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a b s t r a c t 

NiTi shape memory alloys (SMAs) exhibit distinct thermo-mechanical behaviors affected by the loading 

frequency, ambient conditions, and the specimen geometry. The effects of these factors are essentially 

due to the competition of different timescales in phase transitions of NiTi SMAs. However, quantify- 

ing the timescale competition still remains a challenge for SMAs subjected to force- or displacement- 

controlled cyclic loadings. Here we present a thermo-mechanically coupled model for one-dimensional 

SMA bars to address the effects of timescale competition on the thermo-mechanical responses. Scaling 

the model gives a dimensionless number λ indicating the ratio of the loading time to the characteris- 

tic time of heat transfer (affected by ambient conditions and the specimen geometry). The model shows 

that it is the timescale ratio λ that dictates the thermo-mechanical responses. Comparison of simulation 

results with experimental data validates the coupled model and the effects of the timescale ratio λ on 

the thermo-mechanical responses. The coupled model can predict the responses of SMAs under different 

combinations of external loadings and ambient conditions and thus provide guidelines for experimental 

design. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

Superelastic NiTi shape memory alloys (SMAs) have been

idely used in practical applications from biomedical stents to vi-

ration control devices ( Lagoudas, 2008; Jani et al., 2014; Zhuo

t al., 2019 ) and thereby attracted extensive research. The ther-

al and mechanical behaviors of SMAs are intrinsically coupled

hrough phase transitions ( Shaw, 20 0 0; Yin et al., 2014; Morin

t al., 2011b ). In spite of broad constitutive models ( Matsuzaki

nd Naito, 2004; Cisse et al., 2016 ) available for SMAs, modeling

f the timescale competition during SMA phase transitions ( He

t al., 2010; He and Sun, 2011; Yin et al., 2013, 2014 ) still re-

uires further improvement to consider general external loading

odes. For insights into the timescale competition and its im-

act on SMA responses, we present a thermo-mechanically cou-

led model with explicit terms expressing the coupling between

he two fields and the timescale competition, and the model is

ailored specifically to a one-dimensional SMA bar under force- or

isplacement-controlled cyclic loadings. 
∗ Corresponding author. 

E-mail address: mzhuo@connect.ust.hk 
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The mechanical and thermal fields are fully coupled during

hase transitions of NiTi SMAs. On the one hand, the stress-

nduced phase transitions cause temperature variation. Under ex-

ernal loadings, SMA phase transitions are accompanied by re-

ease (austenite to martensite A → M) and absorption (M → A)

f latent heat ( Auricchio and Sacco, 2001; Bernardini and Pence,

0 02; Auricchio et al., 20 08; Morin et al., 2011a; Yin et al., 2014 ).

part from the latent heat, the intrinsic dissipation of mechanical

nergy, manifested as the stress strain hysteresis, is always con-

erted into thermal energy as another heat source, which is about

ne order of magnitude smaller than the latent heat ( Yin et al.,

014 ). The released/absorbed heat at the domain front of phase

ransitions will transfer via conduction within the specimen and

hrough convection between the material and the ambient envi-

onment ( Sun et al., 2012 ), thus leading to temperature variation

n the specimen. On the other hand, the temperature change af-

ects the stress strain responses of NiTi SMA bars. According to

lausius-Clapeyron relation ( Yin et al., 2014 ), the transition stress

s temperature-dependent: under isothermal conditions, the higher

he ambient temperature, the higher the transition stress ( Yin

t al., 2013, 2014 ). It is remarked that for general thermo-elastic

aterials, the mechanical and thermal fields are actually slightly
under the CC BY-NC-ND license. 
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coupled (Gough-Joule effect) ( Schweizer and Wauer, 2001; Het-

narski and Eslami, 2009 ), but the coupling is negligible compared

to that from phase transitions. The thermo-mechanical coupling

accounts for experimental observations such as the strong depen-

dence of thermo-mechanical responses on loading rates ( Ortíin and

Planes, 1989; Leo et al., 1993; Shaw and Kyriakides, 1995, 1997;

Entemeyer et al., 20 0 0; Lim and McDowell, 20 02; Auricchio et al.,

2008; He and Sun, 2010a, 2010b; Zhang et al., 2010; Sun et al.,

2012; Morin et al., 2011a, 2011b; Grandi et al., 2012 ) (especially in

cyclic loading and deformation ( Yin et al., 2014 )), on ambient con-

ditions ( Leo et al., 1993; Shaw and Kyriakides, 1995; Iadicola and

Shaw, 2004; Shaw et al., 2008; Mirzaeifar et al., 2011; Grandi et al.,

2012 ), and on the specimen geometry ( Shaw et al., 2008; Mirzaei-

far et al., 2011 ). 

To understand these observed effects, different timescales in

phase transitions need to be identified. For an SMA bar under ten-

sile loading, two timescales exist in the mechanical field: one is

the characteristic time for stress wave propagation in the speci-

men ( Shaw et al., 2008 ); the other is the characteristic time of

loading. Usually, the loading timescale is much longer than that

of the stress wave propagation in tensile tests, rendering the bar

in mechanical equilibrium at each time instant. This situation is

called the quasi-static loading, under which the stress can be safely

assumed uniform throughout the bar. Associated with the ther-

mal field are the characteristic time of heat conduction within the

specimen and the characteristic time of convective heat transfer.

Thermal field is intrinsically heterogeneous due to formation and

propagation of localized phase-transition domains ( Shaw, 20 0 0;

Sun and Li, 2002; Feng and Sun, 2006; Churchill et al., 2009; He

and Sun, 2010b; Zhang et al., 2010 ). Based on experimental obser-

vations ( Yin et al., 2014 ), transition domains randomly form in the

specimen and heat conduction is much faster than the heat re-

lease/absorption at domain fronts. Thus, we ignore the timescale

of heat conduction and the spatial heterogeneity of temperature in

the spirit of the lumped analysis ( Cotta and Mikhailov, 1997; Yin

et al., 2014 ). In conclusion, the two timescales of loading and con-

vective heat transfer are of major importance, and their competi-

tion is responsible for the aforementioned effects. 

A number of constitutive models (together with the heat equa-

tion and suitable numerical techniques) have been developed to

describe the thermo-mechanical responses of SMAs. Liang and

Rogers (1990) and Brinson (1993) developed a one-dimensional

constitutive model to describe thermo-mechanical behavior of

SMAs, reproducing pseudo-elastic and shape memory effects.

Abeyaratne and Kim (1997) presented a one-dimensional model

for SMAs under cyclic loadings. Bernardini and Pence (2002) de-

rived models for macroscopic behavior of SMAs based on a free en-

ergy function and a dissipation function and presented thermody-

namic driving forces to account for the hysteresis. Bernardini and

Rega (2017) recently proposed a comprehensive thermomechani-

cal modeling framework and compared the performances of vari-

ous less-refined SMA models. In particular, the authors delivered

a germane discussion on the thermomechanical coupling behavior.

Auricchio and Sacco (2001) and Auricchio et al. (2008) established

a uniaxial constitutive model based on Helmholtz free energy

with an internal scalar variable—the martensite fraction; the model

considered latent heat and mechanical dissipation simultaneously.

Christ and Reese (2009) proposed a thermo-mechanically coupled

SMA model in the framework of large strains, with the tension

compression asymmetry considered. Morin et al. (2011a) modi-

fied the three-dimensional ZM model ( Zaki and Moumni, 2007a,

20 07b; Moumni et al., 20 08 ) to take into account thermo-

mechanical coupling, and then implemented the coupled ZM

model into a finite element code for simulation of a supere-

lastic SMA cylinder. The coupled model was also used to com-

pare simulations with experimental results of SMA wires under
yclic loading ( Morin et al., 2011b ). Lagoudas and coworkers ( Boyd

nd Lagoudas, 1996; Lagoudas et al., 2012 ) presented a three di-

ensional thermo-mechanical model that captured the smooth

ransition in the thermal and mechanical responses and added

tress dependency to the concept of critical thermodynamic force.

randi et al. (2012) proposed a one-dimensional Ginzburg–Landau

odel for the macroscopic behavior of SMAs. The influences of the

train rate and ambient conditions on the responses were high-

ighted. Yu et al. constructed a crystal plasticity based constitutive

odel ( Yu et al., 2013 ) to describe the cyclic deformation of NiTi

MAs and then extended it to describe rate-dependent cyclic de-

ormation ( Yu et al., 2014 ) by considering the internal heat pro-

uction and temperature evolution. Later on they proposed a 3D

hermo-mechanical model ( Yu et al., 2015 ) to consider dislocation

lipping in austenite phase. Armattoe et al. (2016) proposed a cou-

led thermo-mechanical model for SMAs focusing on latent heat

ffects during forward and reverse phase transformations. 

The above coupled models can be implemented to simulate

he effects of the multiple factors: the loading rate, ambient con-

itions, and the specimen geometry ( Morin et al., 2011a, 2011b;

randi et al., 2012; Mirzaeifar et al., 2011 ). However, these effects

ere often studied individually. Typically, the thermo-mechanical

esponses ( e.g. , stress strain curves, temperature evolution, and the

ysteresis) were shown as functions of the applied strain rate with

he heat transfer coefficient and specimen radius fixed at various

alues. For example, the non-monotonic strain-rate dependence

urve of the hysteresis was shown to move towards higher strain

ates when the heat transfer coefficient increases ( Morin et al.,

011a; Grandi et al., 2012 ) but towards lower rates if the specimen

adius increases ( Morin et al., 2011a ). These observations suggest

he potential to incorporate the loading rate, ambient conditions,

nd the specimen geometry into a single parameter for better un-

erstanding of the governing mechanism. 

Actually, recent experimental and modeling studies ( He et al.,

010; He and Sun, 2011; Yin et al., 2013, 2014 ) have shown

hat the effects of these factors are attributed to the timescale

ompetition during SMA phase transitions. He et al. (2010) and

in et al. (2013) experimentally showed the non-monotonic depen-

ence of the hysteresis on the timescale competition that reflects

he strain rate and ambient conditions. He and Sun (2011) pre-

ented a model to explain and quantify the strain-rate depen-

ence of the hysteresis: they solved the heat transfer equa-

ion and calculated the hysteresis from the temperature pro-

le. Yin et al. (2014) reported systematic experimental results of

he thermo-mechanical responses at a wide range of frequencies.

hese studies found that the frequency-dependent variations in

emperature, stress, and hysteresis are determined by the com-

etition between the time of the heat release/absorption ( i.e. , the

hase transition time) and the time of the heat transfer to the am-

ient. However, to connect the phase transition timescale to the

xternal loading timescale, the modeling in these studies relies on

he assumption that the latent heat release/absorption linearly de-

ends on the applied strain rate. This assumption ignores the time

or elastic deformation and thus is only suited to the displacement-

ontrolled loading but not to the force-controlled case. Moreover,

he evolution of the stress strain curve was not explicitly modeled

nd predicted. 

The timescale competition is crucial to advancing our un-

erstanding of the resultant effect of the previously mentioned

hree factors, but it still remains a challenge to incorporate all

he factors into the timescale competition by developing a cou-

led model that allows for general external loading modes and

redicts both the mechanical and thermal responses. This study

ims to quantify the timescale competition by presenting a one-

imensional model ( Section 2 ) with clearly-formulated coupling

erms, followed by scaling of the thermo-mechanically coupled
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Fig. 1. Series model of a one-dimensional SMA bar under tensile loading. Here ξ

represents martensite volume fraction. 
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odel ( Section 3.1 ). Built on many of the ideas in the previously

ited literature, the one-dimensional model consists of the stress

train relation ( Section 2.2 ), the heat equation ( Section 2.5 ), and

volution rules ( Section 2.4 ) to describe the progress of phase

ransitions. Scaling the governing equations permits us to derive

 dimensionless number—the two-timescale ratio λ ( Section 3.1 ).

hen we study the effects of λ on the thermal and mechanical re-

ponses, in particular the damping capacity ( Section 3.2 ). For the

urpose of validation, we compare the model predictions with ex-

erimental results ( Section 4 ). The numerical procedures (return

apping algorithm ( Simo and Hughes, 1998 )) for solving the gov-

rning equations are outlined in Appendix C . 

. Thermo-mechanically coupled model 

Here we consider a one-dimensional bar under quasi-static ten-

ile loading. Under this setting we assume uniform axial stress σ
n the bar. With the lumped analysis ( Cotta and Mikhailov., 1997;

in et al., 2014 ), we further assume a uniform thermal field and

se the average temperature T to describe the whole bar. Spe-

ific Gibbs free energy of an SMA bar ( Section 2.1 ) is calcu-

ated by the rule of mixtures with martensite volume fraction as

he internal variable; the stress strain relation ( Section 2.2 ) and

eat equation ( Section 2.5 ) are thus derived according to the first

nd second laws of thermodynamics ( Appendix A ). To model the

tress strain hysteresis, we assume positive and negative thermo-

ynamic driving forces ( Section 2.3 ) in the forward and reverse

hase transitions, respectively; the relation between the thermo-

ynamic driving force and martensite volume fraction ( Section 2.4 )

s proposed on an empirical basis. Finally, prescribed strain or

tress ( Section 2.6 ) is also included to complete the coupled model.

.1. Gibbs free energy of an SMA bar 

For a linear elastic bar, the specific Gibbs free energy is readily

vailable in references ( Hetnarski and Eslami, 2009 ) and expressed

ere as 

 = −σ 2 

2 E 
− α( T − T 0 ) σ + c σ

(
T − T 0 − T ln 

T 

T 0 

)
+ u 0 − T s 0 , (1) 

here E is the Young’s modulus, α is the thermal expansion co-

fficient, c σ is the specific heat capacity (per unit volume) at a

onstant stress, and u 0 and s 0 are the initial internal energy and

ntropy, respectively, per unit volume at reference temperature T 0 
n the stress-free state. Here the stress σ refers to the axial stress

s a scalar, not a tensor in the three-dimensional setting. 

Now we extend the free energy expression to an NiTi SMA bar.

ithout loss of generality, the SMA bar consists of martensite with

olume fraction ξ and austenite with volume fraction ( 1 − ξ ). Here

takes value from 0 to 1: ξ = 0 and ξ = 1 correspond to pure

ustenite and pure martensite, respectively; otherwise, the bar is a

ixture of austenite and martensite. Since the axial stress is uni-

orm throughout the bar, we use a series model (Reuss bound,

ig. 1 ) to describe the bar composition, following Brinson and

uang (1996) and Auricchio and Sacco (1997) . 

In the series model, austenite is linear elastic, and its Gibbs free

nergy is expressed as 

 A = − σ 2 

2 E 
− αA ( T − T 0 ) σ + c A σ

(
T − T 0 − T ln 

T 

T 

)
+ u 0 A − T s 0 A . 
A 0 
(2) 

owever, martensite should be split into a linear elastic part and

 transformed part that accounts for the transformation strain. The

ork done on the transformation strain is not dissipated but stored

s potential energy in the transformed part of martensite. It will be

eleased after the completion of the reverse phase transition from

artensite to austenite. Gibbs free energy of martensite per unit

olume is then given by 

 M 

= − σ 2 

2 E M 

− αM 

( T − T 0 ) σ + c M 

σ

(
T − T 0 − T ln 

T 

T 0 

)
+ u 0M 

− T s 0M 

− εL σ, (3) 

here the extra term −εL σ represents the stored potential energy

ue to the transformation strain. 

Thus, the specific Gibbs free energy of the SMA bar can be cal-

ulated by the rule of mixtures: 

 mix = ξg M 

+ ( 1 − ξ ) g A 

= − σ 2 

2 E ( ξ ) 
− α( T − T 0 ) σ − ξεL σ + c σ

(
T − T 0 − T ln 

T 

T 0 

)
+ u 0 ( ξ ) − T s 0 ( ξ ) , (4) 

here 

 ( ξ ) = [ ξ/E M 

+ (1 − ξ ) /E A ] 
−1 

, (5) 

 0 ( ξ ) = ξu 0M 

+ ( 1 − ξ ) u 0 A , (6) 

 0 ( ξ ) = ξ s 0M 

+ ( 1 − ξ ) s 0 A . (7) 

n Eq. (4) , we neglect the small difference in thermal expansion

oefficient α and specific heat capacity c σ between martensite and

ustenite and assume they are the same for both phases ( Lagoudas,

008; Morin et al., 2011a ). 

.2. Constitutive relations 

Substituting Gibbs free energy of the SMA bar Eq. (4) into

q. (A.11) , we obtain the following constitutive equations 

= 

σ

E ( ξ ) 
+ ξεL + α( T − T 0 ) , (8) 

 = ασ + c σ ln 

T 

T 0 
+ s 0 (ξ ) , (9) 

here E ( ξ ) and s 0 ( ξ ) are defined in Eqs. (5) and (7) , respectively.

nlike that stress σ and temperature T are assumed uniform,

train ε in Eq. (8) and entropy s in Eq. (9) are volume-averaged

alues of the whole bar. 

.3. Thermodynamic driving force 

In view of Eq. (A.11) , the Clausius-Planck inequality (A.10) will

e reduced to 

 m 

= − ∂g 

∂ζ
: ˙ ζ ≥ 0 . (10) 

or the SMA bar, martensite volume fraction ξ can be consid-

red as the internal variable ( Auricchio and Sacco, 2001; Zaki and

oumni, 2007b; Lagoudas et al., 2012 ) to replace ζ. In Eq. (10) , we

an define the energy derivative term as the thermodynamic driv-

ng force � for the forward phase transition (A → M), conjugate

o the internal variable ξ in the similar way as Eq. (A.11) : 

= −∂g mix 

∂ξ
= g A − g M 

. (11) 
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Fig. 2. Stress-temperature ( σ -T ) phase diagram (a) and control driving force 	 versus martensite volume fraction ξ (b). In panel (a), M s and M f are martensite start and 

finish temperatures for A → M phase transition, while A s and A f are austenite start and finish temperatures for M → A phase transition. In panel (b), 	 = −T s 
s 
0 

at point C 

and 	 = −T f 
s 
0 

at point D. IJ represents the loading/unloading path in the case of incomplete phase transitions ( Appendix B ). (For interpretation of the references to color 

in this figure, the reader is referred to the web version of this article.) 
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Thus, the physical meaning of the thermodynamic driving force is

the Gibbs free energy difference between the two phases. To calcu-

late the Gibbs free energy difference (11) , we subtract Eq. (3) from

Eq. (2) and obtain 

�( σ, T ) = σεL − T 
s 0 + 
u 0 , (12)

where 
s 0 = s 0A − s 0M 

and 
u 0 = u 0A − u 0M 

. Here we ignore the

small elastic strain energy difference between the two phases so

that they can cancel out each other. 

Substituting the thermodynamic driving force � into Eq. (10) ,

we obtain a more concise form of the Clausius-Planck inequality: 

D = � ˙ ξ ≥ 0 . (13)

The non-negative dissipation restriction (13) indicates that positive

thermodynamic driving force ( � > 0, g A > g M 

) corresponds to the

forward phase transition (A → M, ˙ ξ ≥ 0 ), while negative thermo-

dynamic driving force ( � < 0, g A < g M 

) leads to the reverse phase

transition (M → A, ˙ ξ ≤ 0 ). If the thermodynamic driving force is

zero ( � = 0 , g A = g M 

), the two phases are in equilibrium and 

˙ ξ
can be either positive, negative or zero. 

2.4. Evolution rules 

As Eq. (12) shows, the thermodynamic driving force � for

phase transitions is a combination of stress and temperature; this

agrees with the fact that phase transitions are driven by stress

and/or temperature. However, we have not established any rela-

tion between thermodynamic driving force and martensite volume

fraction. To this end, we introduce an additional interaction energy

term expressed by 

E inter = −�ξ( 1 − ξ ) , (14)

where � is a positive material constant ensuring negative interac-

tion energy. This energy form follows the choice in Bernardini and

Pence (2002) and is chosen because it is the simplest one that sat-

isfies the intrinsic requirement of interaction energy: it should be

zero for pure martensite ( ξ = 1 ) and for pure austenite ( ξ = 0 ). 

The total Gibbs free energy is thus modified to 

g mix = − σ 2 

2 E ( ξ ) 
− α( T − T 0 ) σ − ξεL σ + c σ

(
T − T 0 − T ln 

T 

T 0 

)
+ u 0 ( ξ ) − T s 0 ( ξ ) − �ξ( 1 − ξ ) , (15)

and the thermodynamic driving force is changed to 

�( σ, T ) = 	 + 
u 0 − �( 2 ξ − 1 ) , (16)
here 	 is defined as the control driving force ( Bernardini and

ence, 2002 ) 

= σεL − T 
s 0 , (17)

s a linear combination of the two state variables σ and T . 

At equilibrium, the minimization of the total Gibbs free energy

 mix requires the thermodynamic driving force to be zero ( � = 0 ),

hich gives the relation (evolution rule) between martensite vol-

me fraction and control driving force: 

= 

	 + 
u 0 + �

2�
. (18)

he null thermodynamic driving force, or Eq. (18) , corresponds to

 transition band zone delimited by two dashed boundary lines in

he σ − T phase diagram ( Fig. 2 a). In the stress-free state, the for-

ard phase transition starts at T s with ξ = 0 and ends at T f with

= 1 . Substituting these two conditions into Eq. (18) gives 

u 0 = 

T s + T f 
2 


s 0 and � = 

T s − T f 
2 


s 0 . (19)

hus, the evolution rule (18) changes to 

= 

	( σ, T ) + T s 
s 0 

( T s − T f ) 
s 0 
, (20)

hich exactly represents line CD in Fig. 2 b. 

The phase transition line CD (or � = 0 in essence) represents

 reversible loading-unloading path and no hysteresis is formed

uring the loading-unloading cycle. The null energy dissipation is

owever in contrast to the experimental observation of a hystere-

is loop in the stress strain curve during phase transitions. Due to

he frictional forces resisting the motion of interfaces and energy

arrier between the two phases, extra energy is always needed to

vercome these obstacles and to proceed the phase transition. 

To model the hysteresis, we choose a positive thermodynamic

riving force for the forward phase transition and a negative force

or the reverse phase transition, in accordance with the non-

egative dissipation restriction (13) . Hence, in Fig. 2 a, the transi-

ion band delimited by the two dashed lines is split into two band

ones: the left-hand one with � > 0 is for A → M phase tran-

ition and the other with � < 0 for M → A phase transition. In

he case of null stress, A → M phase transition starts at martensite

tart temperature M s and ends at martensite finish temperature M f ,

hile M → A phase transition starts at austenite start tempera-

ure A s and ends at austenite finish temperature A f ( Brinson, 1993;

rinson and Huang, 1996; Auricchio et al., 2008 ). 

Accordingly in Fig. 2 b, the reversible loading-unloading path CD

s split into the forward loading path and the reverse unloading



M. Zhuo / International Journal of Solids and Structures 193–194 (2020) 601–617 605 

Table 1 

Governing equations for an SMA bar under prescribed loadings. 

1. prescribed stress or strain: a σ = 

σmax 

2 
( 1 − cos ωt ) or ε = 

εmax 

2 
( 1 − cos ωt ) ; (30) 

2. stress strain equation: ε = 

σ

E ( ξ ) 
+ ξεL + α( T − T 0 ) ; (8) 

3. heat equation: b c σ ˙ T = −T α ˙ σ + T 
s 0 ˙ ξ + � ˙ ξ − hγ ( T − T 0 ) ; (29) 

4. evolution rules: 

ξFT = 

σεL − T 
s 0 + M s 
s 0 

( M s − M f ) 
s 0 
, 

ξRT = 

σεL − T 
s 0 + A f 
s 0 

( A f − A s ) 
s 0 
. 

(21) 

a The loading can be applied in other format ( i.e. , the triangular function with a constant loading rate). 
b � is given in Eq. (16) and constants therein are given by Eq. (24) . 
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2 
ath. The two linear loading and unloading paths indicate linear

elations between the control driving force 	 and martensite frac-

ion ξ . Specifically, analogous to Eq. (20) , the evolution rule for the

orward phase transition is 

FT = 

	( σ, T ) + M s 
s 0 

( M s − M f ) 
s 0 
, (21a) 

nd that for the reverse transition is 

RT = 

	( σ, T ) + A f 
s 0 

( A f − A s ) 
s 0 
, (21b) 

here 	 = σεL − T 
s 0 is restricted to −M s 
s 0 < 	 < −M f 
s 0 in

q. (21a) and to −A f 
s 0 < 	 < −A s 
s 0 in Eq. (21b) . 

Now we have four material parameters to determine: εL , 
s 0 ,

u 0 and �. The transformation strain εL can be directly mea-

ured from experiments, while 
s 0 is calculated through the

lope k of the straight lines (representing constant 	 values) in

he σ − T phase diagram ( Fig. 2 a). The slope k is the coefficient

n Clausius-Clapeyron relation and can be obtained from experi-

ents ( Yin et al., 2014 ). Thus 
s 0 is calculated as 

s 0 = kεL . (22) 

o determine constants 
u 0 and �, we assume equal dissipated

nergy in the forward and reverse phase transitions. This as-

umption suggests that in Fig. 2 b, the reversible loading-unloading

ath CD cut the hysteresis loop BGEF in half, namely that C is the

iddle point of BF and D is the middle point of GE. Therefore,

he transformation temperatures associated with C and D are ex-

ressed as 

 s = 

M s + A f 

2 

and T f = 

M f + A s 

2 

, (23) 

espectively. According to Eq. (19) , we obtain 

u 0 = 

M s + M f + A s + A f 

4 


s 0 , (24a) 

= 

M s − M f + A f − A s 

4 


s 0 . (24b) 

The four transformation temperatures ( M s , M f , A s , and A f ) in

he stress-free state can be measured from experiments. Con-

idering that phase transitions are determined by the control

riving force 	 (linear combination of σ and T , Eq. (17) and

ig. 2 a), we can also interpolate them from the four transformation

tresses ( σ Ms , σ Mf , σ As , and σ Af ) at a given temperature ( e.g. , the

our transformation stresses at room temperature from the isother-

al test in Fig. 6 ). 

.5. Heat equation 

Substituting Eq. (13) into Eq. (A.4) , we relate the thermody-

amic driving force to the entropy change rate: 

˙ ξ = T ˙ s + ∇ · q − r. (25) 
his equation holds for every point in the domain considered, and

he local heat flux divergence term ∇ · q represents the outflow of

eat through the boundaries of a particle. Since the lumped anal-

sis ( Cotta and Mikhailov., 1997 ) is adopted, we consider the SMA

ar as a whole and use the volume-averaged heat outflow to re-

lace the local term. To this end, we apply the volume average

o ∇ · q and use Gauss theorem to arrive at 

1 

V 

∫ 
�

∇ · q d V = 

1 

V 

∫ 
∂�

q · n d S = 

1 

V 

hA ( T − T 0 ) = hγ ( T − T 0 ) , 

(26) 

here h is the average coefficient of convective heat transfer,

= A/V is the surface area ( A ) to volume ( V ) ratio, and T 0 is the

mbient temperature. The volume average of ∇ · q represents the

eat outflow from the SMA bar to the ambient environment. Since

he bar has no internal heat source, the heat source term r can be

iscarded. Now we can rewrite Eq. (25) as 

 

˙ s = � ˙ ξ − hγ ( T − T 0 ) . (27) 

aking the time derivative of the constitutive relation for en-

ropy ( Eq. (9) ) and multiplying both sides by T , we have 

 

˙ s = T α ˙ σ + c σ ˙ T − T 
s 0 ˙ ξ . (28) 

etting the right-hand sides of Eqs. (27) and (28) be equal gives

he heat equation: 

 σ
˙ T = −T α ˙ σ + T 
s 0 ˙ ξ + � ˙ ξ − hγ ( T − T 0 ) . (29) 

he physical meaning of each term in heat equation (29) is as

ollows: 

1. c σ ˙ T represents the thermal energy change rate; 

2. −T α ˙ σ represents the stress effect on temperature (thermo-

elastic effect) ( Schweizer and Wauer, 2001 ); 

3. T 
s 0 ˙ ξ denotes the latent heat caused by entropy difference; 

4. � ˙ ξ denotes the dissipated mechanical energy manifested by

the hysteresis loop; 

5. hγ ( T − T 0 ) represents the heat outflow to the surroundings. 

As shown in Eq. (29) , the latent heat is released ( T 
s 0 ˙ ξ > 0 ) in

he forward phase transition and absorbed ( T 
s 0 ˙ ξ < 0 ) in the re-

erse transition, while the hysteresis heat is always released ( � ˙ ξ >

 ). 

.6. Prescribed loading 

So far we have derived three equations: the stress strain equa-

ion (8) , heat equation (29) , and evolution rules (21) . The model is

owever not completed yet. In experiments, either the axial force

r end displacement will be prescribed; accordingly, we can spec-

fy the stress as 

( t ) = 

σmax 
( 1 − cos ωt ) (30a) 
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or the strain as 

ε( t ) = 

εmax 

2 

( 1 − cos ωt ) , (30b)

where ω is the angular frequency, and σ max and εmax are the max-

imum stress and strain applied, respectively. It is remarked that we

do not solve the equation of equilibrium since it is naturally satis-

fied under the assumption of uniform stress. In the displacement-

controlled case, the end displacement is used to calculate the av-

erage strain of the whole bar. 

3. Results and discussion 

We first summarize all the governing equations in Table 1 for

easier reference in the following discussions. In the coupled model,

there are two types of coupling between the mechanical and

thermal fields. The first type is the general thermo-elastic ef-

fect ( Schweizer and Wauer, 2001 ) that is manifested by the ther-

mal expansion term α( T − T 0 ) in Eq. (8) and the stress rate term

−T α ˙ σ in Eq. (29) . The second type is caused by phase transitions:

the transformation strain term ξεL in Eq. (8) and the latent heat

term T 
s 0 ˙ ξ (plus the dissipation term � ˙ ξ ) in Eq. (29) show that

the two fields are coupled through the progress of phase tran-

sitions. The strong thermo-mechanical coupling phenomena ob-

served in SMAs ( Yin et al., 2013, 2014 ) is mainly caused by phase

transitions, while the general thermo-elastic effect is relatively

negligible ( Schweizer and Wauer, 2001 ). 

In the thermo-mechanical model, each field involves a

timescale. Because of the coupling, the competition between the

two timescales results in distinct responses. By scaling the gov-

erning equations we can derive a dimensionless number—the two-

timescale ratio ( Section 3.1 ). The effects of the timescale ratio

on thermo-mechanical responses ( Section 3.2 ) and hysteresis loop

area ( Section 3.2.2 ) are then studied. 

3.1. Timescale analysis 

The timescales of mechanical and thermal fields are manifested

in Eqs. (30) and (29) , respectively. We denote the loading time, half

of a loading-unloading period, as t d = π/ω and regard it as the

characteristic timescale of mechanical loading. For triangular load-

ing functions, the characteristic timescale t d is simply the time to

reach the maximum stress/strain. Letting τ = t/t d in the prescribed

stress/strain ( Eq. (30) ), we obtain 

σ = 

σmax 

2 

( 1 − cos πτ ) , (31a)

ε = 

εmax 

2 

( 1 − cos πτ ) . (31b)

Replacing t with t d τ in heat equation (29) gives 

˙ T = − α

c σ
T ˙ σ + 

σεL + 
u 0 − �( 2 ξ − 1 ) 

c σ
˙ ξ − λ( T − T 0 ) , (32)

where the overdot denotes the derivative with respect to τ , 
u 0 
and � are given in Eq. (24) , and λ is expressed as 

λ = 

t d 
c σ/ ( hγ ) 

. 

To see the physical meaning of the denominator term, we just

keep the heat transfer term −hγ ( T − T 0 ) in the right-hand side of

Eq. (29) and discard other terms. Thus the solution of Eq. (29) has

the form of 

T = T 0 + T 1 e 
−t/t h , (33)

where T 1 is a constant depending on the initial condition, and t h 
is expressed as 

 h = 

c σ

hγ
. (34)
herefore, t h represents the characteristic time of convective heat

ransfer. The physical meaning of λ is hence the ratio of the load-

ng time to the characteristic time of heat transfer: 

= 

t d 
t h 

. (35)

pecifically, for an SMA bar of radius R , the surface area to volume

atio is γ = 2 /R . Here the surface area specifically refers to the side

rea; the two ends are in contact with the clamps and the con-

uction between them is incorporated into the lumped heat trans-

er ( Yin et al., 2014 ). Thus, the characteristic heat transfer time is

educed to the one reported in references ( Bruno et al., 1995; He

nd Sun, 2011; Yin et al., 2014 ): t h = c σR/ ( 2 h ) . 

In Eq. (32) , a null λ means no heat exchange with the ambi-

nt environment and hence corresponds to the adiabatic condition;

ontrarily; an infinite λ corresponds to strong heat exchange and

hus represents the isothermal condition. Note that, in the nondi-

ensionalized governing equations, the timescale ratio λ is the

nly manipulated factor that can be changed to significantly im-

act the thermo-mechanical responses. 

Eq. (35) shows that multiple factors affect the dimensionless

umber λ. Varying the loading frequency ω changes the loading

imescale, while varying the surface area to volume ratio γ and

he convective heat transfer coefficient h changes the heat transfer

imescale. We thus have the following remarks. 

1. When γ and h are fixed, ω → 0 results in the isothermal

condition, while ω → ∞ leads to the adiabatic condition.

The different responses due to varying ω is called the load-

ing rate effect. 

2. When γ and ω are fixed, h → 0 gives the adiabatic condi-

tion, while h → ∞ leads to the isothermal condition. Chang-

ing h leads to the effect of ambient conditions. 

3. When h and ω are fixed, changing γ also impacts the

thermo-mechanical responses, which is called the effect of

surface area to volume ratio (determined by geometrical

shape and size). 

We can see that the loading rate effect, the effect of ambi-

nt conditions, and the effect of surface area to volume ratio are

ll due to the two-timescale competition through the thermo-

echanical coupling. 

If h is held close to 0 or ∞ , varying ω has no effect on the

hermo-mechanical responses, i.e. , no rate effect. This is also re-

arked by Ivshin and Pence (1994) based on their model. Un-

er isothermal condition ( h → ∞ ), no strain rate effect was ob-

erved in experiments by Grabe and Bruhns (2008) . Neverthe-

ess, the rate-independent responses under nearly adiabatic con-

ition ( h → 0), as predicted by our model, still need further exper-

mental validation. 

.2. Effects of the timescale ratio 

The single parameter λ reflects the resultant effect of the

hree impacting factors—the loading rate, the ambient conditions,

nd the surface area to volume ratio. Thus it is possible to ex-

aust the thermo-mechanical responses under various conditions

y studying the timescale ratio effect. To this end, we simulate

he stress strain curves and temperature variation at different

values to consider scenarios ranging from the adiabatic to the

sothermal conditions. We consider two types of loading: stress-

ontrolled ( Eq. (31a) ) and strain-controlled ( Eq. (31b) ). Material pa-

ameters are from Tables 2 and 3 and they are calibrated with ex-

eriments in Section 4.1 . The ambient temperature T 0 is kept con-

tant at room temperature 25 °C. 
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.2.1. On thermo-mechanical responses 

Fig. 3 shows results under the strain-controlled loading. Three

ypical λ values—10 0 0, 3.2, and 0.01—are chosen to show re-

ponses under the isothermal condition, an intermediate heat

ransfer condition, and the adiabatic condition, respectively. In par-

icular, the three λ values correspond to the three solid points A,

, and C in Fig. 5 a. The isothermal case is realized by a large

value (10 0 0) that suggests very strong heat exchange with the

mbient environment and thus leads to negligible temperature

ariation. The bar temperature almost remains constant at the

oom temperature as shown by the yellow line in Fig. 3 b. Accord-

ng to Clausius-Clapeyron relation ( Yin et al., 2014 ), no tempera-

ure change, no change in the phase transition stress. Therefore, a

tress plateau is observed in the stress strain curve (yellow line in

ig. 3 a). To be precise, in the phase transition processes a small

tress change occurs due to the assumption of the phase transition

and ( Fig. 2 a), which indicates different start and finish stresses of
able 2 

alibrated model parameters for displacement-controlled (cyclic) loading. 

Parameter symbol value unit 

Young’s modulus of austenite E A 25 GPa 

Young’s modulus of martensite E M 19.4 GPa 

temperature dependence of transition stress k 6.8 MPa/K 

transformation strain εL 0.043 - 

specific heat capacity c σ 3.2 × 10 6 J/(m 

3 K) 

thermal expansion coefficient α 11 × 10 6 1/K 

austenite → martensite start temperature M s 262.5 K 

austenite → martensite finish temperature M f 261.0 K 

martensite → austenite start temperature A s 281.0 K 

martensite → austenite finish temperature A f 283.0 K 

able 3 

alibrated model parameters for force-controlled (cyclic) loading. Other model pa- 

ameters not listed here take the same values as in Table 2 . 

Parameter symbol value unit 

transformation strain εL 0.04 - 

austenite → martensite start temperature M s 259.5 K 

austenite → martensite finish temperature M f 258.0 K 

martensite → austenite start temperature A s 273.0 K 

martensite → austenite finish temperature A f 276.0 K 
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ig. 3. Effects of the timescale ratio λ on the stress-strain ( σ - ε) curve (a) and temper

nloading cycle is generally divided into five phases: the loading of austenite (I), the forw

hase transition (IV), and unloading of austenite (V). 
hase transitions at the same temperature. The isothermal condi-

ion can be achieved in experiments by very slow loading and fast

owing air around the specimen ( He et al., 2010; Yin et al., 2014 ). 

The adiabatic condition is approximately achieved by a small

value (0.01), suggesting a negligible heat exchange with the sur-

oundings. When the heat exchange is disregarded, the tempera-

ure will change in accordance with the latent heat release and

bsorption, as well as the hysteresis heat accumulation ( Fig. 3 b).

s the forward phase transition starts, the temperature also starts

o increase (latent heat release) until the end of the transi-

ion (II), and then it keeps constant during the unloading pro-

ess of martensite (III). During the reverse transition (IV), the tem-

erature keeps decreasing (latent heat absorption) and then lev-

ls off (V). At the end of unloading, the latent heat absorption

ancels out its release and the accumulated hysteresis heat re-

ults in a small temperature rise, which is about 5% of the tem-

erature increase in phase II caused by the latent heat release.

his percentage agrees with the direct experimental measure-

ent: the volumetric latent heat l 0 = 7 . 74 × 10 7 J / m 

3 is about 20

imes larger than the steady-state hysteresis D s = 3 . 61 × 10 6 J / m 

3 

n Yin et al. (2014) . In parallel with the temperature change, the

ransition stress increases steeply above the stress plateau in the

orward phase transition, followed by a parallel stress decrease

uring the reverse transition. The stress at the end of the reverse

ransition is slightly higher than the isothermal transition stress

ue to the corresponding slight temperature rise. The hysteresis

oop is thus slightly smaller than the isothermal one. It is remarked

hat we observe a small temperature drop—caused by the thermo-

lastic effect—at the end of the loading of austenite (I). Neverthe-

ess, the temperature drop is so small that the thermo-elastic effect

s negligible compared to the phase transition effect. 

When the latent heat release/absorption and heat exchange

ith the surroundings are comparable ( λ = 3 . 2 ), the thermo-

echanical responses differ in the following aspects. First, the

emperature increases moderately and starts to decreases in the

iddle of the forward phase transition (the peak in phase II).

s temperature increases, the larger temperature difference T − T 0 
nhances the heat exchange to the extent that the heat outflow

utweighs the latent heat release. Second, in the reverse transi-

ion (IV), the temperature plummets and is driven below the room

emperature, which is due to the fact that the heat released in
ature evolution (b) of an SMA bar under strain-controlled loadings. The loading- 

ard A → M phase transition (II), unloading of martensite (III), the reverse M → A 
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Fig. 4. Effects of the timescale ratio λ on the stress-strain ( σ - ε) curve (a and c) and temperature evolution (b and d) of an SMA bar under stress-controlled loadings. The 

maximum stress ( σ max in Eq. (31a) ) is 520 MPa for (a) and (b), and 312 MPa for (c) and (d). In panel b, the temperature evolution curve for λ = 0 . 001 is divided into five 

phases (in the upper): the loading of austenite (I), the forward A → M phase transition (II), loading and unloading of martensite (III), the reverse M → A phase transition (IV), 

and unloading of austenite (V). For λ = 2 . 9 , the five phases I-V are denoted in the bottom. In panel d, the five phases for λ = 20 and 0.001 are referred to Fig. 3 b. 
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the forward transition is not completely stored but largely trans-

ferred out. Third, during the unloading process of austenite (V),

the temperature increases slightly because of the heat influx from

the surroundings, but this compensation is so small that the final

temperature after a full loading-unloading cycle is still lower than

the room temperature. Finally, the transition stress is increasingly

higher than the isothermal plateau stress in the forward phase

transition but lower during the reverse phase transition. The en-

closed hysteresis loop is thus larger than the isothermal one (it is

the largest as shown in Fig. 5 ). 

Fig. 4 shows results under the stress-controlled loadings. Here

we consider two maximum stresses—520 MPa and 312 MPa—to

show different change patterns of the stress strain curve against λ.

The two maximum stress values actually correspond to the forces

applied in experiments ( Fig. 11 ). For the maximum stress 520 MPa,

Fig. 4 a and b show responses at three typical λ values that cor-

respond to the three solid points D, E, and F in Fig. 5 b. The ob-

servations in Fig. 3 also apply here, with a few differences. First,

the maximum stress 520 MPa is as large as to ensure complete

phase transitions at all the three λ values. Thus the stress and

strain at the end of the forward phase transition (II) in Fig. 4 a both

increase from the isothermal to the adiabatic conditions (this ac-
ounts for the observation that the width of phase II for λ = 2 . 9 is

maller than that for λ = 0 . 001 ), while only the stress at the end

f the forward transition increases in Fig. 3 a. Second, the phase

ransition time is relatively shorter: phases II and IV in Fig. 4 b are

arrower than those in Fig. 3 b (same loading function of time—

qs. (31a) and (31b) —but smaller stress difference than strain dif-

erence ( Fig. 6 ) between the start and finish of the phase transi-

ion). Finally, the forward phase transition at λ = 2 . 9 is so short

hat the temperature keeps growing at the same pace as that un-

er the adiabatic condition during its whole phase transition pro-

ess (bottom blue II), unlike the non-monotonic variation in Fig. 3 b

t λ = 3 . 2 ; this temperature behavior just corresponds to the ini-

ial stage of phase II in Fig. 3 b. The subsequent temperature plum-

et in phase III leads to a non-smooth transition from phase II to

II. 

Unlike the case in Fig. 4 a and b, the lower level of maximum

tress 312 MPa induces different responses in Fig. 4 c and d (the

hree λ values correspond to the three solid points G, H, and I

n Fig. 5 c). First, as λ decreases to 20, the phase transition starts

o become incomplete. With further decrease of the λ value, the

tress strain curve drifts to the left-hand side (instead of upwards

n Fig. 4 a), and the fraction of the phase transition shrinks. Second,
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Fig. 5. Effects of the timescale ratio λ on damping capacity H (hysteresis loop area) of the first and steady-state cycles for strain-controlled (a) and stress-controlled (b and 

c) loadings. A–C, D–F, and G-I correspond to the three typical λ values in Figs. 3 , 4 a, and 4 c, respectively. For each plot in the left-hand side, there are four subplots in the 

right-hand side showing the first-cycle and steady-state-cycle stress-strain ( σ - ε) curves at four highlighted λ values ( 1 − 4 for (a), 5 − 8 for (b), and 9 − 12 for (c)). The critical 

λ value denoted by the cross is the one at which the mean temperature remains constant and the stress strain curves of all cycles coincide with each other (subplot 3, 7, 

and 11). In subplots 1, 3, 5, 7, 9, and 11, stress strain curves of the first (red) and steady-state-cycles (blue) coincide. The steady-state hysteresis (blue lines) will be compared 

with experimental data in Fig. 11 . 

t  

t  

f  

n  

a  

λ  

o  

i  

t

he lower stress limit also changes the λ value for the biggest hys-

eresis loop from 2.9 to 20, at which the finish stress σ Mf of the

orward phase transition equals the maximum stress 312 MPa. Fi-

ally, the incomplete forward phase transition (II) for λ = 20 lasts

s long as that for λ = 0 . 001 , and the temperatures for the two
values are close to each other, due to the synchronized increase

f phase transition stress in phase II. Apparently, the temperature

ncrease under the adiabatic condition in Fig. 4 d is smaller than

hat in Fig. 4 b because of the incomplete phase transition. 
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Fig. 6. Experimental ( Yin et al., 2014 ) and fitted stress-strain ( σ - ε) curves of an 

SMA bar under isothermal (25 °C) condition. 
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3.2.2. On damping capacity 

An important quantity of SMAs is the damping capacity, which

is the hysteresis loop area in the stress strain curve of a loading-

unloading cycle. As shown in Figs. 3 and 4 , the maximum damp-

ing capacity occurs at an intermediate λ value, in agreement with

the non-monotonic variation of hysteresis versus the loading fre-

quency in experimental studies ( He et al., 2010; Yin et al., 2013,

2014; Morin et al., 2011a, 2011b; He and Sun, 2011 ). Here we

systematically show the variation of hysteresis as a function of

the timescale ratio λ under strain-controlled ( Fig. 5 a) and stress-

controlled ( Fig. 5 b and c) loadings. For each loading case, we show

the hysteresis of the first and steady-state cycles. It is remarked

that for lower λ values, it takes more cycles for the thermo-

mechanical responses to reach the steady state. 

For the strain-controlled case ( Fig. 5 a), the first-cycle hystere-

sis (red line) shows a bell shape with the peak value at λ = 3 . 2 ;

this λ value suggests that the maximum damping capacity is ob-

tained when the loading timescale is close to the characteristic

timescale of heat transfer. Very close timescale ratios are reported

in experiments: around 1 in He et al. (2010) and He and Sun

(2011) and around 2 in Yin et al. (2013) . Although specific ma-

terials considered in these three references are not the same as

in this study, the governing mechanism of timescale competition

leads to comparable λ values for the peak damping capacities. As λ
grows to 10 0 0, the first-cycle hysteresis approaches the isothermal

value 6.1 MPa (C), which is about 34% lower than the peak hys-

teresis 9.3 MPa (B); as λ decreases to 0.01, the first-cycle hysteresis

gets close to the adiabatic value 4.9 MPa (A), which is around 47%

less than the peak value. 

In Fig. 5 a, the hysteresis of the steady-state cycle is always not

greater than the first-cycle hysteresis and is maximized at a higher

λ value. To gain insights into this observation, we pick four λ val-

ues (10 0 0, 0.5, 0.072, and 0.01) and plot the stress strain curves

of the first and steady-state cycles in the right-hand side. Under

the approximately isothermal condition ( λ = 10 0 0 ), the two stress

strain curves completely coincide (subplot 1) because the tempera-

ture remains constant. At λ = 0 . 5 , the heat transfer with the ambi-

ent environment makes the bar temperature lower than the room

temperature after the first loading-unloading cycle (see Fig. 3 b

when λ = 3 . 2 ). After hundreds of cycles, the heat loss will accu-

mulate leading to decreasing mean temperature ( i.e., average of the

oscillating temperature; see Fig. 8 and Yin et al. (2014) ). The de-

creasing temperature causes the stress strain curve to drift down-

wards and the hysteresis to shrink (subplot 2). However, when

λ decreases to the critical value 0.072 (an equivalent critical fre-
uency is observed in experiments of Yin et al. (2014) ), the tem-

erature goes back to the room temperature after the first loading-

nloading cycle. Therefore, the following cycles will repeat the first

ne, and all the stress strain curves coincide with each other (sub-

lot 3). At λ = 0 . 01 , the temperature is higher than the room tem-

erature after the first loading-unloading cycle ( Fig. 3 b); therefore,

he accumulated heat will further grow in the following cycles and

ake the stress strain curve drift upwards with reducing hysteresis

oop area as shown in subplot 4. 

Fig. 5 b shows the hysteresis under stress-controlled loading

ith the maximum stress of 520 MPa. The first-cycle hystere-

is (red line) displays a similar variation pattern to its counter-

art in the strain-controlled case ( Fig. 5 a), and the λ value 2.9

or the peak point is very close to the value 3.2 in Fig. 5 a. More-

ver, the steady-state-cycle hysteresis is also not greater than the

rst-cycle hysteresis, in agreement with experiments ( Morin et al.,

011b ) that report decreasing hysteresis with loading cycles under

orce controls. The difference between Fig. 5 b and 5 a comes when

decreases to the critical value λ = 0 . 06 : the steady-state-cycle

ysteresis starts to plummet showing a non-smooth transition in

ig. 5 b. This phenomenon can be accounted for by subplot 8: due

o the maximum stress restriction, the stress strain curve drifts to

he left-hand side (instead of upwards as in subplot 4) and the

raction of phase transition decreases with loading cycles. 

Although non-monotonic, the hysteresis in Fig. 5 c for the lower

aximum stress 312 MPa shows different features. First, the hys-

eresis of the first and steady-state cycles are both lower than their

ounterparts in Fig. 5 b. This is simply because the lower the max-

mum stress, the less the forward phase transition proceeds (sub-

lot 6 versus 10, 7 versus 11, and 8 versus 12). Second, at λ = 0 . 5

he hysteresis of the steady-state cycle is higher than that of the

rst cycle, contrary to the observation in Fig. 5 a and b. This can

e seen in subplot 10: the stress strain curve drifts to the right-

and side from the first cycle to the steady-state cycle due to the

ower maximum stress, different from going downwards in sub-

lots 2 and 6. Finally, the hysteresis transition at the peak point (H)

s not smooth. Consider the first-cycle hysteresis, whose peak value

ccurs at λ = 20 . As shown by Fig. 4 c, with decreasing λ, the stress

train curve drifts to the left-hand side, while it drifts downwards

ith increasing λ. This contrasting change pattern is responsible

or the different hysteresis change trends in the two sides of the

eak point. 

. Comparison with experiments 

This section applies the coupled model to simulate experiments

or the purpose of validation. We first calibrate model parame-

ers using the data of isothermal tests of NiTi SMAs in Yin et al.

2014) and Yin (2013) , and then compare model predictions with

xperimental results ( Yin et al., 2014 ), in terms of stress strain

urves, temperature evolution, and hysteresis loop area under var-

ous loading frequencies. 

.1. Model parameter calibration 

In Fig. 6 , red circles show the isothermal (at room temperature

5 °C) stress strain curve of an SMA bar subjected to uniaxial ten-

ion ( Yin et al., 2014 ), while the solid blue line is the fitted curve

y the coupled model. Here the isothermal condition is maintained

y a very low loading frequency. It is shown that external loading

rst causes the elastic tension of austenite (AB), and further load-

ng leads to the forward phase transition from austenite to marten-

ite (BC), followed by elastic loading of martensite (CD). Reverse

oading causes elastic unloading of martensite (DE), and continued

nloading is accompanied by the reverse phase transition (EF) and

ubsequent elastic unloading of austenite (FA). 
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Fig. 7. Stress-strain ( σ - ε) curves of the first and last cycles (a) and temperature evolution (b) at a low frequency 0.0 0 07 Hz for displacement-controlled cyclic loading. In 

panel (a), the red solid line is covered by the blue line. Experimental data are from Yin et al. (2014) . 
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o  
From the experimental stress strain curve, we directly obtain

he following parameters: Young’s modulus of austenite E A (slope

f AB), Young’s modulus of martensite E M 

(slope of DCE), and

he transformation strain εL , which is estimated at the intersec-

ion point (R) of dashed line ER (the unloading line of martensite)

ith the strain axis. Also, we can obtain the four transformation

tresses ( σ Ms , σ Mf , σ As , and σ Af , associated with points B, C, E,

nd F, respectively) at room temperature 298 K, and then the four

ransformation temperatures ( M s , M f , A s , and A f ) in stress-free state

re readily interpolated from Fig. 2 a, given the slope k . 

The slope k (the coefficient in Clausius-Clapeyron relation)

an be obtained from Fig. 11 of Yin et al. (2014) by calcu-

ating the dependence of transformation stress on temperature

rom many isothermal tensile tests at different temperatures. The

ntropy difference at the reference state is then calculated by

q. (22) . The specific heat capacity c σ can be found in

in et al. (2014) and the coefficient of thermal expansion α is from

able 5.1 of Lagoudas (2008) . These parameters are used to fit our

odel to the experimental isothermal stress strain curve, and the

tted curve well captures the trend of the experimental curve. All

alibrated parameters are summarized in Table 2 . 

.2. Displacement-controlled cyclic loading 

Pronounced coupling phenomena have been observed especially

n cyclic loading-unloading of SMA bars at various loading fre-

uencies ( Yin et al., 2014 ). In the following, we compare pre-

icted thermo-mechanical responses by our model with experi-

ental data of displacement-controlled cyclic tests in Yin et al.

2014) . Specifically, the cyclic stress strain curves and temperature

volution are of interest. In experiments, the displacement u is pre-

cribed as 

 = 

u max 

2 

(1 − cos 2 π f t) , (36) 

here u max is the maximum displacement and f is the loading fre-

uency, related to the angular frequency by ω = 2 π f . For model

rediction, the parameters used are those in Table 2 . The ambient

emperature T 0 is kept constant at room temperature 25 °C. Next,

esults at three different loading frequencies f are compared. 

Fig. 7 shows the stress strain curves of the first and last cy-

les (3 cycles in total) and temperature evolution at a low fre-

uency 0.0 0 07 Hz. For the numerical simulation, the character-

stic time of heat transfer takes t h = 31 s according to Fig. 3 in

in et al. (2014) ; the timescale ratio is thus calculated as λ = 23 .

ince the loading-unloading is much slower than the heat transfer,
he temperature varies slightly and goes back to the room temper-

ture after the forward and reverse phase transitions in the sim-

lation. The temperature variations in all loading-unloading cycles

re the same, and hence the stress strain curves of the three cy-

les coincide with each other. A discrepancy between the model

rediction and experimental results in Fig. 7 a is that, the stress

uring the forward phase transition monotonically increases in ex-

eriments but deceases at the end of the forward phase transition

ccording to the simulation. This stress decrease in model predic-

ion is caused by the temperature decrease ( Fig. 7 b) in the latter

alf of the forward transition: according to Clausius-Clapeyron re-

ation, the transformation stress decreases with a temperature de-

rease. 

Fig. 8 shows the stress strain curves and temperature evolu-

ion at an intermediate frequency 0.04 Hz. For the numerical sim-

lation, we take t h = 30 s ( Yin et al., 2014 ) and hence λ = 0 . 42 .

he temperature variation in Fig. 8 b shows an evolution from the

ransient stage to the steady state with decreasing mean tem-

erature. After the first cycle the temperature is lower than the

oom temperature because the heat transfer is neither as strong

s to compensate the latent heat absorption in the reverse phase

ransition (as occurs in Fig. 7 ) nor as weak as to save the la-

ent heat released in the forward phase transition (as occurs in

ig. 9 ). With increasing loading cycles, the temperature decrease

ccumulates and finally reaches an equilibrium. Due to the tem-

erature decrease, the stress strain curve drifts downwards in

ig. 8 a because of the temperature dependence of the transforma-

ion stress (Clausius-Clapeyron relation). 

Fig. 9 shows the thermo-mechanical responses at a high

requency 1 Hz. In numerical simulation we use t h = 26 s

 Yin et al., 2014 ) and hence λ = 0 . 02 . The λ value is so small

hat the heat transfer with the ambient environment can be dis-

egarded ( i.e. , adiabatic condition). Thus the temperature in Fig. 9 b

scillates due to the latent heat release and absorption in the re-

ersible phase transitions. The mean temperature keeps increasing

ecause of the accumulation of hysteresis heat. The thermal effect

n the mechanical responses reflects in the upward shift of the

tress strain curve from Fig. 9 a to b. It can be seen that our model

an capture essential features of the temperature evolution and the

rend of the stress strain curve change. 

.3. Force-controlled cyclic loading 

Besides the displacement-controlled tests, we further compare

ur model prediction with experimental data from force-controlled
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Fig. 8. Stress-strain ( σ - ε) curves of the first and last cycles (a) and temperature evolution (b) at an intermediate frequency 0.04 Hz for displacement-controlled cyclic 

loading. Experiment data are from Yin et al. (2014) . 

Fig. 9. Stress-strain ( σ - ε) curves of the first and last cycles (a) and temperature evolution (b) at a high frequency 1 Hz for displacement-controlled cyclic loading. Experiment 

data are from Yin et al. (2014) . 
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d  
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cyclic tests by Yin (2013) . The axial force F is specified as 

F = 

F max 

2 

(1 − cos 2 π f t) , (37)

where F max is the maximum force applied. Here we consider the

loading frequency of 1 Hz. The stress strain curves of the first and
ast (steady-state) cycles and the temperature evolution are shown

n Fig. 10 . Considering that the specimens for force-controlled

ests in Yin (2013) might not be the same batch as those for

isplacement-controlled tests in Yin et al. (2014) , we recalibrate

ome parameters by fitting the first-cycle stress strain curve; the

pdated (compared to Table 2 ) model parameters are separately
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Fig. 10. Stress-strain ( σ - ε) curves of the first and last cycles (a) and temperature evolution (b) at loading frequency 1 Hz for force-controlled cyclic loading. Experiment data 

are from Yin (2013) . 

Fig. 11. Comparison of our model prediction with experimental data in terms of the damping capacity H (stress strain hysteresis) of the steady-state cycle versus the 

dimensionless timescale ratio λ. Panel (a) is for displacement-controlled loading while panel (b) is for force-controlled loading. The three stress values (520 MPa, 312 MPa, 

and 104 MPa) correspond to the maximum forces F max = 50 0 0 N , 30 0 0 N, and 10 0 0 N applied in experiments ( Eq. (37) ), respectively. 
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c  

(  

d  
isted in Table 3 but those not changed are omitted. We then

se the updated parameters to predict the stress strain curve of

he last cycle ( Fig. 10 b) and temperature evolution ( Fig. 10 c). The

odel is able to capture the drift of stress strain curve to the left-

and side ( Fig. 10 b) due to the increase of temperature and hence

he transition stress. 
.4. Damping capacity 

In Fig. 11 , we compare the hysteresis of the steady-state

ycle between our model prediction and experimental data

 Yin et al., 2014; Yin, 2013 ). Fig. 11 a shows results for the

isplacement-controlled cyclic loading. Our model prediction (red
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line) is based on the calibrated parameters in Table 2 . The exper-

imental data (circles) are adapted from Yin et al. (2014) : the hys-

teresis is shown against the loading frequency in Yin et al. (2014) ;

here we convert the frequency to the timescale ratio λ by taking

into account the measured characteristic time of heat transfer in

Fig. 3 of Yin et al. (2014) . It can be seen that our model prediction

captures the non-monotonic variation of the hysteresis and obtain

almost the same λ value for the peak hysteresis as the experimen-

tal one. Moreover, the predicted hysteresis curve especially agrees

well with the experimental results under approximately isothermal

conditions (high λ values). This better agreement may be because

we calibrate the model parameters against the isothermal test. 

Fig. 11 b shows the comparison under force-controlled cyclic

loading. Model parameters are from Table 3 and the experimen-

tal data are adapted from Yin (2013) . At a high level of maximum

stress 520 MPa, the experimental data are absent at some low

loading frequencies (high λ values) and thus unable to show the

usual non-monotonic hysteresis variation. The non-monotonic vari-

ation pattern is however seen in our model prediction with data

available at high λ values. We believe in the predicted trend as λ
increases beyond the experimental data, considering the agree-

ment at high λ values in Fig. 11 a. Likewise, our model prediction

in the case of maximum stress 312 MPa agrees with the experi-

mental data and demonstrates the trend and variation of hystere-

sis at higher λ values. At a low level of maximum stress 104 MPa,

the hysteresis is always null from the model prediction and exper-

imental results. The null hysteresis is simply because there is no

phase transition incurred during the cyclic loading. 

In Fig. 11 a, we also include the model prediction (squares)

made by the authors of Yin et al. (2014) . Their prediction shows

the same variation trend as ours, especially in the left-hand side

of the peak point. The model by Yin et al. (2014) mainly fo-

cused on temperature evolution prediction and hysteresis evalua-

tion. The heat equation required known material parameters rep-

resenting the latent heat l 0 and hysteresis heat D s . The release

rates of the two heat sources should also be assumed to reflect

the loading (displacement-controlled) rate. These assumptions per-

mitted them to obtain an analytical temperature solution, consist-

ing of the mean temperature evolution and an oscillating term.

The coupled model in this study, however, directly simulates exter-

nal loadings (displacement-controlled or force-controlled) and thus

avoids assuming concrete forms of these heat release rates. The la-

tent heat and hysteresis are calculated from the simulated results,

rather than a priori model parameters, in the post-processes. If the

latent heat T 
s 0 ˙ ξ and hysteresis � ˙ ξ in Eq. (29) are further simpli-

fied and related to the strain rate, we will obtain a heat equation

similar to the one in Yin et al. (2014) and corresponding analytical

solutions. 

5. Conclusion 

We present a thermo-mechanically coupled model for one-

dimensional NiTi SMA bars. As indicated by the heat equation (29) ,

the latent heat is due to the entropy difference between the

martensite and austenite, and it serves as a heat source in A → M

phase transition but a heat sink in M → A transition; the hysteresis

is attributed to the non-equilibrium thermodynamic driving force

and keeps converting mechanical energy to thermal energy. Scal-

ing the governing equations enables us to derive a dimensionless

number—the timescale ratio λ ( Eq. (35) ) that expresses the com-

petition between the loading time and the characteristic time of

heat transfer. The identification of λ in the coupled model suggests

that the two-timescale competition is responsible for the thermo-

mechanical responses. 

By exploring λ within a wide range of numbers, we have a full

picture of the thermo-mechanical responses ( Figs. 3 and 4 ) under
ifferent combinations of external loading, ambient conditions, and

he specimen geometry, encompassing conditions from the isother-

al case to adiabatic case. Under the cyclic loading, the first-cycle

ysteresis is generally higher than (at low λ values) or equal to (at

igh λ values) that of the steady-state cycle ( Fig. 5 a and b). For

oth the stress- and strain-controlled cases, the damping capac-

ty of the first cycle is maximized when λ value is around 3;

he steady-state-cycle damping capacity is maximized at a slightly

igher λ value. Nevertheless, these observations do not completely

pply to the particular case of incomplete phase transition un-

er force-controlled loadings ( Fig. 5 c): the maximum applied stress

lso affects the λ value leading to the maximum damping capacity.

The thermo-mechanically coupled model is validated by com-

arison with experimental results of an SMA bar under displace-

ent and force controls. The timescale ratio λ can thus provide

uidelines for setting experimental conditions to achieve desired

esponses. 
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ppendix A. Thermodynamic basics 

We apply the second law of thermodynamics to an arbitrary

xed control volume � with boundary denoted as ∂�: the entropy

roduction should be always non-negative, which can be expressed

y the Clausius-Duhem inequality ( Lagoudas, 2008 ) 
 

�

˙ s d V + 

∫ 
∂�

q 

T 
· n d S −

∫ 
�

r 

T 
d V ≥ 0 , (A.1)

here s is the entropy per unit volume, T is the absolute tempera-

ure, q is the heat flux vector, n is the outward-pointing unit vec-

or normal to the volume surface ∂�, and r is the heat source per

nit volume. Applying the divergence theorem to the surface in-

egral term and summing everything together within a common

olume integral, we obtain the local form of the Clausius-Duhem

nequality: 

˙ 
 + 

1 

T 
∇ · q − 1 

T 2 
q · ∇T − r 

T 
≥ 0 , (A.2)

n view of the arbitrariness of control volume �. Multiplying T at

oth sides of Eq. (A.2) yields 

 = T ˙ s + ∇ · q − 1 

T 
q · ∇T − r ≥ 0 , (A.3)

here D is the dissipation in the irreversible thermodynamic pro-

esses. Usually, we can further split the total dissipation D into

on-zero mechanical dissipation 

 m 

= T ˙ s + ∇ · q − r ≥ 0 (A.4)

nd non-zero thermal dissipation 

 t = − 1 

T 
q · ∇T ≥ 0 (A.5)

o express the strict forms of the second law of thermodynamics;

qs. (A .4) and (A .5) are conventionally called Clausius-Planck in-

quality and Fourier inequality, respectively. The mechanical dissi-

ation inequality (A.4) will be used in the following to derive the

onstitutive relations. 
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Table C.4 

Numerical algorithm for stress-controlled loading. 

1. Given: admissible point ( σ n , εn , T n , ξ n ) and σn +1 . 

2. Compute elastic trial state: 

ξ trial 
n +1 

= ξn , 

T trial 
n +1 

= T n − α

c σ
T n (σn +1 − σn ) − λ(T n − T 0 )
t, 

	trial 
n +1 

= σn +1 εL − T trial 
n +1 


s 0 . 

3. Test for phase transition: 

If 	trial 
n +1 > 	n then 

If ξmin ( M s − M f ) 
s 0 − M s 
s 0 < 	n < −M f 
s 0 then 

substitute (C.3) into (C.2) to solve for T n +1 and then ξn +1 , 

update ξmax = ξn +1 , 

Else the trial state is the actual state; 

Else If −A s 
s 0 < 	n < ξmax ( A f − A s ) 
s 0 − A f 
s 0 then 

substitute (C.4) into (C.2) to solve for T n +1 and then ξn +1 , 

update ξmin = ξn +1 , 

Else the trial state is the actual state; 

Update 	n +1 = σn +1 εL − T n +1 
s 0 . 

4. Compute strain εn +1 based on Eq. (C.1) . 
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The first law of thermodynamics states that the rate of internal

nergy change of a system is equal to the rate at which external

ork done on the system, plus the rate of heat influx and heat

eneration. The local form of the first law is given by 

˙ 
 = σ : ˙ ε − ∇ · q + r, (A.6) 

here u is the internal energy per unit volume (specific internal

nergy), σ : ˙ ε is the stress power per unit volume. From the rela-

ion between the specific internal energy u and specific Gibbs free

nergy g 

 = u − σ : ε − T s, 

e obtain the time rate of change of g : 

˙ 
 = 

˙ u − ˙ σ : ε − σ : ˙ ε − ˙ T s − T ˙ s . (A.7) 

ubstituting Eq. (A.6) into (A.7) and considering Eq. (A.4) yield 

˙ 
 = − ˙ σ : ε − ˙ T s − D m 

. (A.8) 

The specific Gibbs free energy g can be considered as a

tate function of a set of state variables and internal variables

 Coleman and Gurtin, 1967 ) and its time derivative can be ex-

ressed as 

˙ 
 = 

∂g 

∂σ
: ˙ σ + 

∂g 

∂T 
˙ T + 

∂g 

∂ζ
: ˙ ζ, (A.9) 

here σ and T are the state variables and ζ is the internal vari-

ble(s). Equating (A.8) to (A.9) , we obtain the expression of the

echanical dissipation D m 

: 

 m 

= −
(

ε + 

∂g 

∂σ

)
: ˙ σ −

(
s + 

∂g 

∂T 

)
˙ T − ∂g 

∂ζ
: ˙ ζ ≥ 0 . (A.10) 

Since σ and T are arbitrary independent variables, to satisfy the

lausius-Planck inequality (A.10) we have to make 

= − ∂g 

∂σ
, s = − ∂g 

∂T 
, (A.11) 

hich are the constitutive relations for the state variables. In the

ne-dimensional case, the stress and strain tensor in Eq. (A.11) are

educed to scalars ( i.e. , the axial stress and strain). 

ppendix B. Evolution rules for incomplete phase transitions 

The linear evolution rules ( Eq. (21) , Fig. 2 b) assume complete

orward and reverse phase transitions. Here we add evolution rules

or incomplete phase transitions—unloading before the forward

hase transition completes and reloading before the reverse phase

ransition completes. To this end, an inner reversible path IJ in

ig. 2 b is assumed as the loading and unloading paths. 

The vertical inner path in 	 − ξ diagram ( Fig. 2 b) indicates that

he martensite volume fraction ξ does not change on the path until

he outer path is met. Hence, the evolution rules in Eq. (21) does

ot change but the range of the control driving force 	 for phase

ransitions becomes narrower. To reflect this change, we introduce

wo extra variables—ξmin and ξmax —to record the loading history.

he two variables ( ξmin and ξmax ) denote, respectively, the min-

mum martensite volume fraction reached in the reverse phase

ransition before a reloading starts and the maximum martensite

olume fraction reached in the forward phase transition before

n unloading starts. The complete evolution rule can now be ex-

ressed in a rate form as follows. 

1. when 

˙ 	 > 0 and ξmin ( M s − M f ) 
s 0 − M s 
s 0 < 	 <

−M f 
s 0 , 

˙ ξ = 

˙ 	
, (B.1a) 
( M s − M f ) 
s 0 
2. when 

˙ 	 < 0 and −A s 
s 0 < 	 < ξmax ( A f − A s ) 
s 0 − A f 
s 0 , 

˙ ξ = 

˙ 	

( A f − A s ) 
s 0 
, (B.1b) 

3. otherwise, 

˙ ξ = 0 . (B.1c) 

It is remarked that ξmin should be updated in the reverse phase

ransition and ξmax updated in the forward phase transition. 

ppendix C. Numerical solution 

This section provides the numerical procedures to solve

he nondimensionalized governing equations—the stress strain 

quation (8) , heat equation (32) , evolution rules (B.1) , and pre-

cribed loadings (31) . 

1. Suppose that an admissible point ( σ , ε, ξ , T ) and prescribed

stress σ = σ ( τ ) (or strain ε = ε( τ ) ) are given. 

2. Assume a trial state in which no phase transition occurs

( ˙ ξ = 0 ), and then solve Eqs. (8) and (32) for the strain ε (or

stress σ ) and temperature T . 

3. Calculate control driving force 	 and its rate change ˙ 	, and

then check whether it satisfies the conditions for phase tran-

sition in Eq. (B.1) . If not, the solution of the trial state is the

actual solution; 

4. otherwise, choose the evolution rule (21a) or (21b) based on
˙ 	 and solve it together with Eqs. (8) and (32) . 

The procedures just reported are called return mapping algo-

ithm ( Simo and Hughes, 1998 ). To numerically implement the

rocedures, we formulate the discretized forms of the coupled

quations as follows. 

1. The discretized form of the stress strain relation (8) is 

εn +1 = 

σn +1 

E ( ξn +1 ) 
+ ξn +1 εL + α( T n +1 − T 0 ) . (C.1) 
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Table C.5 

Numerical algorithm for stain-controlled loading. 

1. Given: admissible point ( σ n , εn , T n , ξ n ) and εn +1 . 

2. Compute elastic trial state: 

ξ trial 
n +1 = ξn , 

T trial 
n +1 = T n −

α/c σT n E 
(
ξ trial 

n +1 

)
(εn +1 − εn ) + λ( T n − T 0 ) 
t 

1 − α2 /c σT n E 
(
ξ trial 

n +1 

) , 

σ trial 
n +1 = E 

(
ξ trial 

n +1 

)[
εn +1 − ξ trial 

n +1 εL − α
(
T trial 

n +1 − T 0 
)]

, 

	trial 
n +1 = σ trial 

n +1 εL − T trial 
n +1 
s 0 . 

3. Test for phase transition: 

If 	trial 
n +1 > 	n then 

If ξmin ( M s − M f ) 
s 0 − M s 
s 0 < 	n < −M f 
s 0 then 

using iterative method to solve (C.1), (C.2) , and (C.3) 

simultaneously for σn +1 , ξn +1 , and T n +1 , 

update ξmax = ξn +1 , 

Else the trial state is the actual state; 

Else If −A s 
s 0 < 	n < ξmax ( A f − A s ) 
s 0 − A f 
s 0 then 

using iterative method to solve (C.1), (C.2) , and (C.4) 

simultaneously for σn +1 , ξn +1 , and T n +1 , 

update ξmin = ξn +1 , 

Else the trial state is the actual state; 

Update 	n +1 = σn +1 εL − T n +1 
s 0 . 
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2. Heat equation (32) is an ordinary differential equation, and

its time difference approximation is 

T n +1 − T n = 

σn +1 εL + 
u 0 − �( 2 ξn +1 − 1 ) 

c σ
( ξn +1 − ξn ) 

− αT n 

c σ
( σn +1 − σn ) − λ( T n − T 0 ) 
t. (C.2)

3. The discretized evolution rules (21) are expressed as follows:

when 	n +1 > 	n and ξmin ( M s − M f ) 
s 0 − M s 
s 0 < 	n <

−M f 
s 0 , 

ξn +1 = 

σn +1 εL − T n +1 
s 0 + M s 
s 0 

( M s − M f ) 
s 0 
; (C.3)

when 	n +1 < 	n and −A s 
s 0 < 	n < ξmax ( A f − A s ) 
s 0 −
A f 
s 0 , 

ξn +1 = 

σn +1 εL − T n +1 
s 0 + A f 
s 0 

( A f − A s ) 
s 0 
; (C.4)

otherwise, 

ξn +1 = ξn . (C.5)

If the stress is given ( Eq. (31a) ), the detailed algorithm is avail-

able in Table C.4 ; if the strain is given ( Eq. (31b) ), the algorithm is

shown in Table C.5 1 . 
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