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A B S T R A C T

Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological
changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual
inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of
neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological
differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize
morphological variation across brain scans of people with different ages. To extract the deformations that are due
to normal aging we use partial least squares regression, which yields modes of deformations highly correlated
with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of mor-
phologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a
reference to which a person's morphology score can be compared. We validate our method on two different
datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results
show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of
cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology
differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our
methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal
aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age
range 45.9–91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl.
Introduction

Magnetic Resonance (MR) imaging plays an important role in diag-
nosing neurodegenerative diseases due to its depiction of the brain
morphology in vivo (Vernooij and Smits, 2012). Interpretation of MR
images in the context of dementia diagnosis can be challenging, as early
brain abnormalities may be difficult to distinguish from those related to
normal aging, especially in the early stages of the disease. Quantitative
methods that can distinguish brain morphology due to healthy aging
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from morphology due to accelerated aging or pathology can therefore aid
and possibly improve the diagnosis of neurodegenerative diseases
(Brewer, 2009).

Quantitative information on brain morphology is usually obtained by
measuring e.g. tissue volumes and regional volumes (Brewer, 2009).
However, these measures do not provide fully detailed information about
shape differences, since volume is a quantity of an enclosed surface, and
shape is a description or outline and therefore potentially much more
informative (Davis et al., 2010). Results on hippocampal shape studies
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suggest that shape may have additional predictive value over volume
when used in the prediction of Alzheimer's disease (Achterberg et al.,
2010; Costafreda et al., 2011). Therefore, there is an emerging interest in
methods for quantifying shape differences and variations in shape in the
human brain.

In literature, several methods for estimating models quantifying these
shape differences and changes have been proposed. Davis et al. (2010)
proposed a kernel regression on image dissimilarities to estimate a brain
image representative for each age. Both Serag et al. (2012) and Dittrich
et al. (2014) use a similar or more advanced kernel regression to build a
spatio-temporal atlas for neonatal and fetal brain development respec-
tively. The latter two methods are especially suited for fetal and neonatal
brain development, where the brain rapidly grows with increasing age.
Fishbaugh et al. (2017) developed a geodesic shape regression method
which uses a sparse representation of diffeomorphisms, describing
complex nonlinear changes over time with a small number of model
parameters defined by the user. The mentioned methods estimate change
in mean morphology of the population with age, but do not model the
statistical distribution; the mean, but not the variance of the morphology
at a certain age, is modelled. This concern was addressed by Ziegler et al.
(2012), who presented numerous approaches that relate aging to dif-
ferences in brain morphometry. They considered generative models (in
which brain morphology is predicted from age) and recognition models
(in which age is predicted from brain morphology) in cross-sectional
data, and models that estimate individual decline and explain
inter-individual variability in aging in longitudinal data.

Rather than predicting age or brain morphology, or classifying
healthy and diseased subjects based on brain morphology, we propose a
method that generates a reference distribution of healthy brain mor-
phologies as a function of age to which an individual brain can be
compared. Like Marquand et al. (2016), Ziegler et al. (2014), and Brewer
(2009) we use a normative modeling approach, in which we aim to
quantify the variation within a population and assess deviations from
that population. Marquand et al. applied normative modeling to assess
deviations of brain structure or function as a function of clinical cova-
riates (e.g. cognitive test scores). Brewer et al. assesses deviations of
volumetric MR imaging measures as a function of age. Ziegler et al.
provide normative voxelwise maps of local gray matter abnormalities
and global tissue volume z-scores. In our approach we aim to assess de-
viations of typical aging patterns of the brain morphology, measured
with voxelwise deformations. To generate a distribution of brain mor-
phologies we aim to find brain deformation patterns that are highly
correlated with age. To achieve this we choose a data-driven approach
using structural MR brain scans of elderly people in a wide age range
(46y - 92y). We determine the morphology distribution by applying a
regression model to the morphological variation within these brains. The
morphological variation is characterized by deformation fields that map
each brain image to a common space, which is a standard approach in
computational anatomy (Baloch and Davatzikos, 2009). We compute
these deformation fields with a groupwise image registration technique.
Since we are only interested in the deformations due to aging, we employ
a regression technique called partial least squares regression (PLSR).
PLSR is especially suitable when there are more predictors than samples
and when the predictors are highly collinear or linearly dependent (Wold
et al., 2001; de Jong, 1992). It was first evaluated for neuroimaging by
Krishnan et al. (2011) to relate brain function to behavior. Ziegler et al.
(2013) used multivariate PLS correlation to explore the relationship
between cognitive ability patterns and differences in local brain anatomy
in the maturing brain. Singh et al. (2014) used PLSR to quantify
anatomical shape variation in the brain. They used kernel PLSR to find
the relationship between the manifold of diffeomorphisms from atlas to
subject domain and global cognitive and functional assesment test scores.
Whereas Singh et al. were interested in the PLSR regression coefficient,
we aim to find deformation patterns that are most correlated with age,
i.e. the PLSR loadings. With each of these loadings comes a corre-
sponding score, and we use these scores to quantify the distribution of
12
brain morphologies due to aging. The density of a distribution can be
indicated with percentile values: measures specifying the value below
which a given percentage of observations in a group of observations fall.
The morphology distribution, however, is a function of age, and therefore
we fit percentile curves to quantify how this distribution varies with age.
To assess if an individual suffers from accelerated brain aging, its score
can be compared to these percentile curves.

To validate our method, we use 988 structural MR brain scans from
the population-based Rotterdam Scan Study (RSS), a prospective study
among community dwelling subjects aged 45 years and over (Ikram
et al., 2015). The method's robustness against scanning protocol and its
diagnostic value is evaluated using the 988 scans from the RSS and a
selection of 509 scans from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) dataset which is adopted from the study of Cuingnet
et al. (2011). The morphology score distribution and the corresponding
4D atlases are made publicly available through a web-based application
at www.agingbrain.nl.

Extension of preliminary results

Preliminary results of this method were presented at SPIE Medical
Imaging, San Diego 2016 (Huizinga et al., 2016b). In the current work,
we considerably expand the previous study. First, in this version we use
the displacement field inside the brain instead of the transformation
parameters, in order to exclude deformation outside the brain. The
control points of the B-spline transformation model that exist outside the
brain region influence the deformation field both outside and inside the
brain. We do not want deformations in the background to be part of the
modeling, which is why we chose the displacement field inside the brain.
This voxel-based approach also makes the method more generalizable to
other nonparametric registration methods and other voxelwise tissue
property maps. Second, we correct for the subject's head position in the
scanner by removing rigid body motion inside the brain mask from the
deformation field. Third, we introduce a method to determine the
number of PLSR components. Fourth, we analyze the residuals that
contain deformations due to factors other than aging, e.g. unexpected
pathologies. Fifth, we take into account other covariates such as sex and
height. Sixth, we added an evaluation of our method on the ADNI dataset.

Methods

We propose a method for modeling brain morphology and its distri-
bution over the population as a function of age. The model is constructed
using N training images Itrain

n , n 2 f1…Ng, from a population-based cross-
sectional data collection. This population-based model is then used as a
reference to which an individual brain image Ii can be compared. The
concept of the proposed method is shown in Fig. 1. The sections below
explain all the steps of the proposed framework in detail: 2.1) pre-
processing, 2.2) non-rigid groupwise image registration, 2.3) elimination
of translation and rotation, 2.4) partial least squares regression, 2.5)
percentile curve fitting, 2.6) spatio-temporal atlas construction, and 2.7)
individual subject assessment.

Preprocessing

The preprocessing steps are 1) non-uniformity correction of the im-
ages using the N3 algorithm (Tustison et al., 2010) and 2) brain extrac-
tion using a multi-atlas method described in Bron et al. (2014), with a set
of 30 atlases (Gousias et al., 2008; Hammers et al., 2003).

Non-rigid groupwise image registration

The morphological variation is characterized by deformation fields
that map each brain image to a common domain, the template domain
�template. Let x be an image coordinate in �3. The function Itrain

n ðxÞ gives

http://www.agingbrain.nl


Fig. 1. Illustration of the proposed concept. Using training data Itrain
n a model of brain morphology as a function of age is constructed. This model is represented by a set of percentile curves

and a mode of deformation. Subsequently, an individual Ii is compared to the model that is used as reference.
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the intensity of image n at x, i.e. Itrain
n ðxÞ : �n��3��. Let N be the total

number of images in the training set. The aim of the groupwise regis-
tration is to find a set of coordinate transformations TnðxÞ : �template��n,
n 2 f1…Ng, such that the warped images Itrain

n ðTnðx; �nÞÞ are aligned
with each other in the template domain. The image registration is per-
formed with a parametric approach. The degrees of freedom of the
transformation is limited by introducing a parameterization to the
transformation: Tnðx; �nÞ, where �n is a vector containing the trans-
formation parameters of subject n. In our method, these transformations
are determined in two steps. First, we obtain a coarse alignment of all
images in the training set via transformations TA

n ðx; �A
n Þ. Then we use a

non-rigid transformation model, TB
n ðx; �B

n Þ, for a more precise alignment
of the images. Fig. 2 shows an overview of all transformations. This
section explains the transformations and domains shown in the top-half
of this figure. As shown in the top-right part of Fig. 2, transformations
TA

n ðx; �A
n Þ map x from MNI domain �MNI (Mazziotta et al., 2001) to the

subject-specific domains �n. Second, as shown in the top-left part of
Fig. 2, we obtain TB

n : �template��MNI, where TB
n is parameterized by �B

n .
The total transformation from �template to �n is a composition of TA

n

and TB
n .

The TA
n are parameterized by an affine transformation model. The
Fig. 2. Scheme showing the different transformations and domains of the registration framewor
and blue in their domains �n, and how the template domain is constructed from the training da
After each transformation is indicated if it was obtained using a pairwise or a groupwise regis
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parameters �A
n are found by performing a pairwise registration of the

brain mask of each subject to the reference brain mask in the
MNI domain.

The TB
n are parameterized by cubic B-splines (Rueckert et al., 1999).

We chose cubic B-splines, because their compact support property makes
the computation efficient, which is relevant in our large-scale groupwise
image registration problems. The spacing of the control points of the
B-splines is a setting with which the degrees of freedom of the trans-
formation can be controlled. The parameters of the B-spline trans-
formation model, �B

n , are B-spline control point coefficients. To obtain �B
n ,

we use groupwise image registration. During such a registration, �template

is implicitly defined by constraining the sum of all deformations from the
template to each subject to be zero, an approach proposed by Bhatia et al.
(2004) and Balci et al. (2007). To achieve this, �B

n must be optimized
simultaneously for all n 2 f1…Ng. Advantages of groupwise registration
are that the information of all images is taken into account during the
registration and, as opposed to pairwise registration, the result is not
biased towards any chosen reference image.

For the non-rigid groupwise image registration we use the method of
Huizinga et al. (2016a). This method was designed for intra-subject
registration of images originating from a quantitative MRI experiment.
k of the proposed method. The top part shows three different training images in red, green
ta. The bottom half shows how an individual Ii in �i is registered to the template domain.
tration.
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It is therefore robust against arbitrary intensity scaling between the
aligned images. In this work we investigate if the method is applicable to
inter-subject registration as well. The method assumes that, when images
are registered, the intensities can be mapped to a low-dimensional sub-
space. The dimension of this low-dimensional subspace depends on the
model describing the intensity variation in the aligned images. When this
subspace is assumed to be one-dimensional, the intensity may vary due to
a global scale or shift, which is the case for our application. In this case,
the method could be considered as an extension of normalized
cross-correlation from pairwise (N … 2) to groupwise ðN > 2Þ settings.

In our experiments, the image registration was performed with Elastix
(Klein et al., 2010). We used a multi-resolution strategy with four reso-
lutions in which the control point spacing of the B-spline transformation
model is halved with each resolution step, until a final spacing of 10 mm.
The final spacing was determined heuristically.

Individual registration to the template domain
To be able to compare the brain image of an individual, Ii, to the

reference model, we need a deformation field that maps Ii to �template.
Similarly as during the template construction from training images, this
is done in two steps. This section explains the transformations and do-
mains shown in the bottom-half of Fig. 2. First, we register Ii to �MNI

yielding an affine transformation TA
i . Second, we seek a non-rigid

transformation TB
i that maps Ii from �MNI to �template.

A possible approach to finding TB
i would be a pairwise registration of

Ii with one of the registered training images in �template chosen as a
reference. However, this could introduce a bias towards this chosen
reference. Another possibility would be to perform a pairwise registra-
tion of Ii to the mean of the registered training images, IðxÞ …

1
N

P
n

Itrain
n ðTnðxÞÞ

!

for x 2 �template, however, the disadvantage of such an

approach is that I is blurry at the cortex edges which hampers accurate
registration at those locations. Therefore, we use a different approach
that is visualized in Fig. 2 and explained below.

We propose to formulate the non-rigid registration of Ii to the tem-
plate domain as an additional non-rigid groupwise registration, involving
N þ 1 images, namely the N previously registered training images Itrain

n
and the individual image Ii. As shown in the bottom-left part of Fig. 2, this

procedure leads to N transformations ~TB
n ðx; ~�B

n Þ : ~���template and one

transformation ~TB
i ðx; ~�B

i Þ : ~���MNI, where ~� is the common domain of
Itrain
n and Ii. Since the training images Itrain

n had already been aligned
before the registration, it is safe to assume that their transform parame-
ters ~�B

n associated with ~� are approximately equal. A single, unbiased

transformation, from ~� to �template ~TB
t : ~���template, is obtained by

averaging ~�B
n over all n, obtaining a single transform parameter vector ~�B

t :

~�B
t …

1
N

X

n

~�B
n (1)

To bring Ii to �template we finally compute TB
i : �template��MNI as:

TB
i … ~T

B
i

��
~T

B
t

��1�
x; ~�B

t

�
; ~�B

i

�
(2)

where T�1ðx; �Þ is the inverse of Tðx; �Þ, obtained using the procedure
described in Metz et al. (2011). In total one pairwise registration, the
affine registration to MNI space, and one groupwise registration, the
non-rigid registration to �template, are required to analyze a new image Ii.

Elimination of translation and rotation

As global brain shrinkage could be (partially) captured by the affine
transformation TA, we consider the composition of the affine and non-
rigid transformations, TAðTBðxÞÞ. To focus on brain morphology only,
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we propose to extract the rigid body motion, like the arbitrary orientation
of the subject's head in the scanner, from this composition. In this way,
scale and skew transformations are preserved, and any rigid body motion
present in TB is also eliminated.

For any rigid transformation TR
n parameterized by �R

n , the residual
deformation is defined by:

d�
n

�
x; �R

n

�
… TR

n

�
TA

n

�
TB

n

�
x; �B

n

�
; �A

n

�
; �R

n

�
� x: (3)

The rigid transformation parameters of each subject are estimated by:

b�R
n … arg min

�R
n

1
j�maskj

X

x2�mask

��d�
n

�
x; �R

n

���2
; (4)

where �mask is the domain containing voxels inside the brain mask in
�template to ensure that we only evaluate the deformation inside the brain.

In the statistical analysis that follows we will be using d�
nðxÞ b…d�

nðx; b�R
n Þ

for x 2 �mask. The same approach is applied to the individual deforma-
tion field di.

Partial least squares regression

We aim to correlate the deformations obtained by image registration
with age. Let N be the number of subjects in the training set and let
j�maskj … M, then X is the N � 3M matrix of which each row contains
d�

nðxÞ for all x 2 �mask. Let Y be the N � 1 vector containing the corre-
sponding ages of each subject, then PLSR finds the directions in the
deformation space that explain the maximum covariance with age. Let
X0 … ðX � XÞ and let Y0 … ðY � YÞ, where X and Y are the column-wise
data means replicated to all N rows. In PLSR X0 is decomposed into:

X0 … SPT þ E: (5)

Let L be the number of components used in the PLSR, then S are the
N � L scores and P are the 3M � L orthonormal loadings. Matrix E is the
N � 3M residual matrix. The decomposition of X0 is made by maximizing
the covariance between Y0 and a weighted sum of X0. The weight vector
W j for each component 1 � j � L is estimated by solving the following
optimization problem:

max
W j

h
ðX0W jÞTY0

i
(6)

subject to ðX0W jÞTX0W j … 1. The weight vector is found by a singular
value decomposition on R … XT

0Y0 (H�oskuldsson, 1988; de Jong, 1992).
The PLSR scores for component j are defined as Sj … X0W j, and the
loadings of component j are defined as Pj … XT

0Sj. Covariance R is
deflated with each iteration of the algorithm to obtain W j, Sj and Pj

for j � 2.
The number of components used in PLSR is a tradeoff between

overfitting (too many components) or losing valuable information (not
enough components). To determine the optimal number of components
we propose to use the randomization test of Wiklund et al. (2007). In this
test a null-distribution of ðSjÞTY0 is determined by randomly permuting
Y . When the probability of finding the observed ðSjÞTY0 is smaller than �,
the component is significant. Since PLSR is prone to overfitting, we chose
a conservative significance level of � … 0:01. Results of the randomiza-
tion test showed that only the first PLSR component was significant (see
Sec. 4.1). We therefore only used the scores of the first PLSR component,
S1, to describe the brain morphology distribution as a function of age,
and from here on, we omit the superscript 1.

To compare an individual subject to the reference population, the
morphology score of this individual subject, Si, is required. To this end,
the individual deformation field d�

i is projected on W to obtain Si:

Si …
�
d�

i � X
�
W : (7)
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where X is a vector of size 3M with the column-wise means of X.Since an
individual's brain morphology may not only change due to aging but also
due to pathology we also propose to compare the individual's residual to
that of the model. Each row of the residual matrix E contains the non-age-
related deformations for a subject in Itrain

n . The residual norm of Itrain
n is

defined as:

kEkn …

															
X3M

m…1

E2
nm

vuut (8)

where Enm is element ðn; mÞ of matrix E. The residual of an individual is
defined as:

Ei … d�
i � SiPT (9)

Inspection of Ei is important since an individual could have a different
morphology due to other factors than aging. If this is the case, it would
not be visible by the individual's morphology score. We therefore propose
to compare the individual residual norm Ei to the distribution of En in
Itrain
n . If Ei is significantly different from the distribution of En further

inspection of d�
i is necessary.

To perform the PLSR, we implemented the SIMPLS algorithm (de
Jong, 1992) in Python.

Percentile curve �tting

The score of subject n in Itrain
n is referred to as Sn. To visualize the

distribution of scores Sn as function of age we fit percentile curves. These
curves show both the distribution of the morphology scores and how they
vary with age. We refer to the pth% percentile curve at age a as sða; pÞ.

For fitting of percentile curves to the morphology score data, we use
the LMS method (Cole and Green, 1991). The LMS method assumes that
the data is standard normally distributed after applying the Yeo-Johnson
transformation, which is an extension of the Box-Cox transformation
proposed by Cole and Green (1991). This method estimates the
��parameter of the Yeo-Johnson transformation (Yeo and Johnson,
2000) (L), the median (M) and coefficient of variation (S) for the
appropriate morphology score at each age. With the parameters L, M, and
S, percentiles can be computed at each age to obtain a smooth curve. The
smoothness of the fitted curves is influenced by the degrees of freedom �,
a user-defined parameter. In our experiments, we set the smoothness
parameter � to a value of 2 and we deployed the R-package VGAM (Yee,
2010) for the percentile curve fitting.

The value of the morphology score may also be influenced by other
covariates than age, e.g. sex or height, since those covariates may in-
fluence the head size and may therefore affect brain scaling in the
deformation fields that are used in the PLSR. It is therefore desirable to
correct the reference distribution for these covariates. We model the
correction for these two covariates as a linear shift in the morphology
score distribution.

The precision of the estimated percentile curves depends on the
number of datapoints in the appropriate age range. If the data is non-
uniformly distributed over age, it could be that the curve estimation is
not precise in the part where there are very few datapoints. To assess the
precision of the fitted curves, we use a bootstrapping procedure, by
random sampling subjects with replacement and re-estimating the
percentile curves. A distribution of possible curves is collected, from
which confidence intervals at any significance level can be estimated
(Carpenter and Bithell, 2000).

Spatiotemporal atlas construction

The deformation having the highest covariance with age is contained
in the loading vector P. To be able to interpret the morphology score it is
necessary to know what this deformation looks like, and therefore we
15
aim to visualize P as a spatio-temporal atlas. An estimate of the age-
related morphology of subject n is obtained by multiplying score Sn

with P. Instead of multiplying with just one specific score Sn, we multiply
P with sða; pÞ for a chosen range of a and a specific p. We choose to show
the aging trajectory of I. We convert the deformation field in sða; pÞP to B-
spline transformations and invert these to obtain Ta;p

atlasðxÞ. The spatio-
temporal atlas for percentile p and a chosen range of a is then con-
structed by warping I for each a:

Ia;pðxÞ … IðTa;p
atlasðx; �ÞÞ; (10)

Individual subject assessment

Given the distribution of morphology scores and residual magnitudes
of the reference data, outliers from these distributions can be assessed in
terms of percentiles, which is analogous to the use of growth charts to
map child development in terms of height and weight as a function of age
(de Onis et al., 2006). Let pi be the percentile at which the individual
morphology score Si at age ai can be found in the reference morphology
score distribution, after correction for available covariates. Let pjjEjji be
the percentile at which the individual residual magnitude can be found in
the reference residual magnitude distribution, then the status of the brain
morphology of patient i could, for example, be assessed according to the
following set of rules:

1. No accelerated brain aging: 0:05 < pi < 0:95 and 0:05 < pkEik < 0:95
2. At risk of accelerated brain aging: pi > 0:95 and 0:05 < pkEki

< 0:95
3. At risk of unknown pathology: pkEki

> 0:95

In addition, the individual scan Ii should be compared to the spatio-
temporal atlas Iai ;pi , for a qualitative assessment of the morphology due
to aging. In the third case, further investigation of Ii, Ei, and the indi-
vidual deformation d�

i is necessary.

Experiments

In our experiments we used two image databases:

1. The Rotterdam Scan Study (RSS), containing brain scans of non-
demented, asymptomatic subjects,

2. The Alzheimer's Disease Neuroimaging Initiative (ADNI) database,
containing both asymptomatic and symptomatic subjects.

First, the model was applied and validated on the RSS database. Next,
the difference in scores between asymptomatic and symptomatic subjects
was evaluated in the ADNI dataset. Finally, the robustness of the scores
across databases was evaluated.
Data

Rotterdam Scan Study
We used 988 T1w scans (433 male, age … 68.3 ± 13.0 (mean ± SD))

from the population-based RSS, a prospective longitudinal study among
community dwelling subjects aged 45 years and over (Ikram et al., 2015).
Participants with dementia at the time of MRI were excluded (Schrijvers
et al., 2012). All brain scans were acquired on a single 1.5T MRI system
(GE Healthcare, US). The T1w imaging protocol was a 3-dimensional fast
radiofrequency spoiled gradient recalled acquisition in steady state with
an inversion recovery pre-pulse sequence (Ikram et al., 2015). The voxel
size was 0.5 � 0.5 � 0.8 mm3. Besides age and sex, height information of
the partipants was available as well. For six participants, the height
variable was missing, for which we substituted the average height (… 170
cm). We will refer to this dataset as RSS988.
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ADNI
Data used in the preparation of this article were obtained from the

Alzheimers Disease Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early
Alzheimers disease (AD). For up-to-date information, see www.adni-
info.org.

The ADNI cohort used in this article is adopted from the study of
Cuingnet et al. (2011), consisting of an AD patient group, an MCInc group
(mildly cognitive impaired but not converted to AD within 18 months),
an MCIc (mildly cognitive impaired and converted to AD within 18
months), and a cognitive normal group (CN). The inclusion criteria for
participants were defined in the ADNI-GO protocol.3 The AD group
consisted of 137 patients (67 male, age … 76.0 ± 7.3 years) (AD137), the
MCInc group of 134 participants (84 male, age … 74.4 ± 7.2 years)
(MCInc134), the MCIc group of 76 participants (43 male,
age … 74.7 ± 7.4 years) (MCIc76), and the CN group of 162 participants
(76 male, age … 76.2 ± 5.4 years) (CN162). Acquisition had been per-
formed according to the ADNI acquisition protocol (Jack et al., 2008).
The brain scans were acquired on 1.5T MRI systems (GE Healthcare,
Philips Medical Systems, Siemens Medical Solutions) and the T1w im-
aging protocol was a 3-dimensional magnetization prepared rapid
acquisition gradient echo sequence. The voxel size was approximately
1 mm3, with a maximum of 1.5 mm in any direction. Besides age and sex,
height information of the partipants was available as well. For one
participant, the height variable was missing, for which we substituted the
average height of the subjects in RSS988 (… 170 cm). We will refer to the
entire dataset as ADNI509.

Morphology distribution RSS988

We trained the model on RSS988 to visualize the main age-related
deformations in a healthy reference population. Sex and height were
used as covariates.

After the preprocessing step, the brain images were cropped to the
bounding box of the mask and resampled to 1.5 � 1.5 � 1.5 mm3 spacing.
The 988 obtained deformation fields d�, which are used as input of the
PLSR, were downsampled to a 3 � 3 � 3 mm3 spacing and their size was
52 � 66 � 55 voxels. Since the number of parameters with which the
deformation field was generated was much smaller than the number of
voxels in the downsampled field, the downsampling will not influence
the result.

The number of PLSR components was determined by applying the
randomization test to RSS988, using 1000 randomizations of Y . In
addition, we inspected the score distributions, the explained variance in
age, and deformation modes (PLSR loadings) of the first ten components.

Morphology distribution ADNI509

We trained the model ADNI509 and fitted percentile curves on the
scores from each class separately to see if the morphology distribution is
different for the various classes in the ADNI database. Sex and height
were used as covariates.

After the preprocessing step, the brain images were cropped to the
bounding box of the mask and resampled to 1.5�1.5�1.5 mm3 spacing,
to reduce computation time and memory consumption of the groupwise
registration. The obtained 509 deformation fields, which are used as
input for the PLSR, were downsampled to a 3 � 3 � 3 mm3 spacing and
their size was 59 � 66 � 55 voxels.
3 http://www.adni-info.org/Scientists/doc/ADNI_Go_Protocol.pdf.
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Model validation

We validated the model using data from the RSS database, in which
we trained the model on a subset of 888 images, RSS888, and tested on
the remaining 100 images, RSS100. We also validated the model on data
from different databases, in which we trained the model on RSS988 and
tested on the AD137 and CN162.

Leave-100-out validation (1)
The groupwise image registration on RSS988 resulted in 988 brain

deformation fields. In this experiment we evaluate the generalizability of
the PLSR outside the training data. Therefore we randomly selected 888
deformation fields as input of the PLSR. The resulting PLSR weights are
used to compute individual scores on the remaining 100 deformation
fields using Equation (7).

Leave-100-out validation (2)
In this experiment we trained the entire model only on RSS888:

Itrain
n … RSS888. The remaining 100 subjects were treated as entirely new

individuals, Ii … RSS100. RSS100 was registered to �template, which was
constructed from RSS888, and 100 Si were computed. We evaluated if the
scores from the leave-100-out experiment (1) could be reproduced.

Individual subject comparison
In this experiment the training dataset was Itrain

n … RSS988, and the
individual subjects were ICN

i … CN162 and IAD
i … AD137, respectively. We

compared the individual scores SCN
i and the SAD

i to the morphology score
distribution of RSS988, while taking into account the covariates sex and
height. The goals of this experiment were:

� To evaluate if the individual comparison can be performed when
individual subjects are scanned on different scanners with different
scanning protocols.

� To evaluate if healthy subjects from different populations have the
same brain morphology distribution.

� To evaluate if the AD subjects have different morphology scores than
the healthy subjects from a different population.

Results

Morphology distribution RSS988

Results from the randomization test indicated that only the first
component was significantly different from the null-distribution
(p … 2:6�10�10). The second component was not significant
(p … 1:4�10�2). Fig. 3 shows the explained variance in age of the first ten
PLSR components. This figure shows that the first component explains
most variance in age (�60%) and that the following components do not
add much information, which is in agreement with the results of the
randomization test. The score distributions of components two to ten
showed very little to no relation with age and the deformation modes did
not contain clear patterns that can be expected in aging. We therefore
only used the scores of the first PLSR component to describe the brain
morphology distribution as a function of age.

Fig. 4(a) shows Sn of the first PLSR component and the fitted
percentile curves sða; pÞ for p 2 f5; 25; 50; 75; 95g, for male subjects of
height 170 cm, the average height of all subjects in RSS988. Fig. 4(b)
shows Sn of the first PLSR component and the fitted percentile curves for
female subjects of height 150 cm, to show the effect of the covariates on
the morphology score distribution. The distributions have a clear relation
with age. As expected, the scores of short, female subjects are higher than
the scores of male subjects of average height. Fig. 4(c)-(g) shows the main
mode of deformation in P applied to I for RSS988. This mode shows that
the higher Sn, the larger the ventricles, (cortical) atrophy, and
brain shrinkage.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org
http://www.adni-info.org/Scientists/doc/ADNI_Go_Protocol.pdf


Fig. 3. Cumulative explained variance [%] of the first ten PLSR components.
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Morphology distribution ADNI509

Fig. 5 shows Sn and sða; pÞ for p 2 f5; 25; 50; 75; 95g, adjusted for
covariates sex and height, of the model trained on ADNI509. The scores
of CN162 are the lowest, and MCIc76 and AD137 have the highest scores.
Interestingly, a morphology difference between MCInc134 and MCIc76 is
visible. The confidence bounds of the median curves of AD137 and
CN162 do not overlap, indicating that the median curve of the two
groups are significantly different. The confidence bounds of the median
curves of MCInc134 and MCIc76 group overlap slightly, possibly due to
the lower number of subjects in MCIc76.

Distributions of kEk in ADNI509
The distributions of kEk are shown in Fig. 5(f). The Welch's two-

sample t-test was performed to test if the distributions of kEk are
significantly different. Tests were performed between all possible group
pairs. All p-values were higher than the significance level of 0.05, and
therefore no significant difference between the distributions
was observed.
Fig. 4. Morphology scores Sn for all n and sða; pÞ for p 2 f5; 25; 50; 75; 95g for (b) male
subjects of height 170 cm of RSS988, and (b) female subjects of height 150 cm of RSS988.
The 95% confidence intervals were determined with 1000 bootstraps. (c)–(g) The main
mode of deformation where S equals -2�, ��, 0, �, and 2�, with � the standard deviation of
Sn for n 2 f1…988g.
Model validation

Leave-100-out validation (1)
Fig. 6 shows the morphology scores for RSS888 gray and RSS100 test

subjects in red. The morphology scores of the test subjects fall within the
morphology score distribution of the training subjects.

Leave-100-out validation (2)
Fig. 7 shows a scatterplot of the morphology scores of the leave-100-

out (1) experiment versus the leave-100-out (2) experiment. The
morphology scores show a high correlation (Pearson's r … 0:996), but a
small bias is present. The distribution of E of RSS888 is not significantly
different from the distribution of E of RSS988 according to the Welch's
two-sample t-test, as shown in Fig. 8.

Individual subject comparison
Fig. 9 shows the SCN

i and SAD
i projected onto the model of RSS988

(male, 170 cm). Fig. 9(a) shows that 94% of the CN162 lie below the 95%
percentile lines of the RSS distribution. From Fig. 9(b) we see that 34% of
AD137 lie above the 95% percentile, and 76% above the 75% percentile,
indicating that their morphology shows more atrophy than that of
cognitive normals at the same age.

Fig. 10 shows the distributions of kEk of RSS988 subjects and CN162
(a) and AD137 (b). The distributions have overlap, but are significantly
different according to the Welch's two-sample t-test.
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Discussion

We proposed a method for developing a spatio-temporal model of
morphological differences in the brain due to normal aging, to which an
individual's brain morphology can be compared. We applied the frame-
work to a set of 988 images of non-demented aging subjects from a large
population imaging study and on a set of 509 subjects from the case-
control study ADNI. The main mode of deformation due to aging, P,
shows the expected deformation patterns due to aging: larger ventricles,
(cortical) atrophy, and brain shrinkage. We performed various experi-
ments to validate the proposed method. The results of these experiments
are encouraging and show clinical potential.

The leave-100-out experiment (1) showed that the PLSR generalizes
for subjects that were not part of the training set. The leave-100-out
experiment (2) showed that we can reproduce the morphology scores



Fig. 5. In figures (a)-(d) we see the morphology score distribution of each subgroup in ADNI509. The 95% confidence intervals are estimated using 1000 bootstraps. At the age extremities
not many data points are available resulting in wide confidence intervals. For comparison of the four subgroups, Figure (e) shows the median percentile of each subgroup in one graph,
without confidence intervals. This graph shows that the CN and MCInc group have similar morphologies, and that the AD and MCIc group have similar morphologies. The scores of the
latter two are generally higher than the scores of the CN/MCInc group. Figure (f) shows the distributions of E of CN162, MCInc134, MCIc76 and AD137.
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from leave-100-out experiment (1). This indicates that the deformations
resulting from the individual subject registration to the template are
similar to the deformations following from the groupwise registration,
and that the method can be used to compute individual morphology
scores. We did observe a slight bias when comparing the scores of leave-
18
100-out experiment (1) and leave-100-out experiment (2). This is due to
the fact that the starting point of the registration in leave-100-out
experiment (1) is different from the starting point of the registration in
leave-100-out experiment (2), leading to slightly different deforma-
tion fields.



Fig. 6. Morphology scores for 888 training subjects in gray and 100 test subjects in red,
obtained in leave-100-out validation (1).

Fig. 8. Distributions of kEk of training set RSS888 (blue) and test set RSS100 (green).
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The percentile curves computed on the ADNI database showed a
difference between the morphology score distributions of the CN and AD
subgroups (median difference significant, i.e. no overlapping confidence
bands, for the age range 60–72y), and, interestingly, also between MCInc
and MCIc (median difference not significant, i.e. confidence bands
overlap). Although it was not specifically trained to separate the groups,
the model showed that the AD and MCIc patients have, on average,
higher morphology scores than the CN and MCInc groups. The distri-
butions of the norm of the PLSR residual, E, between the four groups was
not significantly different, indicating that the non-age related de-
formations were of similar magnitude.

To evaluate the reproducibility across datasets we computed scores of
both AD and cognitive normal individuals from the ADNI database using
the RSS subjects as reference data. The cognitive normal subjects from
ADNI fell nicely within the morphology score distribution of the cogni-
tive normal subjects from RSS. The AD subjects had on average higher
morphology scores than the cognitively normal subjects. These results
suggest that the proposed method is able to compute individual
morphology scores of subjects from one population when trained on
subjects from another population. We did observe that kEk is different for
the two databases of scans, which we did not see when registering sub-
jects from the same population. Possible causes for this are the presence
of non-age-related morphology differences between the two populations,
e.g. differences in scanner type or protocol, inclusion criteria,
Fig. 7. Morphology scores of the 100 test subjects from leave-100-out validation (1) vs the
scores from leave-100-out validation (2).
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demographics, environmental factors, etc.

Suggestions for future work

Several improvements can be made to the proposed model to increase
sensitivity and performance. Also, the proposed method can be used in a
variety of applications.

The uncertainty in the percentile curves was quantified by boot-
strapping, obtaining confidence intervals for each curve. The uncertainty
on individual morphology scores due to registration errors was not taken
into account in the presented method. However, this could be estimated
by perturbation of the individual deformation field, according to esti-
mations of registration uncertainty. In this way, a distribution of possible
morphology scores for this individual could be obtained. Obtaining
reliable estimates of registration uncertainty is, however, still an active
topic of research (Folgoc et al., 2016; Sokooti et al., 2016; Kybic, 2010).

Overall, the experiments showed that the proposed method is valid
when comparing individual brain morphologies to a (cognitively)
healthy reference population. Diagnostic value of the morphology score
alone, however, is limited due to the high variability between in-
dividuals. In this study, we applied our method to T1-weighted MRI brain
scans, but in principle, it could be applied to scans of other sequences or
modalities. Future work may investigate age and other demographics
related changes in other voxelwise maps, such as diffusion or perfusion
imaging derived maps. This can be accomplished by replacing the
deformation field d� with such a voxelwise map in the template domain.
This could possibly improve discriminative ability between people at risk
of accelerated brain aging and people without risk.

Besides application of this method to voxelwise maps, it can also be
applied to selected points on the surface of a segmented anatomical
structure of interest, for example the hippocampus. In that case, a spatio-
temporal model and its variation in the population of that specific
structure can be studied in more detail and individual anatomical
structures can be compared to a reference shape distribution.

It is clinically relevant to follow how a person's brain morphology
changes with age. The proposed method can be used to compute
morphology scores of individual scans at baseline and at follow-up.
Plotting the baseline and follow-up scores in the percentile curves al-
lows comparing the aging trajectory of an individual to the (cross-
sectional) reference population. Following individual morphology scores
over time allows estimation of the physiological variation in subject
specific aging trajectories. On an individual level, inspection of these
aging trajectories could be relevant in clinical trials to, for example,
investigate if changes in e.g. medication or lifestyle have any effect. A
clinical evaluation of the proposed deformation-based framework would
be necessary to prove its value in the clinic.



Fig. 9. Morphology score distribution (male, 170 cm) of RSS988 in five percentile curves and SCN
i (a) and SAD

i (b). The SCN
i and SAD

i are corrected and projected onto the reference
distribution.
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Limitations

A limitation of using cross-sectional data, which was also mentioned
by (Ziegler et al., 2012), is that effects of different birth cohorts are
not excluded.

Because PLSR tries to maximize the covariance between the
morphology scores and age, and the number of predictor variables is high
(… 3M�N), it is very likely that it will find a linear relationship.
Therefore, when modeling a population, and the relation with age is not
expected to be linear, this may be a limitation of PLSR.

To compute the score of an individual brain image an additional
groupwise registration of all images in the training set plus the individual
brain image(s) has to be performed. This additional groupwise registra-
tion is time-consuming and therefore this is a practical limitation of our
proposed framework. In the current implementation, the registration
takes about two days and has to be performed on a machine capable of
reserving 100 GB of RAM to complete the task. In the future we will
search for possibilities to register an individual brain image to the tem-
plate domain without having to perform an additional groupwise regis-
tration with the already registered training data. In the presented work,
however, the groupwise registration is preferred over a pairwise regis-
tration for obtaining an unbiased result. This is supported by preliminary
experiments which are not shown due to lack of space.
Fig. 10. Distributions of E where the RSS images are Itrain
n for n 2 f1; …; 988g an
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Conclusion

We developed a spatio-temporal model of morphological differences
in the brain due to normal aging. The method provides a representative
distribution of brain morphologies as a function of age instead of a single
population mean morphology. Our method reduces high dimensional
morphology to a single score. This score can be interpreted using the
spatio-temporal atlas showing which deformation due to aging belongs to
that score.

The framework was tested using data from two different datasets.
Experiments showed that the proposed method extracts the expected
deformation patterns due to aging and they showed that on a group
level there is a morphology difference between cognitively normal and
AD subjects, which manifests as accelerated aging, indicating the po-
tential at least for clinical group studies. The spatio-temporal model
can be used to compare an individual's brain morphology to a cogni-
tively healthy reference population. Smooth percentile curves showing
the brain morphology changes as a function of age as well as spatio-
temporal atlases derived from the cognitively healthy reference pop-
ulation (RSS988) are publicly available via an interactive web appli-
cation at www.agingbrain.nl. We believe that this framework has the
potential to be used clinically as an indicator of accelerated
brain aging.
d the ADNI images were ICN
i for i 2 f1; …; 162g and IAD

i for i 2 f1; …; 137g.

http://www.agingbrain.nl


W. Huizinga et al. NeuroImage 169 (2018) 11–22
Con� icts of interest

Wiro J. Niessen, PhD, co-founder, chief scientific officer and share-
holder of Quantib BV, which develops software to extract quantitative
imaging biomarkers from medical imaging data.

Acknowledgments

The research leading to these results has received funding from the
European Union Seventh Framework Programme FP7/2007 - 2013,
project VPH-DARE@IT (grant agreement no: 601055) and from the Eu-
ropean Unions Horizon 2020 research and innovation programme,
project DynaHEALTH (grant agreement no: 633595), project EuroPOND
(grant agreement no: 666992), and from the European Research Council
(ERC), project ORACLE (grant agreement no: 678543).

This research is supported by the Dutch Technology Foundation STW
(grant agreement no: 12723), which is part of the NWO, and which is
partly funded by the Ministry of Economic Affairs.

Data collection and sharing for this project was funded by the Alz-
heimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of
Health Grant U01 AG024904) and DOD ADNI (Department of Defense
award number W81XWH-12-2-0012). ADNI is funded by the National
Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from the following:
AbbVie, Alzheimers Association; Alzheimers Drug Discovery Founda-
tion; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.;
Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its
affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.;
Janssen Alzheimer Immunotherapy Research & Development, LLC.;
Johnson & Johnson Pharmaceutical Research & Development LLC.;
Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.;
NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceu-
tical Company; and Transition Therapeutics. The Canadian Institutes of
Health Research is providing funds to support ADNI clinical sites in
Canada. Private sector contributions are facilitated by the Foundation for
the National Institutes of Health (www.fnih.org). The grantee organi-
zation is the Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimers Therapeutic Research
Institute at the University of Southern California. ADNI data are
disseminated by the Laboratory for Neuro Imaging at the University of
Southern California.

References

Achterberg, H., van der Lijn, F., den Heijer, T., van der Lugt, A., Breteler, M., Niessen, W.,
de Bruijne, M., 2010. Prediction of dementia by hippocampal shape analysis. In:
MICCAI 2010: Medical Image Computing and Computer-assisted Intervention,
Machine Learning in Medical Imaging. Springer, pp. 23–30.

Balci, S., Golland, P., Shenton, M., Wells, M., 2007. Free-form B-spline deformation model
for groupwise registration. In: Proceedings of Medical Image Computing and
Compututer-assisted Intervention. Springer, pp. 23–30.

Baloch, S., Davatzikos, C., 2009. Morphological appearance manifolds in computational
anatomy: groupwise registration and morphological analysis. NeuroImage 45,
S73–S85.

Bhatia, K., Hajnal, J.V., Puri, B., Edwards, A., Rueckert, D., 2004. Consistent groupwise
non-rigid registration for atlas construction. In: Proc. IEEE Int Symp on Biomed
Imaging: Nano to Macro, pp. 908–911.

Brewer, J., 2009. Fully-automated volumetric MRI with normative ranges: translation to
clinical practice. Behav. Neurol. 21, 21–28.

Bron, E., Steketee, R., Houston, G., Oliver, R., Achterberg, H., Loog, M., van Swieten, J.,
Hammers, A., Niessen, W., Smits, M., Klein, S., 2014. Diagnostic classification of
arterial spin labeling and structural MRI in presenile early stage dementia. Hum.
Brain Mapp. 35, 4916–4931.

Carpenter, J., Bithell, J., 2000. Bootstrap confidence intervals: when, which, what?
Statistics Med. 19, 1141–1164.

Cole, T., Green, P., 1991. Smoothing reference centile curves: the LMS method and
penalized likelihood. Stat. Med. 11, 1305–1319.

Costafreda, S., Dinov, I., Tu, Z., Shi, Y., Liu, C., Kloszewska, I., Mecocci, P., Soininen, H.,
Tsolaki, M., Vellas, B., Wahlund, L., Spenger, C., Toga, A., Lovestone, S., Simmons, A.,
21
2011. Automated hippocampal shape analysis predicts the onset of dementia in mild
cognitive impairment. Neuroimage 56, 212–219.

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Leh’ericy, S., Habert, M., Chupin, M.,
Benali, H., Colliot, O., 2011. Automatic classification of patients with Alzheimers
disease from structural MRI: a comparison of ten methods using the ADNI database.
NeuroImage 56, 766781.

Davis, B., Fletcher, P., Bullitt, E., Joshi, S., 2010. Population shape regression from
random design data. Int. J. Comput. Vis. 90, 255–266.

Dittrich, E., Raviv, T., kasprian, G., Donner, R., Brugger, P., Prayer, D., Langs, G., 2014.
A spatio-temporal latent atlas for semi-supervised learning of fetal brain
segmentations and morphological age estimation. Med. Image Anal. 18, 9–21.

Fishbaugh, J., Durrleman, S., Prastawa, M., Gerig, G., 2017. Geodesic shape regression
with multiple geometries and sparse parameters. Med. Image Anal. 39, 1–17.

Folgoc, L.L., Delingette, H., Criminisi, A., Ayache, N., 2016. Quantifying registration
uncertainty with sparse Bayesian modelling. IEEE Trans. Med. Imaging 36, 607–617.

Gousias, I., Rueckert, D., Heckemann, R., Dyet, L., Edwards, J.B.A., Hammers, A., 2008.
Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest.
Neuroimage 40, 672–684.

Hammers, A., Allom, R., Koepp, M., Free, S., Myers, R., Lemieux, L., Mitchell, T.,
Brooks, D., Duncan, J., 2003. Three-dimensional maximum probability atlas of the
human brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 19,
224–247.

H�oskuldsson, A., 1988. PLS regression methods. J. Chemom. 2, 211–228.
Huizinga, W., Poot, D., Guyader, J.M., Klaassen, R., Coolen, B., van Kranenburg, M., van

Geuns, R., Uitterdijk, A., Polfliet, M., Vandemeulebroucke, J., Leemans, A.,
Niessen, W., Klein, S., 2016a. PCA-based groupwise image registration for
quantitative MRI. Med. Image Anal. 29, 65–78.

Huizinga, W., Poot, D., Roschchupkin, G., Bron, E., Ikram, M., Vernooij, M., Rueckert, D.,
Niessen, W., Klein, S., 2016b. Modeling the brain morphology distribution in the
general aging population. In: Proc. SPIE 9788, Medical Imaging 2016: Biomedical
Applications in Molecular, Structural, and Functional Imaging, 9788 – 9788 – 7.

Ikram, M., van der Lugt, A., Niessen, W., Koudstaal, P., Krestin, G., Hofman, A., Bos, D.,
Vernooij, M., 2015. The Rotterdam Scan Study: design update 2016 and main
findings. Eur. J. Epidemiol. 30, 1299–1315.

Jack, C., Bernstein, M., Fox, N., Thompson, P., Alexander, G., Harvey, D., Borowski, B.,
Britson, P., Whitwell, J., Ward, C., Dale, A., Felmlee, J., Gunter, J., Hill, D.,
Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C., Krueger, G.,
Ward, H., Metzger, G., Scott, K., Mallozzi, R., Blezek, D., Levy, J., Debbins, J.,
Fleisher, A., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., Weiner, M.,
2008. The Alzheimer�s disease neuroimaging initiative (ADNI): MRI methods.
J. Magnetic Reson. Imaging 27, 685–691.

de Jong, S., 1992. SIMPLS: an alternative approach to partial least squares regression.
Chemom. Intelligent Laboratory Syst. 18, 251–263.

Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J., 2010. elastix: a toolbox for
intensity based medical image registration. IEEE Trans. Med. Imaging 29, 196–205.

Krishnan, A., Williams, L., McIntosh, A., Abdi, H., 2011. Partial least squares (PLS)
methods for neuroimaging: a tutorial and review. NeuroImage 56, 455–475.

Kybic, J., 2010. Bootstrap resampling for image registration uncertainty estimation
without ground truth. IEEE Trans. Image Process. 19, 64–73.

Marquand, A., Rezek, I., Buitelaar, J., Beckmann, C., 2016. Understanding heterogeneity
in clinical cohort using normative models: beyond case-control studies. Biol.
Psychiatry 80, 552–561.

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T.,
Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D.,
Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S.,
Parsons, L., Narr, K., Kabani, N., Goualher, G.L., Boomsma, D., Cannon, T.,
Kawashima, R., Mazoyer, B., 2001. A probabilistic atlas and reference system for the
human brain: international consortium for brain mapping (ICBM). Philosofical Trans.
R. Soc. Lond. 356, 1293–1322.

Metz, C., Klein, S., Schaap, M., van Walsum, T., Niessen, W., 2011. Nonrigid registration
of dynamic medical imaging data using nDþt B-splines and a groupwise optimization
approach. Med. Image Anal. 15, 238–249.

de Onis, M., Onyango, A., Borghi, E., Siyam, A., Pinol, A., et al., 2006. WHO Child Growth
Standards: Length/height-for-age, Weight-for-age, Weight-for-length, Weight-for
height and Body Mass Index-for-age: Methods and Development. Technical Report.
WHO Department of Health and Nutrition.

Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D., 1999. Nonrigid
registration using free-form deformations: application to breast MR images. IEEE
Trans. Med. Imaging 18, 712–721.

Schrijvers, E., Verhaaren, B., Koudstaal, P., Hofman, A., Ikram, M., Breteler, M., 2012. Is
dementia incidence declining?: Trends in dementia incidence since 1990 in the
Rotterdam Study. Neurology 78, 1456 – 1163.

Serag, A., Aljebar, P., Ball, G., Counsell, S., Boardman, J., Rutherford, M., Edwards, D.,
Hajnal, J., Rueckert, D., 2012. Construction of a consistent high-definition spatio-
temporal atlas of the developing brain using adaptive kernel regression. NeuroImage
59, 2255–2265.

Singh, N., Fletcher, P., Preston, J., King, R., Marronb, J., Weinerc, M., Joshi, S.,
Alzheimers Disease Neuroimaging Initiative (ADNI), 2014. Quantifying anatomical
shape variations in neurological disorders. Med. Image Anal. 18, 616–633.

Sokooti, H., Saygili, G., Glocker, B., Lelieveldt, B., Staring, M., 2016. Accuracy estimation
for medical image registration using regression forests. In: MICCAI 2016: Medical
Image Computing and Computer-assisted Intervention. Springer, pp. 107–115.

Tustison, N., Avants, B., Cook, P., Zheng, Y., Egan, A., Yushkevich, P., Gee, J., 2010.
N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320.

http://www.fnih.org
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref1
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref1
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref1
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref1
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref1
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref2
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref2
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref2
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref2
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref3
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref3
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref3
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref3
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref4
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref4
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref4
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref4
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref5
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref5
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref5
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref6
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref6
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref6
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref6
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref6
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref7
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref7
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref7
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref8
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref8
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref8
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref9
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref9
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref9
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref9
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref9
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref10
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref10
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref10
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref10
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref11
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref11
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref11
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref12
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref12
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref12
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref12
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref13
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref13
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref13
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref14
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref14
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref14
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref15
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref15
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref15
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref15
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref16
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref16
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref16
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref16
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref16
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref17
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref17
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref17
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref18
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref18
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref18
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref18
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref18
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref19
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref19
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref19
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref19
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref19
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref19
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref20
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref20
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref20
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref20
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref21
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref22
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref22
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref22
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref23
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref23
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref23
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref24
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref24
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref24
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref25
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref25
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref25
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref26
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref26
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref26
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref26
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref27
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref27
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref27
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref27
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref27
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref27
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref27
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref27
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref28
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref28
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref28
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref28
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref28
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref29
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref29
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref29
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref29
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref30
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref30
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref30
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref30
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref31
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref31
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref31
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref31
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref32
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref32
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref32
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref32
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref32
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref33
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref33
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref33
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref33
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref34
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref34
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref34
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref34
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref35
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref35
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref35


W. Huizinga et al. NeuroImage 169 (2018) 11–22
Vernooij, M., Smits, M., 2012. Structural neuroimaging in aging and Alzheimer's disease.
Neuroimaging Clin. N. Am. 22, 33–55.

Wiklund, S., Nilsson, D., Eroksson, L., Sj�ostr�om, M., Wold, S., Faber, K., 2007.
A randomization test for PLS component selection. J. Chemom. 21, 427–439.

Wold, S., Sj�ostr�om, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics.
Chemom. Intelligent Laboratory Syst. 58, 109–130.

Yee, T., 2010. The VGAM package for categorical data analysis. J. Stat. Softw. 32, 1–34.
Yeo, I., Johnson, R., 2000. A new family of power transformations to improve normality

or symmetry. Biometrika 87, 954–959.
22
Ziegler, G., Dahnke, R., Winkler, A., Gaser, C., 2013. Partial least squares correlation of
multivariate cognitive abilities and local brain structure in children and adolescents.
NeuroImage 82, 284–294.

Ziegler, G., Dhanke, R., Gaser, C., 2012. Models of the aging brain structure and
individual decline. Front. Neuroinformatics 6, 1–16.

Ziegler, G., Ridgway, G., Dahnke, R., Gaser, C., for The Alzheimer’s Disease Neuroimaging
Initiative, 2014. Individualized Gaussian process-based prediction and detection of
local and global gray matter abnormalities in elderly subjects. NeuroImage 97,
333–348.

http://refhub.elsevier.com/S1053-8119(17)30867-4/sref36
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref36
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref36
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref37
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref37
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref37
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref37
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref37
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref38
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref38
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref38
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref38
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref38
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref39
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref39
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref40
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref40
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref40
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref41
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref41
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref41
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref41
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref42
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref42
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref42
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref43
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref43
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref43
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref43
http://refhub.elsevier.com/S1053-8119(17)30867-4/sref43

	A spatio-temporal reference model of the aging brain
	Introduction
	Extension of preliminary results

	Methods
	Preprocessing
	Non-rigid groupwise image registration

	Experiments
	Data

	Results


