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a b s t r a c t 

Automatic building extraction and delineation from airborne LiDAR point cloud data of urban environ- 

ments is still a challenging task due to the variety and complexity at which buildings appear. The Medial 

Axis Transform (MAT) is able to describe the geometric shape and topology of an object, but has never 

been applied for building roof outline extraction. It represents the shape of an object by its centerline, 

or skeleton structure instead of its boundary. Notably, end points of the MAT in principle coincide with 

corner points of building outlines. However, the MAT is sensitive to small boundary irregularities, which 

makes shape detection in airborne point clouds challenging. We propose a robust MAT-based method for 

detecting building corner points, which are then connected to form a building boundary polygon. First, 

we approximate the 2D MAT of a set of building edge points acquired by the alpha-shape algorithm to 

derive a so-called building roof skeleton. We then propose a hierarchical corner-aware segmentation to 

cluster skeleton points based on their properties which are the so-called separation angle, radius of the 

maximally inscribe circle, and defining edge point indices. From each segment, a corner point is then 

estimated by extrapolating the position of the zero radius inscribed circle based on the skeleton point 

positions within the segment. Our experiment uses point cloud datasets of Makassar, Indonesia and EYE- 

Amsterdam, The Netherlands. The average positional accuracy of the building outline results for Makassar 

and EYE-Amsterdam is 65 cm and 70 cm, respectively, which meet one-meter base map accuracy criteria. 

The results imply that skeletonization is a promising tool to extract relevant geometric information on 

e.g. building outlines even from far from perfect geographical point cloud data. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Mapping building roof outlines, also called building footprints,

s essential for digital base map cartography, planning, surveil-

ance, infrastructure management and sustainable city design. Sev-

ral urban-related applications such as cadaster maintenance and

uilding taxation require building outlines at a routine basis. Ex-

racting building boundary lines manually is expensive and time

onsuming, especially in urban scenes. Research on extracting

uilding outlines automatically from high-resolution data remains

hallenging due to the complexity of roof structures and variations

n the design of our urban environment. Up to now, building out-
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ines are typically digitized from multiple aerial images. The use

f aerial images is preferred above other data sources as human

perators can easily detect buildings on such images. For automa-

ion purposes, image disadvantages such as shadows, trees cover-

ng building roofs and color variations may increase the extraction

rror. Moreover, relief displacement may cause problems when us-

ng an orthoimage to obtain building boundaries in case of un-

avourable image acquisition angles [61] . Airborne Laser Scanner

ALS) point cloud data is an alternative data source. ALS point

louds have been used as a major data source for mapping appli-

ations for a few decades [2] . The ability of ALS point clouds to

rovide many accurate and undistorted 3D points makes it suit-

ble as data source for object extraction. Man-made urban ob-

ects (buildings, roads, canals) typically have symmetric shape with

traight lines and sharp corners. Such characteristics enable auto-

atic boundary outline extraction from an ALS point cloud. Thus,

he use of ALS point clouds for rooftop mapping in combination
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Fig. 1. The MAT skeleton (blue lines) intuitively detects corners (red points) located 

at the intersection of the skeleton and the object boundary (black lines). 
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with an efficient algorithm is expected to provide better building

outlines. 

Medial axis transform (MAT), is a powerful shape extraction

technique that provides a compact geometrical representation

while preserving topological properties of the input shape [1,4] .

The MAT was introduced by Blum [5] to describe biological shapes.

Since then, it has been used for applications in image process-

ing and computer vision. However, MAT has a fundamental draw-

back, which is its instability to small perturbations of the input

shape, which then may disturb the topology of the MAT branches

[3,9] . Moreover, wider deployment of MAT to extract shapes analy-

sis from surveying quality data with its associated problems, is still

challenging [4] . 

In principle, the MAT can be implemented for urban mapping

purposes, particularly to extract building shapes by detecting its

corners. As illustrated in Fig. 1 , corner points (red) are detected

when the tip of a skeleton branch (blue line) touches the building

boundaries (black). However, generating a MAT skeleton from point

clouds is a challenging problem as such data contain fuzzy borders,

in particular, when data is missing [25] . This makes the application

of MAT for airborne point clouds difficult. 

Corners are important local features and knowledge on their

location can minimize further data processing without losing spe-

cific features of the original object shape [35,36] . Given an airborne

point cloud of an urban area, we propose a method for extracting

building outlines automatically by detecting accurate roof corner

points based on MAT descriptors. 

2. Related work 

Work on the development of building outline extraction from

various remote sensing data has been intensified in parallel with

the increased interest in GIS (Geographic Information System) dig-

ital map products [49] . Combining different data sources to extract

building outlines is believed to increase the detection rate and ac-

curacy compared to using a single data source as more features

can be used. Nevertheless, fusion of data of different sensor types

is not a trivial task as fusion is hampered by dissimilar resolution,

alignment issues or mismatches in feature information caused by

sensor characteristics or differences in viewpoint during acquisi-

tion [60] . Manno-Kovacs and Sziranyi [54] proposed an Orienta-

tion Selective Building Detection method to detect buildings from

a combination of aerial and high-resolution satellite images. They

apply active contouring for obtaining smooth and accurate build-

ing outlines. However, inhomogeneous buildings are sometimes

only partially detected and any object connected to the building

(e.g. trees) can result in false positive detections. Zhao et al. [55] ,
wrangjeb [56] , and Li et al. [57] combined LiDAR point clouds

nd aerial images to detect buildings and obtain smooth building

utlines by regularization and mathematical morphology. Building

utline errors occured due to failures to determine the building

rincipal directions during regularization [55,56] or line redundan-

ies after simplification [57] especially, in case of low point density.

ur previous study [37] proposed an extended Hough transform

ethod using ordered lists of points to detect building boundary

egments from airborne point cloud data. Hierarchical filtering is

pplied to remove spurious lines. That method outperformed ex-

sting state of the art methods in terms of correctness and quality

etrics on benchmark dataset. However, the method is likely to

ntroduce false corners, especially for buildings of complex shape,

s spurious lines may still exist in the final step. 

Various definitions of MAT or skeleton found in literature corre-

pond to different methods for computing the MAT leading to dif-

erent results with different properties. In general, MAT algorithms

ypically focus on deriving the geometric location of the centerline

r medial axis of a surface, so-called skeletonization [11] . Up to

ow, numerous skeletonization methods and their application for

D and 3D object description are available in literature. The exist-

ng skeletonization methods are often categorized into four main

pproaches: 

- morphological thinning-based methods that was first applied

for discrete binary images [17] , and improved by Huang et al.

[22] and other related notions on the development of 3D thin-

ning algorithm [23,48] . 

- geometry-based methods using medial axis transformation for

planar shape [18] including Voronoi diagrams [19] and Delau-

nay triangulation [47] . 

- distance-based functions such as skeleton generation and cen-

terline by the distance transform [40] , skeletonization by dis-

crete Euclidean distance maps [41] , and Euclidean skeleton

based on connectivity criterion [42] . 

- general-field functions which are generated by functions rather

than use distance function, for example by replacing the non-

linear distance with a linear transform [16] , using Newtonian

potential model to replace the distance function [43] , and us-

ing Electrostatic Field Theory (EFT) function to generate poten-

tial distribution inside the object [44] . 

Reviews on skeletonization methods and its applications have

een discussed by Saha et al. [12,13] , Pavlidis [21] , and Amenta

t al. [24] . As many skeletonization algorithms were designed more

or image analysis, we limit the scope of our study on skeletoniza-

ion for point cloud data. 

Several works on MAT using geographical data for various

urposes have been conducted. Haunert and Sester [30] applied

traight skeleton extraction to derive linear representations of

olygons and road centerlines from a cadastral dataset. Yirci et al.

29] extracted detailed pedestrian networks by generating a cen-

erline using two skeleton operators (straight skeleton by paral-

el thinning and medial axis by Voronoi diagram). Methods for

iver centerline extraction based on Delaunay triangulations re-

ain challenging for certain complex situations e.g. a scenario

ith a skeleton branching in different directions [33,34] . Broersen

t al. [26] used the 2D skeleton of a Voronoi diagram and the 3D

keleton of a shrinking ball for identifying watercourses and de-

iving its centerlines from classified aerial point clouds. Widyan-

ngrum and Lindenbergh [38] extract the road network of an ur-

an area from a colored point cloud using parallel thinning skele-

onization [39] . However, a further generalization step maintaining

he road topological order is required for smoothing jaggy skeletal

ines yielded by the parallel thinning algorithm. 

Ma et al. [6] estimate a 3D medial axis point using a shrink-

ng ball approach based on nearest neighbors and normals from
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Fig. 2. Proposed methodological workflow for extracting the building outlines. 
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 given set of points. Their work is claimed as a faster and sim-

le method that approximates the 3D MAT based on maximally

nscribed balls tangent to two surface points whose center is po-

itioned on a normal line. The ball centers are the medial axis

oints. The shrinking ball algorithm is not only accurate and com-

utationally efficient but is also considered as the most simple

nd fast existing surface-skeletonization method [4] . This method

s considered as suitable for the geographical case as it is point

ased, simple, fast, and scalable [3] . However, to use this method,

ne sampling is required to directly obtain a high quality skeleton.

he fact that the shrinking ball approach can only result in un-

tructured skeleton points while disregarding the topology of the

keleton branches makes this algorithm not directly applicable for

pplications involving surveying data. For use in practical applica-

ions, the MAT consisting of medial points and corresponding max-

mally inscribed circles (in 2D) or balls (in 3D) needs further pro-

essing [10,14,15] . 

. Methodology 

Our research focuses on the adaptation of MAT for extracting

uilding outlines from noisy point cloud data required for map-

ing and spatial modeling purposes. We extend the work on the

terative shrinking ball algorithm and develop a strategy to exploit

keleton features to accomplish the goal of accurate building out-

ine extraction. A new approach for skeletal point segmentation is

lso proposed in this study. The proposed method achieves state-

f-the-art in handling noisy surface boundaries and reconstructing

he building outlines. It requires minimal human interaction by op-

imizing the use of skeleton-based features. Specifically, the contri-

utions of our work are as follows: 
• We integrate skeleton-derived features and global features to

perform robust skeletal points (MAT) segmentation handling

varying point density and noise level. 
• We combine ordered surface point indices and skeletal-derived

features to detect corner points. 
• We introduce the use of skeletal-derived features to estimate

building corner positions accurately. 

Overall, our method overcomes some traditional pitfalls of us-

ng MAT techniques in case of noisy input. 

As this study requires using the MAT in 2D space, we adapt the

D shrinking circle algorithm by Ma et al. [5] . The general work-

ow of our proposed method for automatically extracting building

oof outlines consists of four main steps (see Fig. 2 ). First, build-

ng boundary points are extracted by an alpha-shape algorithm

45] . Next, the boundary points are transformed into its 2D MAT or

keleton points using the 2D shrinking circle algorithm. Third, we

hen apply our MAT segmentation to segment the MAT points by

xploiting their geometric attributes. The segments are then used

o detect corner points. Fourth, polygonization is carried out to

orm a 2D closed polyline based on the detected corner points. 

This study uses the extended shrinking circle approach that im-

lements the denoising heuristic as proposed by Peters [3] . We de-

ne the skeleton of an object surface S as a set of center points c

f maximally inscribed circles B ( c, ρ) in S (see Fig. 3 ) where ρ de-

otes the radius of such circle. 

The 2D skeleton points are also called medial axis points. By

ssociating the circle radius ρ function to the set of medial axis

oints, we obtain the so-called Medial Axis Transform (MAT). As

hown in Fig. 3 , the medial axis points (red points) form the MAT

keleton (blue lines) of a rectangular object S . Each maximally in-

cribed circle (in grey) touches at least two points of the boundary

f S (black outline). Center points of any circle that is not maximal
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Fig. 3. The skeleton (blue line) of a rectangular shape with its corresponding in- 

scribed circle (grey) and medial axis point c (red point). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

o  

i  

t  

T  

o  

0

3

 

s  

o  

c  

a  

m

 

a

 

 

 

 

 

3

 

p  

p

 

 

 

 

 

 

 

 

 

 

 

 

i  

t  

m

 

s  
or not inscribed in S (green circles) are dismissed and not consid-

ered as medial axis points. 

To provide a clear and coherent narrative, further details on

each methodological step are provided in the following: Section

III.1 describes the alpha-shape algorithm. Section III. 2 and III. 3

provide necessary details on the shrinking circle method and skele-

tal points extraction, respectively. Skeletal point segmentation is

described in Section III. 4. The last step, corner point estimation

and building outline generation, is explained in Section III. 5. Eval-

uation methods for building outline extraction used in this re-

search are discussed in Section III. 6. 

3.1. Alpha-shape 

Given the segmented building points, creating building outlines

starts with boundary point selection by the alpha-shape algorithm

as introduced by Edelsbrunner [45] . An alpha-shape is well known

for its capability to preserve small shape details of a finite point

set at a required level of detail. The 2D alpha-shape is constructed

based on the 2D Delaunay triangulation of the input points. The

method identifies boundary points that are defined in terms of a

parameter α ≥ 0, which controls the level of detail of the boundary

shape. Given a set S of points on a plane and a value of α, the

algorithm works as follows: 

1. Compute the Delaunay triangulation DT( S ) of S. All edges in

DT( S ) are candidate for the alpha-shape S α . 

2. For all edges e of DT( S ) with end points p and q , say: 

a. Find two circles B pq 1 and B pq 2 of radius α with center c pq (1)

and c pq (2) containing end points p and point q of the same

edge e . The circles are defined in terms of the below circle

centers: 

c pq ( 1 , 2 ) = 

⎛ 

⎝ 

x p + x q 

2 
±

√ 

α2 −
(‖ e ‖ 

2 

)2 (
y p − y q 

2 

)
, 

y p + y q 

2 

±

√ 

α2 −
(‖ e ‖ 

2 

)2 (
x p − x q 

2 

)⎞ 

⎠ (1)

Where ‖ e ‖ is the length of the edge between end points p

and q. 

b. If at least one of the circles contains no points from S in its

interior, e is a valid boundary edge ( Fig. 4. a), otherwise the

edge is removed ( Fig. 4. b). 

3. The union of all valid boundary edges forms the alpha-shape S α
( Fig. 4. c) 

The value of α is a real number with 0 ≤α ≤∞ . As α ap-

proaches 0, the shape may shrink, develop holes and may become

disconnected. In the extreme case, the value of α = 0 results in

the data points itself. When α increases towards infinity, the alpha
hape approaches the convex hull of the set S of points. In case

f geospatial point clouds, the point density is often varying, and

s depending on sensor characteristics and measurement geome-

ry and an appropriate value of α should be chosen accordingly.

o identify boundary points of unordered building roof points in

ur study areas, we decided empirically for an α-value between

.3 and 0.5 

.2. The shrinking circle principles 

Given are a set of noisy edge points V on a surface S with corre-

ponding normal vectors N . The MAT points are defined as the set

f centers c and corresponding radius ρ of maximally inscribed cir-

les B ( c, ρ) in S that are bi-tangent to the boundary S . The circle B

nd corresponding circle center c are denoted as medial circle and

edial axis point, respectively. 

The basic principles of the shrinking circle method (see Fig. 5 )

re as follows: 

1. A medial circle touches the surface in at least two points ( p, q )

where p , q ∈ S . 

2. Following the line defined by normal vector N p of edge point p ,

the radius ρ of a circle B p decreases iteratively until B p touches

S at q , where q � = p and the circle center c is on the line through

N p . Iteration stops if the maximal B p circle is found. 

3. A medial circle is a maximal empty circle, which means it con-

tains no surface points. 

.3. Skeletal points extraction 

To obtain the MAT of surface S , medial axis points c ( p ) are com-

uted. Hence, the maximal inscribed medial circle B for all sample

oints p in S is computed by the following steps: 

1. An initial circle B init of p is defined based on an initial ra-

dius ρ init . The ρ init value is set sufficiently large e.g. equal to

the largest distance between two input points. 

2. Given ρk 
p , where k = {1, 2, .., i } denotes the k- th iteration step,

the circle center c k 
p is given by: 

c k 
p = p − N p ρ k 

p (2)

3. Find the surface point q k 
p ∈ S closest to c k p such that q k 

p � =
p . 

4. Test for circle maximality for the circle defined by q k 
p and p : 

a. If the distance from c k p to q k p equals the radius of the cir-

cle ρk 
p , the circle B 

k 
p is maximal and c k p is a medial axis

point. 

b. Otherwise, compute the radius of the next shrinked circle

ρ k +1 
p using the following equations: 

ρ k +1 
p = 

d(p, q 

k+1 ) 

2 cosθ
k+1 
p 

(3)

Where: 

cosθk+1 
p = 

N 

(
p − q 

k+1 
)

d(p, q 

k+1 ) 
(4)

d(p, q k+1 ) = 

∣∣p − q 

k+1 
∣∣

2 

(5)

The iteration will stop when the medial axis point as described

n step 5.a. is found. Fig. 5. a. shows consecutive shrinking of a circle

ouching S at point p, which results in a medial circle B 

i 
p and a

edial axis point c i p in the last iteration. 

Given a defined inside and outside of surface S , the MAT con-

ists of two components: one part inside surface S (N p ) , consisting
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Fig. 4. The alpha-shape criteria. 

Fig. 5. Basic principles of the shrinking circle algorithm applied on noisy building edges. 
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f the so-called inner medial axis points, and another one outside

urface S (-N p ) , the outer medial axis points. 

For each p ∈ S , the corresponding inner and outer MAT points

re computed by iterating steps 2 to 4. The inward normal N p is

sed for the inner MAT calculation, while the outward normal–N p 

s used for the outer MAT calculation. Fig. 5. b. shows the geometry

or calculating the medial axis point c p and the direction of the

ormal vector N p for the inner circle (black arrow) and outer circle

red arrow). 

Noise handling is an essential step to overcome the sensitivity

f MAT to noisy boundaries. In case a small bump or noise ex-
 i  
st on the input surface, a circle may get shrunk too much which

hen likely results in undesireable medial axis points. Such overly

hrinked circle, typically has a small separation angle α. The sep-

ration angle α (see Fig. 5. b) is the angle between line p - c p (the

ine connecting point p and medial axis point c p ) and line q - c p 
the line connecting point q and medial axis point c p ). 

osα = 

−→ 

c p p . 
−→ 

c p q ∣∣−→ 

c p p 
∣∣ . 

∣∣−→ 

c p q 
∣∣ (6) 

The denoising heuristics technique presented by Peters [2018]

s used to select the so-called good circle that is often computed
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Fig. 6. Characteristics of skeletal points used for segmentation in case of uniform edge point spacing. 
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during the above described shrinking approach. The good circle is

defined as the last circle in the shrinking approach with a separa-

tion angle αk bigger than the separation angle threshold αmin . 

After this step, every medial axis point c p comes with a num-

ber of attributes. Attributes of each MAT point m p are medial axis

point c p coordinate, radius ρ , separation angle α, indices of surface

point p and q , and normal vector N p or - N p . Theoretically, using

these MAT attributes, the geometry of S can be reconstructed com-

pletely. 

3.4. MAT point segmentation 

MAT attributes provide rich information that can be used to

group MAT points into different medial segments or branches. In

our case, segmenting the points into different branches is used for

detecting the corner points. One issue when obtaining a skeleton

from a point cloud with the shrinking circle algorithm is that the

point cloud provides an unstructured point sampling of S . Also for

the MAT points resulting from steps 1 to 4, adjacency relations are

initially not known. For further application of the MAT, two useful

observations to identify MAT point connectivity are as follows: 

- MAT points heading towards the same turning point or corner

are considered as one segment. Fine sampled surface points of

a square shape S in Fig. 6. a result in fine MAT points in which

some of the MAT points gradually approach a specific turning

point. In this sense, each MAT point created from a maximally

inscribed circle, touching at surface point p and q appoint to

a turning point that is equally located between surface point p

and q . As illustrated in Fig. 6. b, the median value of two surface

points p and q (in red text) is similar to the corner’s index (76).

- MAT points are expected to have a separation angle α close to

90 ° As shown in Fig. 6. c, MAT points of a rectangular shape

have separation angles that are distributed around 90 °

In practice, surface points are not perfectly distributed and noise-

free and are not as regular as shown in Fig. 6. a. Small perturbations

on the surface boundary create so-called skeletal noise [7,8] . When

detecting shape corners, skeletal noise may induce false segments,

which then results in false corners. 

Our segmentation criterion relies on the proximity of the turn-

ing point location of the boundary point. Intuitively, MAT points

that lie close to each other and have similar features values are

grouped together. Moreover, we expect that the radius ρ will grad-

ually change along a segment branch. 
Based on aforementioned observations, we use three global

hresholds and four MAT-derived features for segmenting the MAT

oints. The global thresholds are not related to MAT and are de-

ned to increase the segmentation accuracy. The global thresholds

re: 

G.1. A buffer distance bf from the object surface S . Only a MAT

point located within the specified buffer will be considered

for segmentation. This threshold is used to exclude unus-

able outer MAT points resulting from the maximal circle of

two edge points with outward normal. These MAT points are

typical noise located far from the surface points. 

G.2. Minimum number of points for each segment minPts. Any

segment having less points than the given minPts is consid-

ered as segment noise . 

G.3. Point index interval �pt sets the minimum distance be-

tween two candidate corner points, as expressed below: 

�pt ≥ l 

r 
− 2 (7)

In Eq. (7) , l is the minimum required edge length and r is the

point cloud interval. The point index interval �pt criterion is

designed to avoid having false or extra corners at a certain

minimum determined edge length in case of short and noisy

boundaries. For example, given a set of points with 0.5 m

point cloud interval r , we require to extract building edges

of minimum length l = 2.5 m, thus, �pt is set to 3. Imagine

that point 13 in Fig. 7 has the same medial properties as

point 11, 16, and 20. Point 13 will not be considered as a

corner point as it has less than 3 point difference to point

11. 

The customized features derived from the MAT attributes, or

AT-derived features are described as follows: 

F.1. A MAT point m p having a separation angle α close to 90 ° is

considered for segmentation. Here ‘close’ is specified by the

separation angle difference threshold, ∂α. MAT points out-

side the given ∂α threshold are considered as skeletal noise.

This means, a MAT point m p will be considered for seg-

mentation if it has a separation angle αp between 90 ◦ + ∂α
and 90 ◦ − ∂α. 

90 

◦ − ∂α ≤ αp ≤ 90 

◦ + ∂α (8)

F.2. Each edge point p ∈ S is assigned a unique index. For the

corner-aware segmentation, MAT points m p of similar char-

acteristics are expected to belong to the same cluster. This
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Fig. 7. Noisy point edge may indicate a false corner. 

Fig. 8. Normal vectors (grey lines) of edge points (black points) where p i is the 

turning point. 
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p  
is assessed by considering the point indices of the surface

points of S . Assume p, q ∈ S . Let p idx and q idx denote the point

indices of p and q , respectively. The median value med pq is

obtained by Eq. (9 ). 

me d pq = p idx + 

q idx − p idx 

2 

(9) 

For example, p idx = 13 and q idx = 19 in Fig. 7 results in med pq =
16. Different MAT points with similar med pq value likely be-

long to the same MAT segment. 

F.3. The normal angle differences δN between the normal of

point p i and the normal of the previous point p i −1 and the

normal of the next point p i +1 defined by ( | N p − N p i −1 | ) and

( | N p − N p i +1 | ) , respectively. 

The normal angle differences δN between 2 consecutive

edge points is used to determine candidate corners K p for

p ∈ S . Detection of candidate corners K p is used to obtain

first estimate of the number of building corners which is

later used to remove false segments in case of noisy edges.

At noisy edges, segments with small median difference may

be formed which later may result in false corners. Consider

two adjacent normal vectors N p i and N p i −1 
of point p and

p i −1 respectively, compare Fig. 8 . The angle δN between the

two normal vectors N p i and N p i −1 
is obtained via Eq. (10 ). 

cos 
(
δN p i p i −1 

)
= 

N p i . N p i −1 

| N p i | . 
∣∣N p i −1 

∣∣ (10) 

A surface point p initiates a candidate corner point K p if the

angular differences δN to its two adjacent points ( p i −1 and

p i +1 ) are above the given angle threshold δN . That is ex-

pressed in Eq. (11 ). (
δN p i p i −1 

, δN p i p i +1 

)
≥ δN. (11) 
For example: for δN = 20 ◦, if δN p i p i −1 
≥ 20 ◦, and δN p i p i +1 

≥
20 ◦, then the surface point p is a candidate corner. 

F.4. The maximum median index difference threshold ∂K p . This

feature is used to avoid false corners and additional seg-

ments caused by perturbation or noise on the surface par-

ticularly near to the corners. 

Given a set of MAT points M = { ( c p , ρ, α, p, q, N ) } with 6 fea-

ures ρ , α, p, q, N per medial axis point c p , the MAT point seg-

entation works as follows: 

1. Select MAT points m p located within a certain buffer distance

of bf from the object surface S using global threshold G.1. For

most of our buildings, a buffer distance bf = 35 m is sufficient. 

2. Select only MAT points m p having an acceptable separation an-

gle αp as specified by the MAT-derived feature F.1. This step

eliminates skeletal noise that typically has a separation angle

value away from 90 ◦ In our case, a separation angle difference

∂α = 20 ◦ is sufficient for the medial segmentation. 

3. Compute the median value med pq of the filtered MAT points

from step 2 using the MAT-derived feature F.2. 

4. Identify all possible candidate corners K r and put them in a list

K 1 , K 2 . . . , K i . Candidate corner K r is added to the list if it satis-

fies all the MAT-derived criteria specified in F.3, F.4, and global

feature G.3. We use threshold values ∂K r = 3, δN = 15 ◦and �pt =
2, respectively. 

5. Given a candidate corner K r from step 3, the algorithm searches

for MAT points with median value med pq similar to r idx . 

6. If | me d pq − r idx | ≤ �pt, then MAT point m p is assigned to me-

dial segment Mseg ( r ). 

7. Any medial segment Mseg having less member points than

minPts, as defined in G.2, will be removed. This step will elimi-

nate false segments that may be formed in case of flaws on the

edges. 

Medial segments are used next to estimate real corners where

ne medial segment corresponds to one corner. 

.5. Corner point estimation 

Instead of appointing edge points as corners, we rather esti-

ate the position of corners based on the medial axis point po-

itions and their corresponding radius. The radius ρ of the maxi-

ally inscribed circles of MAT points will gradually decrease to-

ards corners. Each medial segment ideally contains a set of MAT

oints with gradually decreasing radii. The location where the ra-

ius will become zero ( c ρ=0 ) , typically identifies the location of

he corner point corresponding to a medial segment is estimated

s follows. Fig. 9 shows how the radius ρ of the MAT point de-

ends linearly on the x coordinate. Therefore, a line is fitted by

CA (Principle Component Analysis) through the ( x, ρ) points of

he segment at hand. The x - coordinate corresponding to zero ra-

ius ( ρ = 0) of the fitted line L r (as indicated by the blue line in

ig. 9 ) is reported as the x coordinate of the corner point. The y -

oordinate of the corner point is obtained in a similar way. 

In case of an edge with heavy noise, false segment may remain.

 spatial filtering step is necessary as final filter to remove any

purious estimated corner c . This spatial filtering step preserves

ny corner point that is within a specified radius from the surface

oints p ∈ S . In our case, we use 1 m as we require building out-

ine result to have positional accuracy at least 1 m. As final step, a

losed building polygon is obtained by connecting all corner points

onsecutively referring to the point indices. 

.6. Building outline evaluation metrics 

Two different evaluation metrics are applied for evaluating the

erformance of the proposed workflow in fulfilling the required



8 E. Widyaningrum, R.Y. Peters and R.C. Lindenbergh / Pattern Recognition 106 (2020) 107447 

Fig. 9. Estimating the x-coordinate of the corner (blue point) by predicting where 

radius ρk 
p = 0 on L r . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Illustration of building corner detection accuracy based on the number of 

correctly detected corners within 1-meter radius from the corner reference. Red 

crosses indicate building corner results. In blue, two 1-meter circles around an un- 

detected reference corner are indicated. The green ellipse indicates a corner that 

does not exist in the reference. 
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building outline specification: corner geometric accuracy and cor-

ner detection accuracy. To evaluate the geometric accuracy, we

compared the position of corners coordinates of the building out-

line results to the reference [46] . Positional accuracy, also known

as geometric position accuracy or location accuracy, is used as

main indicator to measure how well the building polygons are po-

sitioned with respect to its true position within an absolute geo-

referenced system. We use the RMSE (Root Mean Square Error) to

measure the average of the squared differences between building

corner positions (X and Y coordinate) in the reference and in the

result. The RMSE of a complete building is calculated for all de-

tected building corners with respect to the position of correspond-

ing reference corners. 

RMSEx = 

√ ∑ 

( X res − X re f ) 
2 

n 

(12)

RMSEy = 

√ ∑ 

( Y res − Y re f ) 
2 

n 

(13)

RM SEr = 

√ 

RM SE x 2 + RM SE y 2 (14)

Where: 

X res , Y res = Coordinates of resulting corner points 

X ref , Y ref = Coordinates of corner points in the ground truth 

n = total number of corner points 

Due to the complexity of some building, not all corners may be

detected completely. Therefore, we evaluate the corner detection

accuracy by means of three retrieval measurements: recall, preci-

sion and F1-score [59] . Precision is used to measure the exactness

or fidelity, whereas recall is used to measure the completeness. The

F1-score is the weighted mean of precision and recall. 

P recision = 

T P 

T P + F P 
(15)

Recall = 

T P 

T P + F N 

(16)

F 1 − score = 

2 . P recision . Recall 

P rec ision + Recall 
(17)

For this purpose, a corner point is considered a True Positive

(TP) if it is located within 1-meter radius from the corresponding

corner reference, while any undetected corner including corners

with an offset of more than 1 m from the corresponding reference
orner is considered a False Negative (FN). Any corner in the result

hat does not exist in the reference is considered as False Positive

FP). 

In the building polygon in Fig. 10 ., the number of correct cor-

ers (TP) is 4, while the number of false corners FP (inside the

reen ellipse) is 1, and the number FN of undetected corners or

orners with an offset of more than one meter (as indicated by

he blue circles) is 2. This configuration gives Precision = 0.8, Re-

all = 0.67, and its F1-score is 0.73. 

Fig. 11 summarizes the proposed method to detect building cor-

ers from a given cluster of building points ( Fig. 11. d). The pa-

ameter thresholds, as discussed above, are set empirically depend-

ng on the point density and the required specification. Additional

re-processing is necessary in case clustered building points are

ot available. In this case, an initial classification and/or seman-

ic segmentation processing step is required. We use a classified

LS point cloud whose points are labelled according to their object

lass (building, ground, and unclassified). To group points belong-

ng to one building, points are clustered by applying the DBSCAN

lgorithm [50] . As a result, different buildings will have different

luster number and theirs points are labelled according to the cor-

esponding cluster number. Once the clustered building points (as

resented in Fig. 11. d) are available, boundary points need to be

xtracted ( Fig. 11. e), for which we use the alpha-shape algorithm.

he resulting building boundary points are then used as input for

he MAT shrinking circle algorithm (blue points Fig. 11. f). MAT

oints filtering and segmentation is applied based on their separa-

ion angle and median index value ( Fig. 11. g). Each medial segment

enerates a different corner candidate. Positions of the corners are

xtrapolated linearly using PCA ( Fig. 11. h). 

. Results and discussions 

.1. Experiments of the study areas 

For the experiment, we use three study areas with different

andscape characteristics and airborne LiDAR point cloud specifi-

ations. The first dataset represents a sub-urban area of the city

f Makassar, Indonesia. The point cloud data was captured in 2012

y a Leica ALS70 instrument and has 7–11 ppm (point per meter)

oint density. 
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Fig. 11. Overview of the proposed corner detection method using MAT descriptors. 
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The second dataset is a Dutch national AHN3 point cloud

31] sampling the area of EYE-Amsterdam, the Netherlands. The

HN3 data has a point density of at least 10 ppm and was acquired

n 2014. Most buildings in this area have a public or business func-

ion. This test set is selected as many of the buildings in this area

re considered to have a high complexity in terms of shape and

ize. 

Building points of the Makassar dataset, as presented in

ig. 12. a. in orange, were classified using LAStools [27] . For EYE-

msterdam, we used the provided building classification of the

HN3 dataset (shown as orange points in Fig. 12 ). The alpha-shape

lgorithm [28] is then applied to derive the outline of each build-

ng. We do not discuss the details of the pre-processing steps fur-

her as it combines well-known methods in the field of GIS and

emote sensing. 

For the Makassar area, the topographic base map scale 1:10.0 0 0

s used as ground truth data. The topographic base map is gen-
rated from manual 3D delineation from stereo-images with the

ame acquisition time as the Makassar airborne point cloud data.

or validating the Eye-Amsterdam results, the Dutch building reg-

stration dataset BAG ( Basisregistratie Adressen en Gebouwen ) of

he 2019 building dataset is used [32] . However, we noticed

hat several BAG buildings have different shape and size com-

ared to the AHN3 buildings due to different data acquisition

ime. Thus, the RMSE of the corners is calculated for unchanged

uilding. 

In this study, the required positional accuracy for the outline

esult is at least 1-meter. For the Makassar dataset, the average

MSE for 36 buildings in the study area is ̴ 65 cm, which meets

ur requirements. There is an exception for one incomplete build-

ng (indicated by a red circle in Fig. 11. b.), that has a RMSE of more

han one meter. In this case, the building roof is partially covered

y dense trees resulting in poor building segmentation. Based on

he number of corners from the reference data, the precision, re-
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Fig. 12. Study areas and building outline results. 
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call and F1-score of the Makassar test set are 0.99, 0.95, and 0.97

respectively. 

Building outline results for the EYE-Amsterdam dataset, as

shown in Fig. 12. d, are also good at 0.7 m RMSE on average. For

this dataset, there are no classification issues as we use available

building points provided by the AHN3. In this case, one of the

biggest factors that influences the accuracy of the result is the

definition of building roof, in case an overhanging roof exist. This

means that the overhanging roof is likely included in a building in

AHN-3 data but not in the BAG data, which results in discrepan-

cies. Fig. 13. b shows overhanging roofs on one building in the EYE-

msterdam area (marked as A in Fig. 13. a). Another issue is found

on a building with a curved building outline. The algorithm could

not detect points on a curved line, as the normal angle differences

δN between edge points is small (less than five degrees). Decreas-

ing the normal angle differences δN threshold would not always

mitigate this problem, as it will increase the number of false cor-

ners due to noise of the edge points. 

4.2. General overview 

Compared to our previous study on building outline extraction

using ordered points aided Hough transform (OHT) [37] , the MAT

approach has higher sensitivity to noisy edge points and varia-
ions in point density. Small bumps on the edges affect the nor-

al direction of the corresponding point, which later affects the

orner detection result. However, the MAT approach has a similar

ccuracy as our previous work at 0.7 m RMSE for the MAT-based

ethod and 0.57 for the OHT method. Our proposed method is

ble to handle one of the shrinking ball algorithm limitations that

equires the surface normal for each sample point [6] . 

The use of the alpha-shape algorithm makes it possible to ori-

nt the normals of each edge point automatically when performing

nner and outer MAT computation. Inner and outer MAT points to-

ether effectively detect all building corners. 

Fig. 14 shows the ability of our method to detect corners of

arious building shapes with different point density. Fig. 14 row

 demonstrates how our algorithm works on sparse building edge

oints that later result in false segments. The red circle in Fig. 14. b

ow 1 shows three medial segments around a corner. Two of them

re considered as false segments. However, the algorithm delivers

he correct corner points only (inside the red circle in Fig. 14. c row

) even though false segments exist. The method also works in

ase small perturbations exist on the boundary e.g. due to trees

see orange circles in Fig. 14. a row 3). There is one MAT point

the red point inside the yellow ellipse in Fig. 14. a row 3) result-

ng from a noisy edge part, that is correctly ignored by the medial

egmentation procedure. On the other hand, the algorithm may fail
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Fig. 13. Comparison of BAG building polygon (red) and the AHN3 building points (grey) in case of overhanging roof. 

Fig. 14. Outline results for different building shapes. 
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o extract non-linear shapes like rounded edges (see blue circles in

ig. 14 . row 2) as the algorithm cannot detect significant normal

hange for boundary points on the rounded edge. In this case, the

lgorithm can only detect two candidate corners from two medial

egments, positioned at both ends of the rounded edge. 

As shown in Fig. 15. a, our method is able to obtain building cor-

ers (yellow points) that are close to the reference building poly-

on (green) even when there is a perturbation in the boundary

inside the yellow ellipse). The proposed method, particularly, im-

roves the alpha-shape outline (red). Fig. 15. b compares between

 

t  
orners from our method, the alpha-shape outline result, and the

uilding outline reference. 

In addition, we found out that several MAT properties have not

een investigated yet, particularly for the outline extraction, e.g.

he curvature of consecutive MAT points indicating an asymmetric

hape of two edges of different length, may be used for locating

ut also characterizing corners accurately. 

.3. Comparison analysis 

In this section, we compare results of our proposed method

o those of existing methods on building outline extraction. For
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Fig. 15. Corner identification comparison between our proposed method and the reference and the alpha-shape outline in Makassar study area. 

Table 1 

Evaluation of different building outline extraction methods. 

Approach Geometric Accuracy 

RMSE (m) 

Corners Detection Accuracy Average computational 

time ( sec ) 

Precision (%) Recall (%) F1-score (%) 

Hough-based [20] 0.434 89.48% 95.15% 91.91% 2.10 

RanSAC-based [53] 0.548 91.89% 96.14% 93.65% 1.90 

MAT-based (the proposed method) 0.414 94.17% 94.55% 93.82% 1.71 
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S  
this purpose, a small subset of the AHN3 airborne point cloud

of Amsterdam is used. The two other building outline extraction

methods applied to this test area are: the Ordered Hough Trans-

form (OHT) method proposed by Widyaningrum et al. [37] and a

RanSAC-based segmentation and regularization method by Lucas

and Van Tilburg [53] . All these methods use an alpha-shape algo-

rithm to select boundary points, which later result in building cor-

ners. The RanSAC-based segmentation and regularization method

requires primary building orientations as it regularizes all bound-

ary lines with respect to these orientations and its perpendicu-

lar orientations. Another regularization approach, OHT [37] , ap-

plies the so-called extended Hough transform on a list of ordered

boundary points that enable to detect arbitrary building directions

and extract different boundary segments. 

The comparison metrics considered are the building corners ge-

ometric accuracy (RMSE), the computation time of building outline

extraction after the boundary points are selected, and the corner

detection accuracy in terms of recall, precision, and F1-score. 

As shown in Table 1 ., our proposed method has the highest ge-

ometric accuracy as well as F-1 score. The RanSAC-based method

has higher Recall value as our proposed method, but is likely to

have more undetected corners. However, the proposed method has

the lowest number of false positive corners. The average compu-

tation time for the three methods is considered comparable, al-

though in fact the proposed method is the fastest. However, each

method may have different strengths and weaknesses when it

is applied on a complex building roof shape. Using the building

shown in Fig. 16 . as one example, a reference corner inside the

brown circle is detected by OHT, but not by the proposed method.

The RanSAC-based method results in two corners with an offset

close to 1-meter from the reference. The proposed method fails to

detect one building corner (inside the brown circle) due to a wide

angle between two consecutive building outline segments that is

p

lose to 180 ° In this case, the shrinking circle failed to produce a

eparation angle α close to 90 ° needed for corner detection. 

Another difference in the results in Fig. 16 . is indicated by

he blue circles. The OHT method fails to detect two corners of

 short building edge of one meter length, while the RanSAC-

ased method as well as our proposed method successfully detect

oth corners. All methods produce false corners but the proposed

ethod has the smallest number of false corners. 

.4. Computational and complexity analysis 

We implemented our method in Python2.7 on an Intel Core

Duo CPU with 2.4 GHz processors. The computation time for our

orner detector algorithm varies from 0.28 to 0.99 s per building,

epending on the building size, shape and point density. 

Recall that the proposed method has four main steps: bound-

ry point selection by an alpha-shape algorithm, MAT extraction

y a shrinking circle approach, MAT points segmentation, and es-

imation of corners by PCA. However, in case building points are

ot yet available, an additional classification and segmentation

tep is required. One of the most common method for 3D point

loud segmentation is seeded region growing. This type of algo-

ithms selects a seed point and adds a point from the neighbor-

ood if it meets a certain criterion. As reported by Shih and Cheng

51] , and Deschaud and Goulette. [52] , the computational complex-

ty of seeded-based region growing for partitioning a point cloud

onsisting of n 3D points into N segments is O ( n log n ). Rabbani

t al. [55] improved plane detection using a smoothness constraint

ased on the normal angle difference between neighboring points

nd reported a time complexity of O ( n + N log n ) . 

The proposed algorithm works on individual building segments.

uppose a segment contains u number of building points, the com-

utational complexity of our four main steps are as follows: 
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Fig. 16. Building corners resulting from three different methods compared to building reference (gray polygon). Results notably vary within the brown circle and blue ellipse. 
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1. The alpha-shape algorithm for selecting boundary points using

Delaunay triangulation, as reported by [58] , has a time com-

plexity of O ( u log u ). 

2. Given v boundary points extracted by, e.g. the alpha-shape algo-

rithm, the shrinking circle algorithm used a KD-Tree to search

its nearest point with time complexity of O ( v log v ). The shrink-

ing circle algorithm has a computational complexity of O ( v 2 )

because the algorithm may have to visit all medial axis points

c p for every boundary point [6] . 

3. Medial axis points segmentation has a time complexity of

O ( v 2 ), but performance in practice is close to O ( v ) [6] . Each

MAT point m is checked for its median value based on its corre-

sponding boundary points ( p idx , q idx ) which takes O ( v ) time. The

selection of candidate corner points based on the angular dif-

ferences between two neighboring boundary points ( p, q ) takes

O ( v ) as well. The selection of MAT points m belonging to the

same segment based on the similarity of median value of two

boundary points ( p, q ) and corner point indices also has a time

complexity of O ( v 2 ), which leads to an overall time complexity

of O ( v 2 ). 

4. The overall time complexity of PCA is O ( d 3 + d 2 m ) where m

is the number of sample points and d is the number of fea-

tures [59] . Here, d = 2 . For estimating the corner position cor-

responding to zero radius on a line fitted by the PCA, the time

complexity is therefore linear in the number of sample points. 

If all points of a building segment were boundary points, the

omputational complexity would be O ( v 2 ) time. This computa-

ional complexity for the total procedure of medial axis segmen-

ation is not a problem because the algorithm works just on the

oundary points of a single building. Point cloud segmentation is

n practice the heaviest computation as it involves the complete 3D

oint cloud data. For example, in our Makassar test area, the build-

ng segmentation step considered all 464.191 points, while the me-

ial axis segmentation considers 43 individual buildings. The num-

er of points per-building in the Makassar test area varies from 96

o 3185 points, that later results in a number of building boundary
oints varying from 23 to 156 points. Note that the processing of

ndividual buildings can also be parallelized easily. 

. Conclusions and recommendations 

In this study, we have presented a procedure for automatically

xtracting building outlines from airborne point clouds based on

he MAT descriptors generated by the 2D shrinking circle method.

ur approach takes advantage of MAT invertibility with its medial

xis and the corresponding radius function that allows reconstruct-

ng the exact object shape. Building classification is conducted

rst. A set of building boundary points is then extracted using an

lpha-shape algorithm. After applying a shrinking circle algorithm

o the input boundary points, MAT points are obtained. To iden-

ify corners, we introduce a corner-aware segmentation to group

AT points to their corresponding medial branch. The segmenta-

ion combines both global thresholds and several MAT-derived fea-

ures. Next, the algorithm fits a line to all MAT points of a segment.

ased on the corresponding radii of the MAT points, the corner

oint location is estimated by extrapolating the position where the

adius is zero on the fitted line. 

The positional accuracy results of the estimated corner points

ndicate that our method provides a completely new and promis-

ng tool for reconstructing the geometric shape of building roofs

rom scattered airborne point clouds by using the MAT approach.

he proposed method performance is highlighted on a number of

omplex building shapes in and around the EYE building in Am-

terdam, The Netherlands. The ability of the proposed method to

btain accurate corners and complete shapes indicates the robust-

ess of our method to small perturbations on the building edge.

n case of sparse point intervals, densification of edge points may

elp to increase the accuracy of the MAT result. Meanwhile, our

ethod has limitations to obtain outlines of an object with a

urved or circular shape. In comparison to state-of-the-art methods

n building roof outline extraction, our proposed method shows

 promising result in acquiring accurate building corners geomet-

ically. Compare to RanSAC and Hough transform based methods,
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our method is a primitives-free approach that does not require ori-

entation initialization. 

Though current skeletonization methods show a progressive de-

velopment, deployment for wider applications is still challenging.

Different applications may require different skeletonization meth-

ods and/or MAT descriptors. For future work, we will consider ex-

tending the MAT technique for reconstructing other digital map

objects, such as road networks, ridges, or streamlines. The appli-

cation of the proposed workflow for extracting curved lines and

for a larger area is also interesting to be investigated further. 
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