is to say one criterion is
more important than one another merely if its weight, or the
weight average for the group decision-making, is higher than one
another. Assume that there are three criteria ¢y, ¢y, and c3 with
the weight vector w =[0.49, 0.50, 0.01]. According to the MCDM,
¢, is superior to both c¢; and c3. However, the confidence of the
superiority cannot be determined by solely comparing two figures.
This is even much more important when the weight vector repre-
sents the preferences of a group of DMs. To date, there are various
ranking schemes such as interval-based ranking [53], fuzzy ranking
[54,55], and ranking based on grey relational analysis (GRA) [56].

The notion of credal ranking is now introduced, which can cali-
brate the degree to which one criterion is superior to one another.
Having the posterior distribution of weights would help gauge the
confidence of the relations between various criteria. The difference
between the credal ranking and other ranking schemes is that a
confidence is computed in the credal ranking based on one distri-
bution, i.e., the Dirichlet distribution of w98, while other ranking
methods usually take two numbers/intervals and try to find the
extent to which one is superior.

We first define the credal ordering, which is the building-block
of credal ranking.

Definition 5.1 (Credal Ordering). For a pair of criteria ¢; and ¢;, the
credal ordering O is defined as

0= (Ci,Cj,R, d) (24)
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Table 2

Comparison of the original BWM and the Bayesian BWM on the mobile phone selection crite-

ria based on the preferences of 50 students.

Basic Physical char.  Tech feat.  Func Brand Customer
BWM 01945 01623 0.2014 0.2467 01277  0.0673
Bayesian BWM  0.1929  0.1776 0.2052 02376  0.1277  0.0591

where

* R is the relation between the criteria ¢; and ¢;, ie, <, >,
or =;
e de|0, 1] represents the confidences of the relation.

Definition 5.2 (Credal Ranking). For a set of criteria C=
(c1,Cy, ..., Cn), the credal ranking is a set of credal orderings which
includes all pairs (c;, ¢;), for all ¢;, ¢jeC.

The confidence in the credal ordering can provide the DMs with
more information which can significantly improve their decisions.
We now devise a new Bayesian test based on which we can find
the confidence of each credal ordering. The test is predicated on
the posterior distribution of w8, The confidence that c; being su-
perior to ¢; is computed as

P(c; > ¢j) = / Ly ey P(WHEE). (25)

where P(w%S8) is the posterior distribution of w8 and I is one
if the condition in the subscript holds, and zero otherwise. This
integration can be approximated by the samples obtained via the
MCMC. Having Q samples from the posterior distribution, the con-
fidence can be computed as

Q
1
P(c; > ¢j) = il Zl(wfgg”’ > w‘;gg")
q=1

1 Q
P(c; > ¢) = ol Zl(w‘;gg‘? > wi) (26)
q=1

where w9 is the g™ sample of w& from the MCMC samples.
Thus, for each pair of criteria, one can compute the confidence
that one is superior to one another. The credal ranking can be
merely changed into the traditional ranking. In this regard, it is
evident that P(c; > ¢;) + P(cj > ¢;) = 1. Therefore, ¢; is more impor-
tant than ¢; if and only if P(¢; > ¢;) > 0.5. As a result, the traditional
ranking of criteria is obtainable by applying a threshold of 0.5 to
the credal ranking.

6. Numerical examples

In this section, a real-world example is analyzed using the
Bayesian BWM, and the corresponding credal ranking is computed
and visualized by using a weighted directed graph. The MATLAB
implementation of the proposed model can be found at http://
bestworstmethod.com/software/.

The real-world application is the selection of the mobile phone,
to which the BWM has been already applied [9]. The problem im-
plicates the selection of one from a set of mobile phones based
on different criteria. Six different criteria that studied and found
in the literature is used to evaluate the mobile phone alternatives.
The criteria are basic requirement, physical characteristics, techni-
cal features, functionality, brand choice, and customer excitement.

The data collected in [9] was from 50 university students who
completely got familiar with different selected criteria through a
provided document. Various characteristics (e.g., price, dimension,
weight, display) of four particular mobile phones were given to
the participants. Through a questionnaire, students filled in a form

to get the information required for the original BWM, i.e., Ag and
Ay.
The first approach, which was employed in [9], was to find the
optimal weight vector separately for each student, and then ag-
gregate them using the arithmetic mean to compute the final ag-
gregated weight vector. The first row of Table 2 tabulates the final
aggregated weights obtained by the BWM. We particularly consider
the arithmetic mean to validate the proposed Bayesian model since
the average of 50 participants is a reliable measure according to
central limit theorem.

The obtained inputs from 50 participants in this experiment
were also given to the Bayesian BWM, and the outcome of the test
is obtained. Since the output of the aggregated weight is a distri-
bution in the Bayesian BWM, it is not possible to compare the two
methods directly and verify if the output of the Bayesian BWM is
valid. To have a meaningful discussion and validation, however, we
use the average of the Dirichlet distribution of w9? to be able to
compare the two methods. The second row of Table 2 shows the
average of the final aggregated weight computed by the Bayesian
BWM.

Table 2 indicates that the estimation based on the proposed
Bayesian model yields a meaningful result since the average of
the estimated distribution is centered around the overall average
of each individual preferences. The example shows that the output
of the Bayesian BWM is valid and makes perfect sense. Keep in
mind that the BWM obtains the weight of each individual first and
then aggregate them by the arithmetic mean, while the Bayesian
BWM computes the aggregated distribution and all the individual
preferences at once using probabilistic modeling. The essential dif-
ference between the BWM and the Bayesian BWM is that we can
compare the criteria colorfully. The current practice is to say a cri-
terion is more important than one another if its average weight
has a higher value; therefore, it is a black and white (or zero-one)
decision.

We compare all pairs of criteria with each other using the
credal ranking and visualize its outcome using a weight directed
graph. Fig. 2 displays the credal ranking of criteria for selecting the
cell phones. The nodes in this graph are the criteria and each edge

A% B tells that criterion A is more important than B with the con-
fidence d.

Based on Fig. 2, functionality is the most important criterion
based on the opinions of all participants. At the other extreme,
customer excitement and brand choice are the least desirable fea-
tures for the participants in this experiment. Further, the degree
of certainty about the relation of criteria is also evident. For in-
stance, technical features is certainly more important than customer
excitement, but it is more desirable than basic requirement with the
confidence of 0.71.

As mentioned before, the credal ranking visualized in Fig. 2 can
be changed into the conventional ranking merely by applying the
threshold of 0.5 to the obtained confidences. The threshold can
vary from one problem to one another, and it is entirely to the
DMs’ volition to opt for a particular threshold value. For instance,
the confidence 0.71 between technical feature and basic requirement
might be strong enough for the mobile selection problem, but it
could not be regarded as strong if the study was on another prob-
lem. In other words, credal ranking could be shaped to represent
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Fig. 2. The visualization of the credal ranking for the example of mobile phone selection criteria.

[m5G;August 31, 2019;6:6]
7

the ranking of criteria in different problems based on the DMs’ de-
sired confidence.

7. Conclusion

This paper presents a Bayesian model for the group decision-
making within the BWM. The proposed method models the inputs
of the BWM using the multinomial distribution and it is demon-
strated that such a distribution would preserve the underlying idea
of the original BWM. Further, the weight vector is modeled using
the Dirichlet distribution. The proposed Bayesian model is able to
compute the weight distribution of each individual in the group
decision-making, and an aggregated final distribution representing
the overall preferences of all DMs. The credal ranking of criteria is
developed based on which each pair of criteria are assigned a re-
lation and a confidence. The confidence which is computed based
on a proposed Bayesian model shows the extent to which one is
certain about the relation of the corresponding pair of criteria. In
addition, the credal ranking is visualized using a weighted directed
graph which shows the interrelation of criteria clearly.

The proposed Bayesian BWM is a promising method in the con-
text of group decision making where one is interested in the col-
lective opinion of a group, but at the same time, one could check
the ranking of the weights in a probabilistic sense. The group will
be more certain about the relation of two criteria if it is associated
with a high confidence level while the relations with low confi-
dence level should be interpreted more carefully.

There are several avenues to extend the current research. We
aim to apply such modelings in other important MCDM methods.
It is also interesting to investigate the role of outliers in different
group BWM. Finally, it would be interesting to work on some other
features of the Bayesian BWM such as consistency measure.
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