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A B S T R A C T

The atmospheric corrosion of carbon steel was monitored by a Fe/Cu type galvanic corrosion sensor for 34 days.
Using a random forest (RF)-based machine learning approach, the impacts of relative humidity, temperature and
rainfall were identified to be higher than those of airborne particles, sulfur dioxide, nitrogen dioxide, carbon
monoxide and ozone on the initial atmospheric corrosion. The RF model demonstrated higher accuracy than
artificial neural network (ANN) and support vector regression (SVR) models in predicting instantaneous at-
mospheric corrosion. The model accuracy can be further improved after taking into consideration of the sig-
nificant effect of rust formation on the sensor.

1. Introduction

Atmospheric corrosion is known to widely impact infrastructure,
transportation, energy and other industries and generates high main-
tenance cost globally [1,2]. Atmospheric corrosion is influenced by the
instantaneous (e.g. relative humidity/RH) and cumulative (e.g. de-
position of chloride) effects from the constituents of local environments
on the metal surface [3]. An accurate and real time evaluation of at-
mospheric corrosion provides an important guide to materials selection
and engineering design for corrosion mitigation. Monitoring sensors
have been used in vehicles and bridges to track the dynamic process of
atmospheric corrosion and to understand how such a process is influ-
enced by the complex environmental parameters [4,5]. For example,
non-electrochemical sensors can monitor the damage status of the
substrate materials based on the measurements of the change in weight,
electrical resistance [6,7] or acoustic properties [8–10]. An electro-
chemical sensor, on the other hand, functions by forming a closed
electrochemical cell on the sensor surface and monitor the transient
corrosion activities by measuring galvanic corrosion current [4], elec-
trochemical impedance [11,12], linear polarization resistance [13] or
electrochemical noise [14,15].

The principle of galvanic-cell type atmospheric corrosion

monitoring (ACM) sensor is based on galvanic corrosion between two
electrodes with different electrochemical activities. The galvanic cor-
rosion current of the couple is then measured by a galvanometer to
reflect the instantaneous corrosion rate responding to changes of the
environments [16]. Galvanic-cell type ACM sensors are sensitive to
environmental variation and are useful in understanding the corrosion
in a changing environment [16,17]. For example, Mizuno et al. in-
stalled Fe/Ag-type corrosion sensors on various parts of a vehicle for
three months and showed that the atmospheric corrosion varied at the
locations with difference in the RH and rainwater exposure [17]. In our
earlier work, we analyzed the atmospheric corrosion of a zinc/copper
ACM sensor in Beijing in a winter time and described that the air
quality index had a high impact on atmospheric corrosion [4]. More
recently, Fe/Cu-type ACM sensors were used in six outdoor atmospheric
environments for one month [18]. Statistical analyses of the current
values at different time showed that rainfall accounted for only
16.3–29.7 % of the total test duration but contributed to 64.6–89.0 % of
the atmospheric corrosion of the carbon steels. And the low tempera-
ture at night was more conducive to the condensation of moisture,
leading to a more severe atmospheric corrosion.

Compared with the monthly or yearly data obtained from the
standard corrosion coupons, the minutely or hourly data obtained from
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ACM studies are often large in quantity and contain rich information
about corrosion kinetics as influenced by multiple environmental fac-
tors such as RH, temperature and pollutants. Because of such a com-
plexity, it is difficult to establish causal relationships between in-
dividual environmental factor and the corrosion process based on
physics-based corrosion laws or predict the corrosion life of materials
[19–22]. In this case, machine learning, which automates the searching
for knowledge by learning from example data and experience without
relying on predetermined equations, may offer new opportunities to
better understand and predict atmospheric corrosion. For example,
artificial neural network (ANN) is the most commonly used data mining
method [23,24]. It has been applied to model multivariant corrosion
processes to predict crack growth rates [19,20] and corrosion initiation
time of metals [25]. Support vector regression (SVR) analysis has also
been used for corrosion prediction. While ANN is more accurate with a
large sample size, SVR may present good prediction results even with a
small sample size [26]. Using SVR modelling, Fang et al. predicted the
corrosion rate of zinc and steel by temperature, TOW, exposure time,
sulfur dioxide and chloride concentration [27]. Wen et al. applied SVR
in the prediction of the corrosion rate of 3C steel in seawater influenced
by temperature, dissolved oxygen, salinity, pH value and oxidation-
reduction potential [28]. Other methods that were less commonly used
but are also suitable for mining time-series corrosion data include
Markov chains [29,30], grey analyses [31,32] and Monte-Carlo simu-
lations [33,34].

Due to the deeper layers of model structure than general machine
learning models, random forest (RF) models possess a good processing
ability for data with high variability [35,36]. Thus, RF models are ex-
pected to be more suitable for the dynamic atmospheric corrosion
processes. For example, the impacts of multiple environmental factors
and alloying elements to the corrosion rates of 17 low alloy steels under
six different environments over 16 years were quantitatively ranked by
a RF approach. The results showed that the environmental factors
played more important roles than the chemical compositions of the
steels especially for the initial period of atmospheric corrosion [37].
The pH of rainwater showed the highest influence to the corrosion rate
among the environmental factors for the timespan over 16 years,
whereas the importance of rainfall was more prominent in the first two
years of atmospheric corrosion.

This study aims at describing the atmospheric corrosion on an Fe/
Cu type galvanic corrosion sensor exposed in Qingdao, China for 34
days. RF-based machine learning approach was employed to analyze
the contribution of different environmental factors (i.e. temperature,
RH, rainfall, sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone
and particulate pollutants) to the ACM sensor output. After the most
influential parameters were identified, a rational RF model was built for
the prediction of the dynamic variation of atmospheric corrosion on
carbon steels.

2. Methods

2.1. Preparation of the ACM sensors

Fig. 1a shows the assembly of an ACM sensor, which consisted of
seven pairs of steel/copper galvanic couple. The carbon steel (0.47 wt%
C, 0.18 wt% Si, 0.59 wt% Mn, 0.01 wt% S, 0.01 wt% P, 0.01 wt% Ni,
0.02 wt% Cr, 0.01 wt% Cu) served as the anode, whereas copper
(> 99.5 % pure) was used as the cathode. The electrode pairs were
separated by glass fiber-reinforced epoxy (FR4) boards for electrical
insulation. The exposed area of each electrode was 21× 1mm2. The
electrode was individually connected with a wire, assembled together
and impregnated in epoxy to obtain the ACM sensor. The anodes and
cathodes were connected to the different ends of a galvanometer. The
sensor surface was abraded to #1200 using SiC paper prior to the ex-
posure tests.

When a thin electrolyte layer is formed or a droplet is deposited

across the insulating board (0.1 mm thick) between the steel and copper
electrodes of the ACM sensor, the two electrodes were electrically
connected and generate a galvanic corrosion current. Due to the se-
paration of anodes and cathodes by the insulating boards, the galvanic
current passes through a galvanometer. And the ACM current (IACM)
would be detected and recorded. The relationship between the IACM and
the corrosion rate of the steel anode was reported in our previous study
[18]. In other words, by measuring the IACM, it is possible to quanti-
tatively evaluate the atmospheric corrosion of the carbon steel.

2.2. Field exposure test

The ACM was conducted at the Qingdao atmospheric corrosion test
site (120°25′E, 36°03′N) in the National Environmental Corrosion
Platform of China (Fig. 1b). The test site is a coastal region and is lo-
cated 25m away the Bohai sea. The ACM sensors were installed at a
distance of over 1m above ground and were facing with an angle of 45°
to the south. The temperature and humidity sensors were exposed
under the same conditions near the ACM sensor. The exposure test was
carried out for 34 days from August 2nd to September 5th, 2018. The
galvanometer measured the current with an acquisition frequency of
two seconds per reading, and recorded the data once per minute. The
measuring error was less than 0.5 %, and the resolution of the gal-
vanometer was 0.1 nA, according to the specification of the manu-
facturer. The current value ranged from 0.1 nA to 50mA, beyond which
the current could not be determined.

During the entire test time, to a minimum of 97 % of the detected
currents were higher than 0.1 nA, indicating that the ACM sensor
captured most of the corrosion signals. Each set of data accumulated in
this study consisted of IACM, temperature (T) and RH data from the ACM
sensor, and other environmental data such as rainfall status (rainy or
not), the concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2),
carbon monoxide (CO), ozone (O3) and airborne particles smaller than
or equal to 2.5 microns (PM2.5) and those smaller than or equal to 10
microns (PM10). The data for SO2, NO2, CO, O3, PM2.5 and PM10 were
obtained from China Meteorological Administration. Chloride deposi-
tion at the test site was measured monthly using the dry plate method
according to ISO 9225 [38].

2.3. Models

2.3.1. Random forests
The RF model used in this study was implemented with the Scikit-

learning machine learning library. Fig. 2a illustrates the prediction
process of the RF method. The RF model consists of 100 (an optimal
value shown in Fig. S1a; See Supplementary material 1) classification
and regression tree (CART) models, and each CART model possessed
ability for the training and prediction. T, RH, rainfall status, SO2, NO2,
O3, CO, PM2.5 and PM10 are the input variables. For each CART in the
RF model, the imported sets of data were produced by bootstrap sam-
pling [36]. Bootstrap sampling guarantees the imported sets of data are
different between each other, and leads to the diversity of the outputs
for different CARTs. Then the corrosion current (IACM-i, i=1, 2, …,
100) was predicted by the i−th CART model. The final prediction result
for IACM of RF model was the average of the prediction values of all
IACM-i. Previous studies have shown that a single CART model may be
unstable and overfitting when the sample size is small, but this negative
effect is alleviated by averaging the outputs of different CARTs as-
sembled in the RF model [37,39]. Therefore, the RF approach con-
structs and combines several weak models to form a strong model.

In each CART model, the inputs were regarded as vectors and dis-
tributed in a space. Fig. 2b shows the training and prediction processes
of each CART model. The training process of a CART was to split the
input-space to individual subspaces based on the theory of regression
trees [40]. The output of each subspace was assigned with a constant
value based on the average of all training vectors. After the training was
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finished, the prediction process of the CART was to import a data
without output and locate the subspace of the imported data. Then the
prediction value was acquired based on the trained subspace. The
training processes of different CART models adopted the same prin-
ciple. Compared with other ensemble methods, the training process of
RF model is based on the random selection of training samples and
inputs at each node, i.e. each subspace. Therefore, the base model of RF
has more diversity and leads to more precise ensemble results. The
important parameters of the RF modelling are the minimum number of
samples per subspace and number of CART. When the sample size of a
node is less than a certain value, i.e., the integral number of training
samples divided by 500 (an optimal value determined in Fig. S1b), the
next node segmentation would be stopped, i.e. stop splitting up new
subspaces, and the present node would be the leaf node. Meanwhile, at
each node of the CART, a subset of the feature vectors is randomly
selected.

The data samples unselected for training in each CART model in the
bootstrap sampling step, termed as the out-of-bag (OOB) samples, can
be used to calculate the importance of the inputs [37]. For each CART,
the importance is mainly calculated by adding a disturbance to each
input of the OOB data and then evaluating the variation amplitude of
the predicted results. By comparing the variation amplitudes affected
by different inputs, the importance of different inputs in one CART can
be obtained. Finally, by averaging the importance results of all CARTs
in the RF model, the quantification of the importance of different inputs
is finished.

2.3.2. ANN and SVR modelling
For comparison, back-propagation ANN and SVR were also im-

plemented with the Scikit-learning machine learning library in this
study. The input and output variables remain the same as those for the

RF model. For the ANN model, the rectified linear unit (ReLu) function
was used as the activation function. The model has one hidden layer
consisting of 100 units (default value). The random gradient descent
method was employed for the parameter tuning. The error tolerance
was set as 1× 10−4, and the maximum iteration number was 100 after
parameter optimization as shown in Fig. S1c, d. For the SVR model, the
radial basis function (RBF) was set as the kernel function and the
penalty coefficient as 300 (Fig. S1e, f). The width of RBF was 1, which
was selected to avoid poor fitting and reduce prediction errors after
several practical simulations. Other remaining parameters were the
default values of the Scikit-learning machine learning library. More
details about the working mechanisms of ANN and SVR models can be
found in Supplementary Material 2.

2.3.3. Evaluation criteria
The fitting errors of the training and prediction samples from the

different models were evaluated based on R2 calculated by Eq. (1) and
also RMSE calculated by Eq. (2).
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where N is the total number of the dataset; ŷn and yn represent the
prediction value and the true value of the n-th sample, respectively;
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N
n1 represents the mean of the true values of all samples.

The fitting error is lower if R2 approaches 1 and RMSE is smaller.

Fig. 1. (a) Schematics showing the design of the Fe-Cu type ACM sensor and (b) Photograph of the test setup on field.

Fig. 2. The training and prediction process of (a) the RF model and (b) each CART model.
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3. Results and discussion

3.1. Effect of environmental factors in an outdoor environment

As shown in Fig. 3, the 10-dimensional atmospheric corrosion data,
acquired in the one-month exposure test conducted in Qingdao, China,
included IACM, T, RH, rainfall status, SO2, NO2, O3, CO, PM2.5 and PM10.
The IACM, RH, temperature and rainfall data were reduced to a fre-
quency of once per hour to match with other environmental data. As
shown in Fig. 3a and b, the value of IACM varied as result of the dynamic

nature of the atmospheric corrosion. An increasing trend was observed
for IACM during the one-month test period. This phenomenon may due
to the growth of the rust layer that can absorb moisture on the sensor
surface and reduce the threshold RH for corrosion to be detected by the
ACM sensor [41,42]. The conductivity of the rust is far lower than that
of the electrolyte on the sensor [43–45]. Thus, we infer that the change
in the corrosion product conductivity during rust formation would not
induce a major impact on the sensor output current. Moreover, the
variation of IACM showed a similar trend with those of the outdoor
temperature and RH values. For the pollutants and airborne particles

Fig. 3. Corrosion and environmental data collected during the one-month exposure test at the Qingdao site: (a) IACM, temperature and rainfall state, (b) IACM and RH,
(c) NO2, SO2, CO and O3 concentrations and (d) PM2.5 and PM10 concentrations.
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(Fig. 3c and d), their influences on the atmospheric corrosivity could
not be directly visualized from the comparison with the IACM variation.
To more clearly reveal the corrosion kinetics on the ACM sensor, Fig. S2
shows the variation of average current of all IACM over the test period.
The low current values in the beginning of the exposure test was at-
tributed to the difficulty in forming continuous thin electrolyte layer on
fresh sensor surface. As corrosion was developing on the sensor, we
observed a sharp increase in the current value, which could be ex-
plained by the hygroscopic effect of the rust layer. Afterwards, the
continuous buildup of the rust caused the current to slightly decrease
over time.

To compare the importance of each environmental parameter to the
initial atmospheric corrosion over the one month of exposure, a RF
model was established using the environmental parameters as the in-
puts and IACM as the output and the results were shown in Fig. 4. The
top three important environmental parameters on the output of IACM
were temperature, rainfall status and RH. In general, the variations of
the temperature and the RH showed opposite trends and a lower tem-
perature favors the condensation of thin electrolyte layer on the ACM

electrodes. The IACM value was also remarkably affected by rainfalls
which provided more dynamic and longer-lasting electrolyte film
[46,47]. According to Fig. 4, PM2.5 is the most important factor among
all pollutants, which may be attributed to the high mass fraction of
water-soluble ions (62 %) in PM2.5 in Qingdao [48,49]. In comparison,
the mass fraction of these ions in PM10 is 35 % [49]. And smaller air-
borne particles also tend to be acidic and contain more corrosive sul-
phates to influence the corrosion process [50–52]. However, the air-
borne particles and pollutants are far less important than temperature,
RH and rainfall status, which may be explained by their low con-
centrations in the Qingdao test site and the short exposure time. The
monthly average concentrations of PM2.5, PM10, NO2 and SO2 were only
16.9 μgm−3, 40.2 μgm−3, 12.9 μgm−3 and 9.5 μgm−3, respectively. It
should be noted that the deposition of chlorides was not included in the
model given that its value is typically recorded at least monthly by the
dry plate method, according to ISO 9225 [38]. However, the impact of
chlorides is cumulative and becomes more dominant for long-term
corrosion to steels under marine atmospheres [53–57]. Chloride en-
richment, which could induce the formation of non-protective aka-
geneite [56–59], was not found in the corrosion product layer on the
ACM sensor after one month of exposure (Figs. S3–S4). Besides the
short exposure time, the absence of chloride enrichment may also be
related to the relatively low chloride deposition rate
(71.03 mgm−2 d−1) and the cleaning effect from the frequent rainfalls
in the test period [60]. Therefore, it is reasonable to consider that
chlorides had not played a major role in the present study.

3.2. Prediction of atmospheric corrosion based on the RF model

Traditional methods to predict atmospheric corrosion of carbon
steels generally follow ISO9223-2012 [61] and requires the accumu-
lation of environmental data on a yearly basis. These yearly average
values cannot reflect the dynamic variation of the environmental con-
ditions and their complex instantaneous effects on the corrosion ki-
netics, which could generate inaccurate prediction especially for short-
term corrosion [62]. From the previous section, temperature, RH and
rainfall status have shown much stronger influences than the rest of the
environmental parameters on the atmospheric corrosion of carbon
steels. Therefore, these three parameters were selected as the inputs to

Fig. 4. Importance index of environmental factors to IACM after one-month
exposure.

Fig. 5. The fitting results for the training samples by (a) ANN, (b) SVR and (c) RF models, and for the testing samples by (d) ANN (e) SVR, and (f) RF models.
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establish a model for the prediction of the IACM output. To validate the
performance of the models, the corrosion data samples were divided
into training data and testing data. The entire dataset consisting of
48,647 data samples were used for the models, including 43,782 sam-
ples (90 %) randomly selected as the training samples, and the other
4865 samples (10 %) as the testing samples for the evaluation of the
predicting performance [63].

Fig. 5 presents the fitting results both for training and prediction.
The abscissa of each figure is the actual IACM value obtained from the
ACM sensor, while the ordinate represents the current value predicted
based on the ANN, SVR or RF model. The red diagonal line represents
the true-prediction line on which the predicted values equal the cor-
responding true values. The points located closer to the red diagonal
line represent smaller errors of the prediction. Compared to the fitting
by ANN and SVR models, the one by the RF model generated the lowest
root mean square error (RMSE) (8,014.3 nA) and highest determination
coefficients (R2) (0.526) values, demonstrating the highest prediction
accuracy. The accuracy of the SVR prediction is substantially higher
than that of the ANN prediction, which is consistent with previous
studies [26,28]. The low accuracy of the ANN model may be attributed
to its limited capacity in processing the large noise in the IACM [64].
Fig. 5d–f shows the predicting results for the three algorithms. The
predicting results of RF are the best of the three algorithms and the
value of R2 is maintained at a good level. Meanwhile, there is no ten-
dency to overfit at any range for RF.

3.3. High-accuracy model for predicting atmospheric corrosion

As demonstrated above, the RF model produced more accurate
prediction of the atmospheric corrosion than the SVR and ANN models.
However, the errors of the prediction as exemplified by the RMSE and
R2 values were still quite high, requiring further improvements on the
models. Fig. 1b shows the sensor surface after 34 days of exposure in
Qingdao. Clearly, the surface of the carbon steel electrodes of the sensor
was almost fully covered with corrosion products. As discussed in the
previous sections, it is reasonable to suspect that the growth of the rust
layer of the steel electrode may affect the IACM output in response to the
environmental impacts. The growing rust layer increased the roughness
on the surface of ACM sensor and enhanced hygroscopicity, which
changed the surface RH as opposed to ambient RH of the environment
[65]. Meanwhile, a thicker layer of the rust would benefit for the sto-
rage of the electrolyte and promote corrosion. According to the positive
correlation between ACM current and corrosion rate [17], the corrosion
extent of the carbon steel anode can be reflected by the electrical
quantity output of the ACM sensor (QACM), which is obtained by in-
tegrating IACM over the test time according to Eq. (3), in which 1min is
the data acquisition interval.

∑= ×Q I 1 minACM ACM (3)

Fig. 6 shows the day-to-day variation of importance indices of the
top three environmental factors (i.e. temperature, RH and rainfall
status) and that of the QACM to the atmospheric corrosion as determined
by the RF model. The importance of the temperature remained rela-
tively stable during the one-month test period. Notably, the importance
of the rainfall was much higher than that of the RH during the first half
of the exposure test. The importance of QACM which reflected the rust
formation on the sensor was generally low in the beginning but ex-
hibited a sharp increase afterwards. In the second half of the exposure
test, the formation of rust layer had become the most important factors
for the output of IACM. At the beginning of the exposure, the surface of
the steel electrode of the ACM sensor was smooth, which was difficult
to absorb moisture from the air. At this stage, the formation of the thin
electrolyte layer that is necessary to connect the anodes and cathodes
and generate IACM outputs mainly depended on the rainfall. As the at-
mospheric corrosion progressed, the rust layer on the steel electrodes
became thicker and the surface roughness increased. Thus, the ability of
the sensor surface to collect moisture was enhanced, leading to the
decrease in the critical RH to generate IACM outputs [66]. As a result,
the importance of RH to the atmospheric corrosion increased after the
first half of the exposure test.

The previous section confirmed that the formation of rust layer on
the ACM sensor had a crucial effect on the IACM output. Thus, the rust
formation on the ACM sensor should be considered when developing
predictive models for the atmospheric corrosion. Fig. 7 summarizes the
fitting results based on ANN, SVR and RF models that took in the
consideration of rust formation on the sensor (i.e. QACM) as an input
parameter in addition to temperature, RH and rainfall status. Compared
with Fig. 5, Fig. 7 shows obvious improvements on the prediction ac-
curacy for all models, with the data points being more narrowly dis-
tributed along the diagonal line. Particularly, the value of R2 for the RF
model substantially increased from 0.526 to 0.940 and the RMSE de-
creased from 7,390.5 nA to 2,311.8 nA after adding QACM as an input
parameter.

To further verify the importance of the evolution of the rust for-
mation on the prediction of IACM, the comparisons between the fitting
results of the prediction by ANN, SVR and RF models were made in
three different time periods (i.e. 0–11 days, 0–22 days, 0–34 days)
(Fig. 8). When QACM is not included in the models (Fig. 8a–c), the da-
tasets are increasingly scattered with the extended exposure time. The
corresponding R2 values had generally decreased (Fig. 8g). These re-
sults indicated that as the time increased the models become more in-
accurate without the consideration of the rust formation. In contrast,
when rust formation was considered in the models (Fig. 8d–f), the
distribution of the data points extended along the diagonal line but did
not become widened with the increasing exposure, suggesting that the
prediction accuracy is stabilized. As shown in Fig. 8g, the R2 values for
the ANN and SVR prediction increased sharply when longer time was
included in the models. The R2 value for the RF prediction remained

Fig. 6. Daily variation of the importance index of electrical quantity, temperature, rainfall state and RH to the IACM.
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stabilized at an excellent level of 0.94. The growth of the rust layer on
the ACM sensor had a significant impact on the IACM, so a high-accuracy
model should take QACM into account for the prediction of atmospheric
corrosion of steels.

Finally, as shown in Fig. 9a, two RF models were built and trained
differently using the data from August 2nd to 30th to predict the data
from September 1st to 5th. One model (RF1 in Fig. 9a) selected tem-
perature, RH and rainfall status as the input parameters and the other
(RF2) added another parameter of QACM. Different from the predicting
process in RF1, the QACM of 23:59 on August 30th was selected as an
input in the RF2 model for the first step, after which the predicting
sequence in RF2 strictly followed the chronological order from 00:00 on
September 1st to 00:00 on 5th, updating QACM based on Eq. (3) at every
minute. Fig. 9b shows the variation of the predicted IACM by the models
with and without the QACM correction as compared with the actual data
collected during September 1st to 5th. Although the variations of the
predicted IACM showed very similar trends to that of the actual values, a
much larger fluctuation was observed in the curve predicted by the
uncorrected RF model. To quantitatively compare the accuracy by the
two models, the IACM values were divided into four levels (IACM={I1,
I2, I3, I4} where I1, I2, I3 and I4 are 0–800 nA, 800–1500 nA,

1500–3000 nA and> 3000 nA, respectively) and then the number of
the predicted values that were at the same level with the actual level
were counted [4]. As shown in Table 1, the rate of accurate prediction
was improved from 87.8% to 94.7% after correcting the model with the
consideration of the QACM. In conclusion, the incorporation of QACM as
an input greatly improved the precision of ANN, SVR and RF models.
The RF model with the correction considering the rust formation on the
ACM sensor can be used as a high-accuracy model for predicting at-
mospheric corrosion. Furthermore, this corrected model implies the
possibility that, once sufficient training data is available, atmospheric
corrosion could be predicted based on simple environmental sensors
without expensive corrosion sensors.

4. Conclusions

A Fe/Cu type galvanic ACM sensor consisting of carbon steel anodes
and pure copper cathodes were exposed in an outdoor atmospheric
environment in Qingdao for 34 days. An RF-based machine learning
method was used to assist in the analysis and prediction of IACM values
and the results were compared with those by ANN and SVR models.
Among the environmental factors accumulated, temperature, RH and

Fig. 7. The fitting results (with the electrical quantity as the input) for training samples by (a) ANN, (b) SVR and (c) RF, and for testing samples by (d) ANN, (e) SVR
and (f) RF models.

Fig. 8. The prediction results of different periods for the testing samples: (a) ANN, (b) SVR, and (c) RF without the electrical quantity as the input; (d) ANN, (e) SVR,
and (f) RF with the electrical quantity as the input; and (g) the variation of R2 for each model.
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rainfall status showed the highest importance to the IACM. The pollu-
tants such as SO2, NO2, O3, CO, PM2.5 and PM10 were not the main
factors for the IACM because of their low concentrations in Qingdao. The
predicting ability of the RF model was much stronger than that of the
ANN and SVR models in training and predicting IACM. The growth of the
rust layer on the ACM sensor surface reduced the accuracy of the IACM
prediction. Taking into consideration of the rust formation on the sur-
face of the ACM sensor, an improved RF model with the addition of
QACM as an input was established and showed a significantly higher
accuracy for the prediction of atmospheric corrosion of carbon steels.
Potentially, the predictive model developed in this work could be useful
in the future development of smart corrosion sensors with the ability of
offsetting environmental damage to the sensor and maintaining high
accuracy for extended usage.
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Table 1
Comparison of the prediction by models with and without QACM correction.

Method Number of samples Number of samples correctly predicted Accuracy rate

RF model with correction 6540 6196 94.7 %
RF model without correction 5742 87.8 %
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