
 
 

Delft University of Technology

Bayesian best-worst method
A probabilistic group decision making model
Mohammadi, Majid; Rezaei, Jafar

DOI
10.1016/j.omega.2019.06.001
Publication date
2019
Document Version
Final published version
Published in
Omega (United Kingdom)

Citation (APA)
Mohammadi, M., & Rezaei, J. (2019). Bayesian best-worst method: A probabilistic group decision making
model. Omega (United Kingdom), 96, Article 102075. https://doi.org/10.1016/j.omega.2019.06.001

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.omega.2019.06.001
https://doi.org/10.1016/j.omega.2019.06.001


Green Open Access added to TU Delft Institutional Repository 

‘You share, we take care!’ – Taverne project 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care


ARTICLE IN PRESS 

JID: OME [m5G; August 31, 2019;6:6 ] 

Omega xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

Omega 

journal homepage: www.elsevier.com/locate/omega 

Bayesian best-worst method: A probabilistic group decision making 

model � 

Majid Mohammadi ∗, Jafar Rezaei 

Faculty of Technology, Policy and Management, Delft University of Technology, The Netherlands 

a r t i c l e i n f o 

Article history: 

Received 10 December 2018 

Accepted 3 June 2019 

Available online xxx 

Keywords: 

Best-worst method 

Multi-criteria decision-making 

Bayesian hierarchical model 

Generalizability 

Group decision-making 

a b s t r a c t 

The best-worst method (BWM) is a multi-criteria decision-making method which finds the optimal 

weights of a set of criteria based on the preferences of only one decision-maker (DM) (or evaluator). 

However, it cannot amalgamate the preferences of multiple decision-makers/evaluators in the so-called 

group decision-making problem. A typical way of aggregating the preferences of multiple DMs is to use 

the average operator, e.g., arithmetic or geometric mean. However, averages are sensitive to outliers and 

provide restricted information regarding the overall preferences of all DMs. In this paper, a Bayesian BWM 

is introduced to find the aggregated final weights of criteria for a group of DMs at once. To this end, the 

BWM framework is meaningfully viewed from a probabilistic angle, and a Bayesian hierarchical model is 

tailored to compute the weights in the presence of a group of DMs. We further introduce a new rank- 

ing scheme for decision criteria, called credal ranking , where a confidence level is assigned to measure 

the extent to which a group of DMs prefers one criterion over one another. A weighted directed graph 

visualizes the credal ranking based on which the interrelation of criteria and confidences are merely un- 

derstood. The numerical example validates the results obtained by the Bayesian BWM while it yields 

much more information in comparison to that of the original BWM. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

Multi-criteria decision-making (MCDM) is a sub-discipline of

perations Research, which has growingly gained momentum

ince its genesis. In a typical MCDM problem, a number of alter-

atives are evaluated based on a handful number of criteria. The

valuation is usually performed based on the elicitation of prefer-

nces of a decision maker (DM) and commonly results in sorting,

anking, or selecting the alternative(s). In order to do the evalu-

tion, we need to find the performance of the alternatives with

espect to the criteria, which is called the performance matrix,

nd the importance (weight) of the criteria. Finding the perfor-

ance matrix usually follows a simple yet crucial data collection

pproach. Weight determination is usually done based on the pref-

rences of the actual DM. There exist several preference elicita-

ion methods to infer the weights of the decision criteria based on

he preferences of the DM, including the analytic hierarchy pro-

ess (AHP) [1] , the analytic network process (ANP) [2] , the sim-

le multi-attribute rating technique (SMART) [3,4] , Swing [5] , FARE
� This manuscript was processed by Associate Editor Triantaphyllou. 
∗ Corresponding author. 

E-mail addresses: m.mohammadi@tudelft.nl (M. Mohammadi), J.rezaei@tudelft.nl 

J. Rezaei). 

d  

m  

p  

o

ttps://doi.org/10.1016/j.omega.2019.06.001 

305-0483/© 2019 Published by Elsevier Ltd. 

Please cite this article as: M. Mohammadi and J. Rezaei, Bayesian be

Omega, https://doi.org/10.1016/j.omega.2019.06.001 
6] , CILOS and IDOCRIW [7] , to name just a few (see [8] for more

CDM methods). One of the most recently developed preference

licitation methods is the best-worst method (BWM) developed by

ezaei in 2015 [9,10] , which is a pairwise comparison-based MCDM

ethod. 

When we have a single DM, the elicited preferences are directly

sed in the decision analysis while incorporating the elicited pref-

rences is not a straightforward step when there are several DMs.

he latter case is usually called group MCDM [11–13] . We can clas-

ify group MCDM problems into two categories. In the first cate-

ory, which has a normative approach, a group of DMs seeks a so-

ution which somehow represents the opinion of the whole group.

n the second category, which is of a descriptive approach, we want

o have a clear understanding of the preferences of the DMs. An

xample of the first category is when a number of DMs from a

upply chain management department of a company decides on

electing the best suppliers for some materials used in the com-

any [14] , while an example from the second category is when a

esearcher tries to understand the importance of the criteria which

efine the quality of passenger transport transit nodes [15] . The

ain focus of this study is on group MCDM, where we have the

references of a group of DMs, whether it is used for a normative

r a descriptive approach. 
st-worst method: A probabilistic group decision making model, 
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For the weight elicitation methods that are based on the pair-

wise comparison (PC), there are two classes of techniques which

can be used to reconcile the discrepancy among DMs [16,17] .

The first approach is the aggregation of individual judgment (AIJ)

[18,19] , in which the PCs of different DMs are first integrated into

one, and the resulting aggregated PC is then treated as a single DM

problem and evaluation is performed accordingly. The other class

is the aggregation of individual priorities (AIP) [20–24] . In the AIP,

a weight vector is first calculated for each DM, and the consequent

weights are combined to result in a single weight vector. The most

popular technique to find the optimal weight for the AIP is the

arithmetic mean [25] (for other techniques of aggregation, see, for

instance [26] ). Both AIJ and AIP approaches result in a weight vec-

tor which represents the preferences of the whole group. Although

both are practically simple, we lose much information due to the

aggregation. That is to say, we use the centrality feature and ignore

the dispersion property. On top of that, averages are sensitive to

outliers. Therefore, even if one decision-maker has different pref-

erences from the entire group, he/she will significantly influence

the overall aggregated preferences of all DMs. 

In this study, we propose a novel approach for group MCDM.

The proposed approach is particularly presented for the BWM due

to its particular features. The pairwise comparison vectors associ-

ated with each DM in the BWM contain integers only; hence, they

can be modeled using the multinomial distribution. Nevertheless,

the proposed approach can be extended for other MCDM meth-

ods with some effort s. More specifically, the Bayesian BWM is in-

troduced which can solve the group MCDM problem. The inputs

to the Bayesian BWM are identical to those of the original BWM,

which are the pairwise comparisons. The output is, on the other

hand, the optimal aggregated final weights reflecting the total pref-

erences of all DMs along with the confidence level for ranking the

criteria. 

Since the Bayesian BWM is stochastic, the inputs and outputs of

the method need to be modeled using probability distributions. In

particular, we model the pairwise comparisons using the multino-

mial distribution, and the final aggregated weights by the Dirichlet

distribution. We further demonstrate that such modeling, though

different, is identical to what is expected in the MCDM, and the

BWM in particular. 

Based on the inputs and required outputs, a Bayesian hierar-

chical model is developed to find the optimal weights of all DMs

and the aggregated final weight at once. The proposed model is

distinct from that of the AIJ in which various PCMs are combined

to reach a consensus matrix. In the AIJ, one needs to accept that

some DMs compromise in order to get a unanimous ranking. How-

ever, we merely view various DMs as statistical samples based on

which the criteria are probabilistically evaluated. The credal ranking

is further introduced in which each pair of criteria has a relation,

e.g., < or > , with a confidence level. The confidence level repre-

sents the extent to which one can be certain about the superiority

of a criterion over one another. The confidence level is computed

based on the Bayesian test that is especially-tailored based on the

proposed hierarchical model. A weighted directed graph visualizes

the outcome of the credal ranking. 

The main contribution of this study is to propose a novel ap-

proach in group MCDM and to apply Bayesian statistics to MCDM.

This approach is used for the BWM, which is a significant empow-

erment for the method for its use in the context of group decision-

making. The proposed Bayesian BWM is particularly very powerful

when the goal is to describe the preferences of a group of DMs

(who can be the actual DMs, experts, or users). 

The remainder of this article is structured as follows.

Section 2 contains the original best-worst method and the corre-

sponding optimization problem to obtain the optimal weights of

the criteria for one DM only. In Section 3 , we provide the proba-
Please cite this article as: M. Mohammadi and J. Rezaei, Bayesian be

Omega, https://doi.org/10.1016/j.omega.2019.06.001 
ilistic interpretation of the BWM inputs and outputs and justify

hat such an interpretation would preserve the underlying ideas in

he original BWM. Section 4 is dedicated to the proposed Bayesian

odel, and we present the credal ranking in Section 5 . The numer-

cal example regarding the proposed model is given in Section 6 ,

nd the article is concluded in Section 7 . 

. Best-worst method 

The BWM is a relatively new MCDM method [9,10] . One of

he most popular pairwise comparison-based MCDM methods

s the AHP [1] which needs to have the pairwise comparison of all

he n decision criteria together, i.e., n(n-1)/2 pairwise comparisons.

n contrast, the BWM needs only the so-called reference pairwise

omparisons, i.e., 2n-3 pairwise comparisons. Other than this fea-

ure of the BWM, which makes it a more data efficient method

ompared to AHP, it has several other interesting features. By first

electing the best and the worst criteria and then comparing all

he other criteria with these two criteria, it gives a structure to

he problem. Such structure helps the DM to provide more reliable

airwise comparisons [9] . Furthermore, the particular structure of

he BWM leads to two vectors containing only integers, which pre-

ents a fundamental distance problem associated with the use of

ractions in pairwise comparisons [27] . The original BWM is pre-

ented as a non-linear optimization problem [9] , while there exists

 linear approximation [10] , a multiplicative version [28] , and some

ybrid versions such as BWM-MULTIMOORA [29] and BWM-VIKOR.

he method has also been extensively used in many real-world

pplications including, but not limited to, transport and logistics

30–32] , supply chain management [33–39] , technology manage-

ent [40] , risk management [41] , science and research assessment

42,43] , and energy [44,45] (see [46] for more recent advances in

he BWM and its applications). 

Since the two vectors provided by each DM in the BWM might

epresent different comparisons (with different bests and worsts),

he AIJ is not a proper way of aggregating the preferences of a

roup of DMs for this method. Almost all applications presented

n existing literature use the AIP for the aggregation, i.e., the arith-

etic mean of the weights of the criteria obtained from the indi-

idual DMs. There exists a number of researchers who have pro-

osed different ways for the case of group decision-making with

he BWM [47,48] . However, none of them has proposed a way to

nd the overall weights of the group in a probabilistic environ-

ent. 

The steps required for the original BWM are as follows [9] . 

Step 1: The DM needs to provide a set of decision criteria C =
{ c 1 , c 2 , . . . , c n } . 

Step 2: The DM selects the best ( c B ) and the worst ( c W 

) criteria

from C. 

In this step, the DM only selects the best and the worst

from the criteria set C identified in the first step. The

DM does not conduct any pairwise comparison in this

stage. Based on the DM’s preference, the best criterion

is the most important or the most desirable while the

worst criterion is the least important or the least de-

sirable criterion among others. 

Step 3: The DM conducts the pairwise comparison between

the best ( c B ) and the other criteria from C. 

In this step, the DM calibrates his/her preferences of

the best criterion to the other criteria by a number

between one and nine, where one means equally im-

portant and nine means extremely more important.

The pairwise comparison leads to the “Best-to-Others”
st-worst method: A probabilistic group decision making model, 
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vector A B as 

A B = 

(
a B 1 , a B 2 , . . . , a Bn 

)
(1) 

where a Bj represents the preference of the best ( c B ) to

the criterion c j ∈ C . 

Step 4: The DM conducts the pairwise comparison between

the worst ( c W 

) and the other criteria from C. 

Similar to Step 3, the DM needs to calibrate his/her

preferences of the other criteria over the worst crite-

rion by a number between one and nine. The result of

this step is the “Others-to-Worst” vector A W 

as 

A W 

= 

(
a 1 W 

, a 2 W 

, . . . , a nW 

)
T (2) 

where a jW 

represents the preference of the criterion

c j ∈ C over the worst ( c W 

). 

Step 5: Obtaining the optimal weights w 

∗ = (w 

∗
1 , w 

∗
2 , . . . , w 

∗
n ) . 

Given A B and A W 

, a weight vector w 

∗ must be com-

puted. The weight vector must be in the neighbor-

hood of the equations w B /w j = a B j and w j /w W 

= a jW 

for j = 1 , 2 , ., n . Thus, one can minimize the maximum

absolute differences | w B 
w j 

− a B j | and | w j 

w W 

− a jW 

| for all

j = 1 , 2 , . . . , n . Besides, the non-negativity and sum-to-

one property of the weight vector must be fulfilled. As

a result, the following optimization problem can find

the optimal weight vector w 

∗ [9] 

min 

w 

max 
j 

{ 

∣∣∣w B 

w j 

− a B j 

∣∣∣, 
∣∣∣ w j 

w W 

− a jW 

∣∣∣
} 

s.t. 

n ∑ 

j=1 

w j = 1 , w j ≥ 0 ∀ j = 1 , 2 , . . . , n. (3) 

Similarly, the weight vector can also be calculated by

the following problem [10] 

min 

ξ ,w 

ξ

s.t. 

∣∣∣w B 

w j 

− a B j 

∣∣∣ ≤ ξ ∀ j = 1 , 2 , . . . , n 

∣∣∣ w j 

w W 

− a jW 

∣∣∣ ≤ ξ ∀ j = 1 , 2 , . . . , n 

n ∑ 

j=1 

w j = 1 , w j ≥ 0 ∀ j = 1 , 2 , . . . , n. (4) 

To check the reliability of the optimal weights, the

veracity between the input pairwise comparisons and

their associated weight ratios are checked using the

following consistency ratio (CR): 

C R = 

ξ ∗

C I 
(5) 

where ξ ∗ is the optimal objective value of model (4),

and CI (consistency index) is a fixed value per a BW 

,

which can be read from Table 1 . 

CR is a number between 0 and 1, where 0 means full

consistency and by increasing the value of CR the con-

sistency of the pairwise comparison system is decreas-

ing. 
t

Table 1 

Consistency Index (CI) Table [9] . 

a BW 1 2 3 4

Consistency Index (CI) 0.00 0.44 1.00 1

Please cite this article as: M. Mohammadi and J. Rezaei, Bayesian be

Omega, https://doi.org/10.1016/j.omega.2019.06.001 
. Probabilistic interpretation of BWM 

In this section, we provide a probabilistic interpretation of the

WM inputs and outputs, and then review two schools of thoughts

n the probability estimation, e.g., frequentist and Bayesian, in the

ontext of the BWM. 

.1. Modeling inputs and outputs: multinomial and Dirichlet 

istributions 

As stated before, the typical outcome of the MCDM methods is

he weight vector w = [ w 1 , . . . , w n ] such that w j ≥ 0 , 
∑ n 

j=1 w j = 1 .

he magnitude of each w j indicates the importance of the corre-

ponding criteria c j . 

From a probabilistic perspective, the criteria are seen as the

andom events, and their weights are thus their occurrence like-

ihoods. Mathematically speaking, such an interpretation is in line

ith the MCDM since w j ≥ 0 and 

∑ n 
j=1 w j = 1 according to the

robability theory as well. It is further of the essence to illustrate

hat probabilistic modeling makes sense from a decision-making

oint of view. 

For the probabilistic reasoning, one needs to model all the in-

uts and the outputs as the probability distributions. First, consider

 B and A W 

which are the inputs to the BWM. From a mathematical

oint of view, the multinomial distribution can model the vectors

ince all of their elements are integers. The probability mass func-

ion (PMF) of the multinomial distribution for a given A w 

is [49] 

 ( A W 

| w ) = 

(∑ n 
j=1 a jW 

)
! ∏ n 

j=1 a jW 

! 

n ∏ 

j=1 

w 

a jW 
j 

(6) 

here w is the probability distribution. 

In the multinomial distribution, the weight vector is the prob-

bility distribution and A W 

contains the number of occurrence of

ach event. Apparently, it is completely different from what is ex-

ected for the BWM represented in Section 2 . Interestingly, we

how that modeling with multinomial would fulfill the underlying

dea of the BWM. 

Based on the multinomial distribution, the probability of the

vent j is proportionate to the number of occurrence of the event

o the total number of trials, i.e., 

 j ∝ 

a jW ∑ n 
i =1 a iW 

, ∀ j = 1 , . . . , n. (7) 

Similarly, one can write the same equation for the worst crite-

ion as 

 W 

∝ 

a W W ∑ n 
i =1 a iW 

= 

1 ∑ n 
i =1 a iW 

(8) 

Using Eqs. (7) and (8) , one obtains 

w j 

w W 

∝ a jW 

, ∀ j = 1 , . . . , n, (9) 

hich is precisely the relation we seek in the original BWM pre-

ented in Step 5 of Section 2 . 

Similarly, A B can be modeled using the multinomial distribu-

ion. However, A B is different from A W 

since the former represents

he preferences of the best over the other criteria while the lat-

er denotes the preferences of the others over the worst. Thus, A B 
 5 6 7 8 9 

.63 2.30 3.00 3.73 4.47 5.23 

st-worst method: A probabilistic group decision making model, 
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d  
yields the inverse of the weight, i.e., 

A B ∼ mul tinomial (1 /w ) (10)

where w is the probability distribution, and / represents the

element-wise division operator. Identical to the worst criterion,

one can write 

1 

w j 

∝ 

a Bj ∑ n 
i =1 a Bi 

, 
1 

w B 

∝ 

a BB ∑ n 
i =1 a Bi 

= 

1 ∑ n 
i =1 a Bi 

⇒ 

w B 

w j 

∝ a Bj , ∀ j = 1 , . . . , n, (11)

which is again the exact relation we seek in the BWM. 

So far, we showed that the multinomial distribution could

meaningfully model the inputs to the BWM. The problem of find-

ing the weights in the MCDM problem is thus transferred to the

estimation of a probability distribution. Therefore, one can use the

statistical inference techniques to find w in the multinomial distri-

bution. 

A weight vector for the MCDM must satisfy the non-negativity

and sum-to-one properties. Therefore, an appropriate distribution

to model the weights is to use the Dirichlet distribution. Given a

parameter α ∈ R n , the Dirichlet distribution of the weights w is de-

fined as [49] 

Dir ( w | α) = 

1 

B ( α) 

n ∏ 

j=1 

w 

α j −1 

j 
. (12)

The distribution has only a vector parameter α, and w meets

the constraints of an optimal weight vector of MCDM since it is a

probability distribution. 

3.2. Estimation of the weight vector: statistical inference 

For a moment, assume that there is only A W 

in the BWM, then

we consider two widely-accepted inference techniques: frequentist

and Bayesian. The underlying idea of the frequentist approach is

that there is a precise yet unknown optimal point, and the effort is

to estimate it based on the observations. As a result, the outcome

of the frequentist inference is a precise weight vector for a set of

criteria. The maximum likelihood estimation (MLE) is arguably the

most popular inference technique which finds the optimal weight

vector using the following optimization 

w = arg max 
w, 

∑ n 
j=1 w j =1 

P ( A W 

| w ) . (13)

The optimum of (13) yields at 

w 

∗
j = 

a jW ∑ n 
i =1 a iW 

, ∀ j = 1 , . . . , n, (14)

which is indeed the normalized A W 

. The same solution will be ob-

tained by the BWM if the preferences of the DM are fully consis-

tent. Thus, (14) shows that the MLE bears the same result as the

BWM under specific circumstances. 

The second approach is the Bayesian estimation, in which the

parameters are approximated by using a distribution rather than

a precise point as is in the MLE. Thus, we first need to specify a

prior distribution for the weight vector. In the Bayesian inference,

the Dirichlet distribution is used as the prior to the multinomial.

The Dirichlet distribution can perfectly represent the weight vec-

tor since it satisfies both its non-negativity and sum-to-one prop-

erties. Using Dirichlet as the prior and multinomial as the likeli-

hood, the posterior distribution would also be Dirichlet with the

posterior parameter αpost = α + A W 

. Since the prior should be un-

informative so that its impact on the posterior is minimal, we set

the prior parameter α = 1 . 
Please cite this article as: M. Mohammadi and J. Rezaei, Bayesian be

Omega, https://doi.org/10.1016/j.omega.2019.06.001 
As a result of the Bayesian estimation, the values of w is shown

y a Dirichlet distribution. The mode of the posterior distribution

∈ R n with the parameter αpost 

j = 

αpos t j − 1 ∑ n 
i =1 αpos t i − n 

= 

1 + a jW 

− 1 ∑ n 
i =1 ( a iW 

+ 1 ) − n 

(15)

= 

a jW ∑ n 
i =1 a iW 

, ∀ j = 1 , . . . , n. 

Thus, the mode of the posterior distribution would provide the

xact MLE. As a result, the Bayesian paradigm would yield more

nformation regarding the events under study since its outcome is

 distribution, not a point. The standard deviation of such a dis-

ribution, for instance, is an indicator of uncertainty regarding the

nference problem, which can have distinct interpretations with re-

pect to the problem under study. 

So far, we merely considered A W 

for estimating the weights;

owever, it is critical to use both A B and A W 

according to the BWM.

he MLE inference containing both A B and A W 

does not bear an an-

lytical solution due to the complexity of the corresponding opti-

ization problem. Further, the simple Dirichlet-multinomial con-

ugate cannot encompass the A B and A W 

together. The problem

ompounds when it comes to having the preferences of multiple

Ms. Considering these issues, a Bayesian hierarchical model is

resented in the next section to estimate the optimal weight of

he criteria considering both A B and A W 

of multiple DMs. 

. Bayesian best-worst method 

This section presents a Bayesian hierarchical model to find the

ptimal weights of a set of criteria based on the preferences of

ultiple DMs using the best-worst framework. 

.1. Group decision-making: a joint probability distribution 

Assume that the k th DM, k = 1 , . . . , K, evaluates the criteria

 1 , . . . , c n by providing the vectors A 

k 
B 

and A 

k 
W 

. We show the set

f all vectors of K DMs by A 

1: K 
B 

and A 

1: K 
W 

. From now on, the super-

cript 1: K would indicate the total of all vectors in the base. We

lso represent the overall optimal weight by w 

agg . 

The estimation of w 

agg entails using several auxiliary variables.

n particular, w 

agg is computed based on the optimal weights of K

Ms shown by w 

k , k = 1 , . . . , K. Thus, the proposed Bayesian model

ould simultaneously compute w 

agg and w 

1: K . Prior to conducting

ny statistical inference, it is required to write the joint probability

istribution of all random variables given the available data. In the

roup decision-making within the BWM, A 

1: K 
B 

and A 

1: K 
W 

are given,

nd w 

1: K and w 

agg must be estimated accordingly. Thus, the fol-

owing joint probability distribution is sought 

 

(
w 

agg , w 

1: K 

∣∣∣ A 

1: K 
B , A 

1: K 
W 

)
. (16)

If the probability in (16) is computed, then the probability

f each individual variable can be computed using the following

robability rule 

 (x ) = 

∑ 

y 

P (x, y ) (17)

here x and y are two arbitrary random variables. 

.2. Bayesian hierarchical model 

To develop a Bayesian model, we first need to identify the in-

ependence and conditional independence of variables. Fig. 1 plots
st-worst method: A probabilistic group decision making model, 
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k

Fig. 1. The probabilistic graphical model of the Bayesian BWM. 
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he graphical model corresponding to the proposed method. The

odes in the graph are the variables. As a convention, the rectan-

les are the observed variables, which are the inputs to the origi-

al BWM. The circular nodes are the variables which must be es-

imated. Also, arrows denote that the node in origin is dependent

n the node at the other end. That is to say, the value of w k is de-

endent on A 

k 
W 

and A 

k 
B 
, and the value of w 

agg is also dependent on

 k . 

The plate, which covers a set of variables, means that the cor-

esponding variables are iterated for each DM, and w 

agg is not in

he plate since there is only one w 

agg for all DMs. 

The conditional independence between various variables is

lear based on Fig. 1 . For instance, A 

k 
W 

is independent of w 

agg given

 k , i.e., 

 

(
A 

k 
W 

∣∣∣ w 

agg , w 

k 
)

= P 

(
A 

k 
W 

∣∣∣ w 

k 
)

(18) 

Considering all independence among different variables, apply-

ng the Bayes rule to the joint probability (16) follows 

 

(
w 

agg , w 

1: K 

∣∣∣ A 

1: K 
B , A 

1: K 
W 

)
∝ P 

(
A 

1: K 
B , A 

1: K 
W 

∣∣∣ w 

agg , w 

1: K 
)

P 
(
w 

agg , w 

1: K 
)

= P (w 

agg ) 
K ∏ 

k =1 

P 

(
A 

k 
W 

∣∣∣ w 

k 
)

P 

(
A 

k 
B 

∣∣∣ w 

k 
)

P 

(
w 

k 

∣∣∣ w 

agg 
)
. (19) 

here the last equality is obtained using the probability chain

ule and the conditional independence of different variables, and

he fact that each DM provides his/her preferences independently.

ince the estimation of the parameters in Eq. (19) is reliant on the

stimation of other variables, there is a chain between different pa-

ameters. The existence of the chain is the reason that the model

s called hierarchical. 

We now need to specify the distributions of each and every el-

ment in Eq. (19) . We have already shown that A B and A W 

can be

erfectly modeled using the multinomial distribution in the sense

hat it preserves the underlying idea of the BWM. There is only one

ifference between A B and A W 

since the former shows the prefer-

nce of all the criteria over the worst, while the latter contains

he preference of the best over all the other criteria. Thus, one can

odel them as 

A 

k 
B | w 

k ∼ mult inom ial 
(
1 /w 

k 
)
, ∀ k = 1 , . . . , K, 

 

k 
W 

| w 

k ∼ mult inom ial 
(
w 

k 
)
, ∀ k = 1 , . . . , K. (20) 

Given w 

agg , one can expect that each and every w 

k be in its

roximity. To this end, we reparameterize the Dirichlet distribu-

ion with respect to its mean and a concentration parameter. The
Please cite this article as: M. Mohammadi and J. Rezaei, Bayesian be

Omega, https://doi.org/10.1016/j.omega.2019.06.001 
odels of w 

k given w 

agg are 

 

k | w 

agg ∼ Dir ( γ × w 

agg ) , ∀ k = 1 , . . . , K, (21) 

here w 

agg is the mean of the distribution and γ is the concentra-

ion parameter. 

The equation in (21) says that the weight vector w 

k associated

ith each DM must be in the proximity of w 

agg since it is the

ean of the distribution, and their closeness is governed by the

on-negative parameter γ . Such a technique is used in different

ayesian models as well [50] . The concentration parameter also

eeds to be modeled using a distribution. A reliable option is the

amma distribution which satisfies the non-negativity constraints,

.e., 

∼ gamma ( a, b ) , (22) 

here a and b are the shape parameters of the gamma distribu-

ion. 

We finally supply the prior distribution over w 

agg using an un-

nformative Dirichlet distribution with the parameter α = 1 as 

 

agg ∼ Dir(α) . (23) 

The specified model does not bear a closed-form solution. As

 result, Markov-chain Monte Carlo (MCMC) techniques [51] must

e used to compute the posterior distribution. For the MCMC sam-

ling, we use the “just another Gibbs sampler” (JAGS) [52] , which

s one of the best available probabilistic languages to date, to sam-

le and compute the posterior determined in (19) . The useful out-

ome of the model is the posterior distribution of weights for ev-

ry single DM and the aggregated w 

agg . 

The proposed Bayesian model will replace Step 5 of the origi-

al BWM explained in Section 2 . In fact, the optimization problem

s substituted with a probabilistic model while the inputs to both

ethods are identical. However, the proposed model would pro-

ide more information regarding the confidence of the relation be-

ween each pair of criteria. The excessive information is obtained

y devising a new Bayesian test based on the approximated distri-

ution from the model, which is explained in the next section. 

. Credal ranking 

The modus operandi in the MCDM is to say one criterion is

ore important than one another merely if its weight, or the

eight average for the group decision-making, is higher than one

nother. Assume that there are three criteria c 1 , c 2 , and c 3 with

he weight vector w = [0 . 49 , 0 . 50 , 0 . 01] . According to the MCDM,

 2 is superior to both c 1 and c 3 . However, the confidence of the

uperiority cannot be determined by solely comparing two figures.

his is even much more important when the weight vector repre-

ents the preferences of a group of DMs. To date, there are various

anking schemes such as interval-based ranking [53] , fuzzy ranking

54,55] , and ranking based on grey relational analysis (GRA) [56] . 

The notion of credal ranking is now introduced, which can cali-

rate the degree to which one criterion is superior to one another.

aving the posterior distribution of weights would help gauge the

onfidence of the relations between various criteria. The difference

etween the credal ranking and other ranking schemes is that a

onfidence is computed in the credal ranking based on one distri-

ution, i.e., the Dirichlet distribution of w 

agg , while other ranking

ethods usually take two numbers/intervals and try to find the

xtent to which one is superior. 

We first define the credal ordering, which is the building-block

f credal ranking. 

efinition 5.1 (Credal Ordering) . For a pair of criteria c i and c j , the

redal ordering O is defined as 

 = (c i , c j , R, d) (24) 
st-worst method: A probabilistic group decision making model, 
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Table 2 

Comparison of the original BWM and the Bayesian BWM on the mobile phone selection crite- 

ria based on the preferences of 50 students. 

Basic Physical char. Tech feat. Func Brand Customer 

BWM 0.1945 0.1623 0.2014 0.2467 0.1277 0.0673 

Bayesian BWM 0.1929 0.1776 0.2052 0.2376 0.1277 0.0591 
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where 

• R is the relation between the criteria c i and c j , i.e., < , > ,

or = ; 
• d ∈ [0, 1] represents the confidences of the relation. 

Definition 5.2 (Credal Ranking) . For a set of criteria C =
(c 1 , c 2 , . . . , c n ) , the credal ranking is a set of credal orderings which

includes all pairs ( c i , c j ), for all c i , c j ∈ C . 

The confidence in the credal ordering can provide the DMs with

more information which can significantly improve their decisions.

We now devise a new Bayesian test based on which we can find

the confidence of each credal ordering. The test is predicated on

the posterior distribution of w 

agg . The confidence that c i being su-

perior to c j is computed as 

P (c i > c j ) = 

∫ 
I (w 

agg 
i 

>w 

agg 
j 

) P ( w 

agg ) . (25)

where P ( w 

agg ) is the posterior distribution of w 

agg and I is one

if the condition in the subscript holds, and zero otherwise. This

integration can be approximated by the samples obtained via the

MCMC. Having Q samples from the posterior distribution, the con-

fidence can be computed as 

P (c i > c j ) = 

1 

Q 

Q ∑ 

q =1 

I(w 

agg q 
i 

> w 

agg q 
j 

) 

P (c j > c i ) = 

1 

Q 

Q ∑ 

q =1 

I(w 

agg q 
j 

> w 

agg q 
i 

) (26)

where w 

ag g q is the q th sample of w 

agg from the MCMC samples.

Thus, for each pair of criteria, one can compute the confidence

that one is superior to one another. The credal ranking can be

merely changed into the traditional ranking. In this regard, it is

evident that P (c i > c j ) + P (c j > c i ) = 1 . Therefore, c i is more impor-

tant than c j if and only if P ( c i > c j ) > 0.5. As a result, the traditional

ranking of criteria is obtainable by applying a threshold of 0.5 to

the credal ranking. 

6. Numerical examples 

In this section, a real-world example is analyzed using the

Bayesian BWM, and the corresponding credal ranking is computed

and visualized by using a weighted directed graph. The MATLAB

implementation of the proposed model can be found at http://

bestworstmethod.com/software/ . 

The real-world application is the selection of the mobile phone,

to which the BWM has been already applied [9] . The problem im-

plicates the selection of one from a set of mobile phones based

on different criteria. Six different criteria that studied and found

in the literature is used to evaluate the mobile phone alternatives.

The criteria are basic requirement, physical characteristics, techni-

cal features, functionality, brand choice, and customer excitement. 

The data collected in [9] was from 50 university students who

completely got familiar with different selected criteria through a

provided document. Various characteristics (e.g., price, dimension,

weight, display) of four particular mobile phones were given to

the participants. Through a questionnaire, students filled in a form
Please cite this article as: M. Mohammadi and J. Rezaei, Bayesian be

Omega, https://doi.org/10.1016/j.omega.2019.06.001 
o get the information required for the original BWM, i.e., A B and

 W 

. 

The first approach, which was employed in [9] , was to find the

ptimal weight vector separately for each student, and then ag-

regate them using the arithmetic mean to compute the final ag-

regated weight vector. The first row of Table 2 tabulates the final

ggregated weights obtained by the BWM. We particularly consider

he arithmetic mean to validate the proposed Bayesian model since

he average of 50 participants is a reliable measure according to

entral limit theorem . 

The obtained inputs from 50 participants in this experiment

ere also given to the Bayesian BWM, and the outcome of the test

s obtained. Since the output of the aggregated weight is a distri-

ution in the Bayesian BWM, it is not possible to compare the two

ethods directly and verify if the output of the Bayesian BWM is

alid. To have a meaningful discussion and validation, however, we

se the average of the Dirichlet distribution of w 

agg to be able to

ompare the two methods. The second row of Table 2 shows the

verage of the final aggregated weight computed by the Bayesian

WM. 

Table 2 indicates that the estimation based on the proposed

ayesian model yields a meaningful result since the average of

he estimated distribution is centered around the overall average

f each individual preferences. The example shows that the output

f the Bayesian BWM is valid and makes perfect sense. Keep in

ind that the BWM obtains the weight of each individual first and

hen aggregate them by the arithmetic mean, while the Bayesian

WM computes the aggregated distribution and all the individual

references at once using probabilistic modeling. The essential dif-

erence between the BWM and the Bayesian BWM is that we can

ompare the criteria colorfully . The current practice is to say a cri-

erion is more important than one another if its average weight

as a higher value; therefore, it is a black and white (or zero-one)

ecision. 

We compare all pairs of criteria with each other using the

redal ranking and visualize its outcome using a weight directed

raph. Fig. 2 displays the credal ranking of criteria for selecting the

ell phones. The nodes in this graph are the criteria and each edge

 

d → B tells that criterion A is more important than B with the con-

dence d . 

Based on Fig. 2 , functionality is the most important criterion

ased on the opinions of all participants. At the other extreme,

ustomer excitement and brand choice are the least desirable fea-

ures for the participants in this experiment. Further, the degree

f certainty about the relation of criteria is also evident. For in-

tance, technical features is certainly more important than customer

xcitement , but it is more desirable than basic requirement with the

onfidence of 0.71. 

As mentioned before, the credal ranking visualized in Fig. 2 can

e changed into the conventional ranking merely by applying the

hreshold of 0.5 to the obtained confidences. The threshold can

ary from one problem to one another, and it is entirely to the

Ms’ volition to opt for a particular threshold value. For instance,

he confidence 0.71 between technical feature and basic requirement

ight be strong enough for the mobile selection problem, but it

ould not be regarded as strong if the study was on another prob-

em. In other words, credal ranking could be shaped to represent
st-worst method: A probabilistic group decision making model, 
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Fig. 2. The visualization of the credal ranking for the example of mobile phone selection criteria. 
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he ranking of criteria in different problems based on the DMs’ de-

ired confidence. 

. Conclusion 

This paper presents a Bayesian model for the group decision-

aking within the BWM. The proposed method models the inputs

f the BWM using the multinomial distribution and it is demon-

trated that such a distribution would preserve the underlying idea

f the original BWM. Further, the weight vector is modeled using

he Dirichlet distribution. The proposed Bayesian model is able to

ompute the weight distribution of each individual in the group

ecision-making, and an aggregated final distribution representing

he overall preferences of all DMs. The credal ranking of criteria is

eveloped based on which each pair of criteria are assigned a re-

ation and a confidence. The confidence which is computed based

n a proposed Bayesian model shows the extent to which one is

ertain about the relation of the corresponding pair of criteria. In

ddition, the credal ranking is visualized using a weighted directed

raph which shows the interrelation of criteria clearly. 

The proposed Bayesian BWM is a promising method in the con-

ext of group decision making where one is interested in the col-

ective opinion of a group, but at the same time, one could check

he ranking of the weights in a probabilistic sense. The group will

e more certain about the relation of two criteria if it is associated

ith a high confidence level while the relations with low confi-

ence level should be interpreted more carefully. 

There are several avenues to extend the current research. We

im to apply such modelings in other important MCDM methods.

t is also interesting to investigate the role of outliers in different

roup BWM. Finally, it would be interesting to work on some other

eatures of the Bayesian BWM such as consistency measure. 
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