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For integrated water resources management 
both blue and green water resources in a 
river basin and their spatial and temporal 
distribution have to be considered. This is 
because green and blue water uses are 
interdependent. In sub-Saharan Africa, 
the upper landscapes are often dominated 
by rainfed and supplementary irrigated 
agriculture that rely on green water 
resources. Downstream, most blue water 
uses are confined to the river channels, 
mainly for hydropower and the environment. 

Over time and due to population growth and 
increased demands for food and energy, 
water use of both green and blue water has 
increased. This book provides a quantitative 
assessment of green-blue water use and 

their interactions. The book makes a novel 
contribution by developing a hydrological 
model that can quantify not only green but 
also blue water use by many smallholder 
farmers scattered throughout the landscape. 

The book provides an innovative framework 
for mapping ecological productivity where 
gross returns from water consumed in 
agricultural and natural vegetation are 
quantified. The book provides a multi-
objective optimization analysis involving 
green and blue water users, including the 
environment. The book also assesses the 
uncertainty levels of using remote sensing 
data in water resource management at  
river basin scale.
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ABSTRACT 

The concept of integrated water resources management (IWRM) aims to integrate all 
relevant elements of water resources in a comprehensive and holistic way. The 
combined management of blue and green water resources in a river basin and their 
spatial and temporal distribution have to be considered for an IWRM plan. Green 
and blue water follow distinct pathways and are associated with different water use 
practices. In sub-Saharan Africa, rainfed and supplementary irrigated crops – relying 
mainly on green water resources - dominate upper landscapes. In downstream areas, 
blue water uses are often confined along the river channels, mainly for hydropower 
and environment. Over time, and due to population growth and increased demands 
for food and energy, water demands for both green and blue water resources have 
increased. Often the increasing green water use in upstream catchments has led to 
declining blue water resources in the downstream parts. The classical water resources 
management approach often focusses on the blue (runoff) water resources only. This 
is attributed to limited information on the temporal and spatial distribution of the 
green water (soil moisture) in the basin. Obviously, this has hampered the 
development of sound and sustainable IWRM plans in those basins. Therefore, an 
integrated analytical system for the entire river basin, incorporating both green and 
blue water resources is needed to assess upstream-downstream interdependencies, and 
to provide boundary conditions for an optimal water management plan at river basin 
scale.  

The management of basin interdependencies - particularly in cases of water scarcity - 
fundamentally depends on available knowledge and data. This thesis applied various 
approaches – some of which being innovations - to generate locally validated 
information in a heterogeneous, highly utilized and data scarce river basin in Africa - 
the Pangani river basin. An accurate assessment of (i) water availability, (ii) water 
use, (iii) water productivity, and (iv) water value, allowed the identification of basin 
interdependencies, and the quantification of tradeoffs and synergies between different 
green and blue water uses.  

The upper Pangani River Basin can be considered a closed basin due to intensive 
water use, mainly for agriculture. The many irrigation systems developed by 
smallholder farmers consist of complex and intricate networks of earthen canals and 
provide supplementary irrigation to otherwise rainfed crops, combining water from 
precipitation (green water) and river abstractions (blue water). There is very little 
official information about water use and water productivity of these gravity-fed 
irrigation systems. The increasing water uses for irrigation upstream has generated 
externalities and water related conflicts among various users in the basin. With time, 
the environment has also been affected as most of the perennial tributaries have 
become seasonal.  
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In semi-arid areas such as the Upper Pangani River Basin, evaporative water use 
constitutes the largest component of the hydrological cycle, with runoff barely 
exceeding 10%. The evaporative flux is a function of land cover and land management 
practices. Information of the spatially distributed land use and land cover (LULC) is 
required to (i) assess green water use per LULC, and (ii) characterize hydrological 
model parameters that provide the link between green water use and blue water 
flows. Through remote sensing analysis, sixteen different LULC types were identified 
and classified using their unique temporal phenological signatures. The methodology 
relied on freely available satellite data on vegetation provided by the Moderate-
resolution Imaging Spectroradiometer (MODIS). The data has 8 day temporal and 
250 m spatial resolution, and covers the hydrological years of 2009 to 2010. 
Unsupervised and supervised clustering techniques were utilized to identify various 
LULC types with aid of ground data obtained during two rainfall seasons (short and 
long) in the river basin. The multi-temporal MODIS data and long time series 
ensured correct timing of change events in the vegetation growth. The overall 
classification accuracy was 85%, with producer’s accuracy of 83% and user’s accuracy 
of 86% (at 98% confidence level). The individual classes showed relatively good 
accuracies of over 70%, except for barelands. Lower accuracies were observed for the 
smaller LULC classes. This uncertainty was attributed to the moderate resolution of 
MODIS gridded data (250-m). The inaccuracies were corrected using the Kappa 
statistic (K). The derived LULC classes were consistent with the FAO-SYS land 
suitability classification. Additional checks were made against local databases of 
smallholder irrigation and large scale irrigation (sugarcane cultivation), and the 
results showed close agreements (74% and 95%, respectively), with a fairly good 
geographical distribution. 

Accurate estimation of actual evapotranspiration (ET) for the 16 different LULC 
types in a data scarce region is challenging. This study used the MODIS satellite data 
and Surface Energy Balance Algorithm of Land (SEBAL) to estimate the actual ET 
for 138 images, with 250-m, and 8-day resolution for the period 2008 to 2010. A good 
agreement was attained for the SEBAL ET against various validations. The 
estimated ET (open water) for Nyumba ya Mungu (NyM) reservoir showed a good 
correlations against pan evaporation data (R2 = 0.91; Root Mean Square Error 
(RMSE) of less than 5%). An absolute relative error of 2% was calculated based on 
the mean annual water balance estimates of the reservoir. The estimated ET for 
agricultural land use classes indicated a consistent pattern with the seasonal 
variability of the crop coefficient (Kc) based on the Penman-Monteith equation. The 
ET estimates for the mountainous areas were significantly suppressed at higher 
elevations (above 2,300 masl), which is consistent with the reduced potential 
evaporation in those areas. The ET estimates were comparable to the global MODIS 
16 ET data in variance (significant at 95% confidence) but not with respect to the 
mean. This level of significance provides optimism but caution in the use of the freely 
available global ET datasets that have not been locally validated. 

A major limitation in deriving remote-sensed ET especially for land use types at 
higher elevations in the humid to sub-humid tropics is the persistent cloud cover. 
Those clouded pixels were corrected by interpolation based on the next and/or 
previous images. Although, the cloud filling procedure benefited from the 
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multispectral set of MODIS images, it still may introduce uncertainties in the final 
results. For the whole basin the estimated ET accounted for 94% of the total 
precipitation with an outflow closure difference of 12% to the measured discharge at 
the outlet. The bias (12%) was within the uncertainty range (13%) at 95% confidence 
level. The water balance analysis clearly showed that the basin is fastly closing. 
Therefore, it is important and timely to improve water productivity through 
improved water efficiency and water re-allocation in the Upper Pangani basin.  

Quantifying the hydrological link between the spatially distributed green water use 
(evaporation) and blue water (river flows) is essential for assessing interdependencies 
at the basin scale, though it is challenging. Physically based spatially distributed 
models are often used. But these models require enormous amounts of data, which 
may result in equifinality, and hence make such models less suitable for scenario 
analyses. Furthermore, these models often focus on natural processes and fail to 
account for anthropogenic influences. This study adopted an innovative methodology 
for quantifying blue and green water flows. The methodology uses ET and soil 
moisture derived from remote sensing as input data to the Spatial Tools for River 
basin Environmental Analysis and Management (STREAM) model. To cater for the 
extensive irrigation water abstractions, an additional blue water component (Qb) was 
incorporated in the STREAM model to quantify irrigation water use. To support 
model parameter identification and calibration, two hydrological landscapes (wetlands 
and hill-slope) were identified using field data and topographical maps. The model 
was calibrated against discharge data from five gauging stations and showed a good 
performance especially in the simulation of low flows. The Nash-Sutcliffe Efficiency of 
the natural logarithm (Ens_ln) of discharge were greater than 0.6 in both calibration 
and validation periods. At the outlet gauging station, the Ens_ln coefficient was even 
higher (0.90). The only challenge in using remotely sensed data (8-day) as input in 
hydrological models are in processes such as interception that have time scales of less 
than 8 days. Such hydrological processes have to be calculated outside the model thus 
introducing additional uncertainties. 

During low flows, Qb consumed nearly 50% of the river flow in the Upper Pangani 
basin. Qb for irrigation was comparable to the field based net irrigation estimates 
with less than 20% difference. A number of water management scenarios on water 
saving and impacts of increased water use were explored. The modified STREAM 
model showed a potential to be replicated in other landscapes with complex 
interactions between green and blue water uses. The model flexibility offers the 
opportunity for continuous model improvement when more data becomes available. 
The output from the model, mainly the information on green-blue water flows, was 
used as input in the water productivity analysis. 

Although water productivity is a key indicator in basin water resources management, 
it is not readily available, in particular for natural landscapes. The measures to 
improve water productivity are also unique to different river basins. This study 
computed water productivity in the Upper Pangani basin using a combination of 
remote sensing models. The models were based on the Monteith's framework for dry 
matter production to estimate above-ground biomass production in agricultural and 
natural landscapes. SEBAL algorithm was used to compute biomass production from 
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MODIS images. The gridded biomass production was then converted to crop yield, 
and amount of carbon sequestered. These were then converted to gross returns using 
their market prices. This study included gross returns from carbon credits and other 
ecosystem services in the concept of economic water productivity (EWP). The EWP 
showed the levels of water use and when formulated as production functions it can 
show the scope for improvements and provide for a trade-off analysis in a river basin. 
The biophysical productivity (biomass and crop yield) and water yields also provided 
insights into the water value society attaches to certain natural land use activities.  

Irrigated sugarcane and rice achieved the highest water productivities both in 
biophysical and economic values – well within the ranges reported in the literature. 
However, the productivities of rainfed and supplementary irrigated banana and maize 
showed a wide spatial variability, and were significantly lower than potential. The 
supplementary irrigated crops that combine green and blue water, however, achieved 
a higher economic productivity of blue water than fully irrigated crops. In situations 
of water scarcity, it is therefore prudent to allocate water resources to supplementary 
irrigated crops rather than to fully irrigated crops. This thesis developed explicit 
analytical relationships between biomass production and ET for irrigated, rainfed and 
natural landscapes for the Pangani River Basin. These relationships, which were 
formulated as production functions, showed the potential of improving the 
productivity of rainfed and supplementary irrigated agriculture in the basin. The 
frequency distribution of biomass production at pixel scale provided additional 
evidence for improvements in water productivity. 

An integrated hydro-economic model (IHEM) was developed in order to integrate 
green and blue water resources, for multi-objective analysis of water uses in the entire 
Pangani River Basin. The IHEM, which aims to optimize blue water use, was 
formulated innovatively to account for the full water balance. This has been done by 
incorporating the green water resources through their production functions in the 
Upper Pangani Basin. The analysis focuses on three primary objective functions: i) 
hydropower production, ii) fully irrigated agriculture, where crop water requirements 
were met by blue water, and iii) supplementary irrigation, where crop requirements 
were met by both green and blue water. The analysis also considered five socio-
environmental objectives that were derived from key stakeholders and expert 
knowledge. The results showed that agricultural water use (supplementary and fully 
irrigated) achieves relatively high water productivities and competes with 
hydropower, urban water use and the environment. Firm energy (provided at 90% 
reliability) favours constant moderate flow conditions throughout the year, which 
then competes with the environment that requires both high and low flow conditions, 
depending on the season. This study showed that improving rainfed maize through 
supplementary irrigation has a slightly higher marginal water value than fully 
irrigated sugarcane. For achieving sustainability of the river basin, agricultural water 
use should be balanced with other economic, social and environmental water 
requirements. Because water demand for hydropower is largely non-consumptive, 
hydropower production can, in theory at least, be seasonalized for conjunctive water 
use with the environment. 

The IHEM model provided the blue water balance of the Lower Pangani Basin and 
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showed that the Upper Pangani River Basin contributes 82% of total blue water. 
Evaporation from NyM reservoir constitutes about 28% of total inflows into the 
reservoir. The water use at the Kirua swamp, though constrained by water regulation 
at the NyM reservoir, is equivalent to US$ 8 million per year of potential hydropower 
revenue. The study showed that the minimum environmental flow for the Pangani 
estuary is guaranteed by the flow requirement from hydropower production in the two 
hydro-electric plants located near the outlet. Furthermore, the high flow requirement 
for the estuary is presently sustained by the unregulated flows from Mkomazi and 
Luengera tributary rivers. The scenario analyses showed various levels of trade-off 
between competing water users. Any measure that increases inflows into the reservoir 
or reduces water demands downstream of the reservoir would result in an operating 
policy that minimizes reservoir evaporation and provides more naturalized outflows 
downstream. Investment in interventions to reduce non-productive soil evaporation 
from irrigated mixed crops in upstream catchments resulted in increased blue water 
inflows into NyM reservoir that would increase hydropower revenue by US$ 2 million 
per year. This is equivalent to 33 US$ ha-1 yr-1 which could be available for 
investments in soil and water conservation, a potential for payment for environmental 
services (PES). The increase in revenue is in addition to un-quantified ecosystem 
services that would result from increased river flows downstream.  

Although this study could clearly demonstrate the advantages of integrated 
hydroeconomic modelling by including green water use upstream and blue water use 
downstream, deriving an accurate water value for the ecosystem services, in 
particular for wetlands, proved a challenge. The environmental values can be 
incorporated into the non - economic production functions (used as constraints in our 
model) to provide a wider variety of options and trade-offs for stakeholders and 
decision-makers. 
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LIST OF SYMBOLS 

Symbol Parameter description Value Dimension/Unit

B Biomass  Kg ha-1 yr-1 

C Capillary rise  L3 T-1 

Cmax Maximum Capillary rise  L3 T-1 

Cmin Minimum Capillary rise  L3 T-1 

CV Coefficient of Variation  - 

cr Separation coefficient for net precipitation  - 

D Threshold value for interception  L 

E Total Evaporation  L T-1 

Ens Nash-Sutcliffe coefficient  - 

Ens_ln Nash-Sutcliffe coefficient (natural logarithm)  - 

f Soil moisture depletion fraction  - 

G Soil heat flux  W m-2 

H Sensible heat flux  W m-2 

Ho Elevation above nearest open water  L 

Hs Normalized DEM above Ho  L 

HAND Height Above the Nearest Drainage  L 

I Interception  L T-1 

T Transpiration  L T-1 

Eo Open water evaporation  L T-1 

Eo(b) Open water evaporation from water balance  L T-1 

Eo(p) Open water evaporation from pan measurements  L T-1 

Ep Pan evaporation  L T-1 

Es Evaporation from the soil  L T-1 

ET Actual Evaporation and Transpiration  L T-1 

G Heat flux density into the water body  M T-1 

g Gravity  9.81  m s-1 

λ  Latent heat coefficient  2,47 ×  106  J kg-1 

Λ  Evaporation fraction  - 

Eλ  Instantaneous latent heat flux  W m-2 

ωρ  Density of water  1000  kg m-3 
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K Kappa statistic  - 

Kp Pan coefficient factor 0.81 - 

Kc Crop coefficient  - 

Ko Time scale, overland flow  T 

Kq Time scale, quick flow  T 

Ks Time scale, slow flow  T 

moi Moisture content  - 

P Precipitation  L T-1 

Pe Net precipitation  L T-1 

Pc Production costs  US$ 

Pg Gross farm gate price  US$ 

Pn Net farm gate price  US$ 

Qb Blue water use   L3 T-1 

Qd River net abstractions  L3 T-1 

Qg Green water use  L3 T-1 

Qo Observed discharge  L3 T-1 

Qof Overland flow  L3 T-1 

Qqf Quick flow  L3 T-1 
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Chapter 1 

INTRODUCTION 

1.1 WATER MANAGEMENT ISSUES AND CHALLENGES 
Water is an important natural resource to all forms of life and existence, and it forms 
the backbone for economic productivity and social wellbeing. This fundamental role 
and the growing demand amongst various users is becoming a great challenge to 
water resource managers at river basin scale. Water demand already exceeds supply 
in many parts of the world, and as population continues to rise, and economies grow, 
more areas are expected to experience water scarcity (Vörösmarty and Sahagian, 
2000; Smakhtin et al., 2004; Bos et al., 2005; Gourbesville, 2008). Water managers are 
also facing a massive challenge as they seek to balance human water demand with 
ecological needs. More water is also required to fulfil increasing energy demands from 
hydropower and biofuels (de Fraiture et al., 2008). This, according to Perry (1999), 
promotes an approach that links sources, uses, losses, and reuses by different land-use 
categories and environmental systems present within river basins. 

The situation in Africa becomes even more pronounced as over 60% of the total 
population relies on water resources that are limited and highly variable (UNEP, 
2010). 75% of the continents’ cropland is located in arid and semi-arid areas, with 
high variability of hydro-climatic condition, where irrigation can greatly improve 
productivity and reduce poverty (Smith, 2004; Vörösmarty et al., 2005). Only 4.8% of 
global hydropower potential is exploited (Gopalakrishnan, 2004). In sub Saharan 
Africa, 90% of agricultural land is rainfed with 70 – 90% of the exploited ‘blue water’ 
being used for irrigation (Rockström, 2000). Moreover, environmental values and its 
ecological benefits to livelihoods of rural populations are being recognized and now 
the environment is accepted as a legitimate water user in river basins. All these 
sectoral water users are interdependent of each other and any measure to influence 
the productivity or allocation of one user will affect the productivity of the other user 
(Van der Zaag, 2007; 2010). This situation is expected to be exacerbated with future 
expected population increase, economic development and climate change.  

Integrated water resources management based on the principle of economic 
productivity (efficiency) while ensuring equity and ecological integrity has potential 
to achieve conflicting and varying objectives of all water users in a river basin. 
Achieving economic productivity requires the understanding of the availability of 
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water and a notion of how much of it will be needed, in what quantity, for how long, 
and for what purposes (Gürlük and Ward, 2009).  

Since water availability is key to economic development, disputes over shared water 
resources continue to rise between different users/sectors. This is mainly because of 
the socio-economic difference and the physical linkages that exist especially between 
upstream and downstream users. We therefore need to recognize and institutionalize 
this upstream-downstream interdependence that may help build hydrosolidarity and 
cooperation among water users (Falkenmark and Folke, 2002; Van der Zaag, 2007).  

The success of any dialogue or policy depends on the knowledge base, general trust in 
data sources and tools that will enable policy makers, planners and stakeholders to 
make well informed decision. It is along this vein that this research aims to provide 
basin-wide tools, and information to effectively manage basin interdependencies 
between different water users in the Pangani River Basin in Eastern Africa. The 
study is set in a heterogeneous, highly utilized river basin with distinct mountainous 
upper catchments generating most of the water resources and large grassland 
savannah in the lower catchments. Although this is a typical African catchment, the 
methodology, data requirements, and findings are generic and can be applied in any 
other region. 

The Pangani basin which covers an area of 43,650 km2 has an estimated population of 
3.7 million people of which 90% lives in rural areas. 80% of the rural population 
depends, directly or indirectly on agriculture for their livelihood. Traditional 
irrigation systems are practiced by smallholders and several large scale farming 
enterprises also exist in the basin (IUCN, 2003; Komakech et al., 2010). The basin is 
also a major supplier of electricity from hydropower and hosts vital natural 
ecosystems such as mountain reserves, freshwater lakes, wetlands and the estuary. 
Detailed description and features of the river basin is provided in Chapter 2. 

There is an increasing demand and competition for water resources. Agricultural 
interests are expanding with irrigation being adopted by many farmers to enhance 
productivity. There are also increasing water demands from urban water supply. Land 
use is changing as more forest land and natural vegetation is transformed into 
agricultural land. Between 1952 and 1982, Kilimanjaro’s natural forest declined by 
over 41 km2 and approximately 77% of the forest cover of the Pare and Usambara 
Mountains, the most densely populated areas of the Pangani River basin, has been 
lost to agriculture (IUCN, 2003). Hydropower production has declined due to reduced 
inflows into the reservoirs (IUCN, 2007). Environmental resources have also been 
affected by reduced river flows as far as the Pangani estuary, where salt intrusion is a 
problem (Sotthewes, 2008). Some farming and fisheries are thought to have declined 
also as a result of decreased fresh water flows in the Kirua swamp and the estuary 
(IUCN, 2003; Turpie et al., 2003). Furthermore, most perennial tributaries in the 
upper catchments of the Pangani River Basin have actually become seasonal in the 
last few decades. 

According to Grossmann (2008), the Pangani River Basin can be classified as a 
‘closed basin’, where all its available water has been used. Other studies have 
indicated that the basin is experiencing closure during periods of low flows especially 
in the lower parts of the basin, the Pangani estuary (PBWO/IUCN, 2009). With river 
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basin closure, interdependencies increase and manifest themselves in alterations of the 
water cycle that create positive and negative externalities to different categories of 
users and the environment (Molle and Wester, 2009).  

The Pangani Basin Water Office (PBWO) manages the water supply at the basin 
since 1991 following a new water policy. Water users apply for and are allocated 
water rights to certain amount of flows based on an understanding of supply of and 
demand for water in the basin. There are no defined mechanisms for allocation of 
water to different users and over 3,000 water rights have been issued by 2010. There 
are also different claims to water access rights and causes of water shortages in the 
basin (Komakech et al., 2010). 

This situation and the increasing demand for water resource has generated water 
conflicts between various users. Sarmett et al. (2005) and Mbonile (2005) classify 
these conflicts as conflicts of scale (users of different sizes), conflicts of tenure (water 
rights) and conflicts of location (upstream and downstream users) depending on the 
power and position of the various users on the river basin (Box 1.1). 

Box 1.1: Categories of Conflicts in Pangani Basin (Source: Sarmett et al., 2005; 
Mbonile, 2005). 

 
It is therefore important to plan water resources development, allocation, and 
management in a context of multiple uses of water based on the actual amount of 
water available in the basin, economic efficiency and with an understanding of the 
potential impacts (socio-economic and environmental). It is also important at this 
point to note that the Pangani River Basin is largely ungauged with limited hydro-
meteorological data (Mul, 2009). This study therefore applied a methodology which 
uses freely available remotely sensed (RS) data to generate the information required 
for water resource planning in the river basin. The study also assessed the 
applicability and accuracy of using this RS data.  

Fig. 1.1 presents a problem tree that summarizes the causes and interdependencies of 
the dominating issues based on previous studies done on the Pangani basin under the 
SSI-1 Programme (SSI, 2009) and PBWO/IUCN (IUCN, 2003;  IUCN, 2007, 
PBWO/IUCN, 2009). The main problem of the river basin can be summarized as 
growing water scarcity and lack of a clear-cut water allocation policy that is 

• Conflicts of scale: Conflicts between users of different sizes and power in the ba-
sin. Such as the large scale plantations, using hundreds of litres of water per sec-
ond through ‘efficient’ drip irrigation system, differ from small-scale users of tra-
ditional furrow systems with ‘efficiency’ as low as 14%.  

• Conflicts of tenure: Tenure is the right to manage a resource. Small scale users in 
the basin are reluctant to apply and pay water rights, arguing that water is a 
‘gift’ from God.  

• Conflicts of location: Tanzania Electricity Supply Company (TANESCO) located 
downstream pays royalty to the Ministry of Water & Livestock Development for 
a 45 m3 s-1 flow. Because of reduced rainfall and upstream abstractions, the com-
pany often receives as little as 15 m3 s-1, limiting hydropower production and 
creating national-level conflicts.
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manifested in sub-optimal water use and conflicts between various water users in the 
river basin. The resilience of most farming systems is low due to the large variability 
of the hydro-climatic conditions and a limited capacity to adapt. This often results in 
low crop yields, on average below 1 ton per ha for smallholders (Makurira et al., 
2010). Population growth and increasing food production to meet not only the local 
but also global food demands imposes high pressures on the (limited) water resources. 
It is also exerting pressure on the traditional farming practices because of reduced 
farm sizes. Degradation of natural environments such as forests, riparian vegetation 
and wetlands has occurred in the last few decades. These natural systems provide a 
wealth of ecosystems goods and services especially to local communities (Costanza et 
al., 1997; de Groot et al., 2012). The vulnerability of the poor population who rely on 
the ecosystem services has also increased (Malley et al., 2007; Enfors and Gordon, 
2007; 2008). 

 

 
 
Fig. 1.1: Cause and effect tree of dominating issues and problems in Pangani River 
basin. 
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1.2 RESEARCH OBJECTIVES 
The goal of this research is to assess water use, potential opportunities and trade-offs 
in water allocation that can lead to increased water productivity and water use 
efficiency in a heterogeneous, highly utilized but data scarce African river basin. In 
the end, the study provides tools and information that enable policy makers, planners 
and stakeholders make well-informed decisions in integrated water resources planning 
and management to enhance socio-economic development and environmental 
sustainability in the river basin. New methodology approaches have been developed 
to capture the unique hydrological features of the landscape.  

The specific objectives of the study are: 

1. Develop at appropriate scales, the land use and land cover, and the spatial and 
temporal variability of evaporation and transpiration of the Upper Pangani 
River Basin. This provides the boundary conditions for water balance and 
water productivity analyses. 
 

2. Develop a hydrological model for the Upper Pangani River Basin (Kikuletwa 
and Ruvu Catchments) that accounts for the distribution of green and blue 
water in time and space. 
 

3. Develop spatially explicit water productivity maps for agricultural and natural 
landscapes in the Upper Pangani River Basin. The water productivity is 
presented using both biophysical (biomass and yield) and economic indices.  
 

4. Develop an integrated hydro-economic model (IHEM) for green-blue water 
uses the entire Pangani River Basin. The IHEM is used to evaluate optimal 
policies and basin strategies for increased water productivity and 
environmental sustainability against the current institutional policies, priorities 
or preferences of the key stakeholders including the environment. 

1.3 STRUCTURE OF THE THESIS 
The thesis consists of eight chapters that can be categorized into four parts (Fig. 1.2). 

  

 
Fig. 1.2: Structure of the thesis. 
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Chapters 1 and 2 are introductory chapters. Chapter 1 provides the research setting, 

problem description and the research objectives. Chapter 2 provides an overview of 

the study area, the Pangani River Basin. Chapters 3 and 4 provide the boundary 

conditions for the study. Chapter 3 (Kiptala et al., 2013a) provides a detailed land 

use and land cover map for the study area. Chapter 4 (Kiptala et al., 2013b) presents 

the evaporation and transpiration fluxes and the water balance for the river basin. 

Chapter 5 presents a new hydrological model (STREAM) developed to account for 

green and blue water use in the Upper Pangani River Basin (Kiptala et al., 2014). 

Chapter 6 (Kiptala et al., 2016a) provides the biophysical and economic water 

productivity for agricultural and natural landscapes for the Upper Pangani River 

Basin. Chapter 7 (Kiptala et al., 2016b) integrates the green and blue water use and 

presents optimized options for improved water productivity and water value for the 

entire Pangani Basin. Chapter 8 presents a summary drawn from all the chapters of 

the thesis. The last chapter also highlights the study conclusions and limitations for 

further research and the contributions to science. 



 

 

Chapter 2 

STUDY AREA 

The chapter presents an overview of the entire Pangani River Basin and the upper 
catchments that form the Upper Pangani River Basin. 

2.1 LOCATION 

The Pangani River Basin is a trans-boundary river basin, with major part in 
Tanzania and a small part in Kenya (Fig. 2.1). It is located between latitude 3 – 6o S 
and longitude 36 – 39o E in Eastern Africa. The river basin is made up of five main 
catchments: the Kikuletwa, Ruve, Mkomazi, Luengera and the Pangani mainstream. 
In total, Pangani River Basin has a drainage area of 43,000 km2. 

The Upper Pangani River Basin (13,400 km2) covers approximately 30% of the total 
area of the Pangani River Basin. The Upper Pangani River Basin is the main 
headwater of the entire river basin and derives its water resources from Mt. Meru 
(4,565m) and Mt. Kilimanjaro (5,880m) catchments. These catchments are 
characterized by perennial springs which are fed from the mountains, then join at 
NyM reservoir. Irrigation development consumes most of the water resources in the 
sub-basin, up to 64% of the total blue water (World Bank, 2006). NyM reservoir (100 
km2), Lake Jipe (25 km2), Lake Chala (5 km2) and the expansive national parks 
(Tsavo West, Amboseli, Arusha and Kilimanjaro) are located on Upper Pangani 
River Basin. 

The Lower Pangani River Basin comprises of mainly semi-arid plateau and some 
localized flow systems originating from the Pare and Usambara mountains. The river 
systems forms the Mkomazi and Luengera tributaries that join the Pangani river 
system then flows to the Pangani estuary, a total distance of 500 km. The Lower 
Pangani River Basin has three operational hydro-electric power (HEP) stations: 
NyM, Hale and the New Pangani Falls stations. These provide up to 91.5 MW or 
17% of Tanzania's hydropower production which is about 11% of Tanzania’s 
electricity supply. The river flow for hydropower production is regulated at the NyM 
reservoir, with a storage of 1.1×109 m3. A large wetland, Kirua swamp, is also located 
in the lower basin and relies on the water supply from the Upper Pangani River 
Basin. The size of the wetland has reduced since the construction of the NyM 
reservoir. 
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2.2 CLIMATE 

The high altitude slopes around the mountain ranges have an Afro-Alpine climate 
and receive nearly 2,500 mm yr-1 of rainfall. The lower parts have a sub-humid to 
semi-arid climate and the rainfall varies between 300 to 800 mm yr-1. The rainfall has 
a bimodal pattern where long rains are experienced in the months of March to May 
(Masika season) and the short rains in November to December (Vuli season). 

 

               
Fig.2.1: Location and overview of Pangani River Basin and the Upper Pangani River 
Basin. 

2.3 SOCIO-ECONOMIC ACTIVITIES 

Agricultural activities are predominant in the upper catchments while the lower 
catchments have limited but high potential for agricultural development, constrained 
by water scarcity. Livestock is dominant especially with the Maasai community in the 
dry plains in the lower catchments. Water resources are also utilized for hydropower, 
irrigation but also to sustain environmental resources such as wetlands and the 
estuary in the lower basin. 



 

 

Chapter 3 

LAND USE AND LAND COVER CLASSIFICATION1 

In arid and semi-arid areas, evaporation fluxes are the largest component of the 
hydrological cycle, with runoff coefficient rarely exceeding 10%. These fluxes are a 
function of land use and land management and as such an essential component for 
integrated water resources management. Spatially distributed land use and land cover 
(LULC) maps distinguishing not only natural land cover but also management 
practices such as irrigation are therefore essential for comprehensive water 
management analysis in a river basin. Through remote sensing, LULC can be 
classified using its unique phenological variability observed over time. For this 
purpose, sixteen LULC types have been classified in the Upper Pangani River Basin 
(the headwaters of the Pangani River Basin in Tanzania) using MODIS vegetation 
satellite data. Ninety-four images based on 8 day temporal and 250 m spatial 
resolutions were analyzed for the hydrological years 2009 and 2010. Unsupervised and 
supervised clustering techniques were utilized to identify various LULC types with 
aid of ground information on crop calendar and the land features of the river basin. 
Ground truthing data were obtained during two rainfall seasons to assess the 
classification accuracy. The results showed an overall classification accuracy of 85%, 
with the producer's accuracy of 83% and user's accuracy of 86% for confidence level of 
98% in the analysis. The overall Kappa coefficient of 0.85 also showed good 
agreement between the LULC and the ground data. The land suitability classification 
based on FAO-SYS framework for the various LULC types were also consistent with 
the derived classification results. The existing local database on total smallholder 
irrigation development and sugarcane cultivation (large scale irrigation) showed a 
74% and 95% variation respectively to the LULC classification and showed fairly 
good geographical distribution. The LULC information provides an essential 
boundary condition for establishing the water use and management of green and blue 
water resources in the water stress Pangani River Basin. 

                                     
1 This chapter is based on: Kiptala, J. K., Mohamed, Y., Mul, M., Cheema, M. J. M., and 
Van der Zaag, P., 2013a. Land use and land cover classification using phenological variability 
from MODIS vegetation in the Upper Pangani River Basin, Eastern Africa. Physics and 
Chemistry of the Earth, 66, 112-122. 
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3.1 INTRODUCTION 
Information on Land Use and Land Cover (LULC) is fundamental to water resources 
management. This information is used for the estimation of root zone depth, 
interception capacity and hydrotope delineation (Winsemius, 2009) and for 
computing evapotranspiration (ET) in a river basin (Cheema and Bastiaanssen, 
2010). LULC influences the partitioning of rainfall into green (moisture in the soil) 
and blue water flows (water in rivers, lakes, dams, and groundwater). Green water 
flows is a subject of much interest in tropics and arid regions where it dominates the 
hydrological cycle. Management of green water flows requires explicit integration of 
land issues with water issues. However, this has been inadequate due to complexities 
in the estimation of water use of land based activities (Jewitt, 2006). 

Several global and regional land cover maps have been developed using satellite 
information. For example the Food and Agricultural Organization of the United 
Nations (FAO) and the International Food Policy Research Institute (IFPRI) LULC 
maps developed in 1993 from 1 km Advance Very High Resolution Radiometer 
(AVHRR) and the Global Land Cover (GLC2000) developed in 2000 using 1 km 
Satellite Pour I' Observation de la Terra (SPOT) vegetation data. These global 
databases of low spatial resolutions (1 to 10 km) were produced primarily for global 
applications (Giri and Jenkins, 2005). As reported by the International Society for 
Photogrammetry and Remote Sensing (ISPRS, 2011), these databases lack adequate 
details at national or river basin scales and are of inadequate quality. Furthermore, 
such global databases cannot distinguish adequately specific crops and only detects 
dominate land covers leading to a large percentage of mixed classes with natural 
vegetation (Portman et al., 2010). As such, they cannot be used independently in 
considerably high heterogeneous catchments. Moreover, most information contained 
in these databases is also relatively old, most being developed more than 10 years 
ago. 

Advances in remote sensing technology and geospatial data processing applications 
enable classification and updating of LULC maps with adequate accuracy at various 
scales (Cheema and Bastiaanssen, 2010; de Bie et al., 2011; Nguyen et al., 2012). 
Moderate-resolution Imaging Spectroradiometer (MODIS) vegetation images have 
been found to have better capabilities for land use classification with higher accuracy 
at a river basin scale (Giri and Jenkins, 2005; Fisher and Mustard, 2007). Presently, 
MODIS (Terra and Aqua) vegetation images are provided every 16 days at 250 m 
spatial resolution and can therefore provide 8 days time step for LULC analysis. The 
moderate resolution (250 m spatial and 8 day temporal) is reasonable good enough to 
support agricultural water management in the river basin.  

Using remote sensing data only has also been found to produce results of lower 
accuracies. It has been found necessary to refine and improve the capabilities of 
satellite imagery with secondary information, such as cropping calendars (Zhang et 
al., 2008; de Bie et al., 2011; Klein et al., 2012). Recent studies using MODIS 250-m 
and secondary information for LULC classification at river basin scale obtained 
classification accuracies between 76 - 90% (Knight et al., 2006; Wardlow and Egbert, 
2008; Zhang et al., 2008; Clark et al., 2012; Klein et al., 2012). Zhang et al. (2008) 
further did a comparative study between MODIS and Landsat Thematic Mapper 
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data at a river basin scale and confirmed that MODIS datasets provided better 
classification accuracy. These studies were done in the USA and China with a 
comparable temperate humid climate conditions. 

This chapter aims at deriving detailed and up-to-date LULC in a considerably 
heterogeneous and data scarce landscape in Eastern Africa. The study used 250 m 
MODIS vegetation images and secondary information on the growing pattern of crops 
and ground observations of dominant land features. 

3.2 MATERIALS AND METHODS 

3.2.1 Crop calendar 

Cropping calendar provides key information for refining land use classification for 
managed agricultural practices. The crop calendar for Upper Pangani River Basin has 
been developed with the aid of local information from the Irrigation Department, 
Ministry of Water and Irrigation, Tanzania. Other general information considered 
were the general crop calendar patterns provided by FAO (FAO, 2011) and United 
States Department of Agriculture, Foreign Agricultural Services (USDA, 2011) for 
different climate conditions or countries. Irrigated crops, fruits and vegetables were 
cultivated throughout the year especially in the upper catchments. The cropping 
calendar for sugarcane grown in large scale plantation ensures that approximately 
60% of the crops felled in the development stage during the Masika season. This was 
corroborated with field data that indicated the influence of the limited water 
resources during the dry season. The crop calendar provides for reduced operating 
cost (no pumping as the water levels in the river is high during the wet season) and 
also ensures the harvesting of sugarcane during the dry season. 
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Table 3.1: Crop calendar of Upper Pangani River Basin. 

Crop calendar of Upper Pangani River Basin in a hydrological year

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Cereals and grains 
Maize (Masika season) 

Maize (Vuli season) 

Sorghum, millet, wheat 

Rice (Paddy) 

Fruits & vegetables 

Bananas and plantains 
Peas, cabbages, 
tomatoes, cassava 

Potatoes (irish, sweet) 

Fibers & other crops 
Sugarcane 

Coffee 

Sunflower (oilseeds) 

Tobacco 

Legend  Sowing Mid-season Harvest Mixed

3.2.2 Pre-processing of the MODIS datasets 

MODIS is an extensive program using sensors on two satellites (Terra and Aqua) to 
provide global observations of the Earth’s land in the visible and infrared regions of 
the spectrum. Terra satellite was launched in 1999 while Aqua was launched in 2002. 
The MODIS data is available in different versions, and the latest version 5 (V005) 
available from 2008 from USGS database have been validated (USGS, 2012). The 
images were obtained freely from the Land Processes Distributed Active Archive 
Center (LPDAAC) of the National Aeronautics Space Administration (NASA), 
[https://reverb.echo.nasa.gov/reverb]. 

The MODIS vegetation products were converted the Normalized Difference 
Vegetation Index (NDVI) by dividing with 10,000. To have continuous satellite data, 
cloud pixels in the images have be cleaned using advanced interpolation techniques in 
ERDAS imagine software (ERDAS, 2010). For each image with cloud pixels, an area 
of interest (AOI) was created over the clouded area (only the section of the image 
with cloud damage). If the AOI has not been completely damaged by the clouds, the 
pixels that have correct spectral values were randomly picked and interpolated over 
the AOI. If the AOI has been fully cloud damaged, the histogram matching option 
was used to match data with the adjacent scene (assumed to have similar spectral 
characteristics) or same scene from the next or previously available image. This was 
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critical for Upper Pangani River Basin where cloud damaged pixels occurs mainly in 
the mountainous areas.  

To minimize uncertainty from the interpolation procedure, a longer timeseries of data 
were analyzed covering both a relatively dry year (2009) and an average year (2010). 
This was also aimed at achieving better classification of the managed land use 
practices. In total 94 MODIS Terra/Aqua NDVI images were analyzed covering two 
hydrological years, Oct 2008 to Sep 2010 over the Upper Pangani River Basin. 

3.2.3 Unsupervised and supervised classification 

Remote sensing technology using satellite imagery can be used to observe and 
monitor vegetation density. The spectral reflectance depends on vegetation foliage 
which varies for particular crop or vegetation, and the crop growth stages over time. 
Healthy vegetation (green leaves) absorbs most of radiation in the visible and reflects 
very well in the near infrared part of the spectrum. The magnitude of NDVI (which 
represent the greenness of vegetation) is therefore related to the level of 
photosynthetic activity of the vegetation cover.  

                
( )
( )VISNIR

VISNIRNDVI
+
−=        (3.1) 

where VIS and NIR are the spectral reflectance measurements in the visible (red) and 
near-infrared regions, respectively. 

Using unique seasonal cycles of the vegetation types obtained from NDVI time profile 
(growth phenology), different LULC types can be identified using the unsupervised 
and supervised classification technique. The unsupervised classification has been used 
initially to create a thematic raster layer using their spectral similarities (from the 
statistical patterns in the data), while defining the appropriate clustering sample. 
ISODATA (Iterative Self Organizing Data Analysis Technique) and the k-mean are 
the commonly used unsupervised classification algorithms in remote sensing. 
ISODATA is based on Euclidean distance, in which spectral distances between 
candidates pixels are compared to each cluster mean (Cheema and Bastiaanssen, 
2010). The ISODATA algorithm has some further refinements by splitting and 
merging of clusters (Jensen, 1996). New cluster centers are computed by averaging 
the locations of all the pixels assigned to that cluster (Campbell, 2002). The entire 
process is repeated and each candidate pixel is compared to the new cluster means 
and assigned to the closest cluster mean. The ISODATA algorithm is also successful 
at finding the spectral clusters that are inherent in the data if enough iteration is 
allowed or a certain convergence threshold is achieved. A convergence threshold 
(confidence level) of 98% was adopted for this study.   

The classification was later refined with expert judgement of crop calendar and land 
features using the supervised classification. In the supervised classification both the 
parallelepiped and minimum distance are used in evaluating signature files and 
refining the classification (ERDAS, 2007). The knowledge of the cropping pattern 
assists in defining specific NDVI temporal profiles and thus the signature files for 
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different LULC types. This methodology is computationally intensive and ERDAS 
Imagine 9.2 software has been used in the study. 

A comprehensive classification accuracy assessment has been adopted since there is 
no up-to-date land use map of fair resolution in the study area. It include: ground 
truthing, validation with local datasets for individual land use types and land 
suitability assessment. The classification accuracy has been evaluated and related to 
acceptable levels based on literature that have been deemed sufficient for water 
management analysis at a river basin scale. 

3.2.4 Calibration and Validation 

Ground truthing 

To determine the quality of the LULC map generated, an error matrix approach was 
adopted, which uses the independent classification (from the LULC map) and ground 
or reference data (from ground truthing). A ground truthing survey was carried out 
from November - December 2010 to capture the mid Vuli season and from May - 
June 2011 to capture the mid Masika season. Sample size is key consideration in 
assessing the accuracy of the LULC map. Because of the large number of pixels in the 
LULC map (approximately 200,000 pixels), statistical methods of determining 
required sample size would lead to large no. of samples which is not practically 
feasible. A balance therefore between what is statistically sound and practicable 
attainable must therefore be achieved (Congalton, 1991). A general norm in assessing 
accuracy of remote sensed images is to collect a minimum of 3 samples for each land 
use category and the number adjusted upwards based on the relative importance of 
the land use within the objectives of the mapping. A minimum of three random 
observation points were therefore taken at a point where the class observed is 
approximately 70% of the dominant LULC type. In total, 253 samples were randomly 
sampled using Global Positioning System that covered 14 land use classifications 
except for the wetlands and swamps (geographically distinct & inaccessible) and the 
urban areas that was classified using different methodology (Table 3.3). It was 
therefore not possible to do random stratified sampling for all LULC types. 
According to Pouliet et al. (2012), the random sampling can still achieve high overall 
accuracy because the samples ensures that the most frequently classes are well 
characterized. 

A larger sample size was therefore achieved for dominant land use types under mixed 
crops with the irrigated mixed crops, grasslands with scattered croplands and rainfed 
maize and beans having 44, 45, and maximum of 67 samples respectively. It is 
noteworthy that the ground truthing survey for the Masika season is not 
contemporaneous with the date of the images used, however no major changes on the 
land use practice is expected or was observed within the time interval (less than 1 
year). Fig. 3.1 shows the ground truthing positions and some of the salient features of 
the Upper Pangani River Basin. 

The sample data was summarized in an error matrix for the 253 observation points 
that was subjected to accuracy assessment based on two procedures (i) Overall 
classification accuracy; and (ii) Kappa statistic. 
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Fig. 3.1: Ground truthing positions and some salient features of Upper Pangani 
River Basin. 

 

Overall classification accuracy 

The overall classification accuracy (ACo) was derived by dividing the total number of 
correctly classified landuse classes by the total number of reference data.  

tcccO SQSQAC =       (3.2) 
  

where SQcc is the total number of sampling classes classified correctly, and SQtc is the 
total number of reference sampling classes. 

The individual accuracy of the LULC types can also be estimated using the 
producer's accuracy and user's accuracy. The producer's accuracy has been computed 
by dividing the number of samples in an individual class identified corrected by the 
respective reference totals while the user's accuracy has been computed by dividing 
the number of samples in an individual class identified corrected with the classified 
totals (Lillesand and Keifer, 1994; Townshend, 1981). The overall classification 
accuracy is the overall mean of the producer's and user's accuracy. 

 

Kappa statistic 

A better statistical index to determine classification accuracy is the Kappa statistic, 
which expresses the agreement between two categorical datasets corrected for the 
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expected agreement (Van Vliet et al., 2011). The Kappa statistic incorporates the off-
diagonal elements of the error matrices and eliminates class assignment by chance 
(Congalton et al., 1983). The Kappa (K) coefficient will equal 1 if there is perfect 
agreement, whereas 0 is what would be expected by total chance alone. 

qN
qdK

−
−=        (3.3) 

where d is the overall value for percentage correct, q is the estimate of the chance 
agreement to the observed percentage correct (calculated from the number of cases 
expected in diagonal cells by chance) and N is the total of number of cases. 

 
Validation with local datasets 

Regional LULC maps available, for example the Global Land Cover (GLC2000) or 
other sources such as available at the FAO website were developed using coarse 
resolution imagery (1 km - 10 km). An existing land cover map (with a resolution 1 
km) for the entire Pangani River Basin had a similar shortcoming (IUCN, 2003). The 
information contained in these maps is therefore too coarse to be compared with the 
LULC developed in this study. However, some studies on individual land use types 
were available for validation. A recent irrigation survey for the Upper Pangani River 
Basin was done by the irrigation department, Ministry of Water and Irrigation, to 
assess the irrigation development in the basin (MOWI, 2009). The survey covered 
both smallholders and large scale irrigation and was undertaken for the period 
November 2008 - May 2009. Other information available were the surface areas of the 
water bodies viz; the NyM reservoir, Lake Jipe and Lake Chala in the Upper Pangani 
(IUCN, 2003; PBWO/IUCN, 2008; IUCN, 2009). 

 
Land suitability to LULC types 

Vegetation can also be evaluated by considering landscape features that are ideal for 
crop developments. Physical and climatic (seasonal) factors influence the vegetation 
growth in a similar way as observed in the NDVI values for various LULC types. 
These factors when considered simultaneous will provide land suitability indicators 
for agricultural development (as well as natural vegetation). FAO-SYS (FAO, 1976; 
1983; 2007) provided a framework for evaluating land suitability for agricultural 
development based on vegetation indices. The FAO-SYS system uses climate, 
topography and soil to evaluate and indicate degree of land suitability to certain 
crops or vegetation. The FAO-SYS framework has recently been improved to use 
spatial data for better evaluation of larger land masses e.g. at river basin scale. Such 
recent application includes the Agricultural Land Suitability Evaluator (ALSE) 
developed for tropical and subtropical climate (Elsheikh et al., 2013).   

In a simplified way, the land suitability index has been used to evaluate the LULC 
types using limited but key parameters derived from FAO-SYS for the Upper Pangani 
River Basin. The key suitability parameters used include: climate (precipitation), 
topography (slope and elevation) and soil (soil depth). An ideal parameter range has 
been chosen for each parameter based on FAO-SYS and the local environmental 
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conditions. The ideal range has been assign suitability factor of 1. The suitability 
degree decreases proportionally to the actual parameter values. The ideal parameters 
used for this study to represent natural vegetation were based on the moderately 
good conditions for growth of rainfed maize, coffee, mango and bananas in tropical 
climate (FAO, 1983; Elsheikh et al., 2013). They include: climate (annual 
precipitation of > 1500 mm yr-1), topography (elevation < 2000 m.a.s.l and slope < 
15%) and soils (soil depth > 150 mm).   

The precipitation data was obtained from 43 rainfall stations located in the Upper 
Pangani River Basin. The point measurement data were interpolated using the 
inverse distance method to generate a precipitation map for Upper Pangani River 
Basin. The elevation and slope were extracted from a 90 m resolution digital 
elevation map (DEM) obtained from the Shuttle Radar Topographic Mission (SRTM) 
database (Jarvis et al., 2008). The soil map was obtained from the harmonized world 
soil database which relied on soil and terrain (SOTER) regional maps for Northern 
Africa and Southern Africa (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). The 
suitability assessment was done on a similar scale of 250 m using the spatial data. 

The overall suitability was obtained by multiplying the suitability factor for each 
parameter. 

)()()( sStScSS ××=      (3.4) 
   

Where S is the overall suitability, S(c) is suitability factor for climate (precipitation), 
S(t) suitability factor for topography (slope and elevation) and S(s) suitability factor 
for soil (soil depth).   

The overall suitability of each LULC type has been evaluated on 5 suitability classes 
identify in FAO-SYS. These classes are: S1 = 0.85 (suitable), S2 = 0.60 (moderately 
suitable), S3 = 0.45 (marginally suitable), N1 < 0.45 (not suitable), and N2 < 0.45 
(Not suitable for physical reasons). The computations were scripted in PCRaster 
modelling environment. A GIS based software with a rich set of model building blocks 
and analytical functions for manipulating Raster GIS maps (Karssenberg et al., 
2001). 

3.3 RESULTS AND DISCUSSION 

3.3.1 Land surface phenology 

The clustering of various LULC types was initially undertaken using unsupervised 
classification where 40 clusters (estimated to be twice the LULC types from field 
observations) where generated. This preliminary classification provided the statistical 
basis for further refinement using the supervised classification. The croplands were 
identified using the NDVI temporal profiles and an expert judgment of the cropping 
calendar. Other natural land cover classes were also identified based on ground 
information on the land features, location and expert judgment of their vegetative or 
NDVI profile patterns. The supervised classification resulted in the reduction of the 
initial 40 clusters of land use types to a final classification of 15 classes. 
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The mean NDVI time profiles for seven agricultural classes are shown in Fig. 3.2. The 
NDVI values were derived from the zonal mean of the NDVI for individual classes 
within the domain (Upper Pangani) for all the 94 time steps. A three period moving 
average filter was used to smoothen the profile by introducing a time lag using one 
period before and one period after the time of analysis (time step) as described by 
Reed et al. (1994). The smoothing of the profile was also necessary to minimize the 
effects of interpolated cloud damaged pixels in some images. 

 
Fig. 3.2: Mean NDVI curves for Irrigated and Rainfed Croplands in Upper Pangani 
River Basin for the hydrological years 2009 and 2010. 

The peaks on the agricultural classes were quite distinctive of the cropping seasons, 
the Masika and Vuli seasons. The rainfed croplands tend to follow the cropping 
seasons with relatively higher peaks during the long Masika seasons and relatively 
lower peaks during the short Vuli seasons. The irrigated areas and croplands on the 
uplands (mixed with forest) have enhanced foliage cover compared to rainfed 
croplands and has been revealed by the NDVI time profile. Since supplementary 
irrigation is generally practiced, the vegetative pattern also follows the rainfall 
pattern in the river basin, though less distinct compared to rainfed crops. 

Fig. 3.3 shows the mean NDVI time curves for eight natural land cover classes. These 
classes include forests, wetlands and swamps, water bodies, and pastures and the 
savannas. Wetlands and swamps, dense forest and afro-alpine forest have high NDVI 
values (0.6 - 0.8) because of their high vegetation cover. Afro-Alpine forest vegetation 
has been suppressed by the lower temperatures at the higher elevations of Mt. 
Kilimanjaro and Mt. Meru. However, during the 'summer' months of January and 
February, when the temperatures were higher, the vegetation foliage was enhanced as 
shown in Fig. 3.3. Afro-alpine forest forms a transition from the dense forest to the 
bareland/ice in the mountains peaks.  

The wetlands and swamps also receive blue water from river systems and ground 
water flows to maintain the high vegetation density. The seasonal variability of flow 
also influences the water availability for the wetlands. This results in lower NDVI 
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values during the dry seasons (NDVI of 0.6 from 0.8 in wet seasons) for the wetlands 
and swamps.  

The NDVI values for the other natural land covers viz; shrublands and or thicket, 
bushlands and sparse vegetation, were significantly influenced by the rainfall pattern 
in the river basin. 

 

 
Fig. 3.3: Mean NDVI curves for natural land cover in Upper Pangani River Basin for 
the hydrological years 2009 and 2010. 

Fig. 3.4 shows representative rainfall pattern of three stations distributed in the 
Upper Pangani River Basin. Arusha (airport) and Moshi (airport) rainfall stations 
are located at the foot of Mt. Meru and Mt. Kilimanjaro catchments. Same 
(meteorological) rainfall station is located in the lower parts of the catchment (see 
Fig. 3.1). The hydrological year 2009 was dry with relatively low rainfall especially on 
the lower catchments (Same Station) compared to the hydrological average year 2010. 
This has influenced the vegetative growth or health of the grasslands, shrublands and 
bushlands as shown in Fig. 3.3 and 3.4.  
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Fig. 3.4: Monthly Rainfall distribution for 3 stations in the Upper Pangani River 
Basin. 

The other landuse feature considered in the classification was the urban or built-up 
areas. Though MODIS data has a better ability to discriminate urban area (Giri and 
Jenkins, 2005) they are always classified as mixed pixels (barelands or sparse 
vegetation) depending on their vegetative patterns of the built-up areas. Furthermore, 
the moderate resolution of MODIS data (250 m) might be too course to adequately 
discriminate urban or built-up areas from the adjacent land use types. Consequently, 
other methodologies have been derived to deal with this problem including using 
higher resolution images (Zhang et al., 2008). In this chapter, Google maps for the 
two main urban areas in the basin, Arusha and Moshi, were used to map out the 
class and mask over the LULC map. 

The areal extents of the LULC classes are summarized in Table 3.2 and shown in Fig. 
3.5. 

Shrublands or thicket with coverage of 26.3% of the total area was the dominant land 
use type. The dominance has been influenced by the expansive Tsavo West National 
Park (classified as shrublands) on the lower eastern part of the river basin. Rainfed 
maize (22.1%), grasslands with scattered croplands (11.4%) and bushlands (8.6%) 
also constitute large coverage. In irrigated agriculture, bananas and coffee dominates 
the upper slopes of the catchments (4.6%) while mixed crops (maize, paddy, bananas, 
and vegetables) dominate the mid slopes of the catchments (4.5%). The least LULC 
include irrigated sugarcane, water bodies, bareland, wetlands and swamps all at 0.7% 
and urban (0.1%) of the total catchment area.   

The classification also captured some of the main salient features of the river basin 
(Fig. 3.2). Mt. Kilimanjaro and Arusha National Parks were classified as natural land 
cover consisting of afro-alpine forest, sparse vegetation, and barelands (including the 
ice caps) at the higher elevations. The sugarcane plantation, Tanzania Plantation 
Company (TPC) has also been classified correctly as Irrigated Sugarcane. 
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Table 3.2:  LULC classes and their areal distribution in Upper Pangani River Basin. 

No. Land Use  Area (km2) Area (%)
1 Water bodies 100 0.7%
2 Bareland 100 0.7%
3 Sparse vegetation 445 3.3%
4 Bushlands 1,152 8.6%

5 Grasslands and scattered croplands 1,517 11.4%

6 Shrubland and or thicket 3,509 26.3%

7 Rainfed maize 2,942 22.1%

8 Afro-Alpine forest 257 1.9%

9 Irrigation mixed crops 598 4.5%

10 Rainfed coffee, banana 723 5.4%

11 Irrigation, sugarcane 89 0.7%

12 Forest, croplands 556 4.2%

13 Irrigation; banana, coffee  607 4.6%

14 Dense forest 637 4.8%

15 Wetlands and swamps 98 0.7%

16 Urban and built-up 8 0.1%

 Total 13,337  
 

 
Fig. 3.5: Land use and land cover map of the Upper Pangani river basin, 2009 - 2010. 
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3.3.2 Ground truthing  

An error matrix report for the ground truthing has been summarized and presented 
in Table 3.3. The results show an overall classification accuracy of 85%, with the 
producers' accuracy of 83% and users' accuracy of 86% for a confidence level of 98% 
(conveyance threshold) of analysis. The accuracy levels for individual classes showed 
relatively good accuracies of more than 70% expect for the barelands (60%). The low 
producer's accuracy can be associated with the existence of more than one LULC in 
the pixels used in the ground truthing. For that reason, the user's accuracy for 
barelands was higher at 100%. A similar condition was also observed for the 
classification accuracies for rainfed maize and irrigated sugarcane.  

The selection of the reference class within the pixel (which was assigned by chance) 
might not have been identified correctly for these LULC types. The uncertainty has 
also been corrected by the Kappa statistic (K). K increased the accuracy for bareland 
from 0.6 to 1.0. Similarly, the sugarcane cultivation had its accuracy corrected from 
0.83 to 1.0. Typically, K values greater than 0.8 represent strong agreement, K values 
between 0.4 - 0.8 represent moderate agreement and K values below 0.4 are indicative 
of poor agreement between the remotely sensed classification and the reference data 
(Landis and Koch, 1977; Congalton and Green, 1999). Most land use studies using 
various types of satellite imagery have attained overall Kappa coefficients of between 
0.64 and 0.89 (Van Vliet et al., 2011). Examples from previous studies using 250 m 
MODIS include: Jonathan et al. (2006) with a overall Kappa of 0.72 in a study in a 
river basin in Brazil; Zhang et al. (2008) attained an overall Kappa of 0.66 in the 
North China Plains, Tingting and Chuang (2010) achieved a Kappa of 0.80 in Chao 
Phraya River basin in Thailand and a study in the Bolivian seasonal tropics by Redo 
and Millington (2011) attained a Kappa of 0.87. The overall Kappa coefficient 
achieved for the study was 0.85, which represents a good agreement between the 
LULC and the ground information. 

In the overall classifications accuracy, Bastiaanssen (1998) reported that crops can be 
classified with an accuracy of 86%. Thunnisen and Noordman (1997) suggested at a 
regional scale a minimum overall classification accuracy of 70%. Ozdogan and 
Gutman (2008) attained an overall accuracy of between 79% - 87% for various river 
basin in continental US using 500 m MODIS, Wardlow and Egbert (2008) attained 
84% accuracy using 250 m MODIS in the US Great plains. Cheema and Bastiaanssen 
(2010) attained 77% overall accuracy using 1 km SPOT in the Indus basin while 
Nguyen et al. (2012) attained higher accuracy of 94% mapping rice fields using hyper-
temporal SPOT images in the Mekong delta. This study's overall classification 
accuracy of 85% was within acceptable levels ranges suggested and attained by the 
previous studies. 
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Table 3.3: Error matrix for LULC in the Upper Pangani River Basin. 
S/No. Class Name Reference 

Totals 
Classified 

Totals 
Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy 

Kappa 
(K) 

1 Water bodies 3 4 3 100% 75% 0.75
2 Bareland 5 3 3 60% 100% 1.00
3 Sparse vegetation 23 22 20 87% 91% 0.90
4 Bushlands 12 12 9 75% 75% 0.74
5 Grasslands/scatt. crops 45 47 37 82% 79% 0.74
6 Shrublands and or thicket 6 7 5 83% 71% 0.71
7 Rainfed maize 67 65 53 79% 82% 0.75
8 Afro-Alpine forest 4 4 4 100% 100% 1.00
9 Irrigated mixed crops 44 49 38 86% 78% 0.73
10 Rainfed coffee, bananas 7 5 5 71% 100% 1.00
11 Irrigated sugarcane 6 5 5 83% 100% 1.00
12 Forest and croplands 5 6 4 80% 67% 0.66
13 Irrigated bananas, coffee 13 10 10 77% 100% 1.00
14 Dense forest 13 14 13 100% 93% 0.92 Totals 253 253 209 83% 86% 0.85

Overall classification accuracy = 85%;  Overall kappa statistics = 0.85

3.3.3 Validation with local datasets 

Table 3.4 shows the comparison of LULC map with the available datasets for specific 
land use types in Upper Pangani River Basin. Total irrigation in the LULC resulted 
in a 74% agreement to the local datasets at the Ministry of Water and Irrigation 
(MOWI). The moderate agreement may be attributed to the different methodology 
used that is subject to varying uncertainties and accuracy in the classifications. The 
notable difference was how informal supplementary irrigation has been defined and 
assessed. In the classification, irrigated area including informal supplementary 
irrigation has been identified using vegetation growth assessed using satellite imagery 
and limited ground data. The main uncertainty for this classification arises from the 
moderate resolution of the images (6.25 ha). These pixels might not be 
contemporaneous with some smallholder farms which can lead to mixed classes. 
However, for large scale classification e.g. at river basin scale, these errors are likely 
to cancel out at the end. 

Table 3.4: Comparison of some land use types with other sources of datasets. 

S/No. Classification Present 
study, 
(ha) 

Other sources (ha) %  agreement Source

1 Total irrigated area  129,406 95,823 74 MOWI (2009)

2 Irrigated sugarcane  8,919 8,480 95 MOWI (2009)
3 Water bodies 10,525 7,555 – 18,800 72 - 179 IUCN (2003), 

PBWO/IUCN 
(2008)
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Conversely, the local datasets using field surveys tend to underestimate the irrigated 
areas especially for smallholder informal supplementary irrigation. Supplementary 
irrigation especially smallholder is always spontaneous, unregulated and unorganized. 
It is therefore difficult to assess adequately during field survey. Unregulated irrigation 
using cheap suction pumps were also observed along the river banks. The level of 
uncertainty is therefore higher with this methodology which may have resulted to the 
lower irrigation estimates.  

The large irrigation project (TPC sugarcane) provided a higher degree of separability 
where a good agreement between the classification and the local datasets of 95% was 
observed. Water bodies provided an agreement of between 72% and 179% compared 
to various studies on the variation of the surface areas of the NyM reservoir, Lake 
Jipe, and Lake Chala. The large variability can be attributed to large changes in the 
sizes of water bodies compared to the mean (nonlinearity) especially during wet and 
extreme dry seasons. Such observation was attributed to the NyM reservoir, a shallow 
dam that has large water level fluctuation (PBWO/IUCN, 2008). 

3.3.4 Land suitability to LULC types 

Fig. 3.6 shows the land suitability map for crop production in the Upper Pangani 
River Basin. Table 3.5 provides the overall suitability index for various land use 
types. Dense forest and irrigated bananas, coffee land use types have attained the 
highest suitability level (S1). The natural shrublands (dominated by protected 
national parks), rainfed and irrigated croplands, and forested areas (afro-alpine and 
mixed with croplands) and urban also attained moderately high suitability level (S2). 
These land use types have moderately high vegetation density and were located on 
the middle upper catchments of the river basin. The land suitability at the mountain 
peaks was significantly low due to the topographical parameters (elevation and slope) 
that were not favourable crop or plant development. 

The land use types on the lower catchments: barelands, sparse vegetation, grasslands 
and also irrigated sugarcane attained marginally lower suitable level (S3). 
Precipitation factor was the limiting parameter. Irrigated sugarcane score of 0.39 was 
attributed to the low precipitation factor (0.39). The areas have been considered to 
have high irrigation potential since precipitation is the only limiting factor for 
agricultural development (World Bank, 2006). 
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Fig. 3.6: Land suitability for crop production based on precipitation, topography and 
soils for Upper Pangani River Basin. 

 

Table 3.5: Land suitability ratings based on precipitation, topography and soils for 
various land use types in Upper Pangani River Basin. 
Land use type Precipitation Topography Soil Overall 

Suitability (S) 
Suitability 

class
Water bodies 0.44 1.00 0.55 0.26 N1

Bareland/ice 0.81 0.58 0.85 0.34 S3

Sparse vegetation 0.44 0.97 0.90 0.37 S3

Bushlands 0.49 0.94 0.97 0.42 S3

Grasslands & few crops 0.46 1.00 0.99 0.45 S3

Natural shrublands 0.53 1.00 0.99 0.53 S2

Rainfed, maize and beans 0.52 0.99 0.99 0.51 S2

Afro-alpine forest 0.99 0.70 1.00 0.69 S2

Irrigated mixed crops 0.60 0.99 0.99 0.59 S2

Rainfed coffee, banana 0.68 0.89 0.98 0.60 S2

Irrigated sugarcane 0.39 1.00 1.00 0.39 S3

Forest, croplands 0.76 0.87 0.99 0.65 S2

Irrigated bananas, coffee 0.91 0.94 0.99 0.85 S1

Dense forest 0.96 0.90 0.98 0.84 S1

Wetlands & swamps 0.47 1.00 0.94 0.44 S3

Urban and built-up 0.65 1.00 1.00 0.65 S2

Rating: S1 = 0.85 (suitable); S2 = 0.60 (moderately suitable); S3 = 0.45 (marginally suitable); N1 = 
0.25 (Not suitable); N2 = 0 (Not suitable for physical reasons) (FAO, 1976; 1983; 2007). 
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3.4 CONCLUSION 
This chapter has used recent advancement in remote sensing and satellite imagery to 
develop a spatially distributed and up-to-date LULC map. The LULC map developed 
at moderate resolution of 250 m using MODIS vegetation satellite data would provide 
essential information to support basin scale water resource management. The research 
combined seasonal phenological variation received from satellite imagery with 
secondary ground data such as cropping calendar to classify land use types that 
included managed land use practices that could not otherwise have been provided by 
existing global cover maps. The increased temporal resolution of the MODIS data 
and longer time series ensured actual timing of change event in the vegetation growth 
that were matched by the expert knowledge of the cropping calendar for different 
crop classes. However, change events for the urban areas were not discriminated from 
other land use types and were classified using high resolution Google maps. 

The research attained an overall classification accuracy of 85%, with the producer's 
accuracy of 83% and user's accuracy of 86%. The Kappa coefficient of 0.85 is in good 
agreement range for land use classification. The Kappa also provided improved 
agreement for individual classes identified by chance in the error matrix. The overall 
classification for smallholder agricultural land showed a moderate agreement of 74% 
to the local statistics available in the river basin. The moderate agreement was 
attributed to the existence of informal supplementary irrigation and the uncertainties 
of the moderate scale (250 m) to fully identify agricultural plots of smaller sizes. The 
classification on sugarcane plantation, the only large scale irrigation in the river basin 
resulted in good agreement of 95% to actual field estimates. The land suitability 
classifications based on FAO-SYS framework provided the optimum suitability of the 
LULC to the production of major crops (e.g. maize, bananas, coffee and mango). The 
integration of the spatial geo-environmental conditions (climate, soils and 
topography) that characterize the land suitability and the availability water resources 
could give explicit indicators of the agricultural potential of the river basin.  

The LULC classification provides an essential boundary condition for establishing the 
water use and management of green and blue water resources in the river basin. This 
is particularly crucial for a complex river system such as Pangani River Basin that 
has intensively managed landscapes (e.g. irrigation) in a bimodal tropical climate 
that is associated with high evaporative water use. This information would provide 
essential ingredients for water accounting where beneficial and non-beneficial water 
resources are evaluated for improved water productivity in the river basin.  

 

 



 

 

Chapter 4 

MAPPING EVAPOTRANSPIRATION USING MODIS AND 

SEBAL2 

Evapotranspiration (ET) accounts for a substantial amount of the water use in river 
basins particular in the tropics and arid regions. However, accurate estimation still 
remains a challenge especially in large spatially heterogeneous and data scarce areas 
including the Upper Pangani River Basin in Eastern Africa. Using multi-temporal 
Moderate-resolution Imaging Spectroradiometer (MODIS) and Surface Energy 
Balance Algorithm of Land (SEBAL) model, 138 images were analyzed at 250-m, 8-
day scales to estimate actual ET for 16 land use types for the period 2008 to 2010. A 
good agreement was attained for the SEBAL results from various validations. For 
open water evaporation, the estimated ET for Nyumba ya Mungu (NyM) reservoir 
showed a good correlations (R = 0.95; R2 = 0.91; Mean Absolute Error (MAE) and 
Root Means Square Error (RMSE) of less than 5%) to pan evaporation using an 
optimized pan coefficient of 0.81. An absolute relative error of 2% was also achieved 
from the mean annual water balance estimates of the reservoir. The estimated ET for 
various agricultural land uses indicated a consistent pattern with the seasonal 
variability of the crop coefficient (Kc) based on Penman-Monteith equation. In 
addition, ET estimates for the mountainous areas has been significantly suppressed at 
the higher elevations (above 2,300m.a.s.l.), which is consistent with the decrease in 
potential evaporation. The calculated surface outflow (Qs) through a water balance 
analysis resulted in a bias of 12% to the observed discharge at the outlet of the river 
basin. The bias was within 13% uncertainty range at 95% confidence interval for Qs. 
SEBAL ET estimates were also compared with global ET from MODIS 16 algorithm 
(R = 0.74; R2 = 0.32; RMSE of 34% and MAE of 28%) and comparatively significant 
in variance at 95% confidence level. The inter-seasonal and intra-seasonal ET fluxes 
derived have shown the level of water use for various land use types under different 
climate conditions. The evaporative water use in the river basin accounted for 94% to 
the annual precipitation for the period of study. The results have a potential for use 
in hydrological analysis and water accounting. 

                                     
2 This chapter is based on: Kiptala, J. K., Mohamed, Y., Mul, M. L., and Van der Zaag, P., 
2013b. Mapping evapotranspiration trends usingMODIS and SEBAL model in a data scarce 
and heterogeneous landscape in Eastern Africa, Water Resour. Res., 49, 8495–8510, 
doi:10.1002/2013WR014240. 
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4.1 INTRODUCTION 
Evaporation (E) and transpiration (T) (jointly termed as evapotranspiration (ET)) 
accounts for a substantial amount of the water use in river basins particular in semi-
arid savannah regions. Because of the spatial heterogeneity and temporal variability 
in water availability in these regions, water managers responsible for planning and 
allocating water resources need to have a thorough understanding of the spatial and 
temporal rates of ET. This information helps to better understand evaporative 
depletion and to establish a link between land use, water allocation, and water use in 
a river basin (Bastiaanssen et al., 2005). River basins such as the Upper Pangani 
River Basin typically have many different land use and land cover (LULC) types 
which transmit water as ET. The LULC types have changed over time, due to socio-
economic factors, impacting on the water flows and ecosystem services in the 
downstream catchments.  

Rainfall is partitioned into green (moisture in the soil) and blue water flows (rivers, 
lakes, dams, groundwater) (Rockström et al., 2009). Small changes in ET and hence 
the green water can result in major impacts on downstream blue water flows. The 
management of green water flows requires explicit understanding of the biophysical 
characteristics of the LULC types and associated spatiotemporal variability of water 
use. However, the estimation of ET has been inadequate due to complexities of 
estimating the actual water use of land based activities including irrigated agriculture 
and the cultivation of crops during the rainy seasons that receive supplementary 
irrigation (Jewitt, 2006). In addition, conventional methods of estimation of ET (pan, 
lysimeter, Bowen ratio, eddy correlation or the aerodynamic techniques) require 
detailed meteorological data that may not be available at the desired spatial and 
temporal scales. In-situ measurements are constrained in generating areal estimates 
both in terms of cost and accuracy because of natural heterogeneity and the 
complexity of hydrological processes in river basins. Moreover, in-situ procedures are 
time consuming if observations are to be made repeatedly to assess the temporal 
variability of ET. 

The remote sensing approach using models like TSEB (Norman et al., 1995), SEBAL 
(Bastiaanssen et al., 1998a; 1998b), S-SEBI (Roerink et al., 2000) and SEBS (Su, 
2002) have shown great potential in estimating ET over large areas using limited 
meteorological data. ET links the water balance to the surface energy balance with 
the heterogeneity of the landscape being accounted by the remote sensed data. The 
recent advancements in the availability of satellite images of finer to medium 
resolutions (spatial and temporal) have further enhanced its application potential. 
Medium resolution satellite images, e.g. the Moderate-resolution Imaging 
Spectroradiometer (MODIS) vegetation products, have capability to derive physical 
parameters for surface energy balance models at catchment or river basin scale (Batra 
et al., 2006; McCabe and Wood, 2006; Zhang et al., 2008). They are also freely 
available from two sensors (Terra and Aqua) thus enhancing its temporal resolution. 

SEBAL and the Simplified Surface Energy Balance Index (S-SEBI) make use of the 
spatial variability of the surface temperature and reflectance, and vegetation index 
observations (Mohamed et al., 2004; Romaguera et al., 2010). On the other hand, 
Surface Energy Balance System (SEBS) and Two-Source Energy Balance (T-SEB) 
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are physically based models that use an excess resistance term that accounts for 
roughness lengths for heat and momentum that are different for canopy and soil 
surface (Van der Kwast et al., 2009). These models have been applied with indicative 
ET of acceptable accuracies in different river basins under different climatological 
conditions. The SEBAL model in particular, has been widely applied in the tropical 
climate and more importantly in data scarce river basins in Africa (Farah and 
Bastiaanssen, 2001; Timmermans et al., 2003; Mohamed et al., 2004; Kongo et al., 
2011).  

Table 4.1 presents SEBAL applications and the validation efforts in various 
landscapes similar to the Upper Pangani River Basin. A bias range of between 4 and 
26%. 

Table 4.1: Surface Energy Balance Algorithm for Land (SEBAL) applications and 
means of validation on various landscapes. 

Source Location No. of 
images 

Length 
(Time) 

Image 
type and 
spatial 

resolution

Land use 
types 

Elevation 
range 

(m.a.s.l) 

Means of 
Validation 

Bias 
range 

Farah and 
Bastiaanssen 
(2001) 

Kenya 10 1 
month 

NOAA-
AVHRR  
1 km

Savannah 1,900 - 
3,200m 

Bowen Ratio 16% 

Bastiaanssen 
and Bandara 
(2001) 

Sri Lanka 3 3 years Landsat 
30m 

Irrigated 
croplands 

200 - 
600m 

Water balance 4% 

Timmermans 
et al. (2003) 

Botswana 1 1 day MODIS 
1km

Savannah 1,000m Scintillometer 14% 

Hemakumara 
et al. (2003) 

Sri Lanka 10 5 
months 

Landsat 
30m 

Irrigated 
rice, palm 
trees

100m Scintillometer 17% 

Mohamed et 
al. (2004) 

Sudan 37 12 
months 

NOAA-
AVHRR 
1km

Wetlands 200 - 
1,400m 

Water balance 4% 

Zwart and 
Bastiaanssen 
(2007) 

Mexico 3 3 
months 

Landsat 
30m 

Irrigated 
wheat 

0-500m Eddy 
correlation 

9% 

Teixeira et al. 
(2009) 

Brazil 10 7 years Landsat 
30m

Tree crops 0-500m SEBAL 
parameters 

- 

Kongo et al. 
(2011) 

South 
Africa 

28 4 
months 

MODIS 
1km 

Forest, 
pastures, 
water 
bodies

400 - 
3,000m 

Scintillometer 26% 

Sun et al. 
(2011) 

China 1 1 day Landsat 
30m

Lake, 
Wetlands

40-258m E-Pan 11% 

Ruhoff et al. 
(2012) 

Brazil 28 12 
months

MODIS 
Terra 1km

Sugarcane 500 - 
1,500 m

Eddy 
correlation 

9% 

Previous research using SEBAL has indeed shown great potential of applying remote 
sensing to estimate ET on few or specific land use types for a limited period of time 
or with a low temporal resolution. The Upper Pangani River Basin with an elevation 
range between 600 - 5,900 masl has a higher heterogeneity. It consists of 16 land use 
types that include snow/ice, forest, irrigated croplands, rainfed agriculture, natural 
vegetation and water bodies (wetlands, lakes and reservoirs) (Kiptala et al., 2013a). 
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The high elevation range also influences the inter-seasonal and intra-seasonal ET 
fluxes for various land use types under different climate conditions. An accurate 
estimation of ET fluxes is certainly crucial for water resource planning in this river 
basin.  

The SEBAL algorithm was therefore used to map ET fluxes for three consecutive 
years, i.e.  2008 (wet), 2009 (dry) and 2010 (average). MODIS (Aqua and Terra) data 
of moderate resolution were utilized. The timestep of 8-day and spatial scale of 250-m 
were limited by the available MODIS vegetation satellite product. The timescale (8-
day) generally corresponds to the time scale that characterizes agricultural water use 
while 250-m scale is reasonably representative of the sizes of the small-scale irrigation 
schemes in the Upper Pangani River Basin. Since there are no ET measurements in 
the basin, the SEBAL results were validated by various proxies that include pan 
evaporation, reservoir water balance, crop water coefficients and catchment water 
balance. The SEBAL ET results are also compared with independently computed 
global ET products. The product chosen is derived from the MODIS 16 algorithm 
(Mu et al., 2007; 2011) that provides baseline global ET on vegetated land surface at 
1 km resolution. The other global ET products have high spatial resolutions and have 
not been considered. They include: PCR-GLOBWB (Van Beek and Bierkens, 2009), 
global ET computed at a resolution of 0.5o (56 km) using water balance approach, 
ERA-Land (Balsamo et al., 2011) and ERA-Interim (Dee et al., 2011) global ET 
computed at 0.7o (78 km) using land surface model and GLEAM (Miralles et al., 
2011) global ET computed at 0.25o (28 km) using remote sensed land surface model. 

4.2 MATERIALS AND METHODS 
The following section describes the three main datasets for the SEBAL calculations 
including the pre-processing of the MODIS images. The SEBAL algorithm, MODIS 
16 algorithm and in-situ validation methods and the uncertainty assessment are also 
described in detail.  

4.2.1 Datasets 

Pre-processing of MODIS datasets 

The Moderate-resolution Imaging Spectroradiometer (MODIS) is an extensive 
program using sensors on two satellites (Terra and Aqua) to provide a comprehensive 
series of global observations of the Earth’s land, oceans, and atmosphere in the visible 
and infrared regions of the spectrum. Terra earth observation system (EOS) was 
launched in 1999 while Aqua EOS was launched in 2002. The time of overpass of 
Terra (EOS AM) satellite is 10.30a.m while Aqua (EOS PM) satellite is 13.30pm 
local time. The MODIS data is available in different versions, and the latest version 5 
(V005) available from 2008 from the USGS database has been validated (USGS, 
2012). The images were retrieved from the Land Processes Distributed Active Archive 
Center (LPDAAC) of the National Aeronautics Space Administration (NASA) 
[https://reverb.echo.nasa.gov/reverb]. The MODIS images required for the SEBAL 
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model include land surface temperature (LST)/emmissivity (EMM), surface 
reflectance (SF) and vegetation index (VI) (Table 4.2).  

Vegetation Index (VI) products are scaled by multiplying with 0.0001 to provide the 
Normalized Difference Vegetation Index (NDVI). NDVI is the key (and undisputed) 
indicator of ET fluxes (Bastiaanssen et al., 2012; Nagler et al., 2005; Burke et al., 
2001). The two 16-day NDVI datasets (MOD13 and MYD13) starting on day 1 and 
day 9 at 250-m were used to create 8-day 250-m NDVI layers. The other MODIS 
products were therefore acquired and re-projected to this scale for the period 2008 - 
2010. The average emissivity (Em) was computed as the average of Em_31 (from 
band 31) and Em_32 (from band 32) and scaled by 0.002 with a minimum Em of 
+0.49. Surface reflectance (bands 1 - 7) were also extracted from the daily land 
surface reflectance products and scaled by 0.0001. Liang's method (Liang, 2001) was 
used to calculate the broadband surface albedo from the seven surface reflectance 
bands. Further information on the products is available on the USGS website (USGS, 
2012).  

Table 4.2: MODIS satellite images used in the SEBAL analysis. 

Satellite Imagery Product/Sensor Spatial Scale Temporal scale
Land surface 
temperature/emissivity. 
 

MOD11_L2 (Terra) & 
MYD11_L2 (Aqua) 

1-km Daily

Surface reflectance MOD09GA (Terra) & 
MYD09GA(Aqua) 

500-m Daily

Vegetative Index (NDVI) 
 

MOD13 (Terra) & MYD13 
(Aqua)

250-m 16-day

In total, 138 sets of MODIS images were re-projected to cover the period 2008 - 2010 
over the Upper Pangani River Basin. To have continuous satellite data, clouded pixels 
in the images have to be corrected to minimize uncertainties generally associated with 
satellite data (Courault et al., 2005; Hong et al., 2009). Clouded pixels were removed 
and corrected using advanced interpolation techniques in ERDAS imagine software 
(ERDAS, 2010). For each image with cloud pixels, an area of interest (AOI) was 
created over the clouded area (only the section of the image with cloud cover). If the 
AOI is not completely covered by the clouds, the pixels that have correct spectral 
values were randomly picked and interpolated over the AOI. The AOI size for a 
particular interpolation is limited to one land use type to ensure that the AOI does 
not span wide topographical range. If the AOI is fully clouded or large (spans 
between land use types), the histogram matching option was used to match data with 
the nearest reliable value (assumed to have similar spectral characteristics) from the 
next or previously available image. The procedure is similar to the method proposed 
by Zhao et al. (2005) and also used by MODIS 16 algorithm (see section 4.3.3)  to 
generate continuous global ET which entailed identification and replacement of 
unreliable pixel value (cloud contaminated) with the nearest reliable value prior to or 
after the missing data point.  

The procedure for cloud removal is critical for Upper Pangani River Basin where 
most of the clouded pixels occur in the mountainous areas. As such, the uncertainties 
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associated with the interpolation are more pronounced in the mountainous areas. 
However, we argue that the instantaneous ET does not vary significantly within land 
use type, e.g. snow, afro-alpine forest that are dominant in the upper catchments 
(especially during the wet seasons). Furthermore, the model results are scaled using 
the potential evaporation derived from ground information. 

Precipitation datasets 

Daily rainfall data for 93 stations located in or near the Upper Pangani River Basin 
were obtained from the Tanzania Meteorological Agency and the Kenya 
Meteorological Department. The data was subjected to screening and checked for 
stationarity and missing data. Of the original group, 43 stations were selected for 
computing the areal rainfall in the river basin. The selected stations were based on 
the availability and reliability of the rainfall data for the period of analysis, 2008 - 
2010.  

Unfortunately, there are no rainfall stations at elevations higher than 2,000 m a.s.l. 
where the highest rainfall actually occurs. Remote-sensed sources of rainfall data 
based on or scaled by ground measurements have similar shortcoming, e.g. FEWS 
and TRMM. According to PWBO/IUCN (2006), the maximum mean annual 
precipitation (MAP) at the Pangani River Basin is estimated at 3,453 mm yr-1 that is 
estimated to occur at elevation 2,453 m.a.s.l. Therefore, a linear extrapolation 
method based on the concept of double mass curve was used to derive the rainfall up 
to the mountain peaks using the rainfall data from the neighbouring stations.  It was 
assumed that the MAP is constant above this elevation to 4,565 m.a.s.l. for Mt. Meru 
and 5,880 m.a.s.l. for Mt. Kilimanjaro. This assumption is expected to have negligible 
effect at the Pangani River Basin because of the relative small area above this 
elevation. Six dummy stations were therefore extrapolated from the existing rainfall 
stations to the mountain peaks. The rainfall point measurements (including the 
extrapolated points) were interpolated using the inverse distance method (using 
ArcGIS Geostatistical Analyst) to develop spatial distribution of rainfall for the 
Upper Pangani River Basin for year 2008 - 2010 (Fig. 4.1). 
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Fig. 4.1: Mean annual precipitation (mm yr-1) for the Upper Pangani River Basin for 
year 2008 – 2010.  

Land use and land cover types 

The land use and land cover map for the Upper Pangani River Basin developed in 
Chapter 3 was used in this chapter. 

4.2.2 Surface Energy Balance Algorithm of Land (SEBAL) algorithm. 

SEBAL is an energy partitioning algorithm over the land surface, which was 
developed to estimate (actual) ET from satellite images (Bastiaanssen et al., 1998a; 
1998b). SEBAL calculates ET at the time of satellite overpass as a residual term of 
the surface energy balance. The parameterization is an iterative and feedback based 
procedure and a detailed description of the SEBAL steps and its applications can be 
found in Mohamed et al. (2004) and is also available on the Waterwatch website 
(www.waterwatch.nl). The SEBAL algorithm has been scripted for auto-processing in 
ERDAS Imagine 9.2 software.  

SEBAL estimates the spatial variation of the hydrometeorological parameters of 
LULC types using satellite spectral measurements and limited ground meteorological 
data. These parameters are used to assess the surface energy balance terms, which 
are responsible for the re-distribution of moisture and heat in soil and atmosphere. 
ET is derived in terms of instantaneous latent heat flux, λ E (W m-2). 
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 E=Rn - H - G       (4.1)ߣ 

Where Rn is the net radiation (W m-2), H is the sensible heat flux (W m-2) and G is 
the soil heat flux (W m-2). Eq. 4.1 can be expressed as latent heat flux by considering 
evaporative fraction Λ (-) and the net available energy (Rn - Go).  
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The daily evapotranspiration is determined by assuming that the evaporative fraction 
is constant during daytime hours. Shuttleworth et al. (1989) and Nichols and Cuenca 
(1993) have shown that midday evaporative fraction is nearly equal to average 
daytime evaporative fraction. Peng et al. (2013) on a recent study of a wide range of 
ecosystems and climates also established that instantaneous evaporative fraction 
could represent daytime evaporative fraction especially between 11.00hrs to 14.00hrs 
local time. Since the overpass time for the satellite images (10.30am and 1.30pm) are 
reasonably close or within the midday times, this assumption is valid for this study. 
The validity of this assumption has now been widely adopted by various remote 
sensing algorithms computing ET over larger scales (Su, 2002; Muthuwatta and 
Ahmad, 2010; McCabe and Wood, 2006). 

The soil heat flux, G represents the heat energy passed through to the soil. G is a 
small component of the surface energy component relative to the other terms in Eq. 
4.1. It is usually positive when the soil is warming and negative when it is cooling. 
For the time scales of 1 day, G can be ignored (night and day balance) and the net 
available energy (Rn – Go) reduces to net radiation (Rn). The assumption of negligible 
G is also valid at seasonal scale in the tropical climate, since G is not expected to 
vary significantly. This is unlike the Arctic regions where large portion of G is used to 
melt ice in the spring to early summer season (Engstrom et al., 2006). 

Following these assumptions at the daily timescale, ET24 (mm d-1) can be computed 
using the approach of Bastiaanssen et al. (2002): 

24
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1086400
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ωλρ

      (4.3) 

Where Rn24 (W m-2) is the 24-h averaged net  radiation, λ (2.47 x 106 J kg-1) is the 
latent heat of vaporization and ωρ (1000 kg m-3) is the density of water.  

The daily ET24 has been scaled up to 8-day time scale steps (ET8day) assuming the 
same proportion variability of potential evaporation ETo between 1-day to 8-day 
period (Eq. 4.4). In other words, the ratio of ETo derived from standard 
meteorological measurements has been used to represent weather change between the 
two time steps (Morse et al., 2000).  
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The monthly ETmonth is the summation of the ET8day for each month.  

It is noteworthy that the SEBAL model has a tendency to overestimate λ E due to 
differing extreme pixels (wet and dry) selected by the operator (Long and Singh, 
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2012; Ruhoff et al., 2012). It is therefore desirable that the users have adequate 
knowledge and experience on the selection of these pixels in the SEBAL model. 

4.2.3 MODIS 16 ET Algorithm 

MODIS 16 algorithm (Mu et al., 2007; 2011) computes global ET over vegetated land 
areas at 1-km, 8-day scales and are available from January 2000. The MODIS 16 
algorithm utilizes global MODIS and global meteorology from GMAO (Global 
Modelling and Assimilation Office - NASA) ground-based meteorological data. MOD 
16 algorithms (Mu et al., 2007; 2011) are a revision of an earlier algorithm proposed 
by Cleugh et al. (2007) based on the Penman-Monteith (P-M) equation (Monteith, 
1965): 
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Where: ( ) dTeds sat= (Pa K-1) is the slope of the curve relating saturated water 
pressure ( esat (Pa)) to temperature; e (Pa) is the actual water vapor pressure; A (W 
m-2) is available energy partitioned between sensible heat, latent heat and soil heat 
fluxes on a land surface; ρ (kg m-3) is the air density; Cp (J Kg-1 K-1) is the specific 
heat capacity of air; γ is psychrometric constant (Maidment, 1993); ra (s m-1) is the 
aerodynamic resistance and rs (s m-1) is surface resistance which is the effective 
resistance to evaporation from the land surface and transpiration from the plant 
canopy. 

Mu et al. (2007) revised the P-M model by incorporating a soil evaporation 
component by adding vapor pressure deficit and minimum air temperature 
constraints on stomatal conductance and upscaling canopy conductance using leaf 
area index. The input data includes the MODIS data: 1) global land cover 
(MOD12Q1) (Friedl et al., 2002); 2) Fraction of Absorbed Photosynthetically Active 
Radiation/Leaf Area Index (FPAR/LAI (MOD15A2)) (Myneni et al., 2002); and 3) 
MODIS albedo (MCD43B2/B3) (Lucht et al., 2000; Jin et al., 2003). The input non-
satellite data are NASA’s MERRA GMAO (GEOS-5) daily meteorological data at 
1.00ox 1.25o resolution. Cloud-contaminated or missing data are filled in MODIS 16 
algorithm at each pixel by a process which entailed identification and replacement of 
the unreliable pixel value with nearest reliable values prior to and after the missing 
data point (Mu et al., 2011). The procedure similar to the one proposed by Zhao et 
al. (2005) to generate continuous global terrestrial ET data on 8-day 1-km scales. The 
procedure is also similar to the one adopted for this study, however using a pixel 
instead of an AOI. 

However, the initial MODIS 16 algorithm (Mu et al., 2007) significantly 
underestimated global ET (45.8x103 km3) compared to other reported estimates 
(65.5x103 km3). The algorithm was further improved by: 1) inclusion of ET as sum of 
both daytime and night time components; 2) separation of the canopy into wet and 
dry surfaces; 3) separation of soil surfaces into saturated wet surface and moist 
surface; 4) estimation of the soil heat flux as radiation partitioned on the ground 
surface; and 5) improvement of estimates of stomatal conductance, aerodynamic 
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resistance and boundary layer resistance (Mu et al., 2011). The improved MODIS 16 
algorithm provided a better estimate of global annual ET over vegetated land namely 
62.8x103 km3. Limited validation using eddy flux towers: 46 Ameriflux in the US (Mu 
et al., 2011) and 17 flux towers in continental to arid climate in Asia (Kim et al., 
2011) also showed enhanced global ET results with MAE of below 30% to the 
measured ET. The MODIS 16 algorithm was observed to provide baseline global ET 
fluxes for various landscapes on regional and global water cycles (Mu et al., 2007; 
2011; Kim et al., 2011). 

4.2.4 In-situ ET assessment methods  

Since there are no direct measurements of ET using specialized techniques such as 
Scintillometers or the flux towers (commonly used to validate ET (Table 4.1)) in the 
studied basin, the study infers other in-situ measurements to assess the accuracy of 
SEBAL ET fluxes.  

Open water evaporation from pan evaporation measurements 

Open water evaporation from pan measurements (Eo(p)) can be estimated from pan 
evaporation (Ep). Ep records the amount of water evaporated from a pan filled with 
unlimited supply of water during a day (mm d-1). A class A pan, screened (Allen et 
al., 1998) is located at the NyM Met Station close to the dam outlet (0.5km to dam, 
+16m elevation diff. to the reservoir).  Since the pan conditions (such as heat storage 
and transfer, air temperature and humidity, wind conditions) may not be similar to 
the open water evaporation in the reservoir, the Ep are corrected by pan coefficient 
factor, Kp to compute Eo(p) estimates for the NyM reservoir (Eq. 4.6).   

 ( ) pppo EKE ×=        (4.6) 

Kp ranges between 0.90 - 1.05 for class A pan under moderate wind conditions in 
tropical climates (Doorenbos and Pruitt, 1977). However, previous studies (e.g. Hoy 
and Stephens, 1979; Howell et al., 1983; Abtew, 2001) and a recent review article by 
McMahon et al. (2013) have shown that pan evaporation in semi-arid climates is 
much higher than open water measurements, with pan coefficient mostly in the range 
of between 0.7 - 0.9. The higher pan evaporation is attributed to difference in heat 
conduction between the boundary layers of the water body compared to the pan. 
However, if the pan has a screen covering (like the case in this study), there is a slight 
reduction in evaporation attributed to radiation interception by the screen (steel 
mesh) thus slightly increasing the pan coefficient by around 10% (Howell et al., 
1983). It is clear that the pan coefficient is specific to pan, location and nature of the 
water body (size and depth). In view of this, a pan coefficient of 0.9 is adopted 
initially for this study and thereafter, an ideal pan coefficient is determined. 

Water balance at NyM reservoir 

A water balance of the NyM reservoir has also been used to validate open water 
evaporation (Eq. 4.7). 
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( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−+=

dt
dSQPQE outinbo      (4.7) 

Where Eo(b) [mm month-1] is the evaporation rate of the open water surface, Qin [mm 
month-1] is the inflow into the reservoir, Qout [mm month-1] discharge and dS/dt [mm 
month-1] is the change in water storage in the reservoir from the water level 
measurements. Eo(b) is compared with the ET of the open water of the reservoir from 
the SEBAL model. 

Crop coefficients, Kc. 

The seasonal variability of ET can be evaluated through the variation of the crop 
coefficient, Kc which is the relative evapotranspiration ratio, (Eq. 4.8).  

oc ETETK =        (4.8) 

ET is computed using the SEBAL algorithm, while ETo is derived from the FAO 
Penman-Monteith formula defined by weather data (Allen et al., 1998). The ETo was 
calculated at four climate stations (locations). The SEBAL ET for the dominant land 
use type at this locations where used to determine the respective Kc

 values. The 
computed seasonal variability of Kc values were then compared with the ideal 
seasonal Kc coefficients, for that specific land use, under similar climatic conditions 
(Doorenbos and Pruitt, 1977; Allen et al., 1998). 

Catchment water balance 

The catchment water budget is evaluated based on the estimates of precipitation (P) 
and SEBAL ET. The contribution of various land use types to the surface outflow 
(Qs) at the outlet of the catchment is computed using Eq. 4.9.  

( ) dtdSETPQs −−=       (4.9) 

The change in storage (dS/dt) is assumed to be negligible or zero for each land use 
type in the period under consideration (2008 - 2010). If P exceeds the ET then the 
land use type is a net contributor to the downstream hydrology. If P is less than ET 
then the land use type consumes additional blue water resources that could otherwise 
constitute stream flow. For the whole catchment, Qs (from SEBAL model) is 
compared with the measured discharge (Qo) at the outlet (gauging station, 1d8c) of 
the Upper Pangani River Basin. In this case, the change of storage at the largest 
water storage, NyM reservoir (water balance, NyM) is taken into consideration. 

4.2.5 Uncertainty assessment in SEBAL ET estimates 

Non - parametric significance test 

ET estimates have a temporal distribution that is influenced by the seasonal 
variability of potential evaporation and available green and blue water resources. ET 
estimates for a given land use type may therefore not follow a normal distribution in 
time. Large topographic range on a land use type may also influence the distribution 
of ET values within the same land use type. According to Khan et al. (2006), non-
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parametric statistical inferences provide more robust results of such data than using 
classical normal distribution methods. A normality test using the Shapiro-Wilk 
method (Shapiro and Wilk, 1965) is undertaken as an exploratory test to ascertain 
the distribution of the ET estimates. Based on the outcome of the exploratory test, 
two non-parametric tests methods were considered for this study. 

First, the most commonly used non-parametric method to test the significance of two 
estimated means is the Wilcoxon rank sum method (Conover, 1980; Lehmann, 1975). 
This non-parametric method is used to test the difference of the means of SEBAL ET 
and MODIS 16 ET estimates presented at monthly scale for all land use types. The 
other non-parametric method to test the significance of variance of the two estimates 
is Levene's test (Levene, 1960). The method considers the distances of the ET 
estimates from their median rather than the mean. Using the median rather than the 
sample mean makes the test more robust for continuous but not normally distributed 
data (Levene, 1960; Khan et al., 2006). Both methods use a hypothesis p-value for 
which the level of significance determines the statistical test. A significance level of 
0.05 (confidence level of 95%) is used in the study and if the p-value is greater than 
0.05, then one accepts the null hypothesis and if the p-value is less than 0.05 then the 
null hypothesis is rejected. 

Non - parametric confidence interval 

The non-parametric bootstrapping technique is used to estimate the confidence 
intervals in the annual estimates of mean and variance for precipitation (P), ET and 
effective precipitation (Qs). The pixel values of P, ET and Qs for each land use type 
are used as the sample population or bootstrap sample for the analysis. The average 
annual values are used to eliminate any potential intra-seasonal variations in the 
estimates for the period 2008 - 2010. The bootstrapping will draw random samples 
with replacement from the original population sample each time calculating the mean 
or variance (Efron and Tibshirani, 1993). The process is repeated 1000 times and a 
plot of the distribution of the sample means or variance is made. The 95% confidence 
interval for the mean or variance is determined by finding the 2.5th and 97.5th 
percentiles on the constructed distribution. The statistical software Minitab (2003) 
has been used in determining the bootstrap confidence intervals for the annual 
estimates of P, ET and Qs for each land use type.  

4.3 RESULTS AND DISCUSSIONS 
The monthly ETmonth calculation is given in Section 4.3.1, computed from the ET8day 
for 138 time steps covering the years 2008 - 2010. The uncertainty and error 
assessment of the SEBAL ET results is presented in Section 4.3.2; the seasonal 
variation of crop coefficient using SEBAL ET data is presented in Section 4.3.3 and 
the interpretation of the spatio-temporal pattern of water consumption in the Upper 
Pangani River Basin in Section 4.3.4. 
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4.3.1 Actual Evapotranspiration 

The annual ET results for the Upper Pangani River Basin are given in Fig. 4.2 for 
the three years of analysis: 2008, 2009 and 2010. The mean annual totals for various 
LULC types and their monthly variability are given in Figs. 4.3 and 4.4, respectively. 
The key drivers of the spatial and temporal variability are the dynamics of the 
precipitation and the biophysical characteristics represented by different LULC types, 
and the intra/inter-seasonal variation of the climatic conditions in the river basin.  

The highest annual ET has been observed for the water bodies and the forested areas. 
At elevation above 2,300 m.a.s.l, the annual ET values have been gradually reduced 
by the low atmospheric demand because of low temperatures as the elevation 
increases. This has also been illustrated by the change in canopy structure of land 
cover types from dense forest to afro-alpine vegetation and then to the bareland/ice 
as the elevation increases. 

Fig. 4.3 shows the mean annual ET values for different LULC types. It was observed 
that the annual ET value does not significantly vary with the mean. However, a 
notable difference has been observed for the LULC in the upper and lower 
catchments for 2008 and 2009 (Figs. 4.2 & 4.3). For 2008, (a relatively wet year) the 
annual ET was slightly higher than the mean for the LULC types on the lower 
catchments (grasslands, shrublands, bushland) due to the enhanced rainfall. However, 
the annual ET for the LULC types at higher elevations (dense forest, afro-alpine 
forests) and water bodies was slightly lower because of lower potential ET due to the 
cooler conditions. Conversely, for 2009 (a relatively dry year), the annual ET for 
LULC in the lower catchments has been suppressed by limited precipitation but the 
hotter conditions (higher potential ET) imply higher ET for other LULC types 
(forest, wetlands, irrigation, water bodies) that have access to additional blue water 
resources (rivers, groundwater). 
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(a) 2008 

 

(b) 2009 

 

(c) 2010 

 
Fig. 4.2: Spatial variation of annual evapotranspiration in the Upper Pangani River 
Basin for (a) year 2008, (b) year 2009, and (c) year 2010. 
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Fig. 4.4 shows the temporal variability of mean monthly ET for selected LULC types 
for the period of analysis. The temporal variability has been influenced by the 
vegetation pattern and the climatic conditions throughout the year. The hotter 
months of October to March experience generally higher monthly ET values while the 
cooler months from April to July have lower values for all LULC types. Water bodies 
have higher monthly ET values throughout the year, followed by the forest areas and 
the irrigated croplands. The pastures, shrublands and barelands were found to have 
the lowest monthly ET values. The monthly ET values for the bareland/ice were 
significantly enhanced during the hotter months from October - March when the 
atmospheric demand (potential evaporation) at the higher altitudes increased.  

 

 
Fig. 4.3: Mean annual evapotranspiration in the Upper Pangani River Basin for 
different land use types for the years 2008 - 2010. 

 

 
Fig. 4.4: Temporal variation of mean monthly evapotranspiration the Upper Pangani 
River Basin for selected land use types, averaged over 2008 - 2010. 
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4.3.2 Model performance 

The performance of SEBAL ET estimates were compared with independent ET 
estimates from MODIS 16 global algorithm and pan evaporation estimates for NyM 
reservoir. The error analysis was in respect to the correlation coefficient (R), 
coefficient of determination (R2), Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE) (Table 4.3). The exploratory normality Shapiro - Wilk test 
resulted in p-values of 0.00 for all ET estimates. The test results, which were below 
the 0.05 significance level, confirm that the ET estimates do not follow a normal 
distribution and thus a non-parametric statistical inference is the appropriate 
method. The non-parametric significance test statistics for mean difference 
(Wilcoxon) and variance (Levene) for various ET comparisons are also presented in 
Table 4.3. 

Table 4.3: Error statistics and significance test for each validation test using monthly 
estimates. 
Product Land use type R R2 RMSE

mm  
MAE  
mm  

Wilcoxon 
 p-value 

Levene
p-

value
MOD 16 ET vegetated land surface 

(except water bodies, 
barelands/ice, urban)

0.74 0.32 28.4 23.9  0.00 0.55

Eo(p) - NyM open water - NyM reservoir 0.95 0.91 8.1 6.3 0.90 0.81

 

Comparison between SEBAL vs MODIS 16 ET algorithms results 

SEBAL ET fluxes were compared specifically with the MODIS 16 ET product to 
derive any similarity or difference that can inform the model structure or formulation. 
We note that the SEBAL ET was driven by in-situ meteorological data to generate 
ET fluxes on 8-day 250-m resolution while MODIS 16 ET was driven by the GMAO 
meteorological data. MODIS 16 ET only provides ET fluxes for vegetated land 
surfaces and therefore three land use types; water bodies, bareland/ice and urban 
were excluded in the analysis. It is noteworthy that the global land-use map used in 
MODIS 16 ET algorithm is not contemporaneous (geographically) in detail and scale 
with the land use map (Kiptala et al., 2013a) used in the SEBAL analysis. Therefore, 
the SEBAL ET land use map was used for statistical analysis to maintain similarity 
in pixels selection in the evaluation of both ET fluxes. Fig. 4.5 shows the results of 
the ET comparisons for 13 vegetated land use types at annual and monthly scales. 

From Table 4.3, the correlations (at monthly scale) were moderately fair with R of 
0.74, R2 of 0.32, RMSE of 28.4mm month-1 (34%) and MAE of 23.9mm month-1 
(28%). At annual scale the correlation were significantly better with R of 0.91, R2 of 
0.70, and RMSE and MAE of 26% and 24% to SEBAL ET respectively. MAE 
obtained of 28% on monthly and 24% on annual scales were just within the 10 - 30% 
range of the accuracy of ET observations (Courault et al., 2005; Kalma et al., 2008; 
Mu et al., 2011). The regression lines fitted through the origin has a slope of 1.2 in 
both scales. This implies that the SEBAL ET estimates were 20% more that the 
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MODIS 16 ET. On monthly (seasonal) scale (Fig. 4.5b), it was observed that SEBAL 
ET and MODIS 16 ET tends to have better correlations (from 1:1 line) during the 
cooler months of April, May, June, and July while MODIS 16 ET provided 
consistently lower ET values during the dry months. The result is also evident from 
the observations for the dry year 2009 (Fig. 4.5a) that seems to be overestimated 
compared to the wet (2008) and average (2010) years. The Wilcoxon test result (p-
value = 0.00, Table 4.3) shows that the monthly SEBAL ET and MODIS 16 ET 
means are significantly different at 95% confidence. However, the Levene's test result 
(p-value = 0.55, Table 4.3) shows that the variances of the two model outputs are 
statistically the same. Similar significance test results were observed at the annual 
scale. The test results indicate that the two model results have different means but 
the same variance. Since the test results for the variance are more robust (Khan et 
al., 2006), the two model estimates may be considered to be comparable. 

 

 
Fig. 4.5: Comparisons of the average SEBAL ET to MODIS 16 ET estimates for 
different land use types at (a) annual (b) monthly scales for the Period 2008 - 2010 
in Upper Pangani River Basin. 

From Fig. 4.5, there is a clear trend that MODIS 16 ET estimates are slightly lower 
than SEBAL ET fluxes during dry periods. It is noted that MODIS 16 algorithm is 
still undergoing improvement having initially (Mu et al., 2007) underestimated global 
ET on vegetated land surface. It is notable that the revised algorithm (Mu et al., 
2011) provided improved global ET estimates (62.8 x 10-3 km3) closer to other 
reported estimates (65.5 x 10-3 km3). However, as observed by Kim et al. (2011), there 
are still some assumptions inherent in the improved MODIS 16 algorithm such as the 
stomata closure and zero plant transpiration at night that may result in the 
underestimation of ET especially during dry periods. Apart from the model structure, 
high level of uncertainties in the MODIS 16 ET can also be attributed to the coarse 
resolution of the input data that may be detrimental to ET estimates at a river basin 
scale. The global land use map used at 1-km may lead to misclassification of certain 
land uses in such a heterogeneous landscape. This may have lead to biases in the 
input MODIS FPAR/LAI data in MODIS 16 ET algorithm (Zhao et al., 2006; 
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Demarty et al., 2007; Mu et al., 2011). Moreover the GMAO meteorological data at 
1.0o x 1.25o resolutions is too coarse compared to the ground measurements used in 
the SEBAL model. It is noteworthy also that the global MODIS ET algorithm (old 
and new) validation process in North America may also influence the accuracy of the 
ET results in other climatic zones.  

Similarly, some assumptions on the estimation of sensible heat flux (H) by the 
SEBAL model if not applied correctly have also been reported to overestimate ET 
especially for dry areas and/or sparse canopy (Mkhwanazi et al., 2012). In estimating 
sensible heat H, most remote sensing approaches make use of radiometric surface 
temperature instead of aerodynamic temperature (which is difficult to estimate or 
measure). In doing so, SEBAL in particular introduces a temperature difference 
gradient that relies on two anchor pixels (wet/cold and dry/hot). The subjective 
determination of these pixels (despite many recommendations) by the users may 
introduce uncertainties to the model results. Other SEBAL model assumptions such 
as the omission of night net radiation (Rn) when it becomes effectively negative or the 
assumptions that daily heat flux (G) is zero can also lead to uncertainties in ET 
estimates (Ruhoff et al., 2012). 

Open water evaporation at NyM reservoir 

The monthly SEBAL estimates of the open water evaporation (Ew(s)) at NyM 
reservoir showed good correlation with R of 0.95 and R2 of 0.91 to pan evaporation 
estimates (Table 4.3). RMSE values of 8.1mm month-1 (5%) and MAE value of 
6.3mm month-1 (4%) were low, indicating good accuracy between the datasets. 
However, Ep-NyM1 (Kp = 0.9) showed a general pattern of overestimation of SEBAL ET 
by nearly 10% (Fig. 4.6). A review of Kp (to have a linear (1:1) relation) between the 
ET estimates (Ep-NyM2) resulted in a reduced Kp factor of 0.81. The pan coefficient 
(0.81) is reasonable, considering that the site is located on the lower end of the 
reservoir (0.5km to dam, +16m elevation diff. to the reservoir). The site is also 
located in a dry environment that is generally associated with lower Kp values. The 
statistical test for the two ET estimate (using Kp = 0.9 and Kp = 0.81) showed p-
values greater than 0.05 (Table 4.3) which indicates that both results were not 
significantly different to the SEBAL estimates at 95% confidence level.  
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Fig. 4.6: Comparison of SEBAL ET monthly estimates and Pan Evaporation for open 
water at NyM reservoir for the period 2008 - 2010. 
 

Water balance calculations at NyM reservoir 

The open water evaporation at NyM reservoir was also validated through monthly 
water balance analysis taking into consideration the monthly precipitation, inflows, 
outflows and changes in water levels (for storage variations) in the reservoir. The 
total inflows (Qin) and outflows (Qout) were obtained from gauging stations located 
upstream and downstream of the dam. The precipitation (P) and water level 
measurements were also obtained from the NyM Met Station and the Pangani Basin 
Water Office (PBWO). The water levels were also used to compute the surface area 
of the reservoir at various time steps using formulae adopted from Moges (2003). 
Table 4.4 shows the annual estimates for each of the water balance components, 
aggregated from monthly totals, for each year of analysis. 

Table 4.4: Annual mean variations of the water balance (mm yr-1) in NyM reservoir 
for period 2008 – 2010. 
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2010 404 7951 5716 728 1912 12
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Table 4.4 shows that the relative error (RE) ranged between -7% to +12%. The 
variations in the RE can be attributed to the measured water levels that may result 
in high uncertainties in water storage from a relatively shallow dam (active depth of 
9m). Nevertheless, the errors even out over the study period with an overall bias of -
2%. The negative RE means the Eo(b) from the water balance analysis was slightly 
lower than the SEBAL ET. 

4.3.3 Crop coefficient, Kc for the main crops 

Fig. 4.7 shows the Kc (ET/ETo) seasonal variations computed for four locations under 
different land use type in Upper Pangani River Basin. The Lyamungu station (Fig. 
4.7a) is the most upstream station where irrigated bananas, coffee intercropped with 
maize and beans are dominant land use. The agricultural activity is intensive 
throughout the year due to the availability of additional blue water resources. Kc 

values at this station were greater than 1.0 experienced mostly throughout the period 
of analysis. The results are consistent with the ideal Kc values for such crops ranging 
between 1.05 - 1.2 (without water stress) (Allen et al., 1998). However, the climatic 
conditions, cropping calendar of the intercropped cereals and the type of irrigation 
used (traditional furrow system) might have contributed to Kc values (greater than 
1.2) in some months in wet seasons and similarly lower Kc values (below 1.0) in few 
months in dry seasons. In 2009 (dry year), the Kc values for month of Jan - Mar (dry 
season) were much lower due to the water stress from the drought conditions 
experienced during that year. 

The TPC station is located within the TPC sugarcane plantation at the lower 
catchments of the Upper Pangani River Basin. The cropping calendar of the 
sugarcane plantation has been designed for continuous sugarcane harvesting (of near 
equal quantity) between June - February every year. During the long rains (Masika 
seasons from March to May) there is no irrigation to allow for maintenance works at 
the canals. The crop calendar is therefore designed to ensure that the sugarcane is at 
different stages of development making use of precipitation. Kc (without water stress) 
for irrigated sugarcane ranges from 0.4 - 1.25 for homogenous sugarcane plantation 
with continuous cropping stages (Allen et al., 1998). However, since the cropping 
stages were mixed, the ideal (mean) Kc would be approx. 0.8 with slightly higher 
values during the Masika season when the all sugarcane is at different stages of 
maturity.  The computed Kc values for irrigated sugarcane (Fig. 4.7b) varied slightly 
but within the ideal value of 0.8. The Kc values were slightly higher than 0.8 in the 
Masika seasons apart from year 2008. The year 2008 (wet) experienced suppressed 
rainfall in the month of April compared to subsequent high rainfall in the other 
months. During the dry months, the Kc values were lower than expected mean (0.8) 
and were more pronounced during dry year (2009). This result can be attributed to 
the water stress conditions for the sugarcane due to limited precipitation (Masika 
season) or inadequate water supply for irrigation in dry months. 
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a) 
 

 

b)
 

c)  
 

d) 
 

Fig. 4.7: Seasonal variation of ET/ETo (Kc) at locations: a) Lyamungu b) TPC c) 
Moshi and d) Same in Upper Pangani River Basin for the years 2008 - 2010. 

Moshi station (Fig. 4.7c) is located in the middle catchment, where mixed cereals 
(maize, beans) and few vegetable crops is dominant land use practice under 
supplementary irrigation. The agricultural activities rely on rainfall and 
supplementary irrigation during the wet seasons. The Kc values would therefore be 
related to the seasonal rainfall and cropping patterns in the areas.  The Kc for this 
station was observed to be high between the months of March and August during the 
crop growing season and low during the dry months of between September and 
February. The Kc ranges between 0.3 and 1.0 which was reasonable within the ranges 
for maize and vegetable crops (0.30 - 1.15) (Allen et al., 1998).  

Same station (Fig. 4.7d) is located on the lower catchments with low precipitation 
(500 mm yr-1) and is dominated by grasslands (for grazing) and scattered croplands. 
Due to the very dry conditions in this area, the grassland experiences water stress 
and this is  likely the reason why the calculated Kc values are lower than the reported 
Kc for grazing pasture that range between 0.30 to maximum of 0.75 (Doorenbos and 
Pruitt, 1977; Allen et al., 1998). The Kc values calculated for this LULC type ranged 
from 0.2 during the dry seasons and 0.6 during the wet seasons. 

4.3.4 Spatio-temporal pattern of water use and catchment water balance 

Given the precipitation (P) and the SEBAL ET results, the net contribution or 
consumption of surface outflow (Qs) was evaluated for each LULC type (without 
surface/reservoir storage change) using simple water budget (Eq. 4.9). The usability 
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and reliability of Qs for water resource planning depends on the confidence intervals 
(CI) of P and ET estimates. The uncertainty of the LULC map is assumed to be 
inherent on the statistical estimates for each land use type. The lower and the upper 
bound confidence levels were estimated at 95% confidence limits. Since there was a 
minimal difference between the upper and lower CI (Fig. 4.8) an average CI were 
used and presented in Table 4.5. 

Table 4.5: Annual variations of the water balance terms in Upper Pangani River 
Basin for period 2008 - 2010. 

Land use and land cover 
Mean Annual P  

(mm/yr)
Mean Annual ET  

(mm/yr) 
Q 

(mm/yr)

No. km2 Mean STDEV C.I Mean STDEV C.I Mean C.I

1 Water bodies 100 603 82 4 1,928 204 10 -1,325 14

2 Bareland/ice caps 100 2,196 612 30 643 653 32 1,553 62

3 Sparse vegetation 445 714 301 7 586 172 4 128 11

4 Bushlands 1,152 831 312 5 669 312 5 162 9

5 Grasslands/scattered crops 1,517 691 159 2 630 223 3 61 5

6 Shrublands/thicket 3,509 785 151 1 756 85 1 29 2

7 Rainfed maize  2,942 785 221 2 789 221 2 -4 4

8 Afro-alpine forest 257 2,300 322 10 1,429 309 9 871 19

9 Irrigated mixed crops 598 888 324 7 905 207 4 -17 11

10 Rainfed coffee/irrig. banana 723 1,026 250 5 1,022 261 5 5 9

11 Irrigated sugarcane 89 572 204 11 1,035 212 11 -463 22

12 Forest, irrig. croplands 556 1,115 366 8 1,228 250 5 -113 13

13 Irrigated bananas, coffee 607 1,449 297 6 1,330 156 3 119 9

14 Dense forest 637 1,703 324 6 1,517 144 3 186 9

15 Wetlands and swamps 98 644 127 6 1,291 267 13 -647 20

16 Urban, built up 8 977 117 20 774 80 14 202 34

Total 13,337 917 4 866 3 52 7

The CI (uncertainty of the estimates) of the water balance terms is influenced greatly 
by the spatial coverage and the distribution range of the land use types.  For 
individual land use types, the CI for P and ET ranged between 1and 3 mm yr-1 (less 
than 1%) for the dominant land use types e.g. grasslands, shrublands, and rainfed 
maize. For land use types of lower spatial coverage CI ranges for P and ET were 
marginally higher with bareland having the highest uncertainty of 32 mm yr-1 (5%) 
for ET estimates. The CI values for the surface outflow, Qs were the accumulated 
totals CI for P and ET. For the entire catchment, the uncertainty of the mean 
estimates of P and ET was low at 3 - 4mm yr-1 (less than 1%). However, the 
cumulative uncertainty for Qs was higher at 7mm yr-1 (13% to the mean of Qs). 

Irrigated sugarcane, wetlands & swamps and the water bodies were found to be the 
highest net evaporative water users with a consumption of -463 (±22) mm yr-1, -647 
(±20) mm yr-1 and -1,325 (±14) mm yr-1 respectively. The afro-alpine forest and 
bareland/ice caps were the lowest water users contributing downstream flow in excess 
of 871 (±19) mm yr-1 and 1,553 (±62) mm yr-1 of the annual precipitation. The total 
evaporative water use, 866 mm yr-1, thus accounts for 94% of the annual precipitation 
in the Upper Pangani River Basin with the remainder of about 52 (±7) mm yr-1 or 21 
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(±2) m3 s-1) estimated to flow to the Lower Pangani River Basin. However, this result 
will have to be adjusted slightly to account for changes in storage in NyM reservoir 
regulate flow (artificially) downstream for the period of analysis (approx. -3.2m3 s-1 
from Table 4.4). The change in storage was initially assumed to be negligible for 
various LULC types. This provides an estimated surface outflow of 18 (±2) m3 s-1 
which compares reasonably well with the measured outflow (at gauge 1d8c below 
NyM reservoir) of 20.5m3 s-1 (12% bias) for the same period. The bias or error (12%) 
is within the uncertainty range Qs estimates of 13% (7mm yr-1).  

 
Fig. 4.8. Frequency distribution of the estimated annual SEBAL ET from bootstrap 
for selected land use types in the Upper Pangani River Basin for period 2008 - 2010. 
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The result is also consistent with previous analyses of outflows at NyM reservoir 
which estimated flows of between 15 - 30 m3 s-1 based on long term discharge 
measurements (Turpie et al., 2003; Komakech et al., 2011; Notter et al., 2012). 
According to PBWO/IUCN (2006), the hydropower commitments (which exist as a 
water right since the 1970) for the hydropower production at NyM HEP is 760 
Million m3 yr-1 (or about 24 m3 s-1). The downstream flow is also meant to regulate 
flow to Hale HEP and the (new) Pangani HEP (Fig. 2.1). Considering these HEP 
flow commitments, notwithstanding the irrigation water needs and the environmental 
flow requirements for the Lower Pangani River Basin, the Upper Pangani River Basin 
is indeed a closed or closing basin (considering the uncertainties), with its river 
systems under stress (Molden et al., 2005; Molle et al., 2005).  

4.4 CONCLUSION 
This research has used MODIS data and the SEBAL algorithm to estimate spatio-
temporal ET in a data scarce river basin in Eastern Africa with a highly 
heterogeneous use of water. A good agreement was generally attained for the SEBAL 
ET results from the various validations. For open water evaporation, the SEBAL ET 
for NyM reservoir, showed a good correlation with the pan evaporation measurements 
using an optimized pan coefficient of 0.81. Similarly, the water balance ET estimates 
for NyM reservoir resulted in an absolute relative error 2% on the mean annual 
estimates over the study period. The estimated ET for various agricultural land uses 
indicated a pattern that was consistent with the seasonal variability of the crop 
coefficient (Kc) based on FAO Penman-Monteith equation. As expected, ET estimates 
for the mountainous areas experiencing afro-alpine climate conditions have been 
significantly suppressed by the low potential ET. For the whole basin, ET accounted 
for 94% of the total precipitation with a surface outflow closure difference of 12% to 
the measured discharge. The bias range (12%) was within the uncertainty (13%) level 
at 95% confidence interval for P-ET estimates. 

Comparison between global MODIS 16 ET and SEBAL ET showed good correlation 
R of 0.74. However, the R2 was lower at 0.32 and the RMSE and MAE where 34% 
and 28% respectively, with the MAE being just within the acceptable comparison 
level of below 30%. The monthly ET variance of the two models was not statistically 
different whereas the monthly ET mean was statistically different. In general, the 
MODIS 16 ET underestimated the SEBAL ET by approximately 20%, mostly during 
the dry month or seasons. This difference can be attributed to the model structure 
and the coarse spatial scale of the MODIS 16 ET. The difference might also have 
been exacerbated by SEBAL's tendency of overestimating ET in dry periods.  

The study has established that the ET during a relatively dry year (2009) is higher 
for LULC in the upstream catchment, such as forests and irrigated croplands, due to 
the local availability of blue water resource (from snow melts, rivers and 
groundwater). ET for water bodies (lakes and reservoirs) and irrigated croplands that 
extract water from the river systems is also higher. However, for LULC types that 
have limited access to blue water, such as rainfed agriculture and grasslands, the ET 
is lower due to the limited precipitation. Conversely, in a relatively wet year (2008), 
the ET is suppressed in the upstream catchments due to lower potential evaporation 
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while it is enhanced from the LULC types in the lower catchments due to availability 
of water resource from precipitation. This result demonstrates the vulnerability of 
water users in the lower catchments to climate variability and future water scarcity.  

This study has highlighted the levels of water use of each LULC type and their 
relative contribution and/or effect on the downstream hydrology. The water balance 
approach showed that the basin is closing. A viable option is improving water 
productivity through improved water efficiency and water re-allocation. The derived 
spatially distributed ET can provide useful information for a systematic approach of 
water accounting (Karimi et al., 2013a). The satellite-derived ET fluxes (which also 
accounts for blue water use) can also provide crucial information for hydrological 
modelling in highly utilized and water stressed river basins (Winsemius et al., 2008; 
Zwart et al., 2010; Romaguera et al., 2012).  

A major limitation in deriving remote-sensed ET especially for land use types on 
higher elevations in the humid to sub-humid tropics is the persistent cloud cover. As 
such, the multi-temporal scales provided by MODIS (Table 4.2) offered a range of 
images at a reasonable interval (for this case 8-day). These images also enhance the 
quality of the cloud filling procedure adopted in this study that relies on the next or 
previous good quality image. This advantage is however limited by the moderate 
spatial scale of the MODIS images (250-m, 1 km thermal). 
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Chapter 5 

MODELLING STREAM FLOW USING STREAM MODEL3 

Integrated water resources management is a combination of managing blue and green 
water resources. Often the main focus is on the blue water resources, as information 
on spatially distributed evaporative water use is not readily available as is the link to 
river flows. Physically based spatially distributed models are often used to generate 
this kind of information. These models require enormous amounts of data, which can 
result in equifinality, making them less suitable for scenario analyses. Furthermore, 
hydrological models often focus on natural processes and fail to account for 
anthropogenic influences. This study presents a spatially distributed hydrological 
model that has been developed for a heterogeneous, highly utilized and data scarce 
river basin in Eastern Africa. Using an innovative approach, remote sensing derived 
evapotranspiration and soil moisture variables for three years were incorporated as 
input data in the Spatial Tools for River basin Environmental Analysis and 
Management (STREAM) model. To cater for the extensive irrigation water 
application, an additional blue water component (Qb) was incorporated in the 
STREAM model to quantify irrigation water use. To enhance model parameter 
identification and calibration, three hydrological landscapes (wetlands, hill-slope and 
snowmelt) were identified using field data. The model was calibrated against 
discharge data from five gauging stations and showed a good performance especially 
in the simulation of low flows where the Nash-Sutcliffe Efficiency of the natural 
logarithm (Ens_ln) of discharge were greater than 0.6 in both calibration and 
validation periods. At the outlet, the Ens_ln coefficient was even higher (0.90). During 
low flows, Qb consumed nearly 50% of the river flow in the basin. Qb model result for 
irrigation was comparable to the field based net irrigation estimates with less than 
20% difference. These results show the great potential of developing spatially 
distributed models that can account for supplementary water use. Such information is 
important for water resources planning and management in heavily utilized 
catchment areas. Model flexibility offers the opportunity for continuous model 
improvement when more data become available. 

                                     
3 This chapter is based on: Kiptala, J.K., Mul, M.L., Mohamed, Y.A., Van der Zaag, P., 2014. 
Modelling stream flow and quantifying blue water using modified STREAM model for a het-
erogeneous, highly utilized and data scarce river basin in Africa. Hydrology Earth System Sci-
ences, 18, 2287-2303. 
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5.1 INTRODUCTION 
Hydrological models are indispensable for water resource planning and management 
at catchment scale as these can provide detailed information on, for example, impacts 
of different scenarios and trade-off analyses. Society's demand for more accountability 
in the management of externalities between upstream and the downstream water 
users has also intensified the need for more predictive and accurate models. However, 
complexity of hydrological processes and high levels of heterogeneity present 
considerable challenges in model development. Such challenges have been exacerbated 
over time by land use changes that have influenced the rainfall partitioning into green 
(soil moisture) and blue (runoff) water resources. In spite of these challenges, it is still 
desirable to develop a distributed hydrological model that can simulate the dominant 
hydrological processes and take into account the various water uses. In large 
catchments with high heterogeneity, key variables such as water storage (in 
unsaturated and saturated zones) and evaporation (including transpiration) are 
difficult to obtain directly from point measurements. This becomes even more 
difficult for ungauged or poorly gauged river basins.  

In most cases those variables are derived from models using (limited) river discharge 
data which increases equifinality problems (Savenije, 2001; Uhlenbrook et al., 2004; 
McDonnell et al., 2007; Immerzeel and Droogers, 2008). On the other hand, grid 
based distributed models at fine spatial scales do not explicitly account for additional 
blue water use (Qb), i.e. transpiration from supplementary irrigation or withdrawals 
from open water evaporation. In fact in tropical arid regions, Qb can be a large 
percentage of the river discharge during low flow. Calibrating models using modified 
stream flow data may lead to incorrect parameterization, and may lead to high 
predictive uncertainty in the hydrological model outputs especially when dealing with 
scenarios for water use planning. 

To overcome these challenges, many researchers have opted for simple, lumped and or 
parsimonious models with a limited number of model parameters. The models are 
simplified by bounding and aggregation of some functionality in the complex system 
(Winsemius et al., 2008). In doing so, models may become too simplified to represent 
hydrological processes in a catchment (Savenije, 2010). Therefore, Savenije (2010) 
proposes a conceptual model mainly based on topographic characteristic to represent 
the dominant hydrological processes. The model maintains the observable landscape 
characteristics and requires a limited number of parameters. Other researchers have 
used secondary data, e.g. from remote sensing to calibrate or infer model parameters 
as much as possible (Winsemius et al., 2008; Immerzeel and Droogers, 2008; Campo 
et al., 2006). This has been possible in the recent past because of the availability of 
satellite images with finer spatial resolutions. Advancement in remote sensing 
algorithms has also resulted in wider range spatial data of reasonably good 
accuracies. Such spatial data include actual evapotranspiration (ETa) derived from 
remote sensing data, e.g. TSEB (Norman et al., 1995), SEBAL (Bastiaanssen et al., 
1998a; 1998b), S-SEBI (Roerink et al., 2000), SEBS (Su, 2002) and METRIC (Allen 
et al., 2007). Spatial data on soil moisture can also be derived from satellite images, 
e.g. from ERS-1 Synthetic Aperture Radar (SAR) combined with the TOPMODEL 
topographic index (Scipal et al., 2005) or from Advance Very High Resolution 
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Radiometer (AVHRR) combined with the SEBAL model (Mohamed et al., 2004). It 
is also evident that distributed models perform well with finer resolution data as 
demonstrated by Shrestha et al. (2007). Using different resolution data (grid 
precipitation and grid ETa) and a concept of IC ratio (Input grid data area to 
Catchment area) they found that a ratio higher than 10 produces a better 
performance in the Huaihe River Basin and its sub-basin of Wangjiaba and Suiping in 
China (Shrestha et al., 2007). 

Furthermore, remotely sensed data at finer resolutions offer great potential for 
incorporating blue water, in the form of (supplementary) water use (Qb) in model 
conceptualization. This opportunity arises from the fact that remotely sensed ETa 
based on energy balance provides total evapotranspiration that already accounts for 
Qb. For instance, Romaguera et al. (2012) used the difference between Meteosat 
Second Generation (MSG) satellites data (total ETa) and Global Land Data 
Assimilation System (GLDAS) which does not account for Qb, to quantify blue water 
use for croplands in Europe with a reasonable accuracy. However, the spatial scales of 
such datasets (GLDAS (1 km) and MSG (3 km)) limit the application. Nevertheless, 
the latter recommended such application to recently available data of wider spatial 
and temporal coverage, e.g. data derived from Moderate-resolution Imaging 
Spectroradiometer (MODIS) 250-m, 500-m. 

However, the literature shows limited applications of utilizing grid data for 
distributed hydrological models in poorly gauged catchments. Winsemius et al. (2006) 
showed that the soil moisture variations from the Gravity Recovery And Climate 
Experiment (GRACE) could provide useful information to infer and constrain 
hydrological model parameters in the Zambezi river basin. Campo et al. (2006) using 
an algorithm developed by Nelder and Mead (1965), used remotely sensing soil 
moisture information to calibrate a distributed hydrological model in the Arno basin, 
Italy. Immerzeel and Droogers (2008) used remotely sensed ETa derived from SEBAL 
in the calibration of a Soil and Water Assessment Tool (SWAT) model of the Krishna 
basin in southern India in which the model performance (r2) increased from 0.40 to 
0.81. Recently, Cheema et al. (2014) has used satellite derived rainfall to parameterize 
the SWAT model while ETa from ETLook was used to calibrate the model to 
determine the contribution of groundwater use to the total blue water use in the 
Indus Basin. 

The factors that may have limited the application of remote sensing (RS) data on 
hydrological modelling include: a) Limited flexibility of hydrological models to utilize 
spatially distributed data. This is normally the case where the user has no control 
over the model source code. The user is therefore limited to optimizing model 
performance using secondary data. b) Limited availability of RS data at the 
appropriate spatial and temporal scales to capture dominant hydrological processes in 
a catchment. c) The lack of technical skills by most hydrologists and water resource 
specialists on how to transform RS data into hydro-meteorological data (Schultz, 
1993). The opportunities and challenges for the wider application of remote sensing 
for hydrological modelling are discussed by De Troch et al. (1996) and Schultz (1993). 

This chapter presents a novel method of using ETa and soil moisture data derived 
from satellite images as input in a distributed hydrological model. The Upper 
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Pangani River Basin in Eastern Africa has been used as a case study. This river basin 
has heavily managed landscapes dominated by small and large scale irrigated 
agriculture. The secondary data used in this study have been generated using MODIS 
satellite information and the SEBAL model on 250-m and 8-day resolutions for the 
period 2008-2010 (Kiptala et al., 2013b). Here the STREAM model has been 
modified to incorporate blue water use. The model parameters have also been 
confined further by the topographic characteristics and groundwater observations 
using the hydrological conceptualization developed by Savenije (2010).  

5.2 MATERIALS AND METHODS 

5.2.1 Datasets 

Hydro-meteorological data 

Daily rainfall data for 93 stations located in or near the Upper Pangani River Basin 
were obtained from the Tanzania Meteorological Agency and the Kenya 
Meteorological Department. The data was screened and checked for stationarity 
(Dahmen and Hall, 1990). Of the original group, 43 stations proved useful after data 
validation for the period 2008 - 2010. Unfortunately, there were no rainfall stations at 
elevations higher than 2,000 m.a.s.l. where the highest rainfall actually occurs. 
Spatially distributed rainfall can also be provided by satellite sensors to augment 
rainfall data from the ground stations (Huffman et al., 2001). Such satellites sensors 
include the Tropical Rainfall Measuring Mission (TRMM). Famine Early Warning 
System (FEWS) product also provides remotely sensed rainfall data in Africa. The 
satellite based rainfall has uncertainties that can be corrected using limited ground 
rainfall measurements (Hong et al., 2006; Cheema and Bastiaanssen, 2012). Since 
there were no rainfall stations at the mountainous areas, the satellite based rainfall 
could not be validated (Haque, 2009). 

According to PWBO/IUCN (2006), the maximum long term mean annual 
precipitation (MAP) at the Pangani River Basin is estimated at 3,453 mm yr-1 at 
elevation 2,453 m.a.s.l. The estimates were based on a rain gauge station that is no 
longer operational. Therefore, a linear extrapolation method based on the concept of 
double mass analysis (Wilson, 1983) was used to derive the seasonal rainfall up to the 
mountain peaks. Double mass analysis assumes relatively consistent correlation 
between time series of rainfall data at nearby stations with similar hydrological 
conditions (Chang and Lee, 1974). In the analysis, the seasonal precipitation at the 
mountain peak (Y) is assumed to have a linear relation to the seasonal precipitation 
of the nearby stations (X) scaled by a proportionality factor (α). The proportionality 
factor, α is the average slope of the long term MAP for the two reference points. Y is 
therefore given as Y =αX. The rainfall was maintained constant above this elevation 
to 4,565 m.a.s.l. for Mt. Meru and 5,880 m.a.s.l. for Mt. Kilimanjaro. This 
assumption is expected to have negligible effect at the Pangani River Basin because 
of the relative small area above this elevation (3%). Six dummy stations were 
therefore extrapolated from the existing rainfall stations to the mountain peaks.  
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River discharges for six gauging stations were obtained from the Pangani Basin Water 
Office (Moshi, Tanzania). The measurements were obtained as daily water level 
measurements and converted to daily discharge data using their corresponding rating 
curves equations for the period 2008 - 2010.  

Evaporation and soil moisture 

The actual evapotranspiration (ETa) and soil moisture data for the Upper Pangani 
River Basin were obtained from a recent and related research by Kiptala et al. 
(2013b). ETa and soil moisture data for 8-day and 250 m resolutions for the years 
2008 - 2010 were derived from MODIS satellite images using the Surface Energy 
Balance Algorithm of Land (SEBAL) algorithm (Bastiaanssen et al., 1998a; 1998b). 
Actual evapotranspiration (ETa) is comprised of interception (I), soil evaporation 
(Es), open water evaporation (Eo) and transpiration (T). 

Land use and land cover types 

In this study, we employed the LULC classification for the Upper Pangani River 
Basin developed by Kiptala et al. (2013a). They derived the LULC types using 
phenological variability of vegetation for the same period of analysis, 2008 to 2010. 
LULC types include 16 classes dominated by rainfed maize and shrublands that 
constitute half of the area in the Upper Pangani River Basin. 

Other Spatial data 

Elevation and soil data were also obtained for the Upper Pangani River Basin. A 
digital Elevation Model (DEM) with 90 m resolution was obtained from the Shuttle 
Radar Topography Mission (SRTM) of the NASA (Farr et al., 2007). The soil map 
was derived from the harmonized world soil database which relied on soil and terrain 
(SOTER) regional maps for Northern and Southern Africa (FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2012). 

5.2.2 Model development 

The hydrological model was built to simulate stream flow for the period 2008-2010 for 
the Upper Pangani River Basin. An 8-day timestep and 250-m moderate resolutions 
has been used to correspond to availability of remotely sensed ETa data for the period 
of analysis. The 8-day time step is sufficiently short for the agricultural water use 
process, which has a timescale range of between 10 - 30 days (unsaturated zone 
storage over transpiration rate). In addition, this timescale is assumed to be 
sufficiently large to neglect travel time lag in the river basin. The other general 
hydrological processes in the river basin are estimated to have larger time scales 
(Notter et al., 2012). The spatial scale of 250-m is limited by the available MODIS 
satellite data. This is reasonably representative of the sizes of the small-scale 
irrigation schemes in the Upper Pangani River Basin. 

STREAM, a physically based conceptual model, was developed in the PcRaster 
modelling environment (Aerts et al., 1999). The PcRaster scripting model 
environment consists of a wide range of analytical functions for manipulating Raster 
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GIS maps (Karssenberg et al., 2001). It uses a dynamic script to analyze hydrological 
processes in a spatial environment. The PcRaster environment allows for tailored 
model development and can therefore be used to develop new models, suiting the 
specific aims of the research including the availability of field data. The STREAM 
model in PcRaster environment allows the inclusion of spatially variable information 
like ETa and soil moisture in the model. Furthermore, STREAM model is an open 
source model which has been applied successfully in other data limited river basins, 
especially in Africa (Gerrits, 2005; Winsemius et al., 2006; Abwoga, 2012; Bashange, 
2013). 

In the STREAM model, surface runoff is computed from the water balance of each 
individual grid cell, which is then accumulated in the local drainage direction derived 
from DEM to the outlet point (the gauging station). The model structure consists of 
a series of reservoirs where the surface flows are routed to the rivers. We modified the 
STREAM model by including an additional blue water storage parameter (Sb) that 
regulates Qb in the unsaturated zone. Qb can be derived from the groundwater as 
capillary rise, C(t), or river abstraction, Qd(t). The input variables for the modified 
STREAM model are: Precipitation (P), Interception (I) calculated on a daily basis as 
a pre-processor outside the model. Evaporation (Es, Eo) and Transpiration (T) 
denoted as [E + T] was derived by subtracting I for the total evaporation (ETa) 
derived from SEBAL [ETa - I]. The minimum soil moisture, Su,min is also derived from 
SEBAL. The other parameters are determined through calibration. Fig. 5.1 shows the 
modified STREAM model structure for Upper Pangani River Basin. 

In the model E+T and the Su,min are the main drivers of the hydrological processes in 
the unsaturated zone of the model. E+T is the evaporation (soil moisture) depletion 
component while Su,min is the depletion threshold. It is assumed that excess water from 
the upstream cells or pixels would supplement water needs of the middle or lower 
catchments where supplementary water is used. The Upper Pangani River Basin is a 
typical river basin, where precipitation exceeds ETa in the upper catchments and 
hence contributes river flow to the downstream catchments.  
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Fig. 5.1: Modified STREAM conceptual model for Upper Pangani River Basin. 

The rationale for accounting for Qb in the model is motivated by the incapability of 
the original STREAM model if applied in irrigated landscapes to simulate actual 
transpiration. The original STREAM model was developed specifically for natural 
landscapes dominated by woody savannas and wetlands with high storage capacity 
(Dambos) in the Zambezi River Basin (Gerrits, 2005; Winsemius et al., 2006). The 
blue water use is therefore limited and has been accounted for by the capillary rise 
only. The total transpiration was therefore derived only as a function of potential 
evaporation and the soil moisture (from precipitation) in the unsaturated zone using 
the relation by Rijtema and Aboukhaled (1975). Bashange (2013) using the original 
STREAM model found that simulated E + T for irrigated croplands were 
significantly lower compared to SEBAL E + T for dry seasons in the Kakiwe 
Catchment, Upper Pangani River Basin. The result was attributed to lower soil 
moisture levels at the unsaturated zone (not replenished in the model by blue water 
use). 
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5.2.3 Model configuration  

Model input 

Interception (I) 

When precipitation occurs over a landscape, not all of it infiltrates into the 
subsurface or becomes runoff. Part of it evaporates back to the atmosphere within the 
same day the rainfall takes place as interception. The interception consists of several 
components that include canopy interception, shallow soil interception or fast 
evaporation from temporary surface storage (Savenije, 2004). The interception is 
dependent on the land use and is modeled as a threshold value (D). The interception 
process typically has a daily time scale, although some work has been done to 
parameterize the interception threshold on a monthly timescale (De Groen and 
Savenije, 2006). 

In our case, we calculate the daily interception according to Savenije, (1997; 2004) 
outside of the model (see Eq. 5.1); 

( )ddd PDI ,min=          (5.1) 

where Id is the daily interception, Dd is the daily interception threshold and Pd is the 
observed precipitation on a rainy day. Since Id occurs on a daily time step during a 
precipitation (Pd) event, the interception at 8-day (Id(8)) is derived from the 
accumulated daily interception computed based on daily precipitation. The 
interception thresholds (Dd) vary per land use and have been adopted from the 
guidelines provided by Liu and de Smedt (2004) and Gerrits (2010). As such an 
interception threshold of 2.5 mm day-1 was used for croplands and natural vegetation 
and 4 mm day-1 for forest. 

 
Net Precipitation (Pe) 

The net precipitation (Pe(8)) is calculated by subtracting the accumulated interception 
(Id(8)) from the accumulated precipitation (Pd(8)) for the 8-day time scale. 

( ) ∑ −=
8

0
8 )( dde IPP  t∀        (5.2) 

Pe(8) is split through a separation coefficient (cr) into the two storages, unsaturated 
and saturated (groundwater) storages. cr is a calibration parameter that is dependent 
on the soil type and land use types. 

 
Evaporation depletion (E + T) 

The evaporation depletion (E + T) is derived by subtracting the interception 
component of the actual evapotranspiration (ETa) at each timestep. ETa from SEBAL 
includes Id(8) at 8-day time step. 

( )( )8da IETTE −=+         (5.3) 
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Unsaturated zone 

The maximum soil moisture storage (Su,max) was defined based on land use and soil 
types. Water available for evaporation depletion includes water infiltrated from 
precipitation (cr×Pe) and blue water use (Qb), consisting of water from capillary rise 
(C) and river abstraction (Qd). During the dry (nonrainy) periods, the spatial 
variation in soil moisture is controlled by vegetation through the uptake of blue water 
resources (Seyfried and Wilcox, 1995). The model assumes a minimum soil moisture 
level (Su,min) which varies for managed and natural landscapes. Soil moisture status at 
each time step (Su) is therefore a key variable controlling water and energy fluxes in 
soils (Eq. 5.4 & 5.5). 

( )min,uub SSifTEQ ≤→+=        (5.4) 

( )min,0 uub SSifQ >→=        (5.5) 

As a result the green water use is defined as the evaporation depletion less the blue 
water use (Eq. 5.6). 

bg QTEQ −+=          (5.6) 

The value for Su,min for each land use type is assumed to be realized during the dry 
months and is expressed as a fraction of Su,max (soil moisture depletion fraction). Su,min 
is derived in the SEBAL model for dry months as an empirical function of the 
evaporative fraction, Λ (the ratio of the actual to the crop evaporative demand when 
the atmospheric moisture conditions are in equilibrium with the soil moisture 
conditions) (Ahmed and Bastiaanssen, 2003), see Eq. (5.7).  

( ) 421.0/1

max,

min, −Λ== e
S
S

f
u

u
        (5.7) 

where f is the soil moisture depletion fraction expressed as a fraction of soil moisture, 
Su,min to the moisture value at full saturation, Su,max for the dry months. Su,min was 
realized in the month January, which is the driest period in the river basin. Values for 
f are given in Fig. 5.2 for selected land use types for the dry month of January 
averaged over 2008-2010.  

The soil moisture levels agree reasonably well with previous field studies that have 
shown similar ranges for natural land use types in sub humid and semi - arid areas 
(Fu et al., 2003; Korres et al., 2013). It is also noted that the SEBAL model has some 
level of uncertainty to soil moisture storage and water stress (Ruhoff et al., 2012). In 
recognizing this uncertainty, the modified SEBAL model also uses a water balance 
approach where lower Su,min levels can be tolerated with respect to the available Qb 

during the dry season for natural land use types. 
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Fig. 5.2: Soil moisture depletion fraction (defined using average values of the dry 
month of January of 2008, 2009 and 2010) in the Upper Pangani River Basin for 
selected land use types. 

Saturated zone 

Apart from the net precipitation component ((1-cr)×Pe), the saturated zone receives 
water from the unsaturated zone when the soil moisture Su reaches field capacity 
(Su,max). Excess overflow (Qu) is routed to the groundwater using a recession factor, Ku.  

The saturated zone consists of three linear outlets which are separated by Ss,min to 
represent the minimum storage level, Ss,q to represent quickflow threshold and Ss,max to 
represent rapid subsurface overflow. The flows are routed using Ko, Kq and Ks 
calibration coefficients respectively.  

When the groundwater storage (Ss) exceeds the Ss,max, then saturation overland flow 
(Qof) occurs: 

( ) ossof KSSQ /0,max max,−=        (5.8) 

where Ko is the overland flow recession constant. 

The second groundwater flow component is the quick groundwater flow (Qqf). It is 
assumed to be linearly dependent on the Ss and a quick flow threshold Ss,q determined 
through calibration (Eq. 5.9). 

( ) qqssqf KSSQ /0,max ,−=        (5.9) 

where Kq is the quick flow recession constant.  

The third component is the slow groundwater flow (Qsf) which is dependent on the Ss 
levels 

( ) sssf KSQ /=          (5.10) 

where Ks is the slow flow recession constant. 

Land Use Type Depletion 
fraction (f)  

Water Bodies 0.87

Sparse Vegetation 0.27

Bushlands 0.29

Rainfed, Maize  0.30

Irrigation, 
Sugarcane 

0.46

Irrigation; 
Bananas, coffee 

Mixed crops 

0.60

Dense Forest 0.72
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Ko, Kq, Ks equal to 1, 2 and 28 respectively and were determined from recession curve 
analysis (where 1 unit is equal to the 8-day time step). 

The maximum saturation storage (Ss,max) is a key variable that determines the 
dominant hydrological processes in the saturated zone. Three hydrological zones can 
be delineated from Ss,max, i.e. wetland, hill-slope and snow/ice zone. When Ss,max is low, 
the saturation excess overland flow is dominant. This is characteristic for wetland 
systems described in detail by Savenije (2010). It occurs in the low lying areas of the 
Pangani river basin where slopes are modest, or with shallow groundwater levels. 
During a rainfall event, there is no adequate storage of groundwater leading to 
saturation excess overland flow. The wetland system is therefore dominated by Qof 
and as such the Ss,max is set very low or at zero (fully saturated areas) and cr at 1.  

As the elevation and slope increases, the groundwater depth as well as the Ss,max 
increase gradually. This is characteristic of the hill-slope system where storage excess 
subsurface flow is the dominant runoff mechanism. Topographic indicators can be 
used to identify and separate this zone from the wetland system (where Ss,max is near 
zero). Recently developed indices that can be used include the elevation above the 
nearest open water (Ho) (Savenije, 2010), or the Height Above the Nearest Drainage 
(HAND) (Nobre et al., 2011; Cuartas et al., 2012). The first topographic indicator, Ho 
(elevation above the nearest open water) is used in this study. Ho is derived from the 
level where groundwater storage is low or near zero. This was estimated from 92 
groundwater observation levels located in the lower catchments of the river basin 
(Fig. 5.3). 

Fig. 5.3 shows the delineation of the dominant hydrological processes in the Upper 
Pangani River Basin, including the wetland and hillslope (includes snowmelts at the 
peak of the mountains).  

 
Fig. 5.3: (a) Wetland - Hillslope (Snowmelt) hydrological system (b) Shallow 
groundwater observation wells with mean surface water levels (0.3 - 40 m) in the 
lower catchments of the Upper Pangani River Basin for the period 2008-2010. 

a) b) 

 

 

GW L< 1 m 
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Ss,max is not completely available for groundwater storage due to the soil texture 
(porosity and soil compression). According to Gerrits (2005), the maximum 
groundwater storage, Ss,max [mm] for hillslope can be estimated using the natural log 
function of water storage depth, Hs (Eq. 5.11). 

ss HS ln25max, ×=          (5.11) 

where Hs [m] is the normalized DEM above Ho (where active groundwater storage is 
assumed zero). It is noteworthy that the wetland system can still exist along the 
drainage network of river system beyond Ho. This is possible since the Hs would still 
ensure a low groundwater storage (Ss,max) which makes the wetland system the 
dominant hydrological process. As observed in Fig. 5.3, the middle catchment forms 
the transition from the wetlands to the hillslope. It is noted that the hydrological 
landscape, plateau (dominated by deep percolation and hortonian overland flow) 
described in detail by Savenije (2010) is not existent on the slopes of Kilimanjaro and 
Meru, the higher elevations are forested and is active in the rainfall - runoff process. 
It is therefore modeled as forested hillslope.   

The third zone delineated is the snowmelt. The amount of snow in the river basin is 
limited to the small portion of the mountain peaks of Mt. Kilimanjaro and Mt. Meru. 
The snowmelt occurs at elevation ranges of 4,070 m.a.s.l to 5,880 m.a.s.l and is 
derived from the land use map (Kiptala et al., 2013a). During rainfall seasons, the 
snow is formed and stored in the land surface. During the dry season, the snow melts 
gradually to the soil moisture and to the groundwater. This is unlike the temperate 
climate where a lot of snow cover is generated during the winter seasons which may 
result in heavy or excess overland discharge during the summer seasons. Furthermore, 
Mt. Kilimanjaro has lost most of its snow cover in the recent past due to climate 
variability/change, with significant snow visible only on the Kibo Peak (Misana et al., 
2012). According to Grossmann (2008) the snowmelt contribution to groundwater 
recharge is insignificant in the Kilimanjaro aquifer. Simple representation of snowmelt 
can therefore be made using the hillslope parameters where the precipitation is stored 
in the unsaturated zone (cr = 1 for snow) as excess unsaturated storage. The 
snowmelt is thereafter routed by Ku (unsaturated flow recession constant) to the 
groundwater over the season. This model conceptualization enables the hydrological 
model to maintain a limited number of parameters. 

Interaction between the two zones 

Capillary rise only occurs when groundwater storage is above a certain level, Sc,min. 
Sc,min can be a fixed or a variable threshold value of the groundwater storage (Ss). 
Winsemius et al. (2006) adopted a fixed value of 25 mm as the Sc,min for the Zambezi 
River basin. Since Ss,max (from Eq. 5.11) is a function of Hs, a fixed threshold is not 
possible in this study. Sc,min is made a function of groundwater storage Ss to provide a 
spatially variable threshold through calibration over the river basin. Capillary rise 
above this threshold is estimated on the basis of the balance between water use needs 
at the unsaturated zone and water availability in the saturated zone. Actual capillary 
rise is determined implicitly using the maximum capillary rise Cmax (calibration 
parameter for each land use type), evaporation depletion (E + T) and the available 
groundwater storage Ss. Below Sc,min, a minimal capillary rise Cmin is possible and is 
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assumed to be zero for this study (timescale of 8-day is assumed low for substantial 
Cmin to be realized). 

( )( ) ( )min,max ,,min cs SSifSTECC ≥→+=      (5.12) 

where the active groundwater storage for capillary rise, S =  Ss - Sc,min. 

However, since the capillary flow is low compared to water use for some land use 
types, supplementary blue water from river abstractions (Qd) is required in the 
system. The third blue water storage term Sb, is introduced to regulate blue water 
availability from capillary rise, C, and river abstractions, Qd. River abstractions 
include water demands from supplementary irrigation, wetlands and open water 
evaporation for lakes or rivers derived directly from the river systems. 

( ) ( )bbbd QSifCQQ ≤→−=        (5.13) 

( )bbd QSifQ >→= 0         (5.14) 

where Qb is the blue water required to fill the evaporation gap that cannot be 
supplied from the soil storage. For irrigated croplands, Qd is assumed to represent the 
net irrigation abstractions in the river basin. The assumption is based on the 8-day 
timestep that is considered sufficient for the return flows to get back to the river 
systems, i.e. the flow is at equilibrium. Qd is therefore modeled as net water use in the 
river system. 

Since river abstractions mainly occur in the middle to lower catchments and the 
accumulated flow would have a resultant net effect equivalent to the total simulated 
discharge, Qs at a downstream outlet point or gauge station (Eq. 5.15 and 5.16).  

sfqffos QQQQ ++=1         (5.15) 

dss QQQ −= 1          (5.16) 

5.2.4 Sensitivity and uncertainty analysis 

Since a number of assumptions were introduced to simulate the hydrological processes 
in the basin, a sensitivity analysis was performed to assess the influence of model 
input parameters to the variation of model performance. The parameter adjustments 
were done during the calibration process manually by trial and error. Some parameter 
values where manually altered within parameter ranges while others were calibrated 
freely. According to Lenhart et al. (2002), the parameter sensitivity can be achieved 
by varying one parameter at a time within the parameter range or using a fixed 
percentage change of the base value while holding the others fixed. Three parameter 
values; interception threshold (D), separation coefficient of net precipitation between 
the unsaturated and saturated zones (cr) and the quick flow components (qc) were 
varied within the parameter ranges. Three parameter values for maximum storage in 
the unsaturated zone (Su, max), maximum storage in the saturated zone (Ss, max) and 
maximum potential capillary rise (Cmax) that were calibrated freely were varied by a 
fixed change of the base value. The other three parameter values representing runoff 
timescales (Ko, Kq, Ks) were also varied by a fixed value from the estimates 
determined from the recession curve. 
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A sensitivity coefficient was computed to represent the change in the response 
variable that is caused by a unit change of an input variable, while holding the other 
parameters constant (Gu and Li, 2002). The sensitivity coefficient (SC) was 
normalized by reference values representing the range of each output and input 
variables to give the sensitivity index (SI) represented by Eq. (5.17). 
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where x0 and y0 are the base input parameter value and model output from the final 
model calibration respectively; xi and yi are the varied input parameter and the 
corresponding model output, respectively. SI makes it feasible to compare the results 
of different input parameters independent of the chosen variation range (Lenhart et 
al., 2002; Bastiaanssen et al., 2012). The SI can be positive or negative depending on 
the co-directional response of the model performance to the input parameter change. 
The absolute higher SI values indicate higher sensitivity. 

5.2.5 Model performance 

The modified STREAM model was calibrated and validated against measured daily 
discharge data from five gauging stations in the basin. One discharge gauge station, 
1dd55, had a lot of missing data. Nevertheless, the limited information from this 
station, most upstream and the only one in the upper Mt. Meru, was useful in the 
calibration process of the downstream gauge stations. Additional downstream outlet 
points (dummy) were included for water balance analysis (See Fig. 5.9). 

The daily discharge data were aggregated to 8-day time scale for the period 2008 - 
2010. Since the secondary data from remote sensing (ETa and f) were available for 
only 3 years, 1 year of data was used for calibration while the remainder of 2 years 
data used for the validation. An initial 1 year (46 simulations) was used as warm-up 
period to stabilize the model parameters using the mean input values. In total, the 
model was simulated for 184 time steps (4-year period). The following goodness to fit 
statistics were used to evaluate the model performance. The Nash-Sutcliffe model 
efficiency coefficient (Ens) (Nash and Sutcliffe, 1970), Mean Absolute Error (MAE) 
and the Relative Mean Square Error (RMSE) in Eq. (5.18), Eq. (5.19) and Eq. (5.20) 
respectively.  
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where Qs and Qo are simulated discharge and observed discharge, തܳ
o is the mean of 

the observed discharge and n is the discharge data sets (n = 46 calibration; n = 92 
validation).  
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Since the model priority objective is to simulate low flows, the Ens_ln was also 
evaluated using natural logarithm of the variables in Eq. (5.18). The Ens values range 
[−∞, 1], with 1 being the optimum (Ehret and Zehe, 2011). The range of MAE and 
RMSE is [0, ∞], with zero being the optimum (Murphy, 1995). The model is 
optimized using these parameters to achieve a balance between the correlation, the 
bias, and the relative variability in the simulated and observed discharge (Gupta et 
al., 2009). The model estimates for irrigation water use (Qb(I)), defined as Qb for all 
the irrigation land use classes, were also compared with the field data on net 
irrigation water use from the river basin agency, Pangani Basin Water Office.  

5.2.6 Scenario development 

In Pangani River Basin, blue water use is currently over-exploited (Kiptala et al., 
2013b). The implication for additional water allocation on stream flow to the 
nationally important hydropower stations needs to be known. This may also result in 
water savings or tradeoffs with other interventions or water uses. The crop yields for 
rainfed and supplementary irrigated lands are also low leading to low crop water 
productivity (Makurira et al., 2010). A few water management scenarios targeted on 
water savings and improved crop water productivity is explored using the modified 
STREAM model. They include i) Water saving through increased irrigation water 
efficiency, ii) increased crop productivity for rainfed lands, and iii) modifying the 
landscape for increased agricultural production. 

To meet the first objective, the non-beneficial component of evaporation (soil 
evaporation) for irrigated landscapes is targeted for reduction. Soil evaporation (Es) 
can account to up to 40% of evaporation depletion (E+T) in irrigated landscapes 
(Bastiaanssen et al., 2012; Burt et al., 2001). In Pangani River Basin, located in the 
tropical climate, the irrigation system used by smallholder farmers that conveys water 
using small earthen furrow canals may have high levels of Es. It is noteworthy that 
interception (I) also includes shallow (fast) soil evaporation that is implicitly derived 
only from precipitation. For demonstrative purposes, a reduction of 5% in E + T for 
supplementary irrigated mixed crops is targeted (Scenario 1). The reduction 
represents about 15% of Es if we assume a conservative Es of 30% of E + T in the 
supplementary irrigation systems. There are several methods for reducing Es. They 
may include the lining of the main canals or using more efficient micro-irrigation 
systems. Further reduction can also be achieved by either straw or mechanical 
mulching (Prathapar and Qureshi, 1999; Zhang et al., 2003). 

To meet the second objective, productive transpiration for rainfed maize (highland) is 
increased by 30% (Scenario 2a). According to Makurira et al. (2010), the crop water 
productivity for smallholder rainfed farms can be improved by using systems 
innovations (SIs). The study was done in Makanya catchments within the Pangani 
River Basin. The SIs used combined runoff harvesting with in-field trenches and soil 
bunds which resulted in an increase of transpiration of 47%. The SIs aimed also at 
preventing soil and nutrient loss. An increase in T would result in an increase in 
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biomass production and thus crop yields (Steduto et al., 2009). The rainfed maize in 
the highland areas was targeted due to the relative high precipitation during the 
rainy seasons. In-field trenches and soil bunds (Fanya juus) is normally associated 
with high infiltration levels and higher soil moisture retention (Kosgei et al., 2007; 
Makurira et al., 2010). An additional increase in Su,max of 30% is also investigated in 
addition to the increased transpiration for highland rainfed maize and coffee 
(Scenario 2b).  

For the third objective, the area for irrigated sugarcane is doubled to its potential 
(Scenario 3). Currently, TPC irrigation scheme covers an area of 8,000 ha, for which 
7,400 ha is under sugarcane cultivation with the reminder providing the irrigation 
services. The potential irrigation area is estimated at 16,000 ha constrained by 
limited water resources. The expansion of the irrigation system is of great interest in 
the basin due to the high sugar demand and increasing potential for bio-fuels.  

5.3 RESULTS AND DISCUSSION 

5.3.1 Calibration and validation results 

Figs. 5.4 & 5.5 show the comparison of the observed and simulated hydrographs and 
the average precipitation for five outlets (gauge stations) in the Upper Pangani River 
Basin. The figures provide a visual inspection of the goodness of fit of the data with 
an additional scatter plot for the most downstream outlet (1dd1). The model 
simulates the base flows very well both during the calibration and validation periods. 
The peak flows for the larger streams (1dd54, 1dd1) were better simulated than for 
the smaller streams (1dc8a, 1dc5b, 1dc11a). It is to be noted that the observed 
discharge data is also subject to uncertainty which is more pronounced for the smaller 
streams. The remotely sensed data, ETa and f also have a higher uncertainty during 
the rainy season (peak flow season). This is the period when most clouded satellite 
images exist and the cloud removal process is subject to uncertainty (Kiptala et al., 
2013b). 
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Fig. 5.4: (1 - 4) (a) Comparison of observed (Qo) and the simulated discharge (Qs) 
and precipitation at the outlet points for calibration period 2008 (8-day periods 1 - 
46) and validation 2009, 2010 (8-day periods 47 - 138) in the Upper Pangani River 
Basin; and (b) the corresponding scatter plots of Qo and Qs for four upstream 
gauge stations. 
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Fig. 5.5: (a) Comparison of observed (Qo) and simulated discharge (Qs) and 
precipitation for calibration period 2008 (8 day periods 1–46) and validation 2009, 
2010 (8 day periods 47–138) in the Upper Pangani River Basin; and (b) the 
corresponding  scatter plot of Qo and Qs for the most downstream gauge station. 

Table 5.1 shows the performance model results for the validation and calibration of 
the modified STREAM model in the Upper Pangani River Basin. The Nash-Sutcliffe 
Efficiency, Ens for the calibration period scored > 0.5 (except for 1dd11a, where Ens = 
0.46) which is indicative of good model performance. In the validation period, two 
outlet points had scores < 0.5 (1dd11a - 0.33 and 1dd54 - 0.42) which indicates a 
moderate performance. The Nash-Sutcliffe Efficiency for natural logarithm, Ens_ln, 
which emphasizes the base flow, resulted in better results with all outlet points 
scoring more than 0.6. There was a slight reduction in Ens_ln in outlet points 1dd54 
(calibration) and 1dd8a, 1d5b (validation) but overall the model performance on the 
low flows was good.  

Table 5.1: Model performance for the modified STREAM model for Upper Pangani 
River Basin.  

Station Calibration Validation 

 
Ens Ens_ln 

MAE 
 (m3 s-1)

RMSE
(m3 s-1)

Ens Ens_ln 
MAE  

(m3 s-1) 
RMSE
 (m3 s-1)

1dc8a 0.63 0.68 0.73 0.92 0.72 0.68 0.62 0.36 

1d5b 0.75 0.77 0.74 1.09 0.81 0.78 0.57 0.23 

1dd11a 0.46 0.64 0.84 1.14 0.33 0.69 0.94 0.88 

1dd54 0.70 0.60 2.31 8.06 0.42 0.61 1.99 5.84 

1dd1 0.84 0.90 2.08 9.34 0.83 0.90 1.74 4.78 

MAE ranged between 0.62 m3 s-1 and 2.08 m3 s-1 for the larger streams in the 
calibration period. A big difference is observed between the RMSE and MAE (up to 
four times) for the downstream stations 1dd54 and 1dd1 during the calibration 
period. The result is indicative of large (noisy) variations between the simulated and 
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observed discharges. Fig. 5.4 also shows that the large deviations arise during the 
rainy periods (Masika and Vuli seasons). This may be attributed to the uncertainties 
of the remote sensing data in the clouded periods (rainy days). Such uncertainties can 
be avoided by using passive microwave imagery (Bastiaanssen et al., 2012). 
Furthermore, the river gauging stations are poorly maintained in the river basin. The 
discharge rating curves are also not regularly updated despite the changes in the river 
regime. Model conceptualization assumptions such as irrigation water use and return 
flows may also not coincide in space and time with the actual processes in the river 
basin. Errors in boundary conditions on the representation of groundwater may also 
occur if they do not coincide with the river systems.  

5.3.2 Sensitivity analysis 

The sensitivity analysis of the input parameters is given in Table 5.2. The sensitivity 
index (SI) was analyzed using the RMSE and MAE model performance indicators for 
the entire simulation period using the discharge measurements at outlet point (1dd1). 
The base input values (x0) were the final calibrated values that were varied by a fixed 
or percentage change (x1 or x2). Decrease in Su,max by 25% resulted in the highest SI of 
-1.97 for RMSE. However, a similar increase of 25% did not have any significant 
change in model output. The sensitivity is mainly attributed to the overland flow 
that is influenced by the water storage in the unsaturated zone. Similar changes in 
Ss,max also resulted in moderately high sensitivity for both RMSE and MAE. This is 
mainly because the saturated zone controls all the runoff components. Separation 
coefficient cr that separates the net precipitation between unsaturated and saturated 
zones and the quick flow coefficient, qc had high sensitivity. The values used cr = 0.75 
and qc = 0.75 (aggregated averages) for various land use types were generally derived 
from previous modelling experiences and where based on the soil type and land use.  

The soil moisture depletion fractions (f) were derived from the SEBAL model for 
various land use types. An aggregated average f value of 0.33 was adopted from the 
mean values for the land use types that ranged between 0.2 for natural land use types 
to over 0.6 for irrigated agriculture (also see Fig. 5.2). These parameters resulted in 
minimum sensitivity since the ranges used (±25% of the base values) where 
reasonable within the derived estimates from remote sensing. The runoff timescales 
parameters Ko and Kq also had low sensitivity because the flow times were short and 
within the estimates derived from the recession curves. The timescale Ks for slow 
groundwater flow that has a higher flow times had a moderate sensitivity. A lower 
timescale for Ko of 1 time step (8-days) may introduce some uncertainty if the model 
was used to simulate flood events that are critical at shorter timescales of 1 - 2 days. 
However, for hydrological processes that characterize agricultural water use such as 
irrigation scheduling or dry river flows, the uncertainty is minimal. 

The maximum capillary rise (Cmax) was calibrated through a water balance process to 
maintain the evaporation depletion (E + T). An aggregated average value of 2 mm 
day-1 was achieved and ranged between 1.1 mm day-1 for woodland landscape in semi-
arid areas to a maximum of 2.8 mm day-1 in the natural dense forest in humid 
climate. The calibrated values were within the ranges for natural vegetation reported 
in literature (Shah et al., 2011). In natural and rainfed systems, only Cmax was 
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calibrated to maintain the evaporative capacity of the unsaturated zone. The actual 
capillary rise (C) would not change with an increase in Cmax. However, a decrease in 
Cmax would constrain C, thus resulting in lower soil moisture conditions in the 
unsaturated zone. For irrigated land use types, the evaporative capacity (E + T) is 
maintained by both C and irrigation (Qd). The changes in C due to high or lower Cmax 
threshold will correspond to a similar change in Qd. Cmax was therefore a less 
influential parameter with low sensitivity in natural vegetation. Interception 
threshold, D showed also low sensitivity to changes within the parameter range. D 
was computed on a daily basis using the interception threshold for various landuse 
types derived from literature. However, the actual interception is more dependent on 
the daily variability of rainfall than the total interception threshold. Similar findings 
were observed by De Groen and Savenije (2006). While the interception threshold is 
not an influential parameter, actual interception (I) is still important water balance 
component as the water for the other processes is dependent on the net precipitation 
after interception (Makurira et al., 2010).  

Table 5.2: Sensitivity of model performance due to change in model input 
parameters. 

Parameter 

Input Values  Resulted RMSE (m3 s-1) Resulted MAE (m3 s-1)

x1 x0 x2 
 

y1 y0 y2

SI 
(x1)

SI 
(x2) y1 y0 y2 

SI 
(x1)

SI 
(x2)

D [mm/day] 0 2.5 4 
 

8.8 6.9 7.1 -0.12 0.02
 

2.0 1.8 1.8 -0.12 0.01

Su, Max [mm] 262 350 438 
 

12.4 6.9 6.9 -1.97 0.04
 

2.1 1.8 1.8 -0.47 0.19

Ss, Max [mm] 150 200 250 
 

9.3 6.9 8.0 -1.00 0.48
 

2.2 1.8 2.2 -0.64 0.66

cr [-] 0 0.75 1.0 
 

202.5 6.9 16.6 -0.93 1.25
 

9.6 1.8 2.9 -0.69 0.71

qc [-] 0 0.75 1.0 
 

39.7 6.9 7.7 -0.70 0.20
 

5.4 1.8 1.9 -0.50 0.07

Cmax [mm/day] 1.5 2.0 2.5 
 

7.2 6.9 7.1 -0.14 0.08
 

2.0 1.8 1.8 -0.34 0.00

f [-] 0.25 0.33 0.41 
 

6.9 6.9 7.1 0.00 0.07
 

1.8 1.8 1.8 0.00 0.10

Ko [8-day] - 1 2 
 

- 6.9 6.9 - 0.00
 

- 1.8 1.8 - 0.02

Kq [8-day] 1 2 3 
 

7.0 6.9 7.0 0.00 0.02
 

1.8 1.8 1.9 -0.07 0.08

Ks [8-day] 20 28 35 
 

7.4 6.9 7.5 -0.19 0.27
 

2.2 1.8 2.0 -0.49 0.27

SI in italics denotes high sensitivity 

5.3.3 Model interpretation 

Interception and Evaporation depletion 

There is general consensus that actual interception (I) is a key component in 
hydrology and water management. I influence the net precipitation and therefore the 
amount of water available for evaporation (E+T). Evaporation depletion (E+T) 
influences the stream flow dynamics and is the manageable component of ETa in 
biomass production. Therefore, there is a need to distinguish E+T from the 
calculated I as a deficit of total ETa (SEBAL), Fig. 5.6. 



Managing Basin Interdependencies, Pangani 73 

The mean annual I ranged between 8 - 24% of the total evapotranspiration. The land 
use types in the upper catchments, e.g. forest, rainfed coffee and bananas, had higher 
I. Irrigated sugarcane and natural shrublands located in the lower catchments had 
lower I. The variation is mainly influenced by the maximum threshold (D) and the 
rainfall (intensity and frequency) which are relatively higher for land use types in the 
upper catchments. The forest interception average estimate of 24% of the total 
evapotranspiration (or 22% of the total rainfall) is comparable with field 
measurements from previous studies that found forest canopy interception of about 
25% of the total rainfall in a savannah ecosystem in Africa (Tsiko et al., 2012). 

Qb contributions, e.g. irrigation, also enhanced the evaporation depletion (E+T) 
component of ETa resulting in relatively lower I for irrigated croplands. Any 
intervention to change I would influence antecedent soil moisture conditions especially 
during small rainfall events (Zhang and Savenije, 2005). This may influence the 
productivity of E+T and/or the stream flow generation in the river basin. However, 
more research is required to estimate explicitly the changes in I from certain field 
based interventions. The outcome of such studies maybe incorporated in the 
STREAM model. 

 
Fig. 5.6: Mean Interception, I, and evaporation depletion, E + T for different land 
use classes in Upper Pangani River basin for Period 2008 - 2010. 

Blue and green water use 

Figs. 5.7 and 5.8 shows the resultant blue water use (Qb) and the direct contribution 
of precipitation (Qg) to the ETa (actual evapotranspiration) for various land use 
types. Qb is closely related to the land use and the ETa as observed in Figs. 3.5 & 4.2. 
Water bodies (lakes and reservoir) and the wetlands have the highest Qb, contributed 
by the high open water evaporation. The average Qb for water bodies is approx. 56% 
of the ETa with a maximum of 74% (1,642 mm yr-1) observed at the lower end of the 
NyM reservoir. The Qb is high in the NyM reservoir because of the high potential 
evaporation attributed to hotter climatic conditions and lower precipitation levels in 
the lower catchments. Wetlands and swamps located in the lower catchments also 
resulted in high Qb of approximately 42% of ETa. In irrigated croplands, the Qb was 
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also moderately high with a range of between 20% for irrigated mixed crops and 
bananas in the upper catchments, and 44% for irrigated sugarcane in the lower 
catchment.  

Rainfed crops and natural vegetation including the forests had a lower Qb, mainly 
stemming from groundwater (and snow melts). Sparse vegetation, bushlands, 
grasslands, natural shrublands had Qb contributions of less than 1% of total ETa, 
while rainfed maize (middle catchments) and rainfed coffee (upper catchments) had 
Qb contributions of 2% and 7% of ETa respectively. Dense forest and Afro-Alpine 
forest had slightly higher Qb contributions (ranging between 7 - 9 %) attributed 
mainly to the availability of groundwater from snow melts in the upper mountains.  

Notable higher Qb was experienced in the dry year of 2009 (as shown by the error 
bars in Fig. 5.8). This is attributed to higher potential evaporation from relatively 
drier weather conditions. The lower precipitation during this period also resulted in 
increased groundwater use for the afro-alpine and dense forest land uses in the upper 
catchments. For instance the Qb contribution to ETa for dense forest increased from 
5% in 2008 (a relatively wet year) to 10% in 2009. The enhanced Qb for the irrigated 
croplands during 2009 is also attributable to the higher potential evaporation and 
limited precipitation that increased the irrigation water requirement. This is 
illustrated by irrigated sugarcane where Qb increased from 35% in 2008 to 55% in 
2009. Qb for supplementary irrigation also increased from 14% to 29% during the dry 
year. The Qb for year 2010 was in general average for all land use types which is 
indicative of the average weather conditions that prevailed during the year. 
 

 
Fig. 5.7: Spatial Variability of blue water use (Qb) averaged over 2008 - 2010 in the 
Upper Pangani River Basin. 
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Fig. 5.8: ETa and the corresponding Qg and Qb water use for selected land use types 
averaged per year over 2008 - 2010 in the Upper Pangani River Basin (Error bar 
indicates the upper and lower bounds for mean Qb for dry year 2009 and wet year 
2008 respectively). 

Irrigation water use 

This section presents the model results for supplementary irrigation water use (Qb(I)) 
as estimated at various outlet points (gauging stations) in the river basin. The annual 
irrigation abstractions, predominant during dry seasons, were accumulated and the 
average mean for the period 2008-2010 is presented in Fig. 5.9. Six gauge stations and 
three additional points (accumulation points for Kikuletwa, Ruvu and Lake Jipe) 
were also considered. The annual net irrigation (in million cubic meters) was 
converted to m3 s-1 to allow easier comparison with the discharge data in section 5.3.1. 

The Qb(I) ranges from 0.06 m3 s-1 on the smaller streams to a total of 3.4 m3 s-1 and 4.2 
m3 s-1 in the outlets of the Ruvu and Kikuletwa river systems respectively. A 
significant irrigation abstraction of 1.5 m3 s-1 was observed by the TPC sugarcane 
irrigation system, the largest single irrigation scheme in the river basin. The total 
Qb(I) upstream of NyM reservoir was estimated at 7.6 m3 s-1, which represents 
approximately 50% of the low flows in the Upper Pangani River Basin. 

Open canal irrigation is the commonly used irrigation technique in the Upper 
Pangani River Basin. There are an estimated 2,000 small-scale traditional furrow 
systems, some 200 - 300 years old (Komakech et al., 2012). According to records at 
the Pangani Basin Water Office, approximately 1,200 of these abstractions have 
formal water rights. PWBO estimates that the total gross irrigation abstraction is 
approximately 40 m3 s-1. The irrigation efficiencies of the irrigation systems range 
between 12 - 15% (Zonal Irrigation office, Moshi). Here, we adopted higher irrigation 
efficiency limit of 15% to compensate for any uncertainties that may arise from the 
higher irrigation efficiencies in the larger irrigation schemes. The field estimates 
provides net irrigation consumptions of approximately 6 m3 s-1 (using 15% efficiency) 
and about 79% of the Qb(I) model estimates (19% efficiency). The water leaks in the 
traditional furrow canals flows back to the river system. The capacity and ability of 
the river basin authority to monitor actual water abstraction is limited. However, 
considering these uncertainties, the modeled net irrigation abstraction was reasonably 
close to field net irrigation estimates for the Upper Pangani Basin.  
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Fig. 5.9: Total net irrigation water use (Qb(I)) estimated upstream of the gauge 
stations using modified STREAM model in the Upper Pangani River Basin 
(averaged over 2008-2010). 

Open water evaporation 

The blue water use by the water bodies (Qb(w)) upstream of NyM reservoir was also 
estimated using the modified STREAM model. Qb(w) is the net open water 
evaporation from blue water which would otherwise flow into the NyM reservoir. The 
water bodies considered include wetlands (98 km2), Lake Jipe (25 km2) and Lake 
Chala (4 km2). The total mean Qb(w) were estimated to be 53.6×106 m3 yr-1 (1.7 m3 s-1) 
and 22.1×106 m3 yr-1 (0.7 m3 s-1) in the Ruvu and Kikuletwa river systems, 
respectively. The total Qb(w) (12% of low flows) may also provide an insight into 
ecosystem services or benefits provided by the natural water bodies compared with 
the alternative uses, such as irrigation or hydropower in the downstream part of the 
river basin.   

5.3.4 Future water management scenario using modified STREAM model 

The previous sections illustrate how the modified STREAM model provides spatial 
information on the water use (green and blue) under current situation. The 
information is useful especially in monitoring unregulated irrigation water use. The 
model also provided useful information on the implication of future water use 
management scenarios in the river basin. Table 5.3 shows the real impact of the 
interventions on the water resources under the scenarios defined in section 5.2.6. The 
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changes in surface runoff were evaluated from the outlet points (1dc & 1dd) upstream 
of NyM reservoir, Upper Pangani River Basin (Fig. 5.9).  

Table 5.3: Impact of three water management scenarios on the surface runoff. 

Scenario Action Impact on outflow (Mm3 yr-1) 

 Total Base 
flow 

Overland 
flow

1 Reduce  Es 

Reduce Es for supplementary 
irrigation (mixed crops) by 15%  
or approximately 5% of 
transpiration 

37.8 34.5 3.2 

 
2
  

(a) Increase T Increase T by 30% for rainfed 
maize in the highlands areas -84.2 -77.6 -6.6 

  (b)  plus 30% increase in Su,max -87.0 -76.9 -10.1 

3 Modify 
area 

Double sugarcane irrigated area 
(additional 7,400ha) -53.9 -53.3 -0.6 

If soil evaporation is reduced in irrigation systems (Scenario 1), real water saving of 
37.8×106 m3 yr-1 can be achieved. The additional water saved (4% of total river flow), 
mostly groundwater flow can be utilized in the expansion of the irrigated sugarcane 
(scenario 3). Scenario 1, alternatively, could also release additional base flow that 
may be required for other water uses that include environmental and/or downstream 
hydropower demands. Financing of the required interventions can also form a basis 
for basin-wide trade-off negotiations between downstream and upstream water users.  
Scenario 2(a) investigates the implications of up scaling system innovations (SIs) for 
the rainfed maize cultivated in the highlands. In the area targeted, mixed farming of 
maize and coffee is practiced, and covers an area of 72,300 ha (Kiptala et al., 2013a). 
Half of this area is under maize cultivation. This intervention would result in 
additional water use of 84 ×106 m3 yr-1, which is about 10% of the total river flows. 
The model simulation shows that the water use will be derived from base flow. 
However, small-scale runoff harvesting devices can be used to store overland flow to 
supplement blue water needs during the dry seasons. Scenario 2(b) shows that an 
increase in both T and Su,max would result in slightly higher overland flow water use. 
This will not only increase water availability in the unsaturated zone for 
transpiration, but also reduce the soil and nutrient losses normally associated with 
higher overland flows.  

In scenario 3, the increase in the sugarcane irrigated area by 7,400 ha required an 
additional 53.9 Mm3 yr-1 in average of base flow. The volume required for each year: 
45.6 Mm3 yr-1 (2008), 68.6 Mm3 yr-1 (2009) and 47.4 Mm3 yr-1 (2010) varied with the 
climate conditions. This is about 4%, 11% and 6% of the total river flows in 2008, 
2009 and 2010 respectively. An additional conveyance and drainage losses may 
increase the net water use. It was also observed that the total additional blue water 
required in scenario 3 is consistent with the current irrigation water use (Qb) by the 
existing irrigation system. 
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5.4 CONCLUSIONS 
This chapter presents a novel method of developing a spatially distributed 
hydrological model using blue and green water use at pixel scale. The methodology 
allows for unprecedented insights into hydrological processes at smaller scales of land 
use classes. The hydrological model was developed for a heterogeneous, highly utilized 
and data scarce landscape with a sub-humid and arid tropical climate. The blue 
water use was quantified by employing a time series of remotely sensed 
evapotranspiration data as input in STREAM model. The model was also constrained 
by satellite-based soil moisture estimates that provided spatially (and temporally) 
realistic depletion levels during the dry season. To further enhance model parameter 
identification and calibration, three hydrological landscapes wetlands, hill-slope and 
snowmelt, were identified using topographic data and field observations. Unrealistic 
parameter estimates, found for example in natural vegetation either through 
overestimation of satellite-based data or model structure, were corrected in the model 
conceptualization through the water balance (at pixel scale). The modified STREAM 
model provided a considerably good representation of supplementary blue water use, 
which is dominant in the Upper Pangani River Basin.  

The model performed well on discharge, especially in the simulation of low flows. The 
Nash-Sutcliffe coefficient (Ens_ln) ranged between 0.6 to 0.9 for all outlet points in 
both calibration and validation periods. At the outlet, the model performance was 
best (Ens_ln = 0.90). The large difference between MAE and RMSE was indicative of 
large errors or noisy fluctuations (see Figs. 5.4 & 5.5) between actual and simulated 
discharges during the rainy seasons. This was mainly attributed to the uncertainties 
of the remote sensing data during clouded periods. The uncertainties may also have 
been exacerbated by possible errors in the hydro-meteorological data and model 
conceptualization. Model parameters that were freely calibrated for different land use 
such as maximum unsaturated and saturated storages (Su,max, Ss,max), separation 
coefficient (cr) and quick flow coefficient (qc) resulted in high sensitivity. The model 
calibration of these parameters can be improved in future by field measurement or by 
analytical relationships. 

The simulated net irrigation abstractions were estimated at 7.6 m3 s-1 which 
represents approximately 50% of low flows. Model results compared reasonably well 
with field estimates with less than 20% difference. In addition, the model yields 
spatially distributed data on net blue water use that provides insights into water use 
patterns for different landscapes under different climate conditions. Blue water use 
(Qb) contribution to ETa during a dry year (2009) increased from 5% to 10% for 
dense forest, 35% to 50% for the wetlands and irrigated sugarcane, and 14% to 28% 
for supplementary irrigation compared to the wet year (2008). Three water 
management scenarios on water saving and increased crop productivity were also 
explored using the STREAM model. Reduced soil evaporation of 15% on 
supplementary irrigation system would result in real blue water savings of 37.8×106 
m3 yr-1 (4% of total river flows). The water saving could alternatively be used to 
expand the existing sugarcane irrigation scheme (7,400 ha on sugarcane) that 
required 6% of total river flows if its area is doubled. Up-scaling of systems 
innovation for highland rainfed crops to achieve a 30% increase in productive T 
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resulted in additional blue water requirement of 84×106 m3 yr-1. The additional water 
requirement can be generated from runoff harvesting and storage to save on the 
already over-exploited blue water resources. This information may form a basis for 
socio-economic trade-off analysis on the basis of which various basin strategies and 
financial mechanisms can be formulated for efficient, equitable and sustainable water 
resources management at the river basin.  

The development of advanced methods of generating more accurate remotely sensed 
data should go hand in hand with ways to improve distributed hydrological models. 
Such methods may include the use of passive microwave imagery to generate cloud 
free ETa estimates (Bastiaanssen et al., 2012). Future modelling improvements should 
also aim at simulating the model for longer time series using long term rainfall and 
RS data (evapotranspiration and soil moisture). The data could be based on 
stochastic or probabilistic techniques (Salas et al., 2003). In so doing, data can be 
interpreted in a way that is useful for management and decision-making. 
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Chapter 6 

WATER PRODUCTIVITY4 

Scarcity of information on water productivity for different water, land and ecosystems 
in Africa hampers optimal allocation of the limited water resources. This chapter 
presents an innovative method to quantify the spatial variability of biomass 
production, crop yield, consumptive water use and economic water productivity in a 
data scarce landscape of the Pangani river basin. For the first time, gross return from 
carbon credits and other ecosystem services are considered in the concept of 
Economic Water Productivity. Carbon credits and water yields provide insights into 
the water value society attaches to a certain cultural and/or natural land use activity. 
The analysis relied on open-access multi-temporal Moderate - resolution Imaging 
Spectroradiometer (MODIS) satellite data of 250-m and 8-day resolutions. Instead of 
using default MODIS products, actual evapotranspiration and biomass production 
were computed with the Surface Energy Balance Algorithm for Land (SEBAL) 
utilizing Monteith's framework for ecological production. Grid biomass production (kg 
ha-1) was estimated and converted into crop yield and amount of carbon sequestered. 
Gross returns were estimated using conversion factors for crop yield, carbon 
assimilates and market prices.  

The Economic Water Productivity for 15 land use types, including natural land 
covers providing ecosystems services, were thus computed. In agriculture, irrigated 
sugarcane and rice achieved the highest water productivities in both biophysical and 
economic values - well within the ranges reported in the literature. Rainfed and 
supplementary irrigated banana and maize productivities were significantly lower 
than potential (maximum) values, reflecting a wide spatial variability. As expected, in 
natural land cover, dense forests and wetlands showed the highest biomass 
productivities. Spatially explicit information of water productivity using both 
biophysical and economic indicators has the potential to provide a coherent and 
holistic outlook of the socio-environmental and economic values of consumptive water 
use in river basins, can identify areas where these values can be improved, and when 
coupled to a hydrological model, may be a basis for trade off analysis.  

                                     
4 This chapter is based on: Kiptala, J.K., Mohamed, Y.A., Mul, M.L., Bastiaanssen, W.G.M., 
Van der Zaag, P., 2016a. Mapping Mapping ecological production and gross returns from wa-
ter consumed in agricultural and natural landscapes. A case study of the Pangani river basin, 
Tanzania. Submitted to Water Research and Economics. 
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6.1 INTRODUCTION 
The competition over water resources is escalating in many river basins worldwide. 
Population growth and increasing food demands to meet not only local but also 
global needs, imposes high pressures on the world’s fresh water resources. More water 
is required to provide for the increasing energy demands from hydropower and 
biofuels (e.g. De Fraiture et al., 2008). Competition over water is not limited to the 
agricultural, domestic and industrial sectors but also includes the natural 
environment. Ecosystem services provide essential functions that can be grouped in 
provisioning, regulating, as well as habitat and cultural services (e.g. Millennium 
Ecosystem Assessment, 2005; De Groot et al., 2012). While environmental water uses 
are fundamental for sustainable economic and social development in river basins, it is 
becoming clear that the natural environment consumes large amounts of the water 
resources, and that measures are required to safeguard natural capital (Rockström et 
al., 1999; Wackernagel et al., 1999; Monfreda et al., 2004).  

The main water flux in a river basin is evapotranspiration, with a large part being 
consumed by the natural landscape. For example, in the Awash basin, Ethiopia, 49% 
of all evapotranspiration occurs in mosaic forested shrubland/grassland and closed to 
open shrubland (Karimi et al., 2015). An analyses on the water consumption of 
different land use classes for the Nile basin showed that savannah is the largest water 
consumer 38%, followed by pastures (9%), wetlands (7%) and rivers and lakes (7%) of 
the total evapotranspiration (Bastiaanssen et al., 2014). The total evaporative use of 
the Nile is thus for 61% explained by environmental systems. Hence, the natural 
environment consumes large portions of rainfall (i.e. green water), and water from 
inundations and shallow groundwater tables (i.e. blue water). It is therefore 
legitimate, if not imperative, to include the economic value of natural ecosystems in 
the economic water productivity of river basins. So far, most authors only considered 
agricultural goods when employing the concept of Economic Water Productivity (e.g. 
Barker et al., 2003; Rodriguez-Ferrero, 2003; Ali et al., 2007; Hellegers et al., 2009). 
Valuing water consumption in a river basin should go beyond marketable crops, and 
encapsulate financial rewards for the sequestration of atmospheric carbon, heat and 
other forms of ecosystem services. Payment for Ecosystem Services (PES) is an 
emerging topic that is gradually implemented by policy makers in several basins, both 
in developed and developing countries. Some PES programs involve contracts between 
consumers of ecosystem services and the suppliers of these services. However, the 
majority of the PES programs are funded by governments and involve intermediaries, 
such as non-government organisations (FAO, 2011).  

Natural environments such as forests and wetlands provide a wealth of ecosystems 
goods and services in terms of delayed peak runoff due to retention of excess rainfall, 
sufficient catchment water yield that ensures base flow in the dry season, sustaining 
rainfall by means of atmospheric moisture recycling, reduced erosion and improved 
water quality, from which downstream societies benefit. Natural ecosystems good and 
services also provide a buffer to local communities during periods of droughts in semi-
arid African landscapes (Enfors and Gordon, 2008). Degradation of such 
environments reduces such benefits significantly. Similarly, increased withdrawals in 
upper catchments directly affect downstream ecosystems, such as wetlands, riparian 
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vegetation and delta and estuarine ecosystems. Because of undesirable upstream 
developments, most perennial tributaries in our study area, i.e. the Pangani River 
Basin in Tanzania, have actually become seasonal in the last few decades (IUCN, 
2009). 

Costanza et al. (2014) estimates the global value of ecosystem services in 2011 has 
US$ 125 trillion a year, with a loss of up-to US$ 20 trillion per year from 1997 due to 
land use change. The study highlighted the magnitude of the ecosystem services and 
the urgent need for policies that promotes environmental conservation. In the United 
States, farmers are paid an amount of US$ 1.8 billion per year to conserve soil and 
water on 1.4 million hectare of "environmentally friendly" land, i.e. 1,285 US$ ha-1 yr-1 
(Stubbs, 2014). Similarly, the Chinese government has a program to not clear forests, 
and compensates an amount of US$ 50 billion annually to local farming communities 
(Saah and Troy, 2015).  

It is clear that optimal water use is indispensable in river basins that are closing with 
prevailing competition over water resources (Keller et al., 1998). Ecological and 
hydrological integrity is central to sustainable water resource use. Crop water 
productivity expresses the returns per unit of water consumed in river basins, and 
this can either be expressed biophysically, economically or socially (Igbadun et al., 
2006; Zwart and Bastiaanssen, 2007; Yokwe, 2009;  Molden et al., 2010; Van der 
Zaag, 2010; Bossio et al., 2011; Fereres et al., 2014). Therefore, water productivity 
(kg m-3 and $ m-3) can be a key indicator to assess the effective use of water, although 
never as a sole purpose (Molden and Sakthivadivel, 1999).  

Increasing the water productivity of crops is needed to achieve the broad objectives of 
increasing food production, income and livelihoods while maintaining ecological 
integrity – more crop per drop (Molden et al., 2010). Farm practices to increase 
physical water productivity are well documented in the literature. These include 
water harvesting, supplementary irrigation, soil water conservation, deficit irrigation 
and right use of fertilizers and pesticides amongst other interventions. Water 
productivity gains in agriculture would secure water resources for other landscape 
uses and ecosystem services (Kijne et al., 2009). Molden et al. (2010) identifies four 
priority areas where substantial increases of water productivity can be achieved at 
relatively low environmental and social costs per unit of water consumed. These 
include (i) low water productivity in areas with high poverty, (ii) areas of physical 
water scarcity where competition for water is high, (iii) areas with little water 
resource development where high returns can be achieved with additional water use, 
and (iv) areas of water-driven ecosystem degradation.  

Environmental biomass production that has high environmental and social values 
often has little or no market price (Costanza et al., 1997; Hermans et al., 2006; Enfors 
and Gordon, 2007; Batjes, 2012; De Groot et al., 2012). The situation is poised to 
change due to the emerging market of carbon credits. The Kyoto Protocol allows the 
emission of carbon by industries into the atmosphere to be offset by sequestration in 
forests and other forms of permanent green landscapes (Sedjo, 2001). Carbon trading 
appeared as a potential business in the early 21st century, which more recently was 
hampered by the economic crisis since 2008 and fewer industrial activities resulting in 
a dramatic drop in carbon prices. Many economists, however, maintain that putting a 
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price on carbon and allowing for carbon trading is a crucial element of the global 
climate policy (Pizer, 2002; Stern, 2007).  

There is, however, a systematic lack of data on the water productivity of natural 
vegetation. Moreover, natural vegetation is highly heterogeneous with large spatial 
coverage. A Measurement-Reporting-Planning-Monitoring (MRPM) system is 
required to quantifying such water productivities. This chapter demonstrates that 
estimates based on remote sensing can achieve this. Much progress has been made 
recently using remotely sensed data in spatial water productivity analysis (Zwart and 
Bastiaanssen, 2007). In few cases these have been complemented by modelling 
approaches to estimate water productivity, Van Dam et al. (2006) combined a soil-
physical simulation model with SEBAL and Mainuddin and Kirby (2009) used FAO’s 
CROPWAT (Allen et al., 1998). At a global scale, water productivity models have 
been developed, WATPRO is a model developed for wheat water productivity (Zwart 
et al., 2010) and GEPIC (GIS – based Environmental Policy Integrated Climate 
model) is a agro-ecosystem model to assess global water productivity (Lui et al., 
2009). Finally, remote sensing data on water productivity has been complemented by 
using crop yield statistics (McVicar et al., 2002). More recently, Yan and Wu (2014) 
and Zhang et al. (2015) presented the spatial-temporal crop water productivity for 
winter wheat in China using remotely sensed estimates of ET. Only one study 
reported on the economic water productivity using a combination of remote sensing 
and economic analysis for two main market crops, bananas and sugarcane (Hellegers 
et al., 2009). So far few studies included valuation and none so far have included 
natural land use types or non-market based crops. 

Therefore, the objective of this chapter is to present a basin-wide analysis of the bio-
physical (biomass and yield) and economic water productivity of both agricultural 
and natural land uses in a river basin. The methodology integrates actual field data 
and auxiliary crop information from the literature with remotely sensed data. The 
water productivity analysis is applied to a heterogeneous African landscape of the 
Pangani river basin in East Africa. The uncertainty of biomass production was also 
assessed. The explicit water productivity maps are presented using both non-market 
(biophysical) and market (economic) methods. This information can inform strategies 
for increasing the economic water productivity of certain land uses without impacting 
significantly on the environmental and social benefits. This approach will broaden the 
scope of interventions to improve the water productivity in agriculture while 
sustaining the ecosystem services and green growth in natural land systems.  

6.2 MATERIALS AND METHODS 

6.2.1 Actual evapotranspiration 

The actual evapotranspiration (ET) data into the water productivity analysis were 
available at 250-m and 8-day resolutions for the period 2008, 2009 and 2010 for the 
Upper Pangani River Basin. The ET data were computed in Chapter 4 based on the 
SEBAL algorithm (Bastiaanssen et al., 1998).  
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6.2.2 Biomass production 

Biomass production (B) can be estimated as the dry matter production accumulated 
during the growing season or a calendar period under consideration. B can be related 
to the absorbed photosynthetically active radiation (RAP) expressed in MJ m-2 and 
Light Use Efficiency (ε) of plants (g MJ-1) using the relation developed by Monteith 
(1972). 

10⋅⋅= εAPRB       (Kg ha-1)      (6.1) 

Plant leaves transmit and reflect solar radiation. Plant chlorophyll responds only to 
radiation in the 0.4 to 0.7 μm spectral regime, therefore only a fraction of the total 
broadband shortwave radiation (K) is available for photosynthesis (RP). For 24 hours 
average conditions, the RP/

↓
24K fraction is equal to 0.48 (Moran et al., 1995). Light 

interception occurs only in the case of green leaves filled with chlorophyll. RAP can 
therefore be computed using Eq. (6.2). 

( )↓⋅= 2448.0 KfRAP   (MJ m-2)      (6.2) 

The fraction f can be estimated directly from the normalized difference vegetation 
index, (NDVI) (Hatfield et al., 1984; Asrar et al., 1992):  

NDVIf 257.1161.0 +−=       (6.3)  

ε for a particular crop is a constant if environmental conditions are non-limiting 
(Monteith, 1972). However, water availability and temperature can impact ε 
significantly.  SEBAL uses the equations first published by Field et al. (1995) to 
correct for the effect of heat variations (T1, T2) and soil moisture (W) onε: 

WTT 21
'εε =       (g MJ-1)      (6.4) 

where ε’ is the maximum light use efficiency under optimal environmental conditions 
(g MJ-1). T1 and T2 are heat variations based on the average temperature (Tav in oC) 
and the average temperature during time step with maximum leaf area index (Topt in 
oC). W is a water scalar that is defined by the ratio of actual over potential 
evapotranspiration to describe the land wetness conditions. Bastiaanssen and Ali 
(2003) adopted the evaporative fraction (Λ) to define the water scalar of land mass. 
The evaporative fraction (Λ) is computed using Eq. 4.2 in Chapter 4. 

For crops, the maximum light use efficiency ε' varies with different plant types (C3, 
C4 and CAM plants) if there is no water shortage (Monteith, 1972; Steduto, 1996). 
The ε' values have been provided for various crops including banana, maize, rice and 
sugarcane from various literature sources by Bastiaanssen and Ali (2003). Additional 
ε' values from more recent literatures that also includes natural landscapes have been 
presented in Table 6.1 and 6.2. For natural landscapes, tropical forests have a 
maximum light use efficiency range of between 1.5 - 2.6 g MJ-1 (Heinsch et al., 2003; 
Ibrom et al., 2008). Shrublands and woodlands, and wetlands (high vegetation grass) 
have lower values and range between 0.8 - 1.6 g MJ-1 (Mobbs et al., 1997; Moncrief et 
al., 1997). During the nineties, radiation, water and carbon fluxes were measured on 
typical savannah sites in Niger as part of HAPEX-SAHEL (Goutorbe et al., 1997). 
The non-linear impact of soil moisture and ε appeared to be an essential process. A 
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good synopsis has been provided by Prince (1991) for applications with remote 
sensing. 

6.2.3 Crop yield 

The conversion from total biomass development to actual yield such as cereal grains 
varies with the harvest index (Hi) and the water content of the crop during the 
harvest (Donald and Hamblin, 1976). 
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where eff
iH  is the effective harvest index corrected using the optimal moisture content 

of the product after harvest. 

Different crops have a specific harvest index range. The harvest index is also 
dependent on crop variety (Steduto et al, 2009; Yan and Wu, 2014). Management and 
agronomic practices such as the use of fertilizers can also increase crop yield as well 
as the harvest index to an optimal level of maximum productivity (Molden et al., 
2010). Hi values for various crops have been used in the calibration process and are 
presented in Table 6.2. 

6.2.4 Carbon sequestration 

The accumulation of biomass is a result of Net Primary Production (NPP). The 
carbon assimilates are distributed across the various plant organs, including roots, 
shoots, tubers, stems, branches, leaves, flowers and grains. This partitioning is plant 
specific and the factors are empirically known. The ratio of above and below ground 
biomass production for natural landscapes has been measured for several biome 
types. The total biomass will reach a maximum value after the equilibrium between 
photosynthesis and natural decay due to seasons and age of the vegetation. Tropical 
rainforests with 40 m tall trees and ages of more than 150 years can reach up to 500 
to 1,000 ton above ground biomass per hectare (Saatchi et al., 2011). Not unlikely, a 
significant amount of biomass is present in the soil. Ponce-Hernandez et al. (2004) 
estimated below ground biomass to be 0.25 – 0.30 of the above ground biomass using 
plant growth simulation models. Global maps of above ground biomass for the 
Pangani basin suggest values in the order of 15 to 40 ton ha-1, depending on the type 
of ecosystem. 

Litter and woody debris will be formed due to senescence and the age of vegetation. 
The decay of biomass will return carbon as carbon dioxide back into the atmosphere 
and partially into soil organic carbon. The typical carbon pools considered are (i) 
harvested wood, (ii) litter, (iii) dead wood and (iv) soil organic matter. This applies 
to all types of vegetation. The sequestration of carbon relates to various time scales: 
while litter and soil organic matter are generally conceived as short term carbon 
storage, harvested wood will have much longer time scales. 
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Carbon sequestration can be approximated as: 

∑= dayBC ξχ         (6.6) 

where ξ [-] relates carbon pools to accumulate above ground biomass production and 
χ [-] relates total biomass production to above ground biomass production. The 
carbon pool does not take into account short term carbon storage such as plant 
leaves, litter that decay and may not change much over the years. The ξ χ factor is 
essentially the effective harvest index from biomass production for carbon 
sequestration.  

6.2.5 Economic Water Productivity 

The biophysical water productivity, WPB/ET (kg m-3) is derived from plant biomass 
production and actual evapotranspiration (ET). The approach is widely adopted and 
has been used recently by Zwart et al. (2010) and Yan and Wu (2014). 

∑∑
=

=

=

=

=
ht

et

ht

et
dayETB ETBWP /       (Kg m-3)    (6.7) 

The crop (yield) water productivity, WPY/ET (kg m-3) is derived from WPB/ET using the 
effective harvest index factor, eff

iH , Eq. 6.8. 

   eff
iETBETY HWPWP ×= //      (6.8) 

The economic water productivity, WPEc/ET (US$ m-3) is derived from WPY/ET and the 
net price of the product (Pn), Eq. 6.9. 

( )iPWPWP nETYETEc ×=/      (6.9) 

where Pn(i) ( Pg(i) - Pc(i)) ($ kg-1) is net farm gate price for crop i determined by 
subtracting the total production costs, Pc(i) ($ kg-1) from the  gross farm gate price, 
Pg (i) ($ kg-1) (Hellegers et al., 2009). The total production costs include both variable 
and fixed costs incurred during crop development. This approach of subtracting cost 
of production from the gross production relies on the fact that the value to a 
producer is exhausted by the summation of the values of the inputs required to 
produce it (Young, 2005).  

The production cost was based on estimates provided by the agricultural extension 
office (Moshi, Pangani) for crops grown in the Lower Moshi irrigation scheme; rice, 
maize and vegetables. The farm gate prices for the banana were based on field data 
on the smallholder farms in the upper catchments of the river basin. The production 
costs included labour, fertilizers and pesticides costs, seedling, and harvesting and 
transportation expenses. Family labour and land is also included as variable costs 
using the prevailing labour rates and land rent costs. For commercial sugarcane, the 
economic water productivity was determined from the net benefits of sugar (sucrose) 
per unit of water consumption. The Pg is based on the wholesale price (2010) for 
white sugar of Tsh. 941 (US$ 0.67) per kg. The farm gate sugar price was slightly 
higher than the world average price (2010) for processed sugar (white) of US$ 0.60 
per kg (LMC International, 2010). Data on the production costs for TPC sugarcane 
plantation was not available. The cost of production was therefore estimated from 
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world averages. The production costs ranged between 45 - 70% and averaged 58% of 
the world sugar price for the 10-year period 2000 - 2009 (LMC International, 2010). 
The average value was used, disregarding the returns from bagasse (by-product) 
which constitutes 90% of the biomass. 

Table 6.1. Net farm gate prices for crops under irrigation for 2008 - 2010 in Upper 
Pangani River Basin. 

Crop Pg

Tsh kg-1
Pc

factor
Pn

Tsh kg-1
Pn  
US$1 kg-1 

Rice (rough rice) 500 0.66 170 0.12 
Maize 550 0.51 270 0.19 
Vegetables (onions) 400 0.38 250 0.18 
Bananas 200 0.15 170 0.12 
Sugar (processed white) 941 0.58 395 0.28 
1 Exchange rate of 1US$ to Tsh 1,409 (2010)  

For natural land cover the economic productivity may be inferred from the social and 
economic benefits of carbon sequestration. Here we assume that the value of 
ecosystem services is equal to the value of the net amount of additional carbon 
sequestered. This obviously a conservative assumption since there are other ecosystem 
services such as erosion control, nutrient recycling, waste treatment, provision of raw 
materials, habitat (genetic diversity) and cultural services that are provided by 
natural land cover (Costanza et al., 1997, 2014; De Groot et al., 2012). 

According to the Interagency Working Group on Social Cost of Carbon (2009), the 
benefits of carbon sequestration varies from $5 to $65 per ton of carbon estimated 
from the social cost of carbon emission. Coffee farmers in Mexico received an amount 
of US$ 13 per ton of carbon sequestered (AMBIO, 2010) while hydropower companies 
in Vietnam are being paid an amount of 20 Vietnamese Dong per Kilowatt hour 
(VNFF, 2014). These values are also consistent with the compensation market prices 
of between US$ 5 to 30 per ton CO2 equivalent - on emerging carbon offset markets 
(Batjes, 2012; Newell et al., 2012).  A conservative fixed price estimate of US$ 15 per 
ton of CO2 is used in this study.  

6.2.6 Additional datasets 

For the spatial analysis of the economic water productivity, the boundary condition 
that outlines various land use types is required. Additional information on irrigation 
water uses is also required to assess the economic water productivity of blue water 
use.   

Land use and land cover (LULC) types 

This study made use of the LULC classification for the Upper Pangani River Basin in 
Chapter 3 (Kiptala et al. 2013a). The LULC types were derived using phenological 
variability of vegetation (from MODIS) for the same period of analysis, 2008 to 2010. 
16 classes (including water bodies) were identified, of which smallholder maize 
(including supplementary irrigated) and shrublands are the two dominant classes, 
covering half of the area. The land use map is reproduced in Fig. 6.5a. 
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Irrigation water use 

The actual evapotranspiration (ET) comprises of evapotranspiration from 
precipitation (P) and irrigation water use (Qb). Qb is supplied either through river 
water abstraction and/or groundwater. Qb was estimated using the STREAM model 
(Chapter 5), a hydrological model developed specifically for the Upper Pangani Basin 
(Kiptala et al., 2014). The STREAM model utilized remotely sensed ET, soil 
moisture and P to simulate Qb at 250-m and 8-day resolution. During low flows, Qb 
consumed nearly 50% of the river flow in the river basin. Qb estimates were 
comparable to field estimates of net irrigation with less than 20% difference (Kiptala 
et al., 2014). 

6.2.7 Calibration and validation  

The biomass parameters NDVI, evaporative fraction (Λ) and the incoming solar 
radiation ( ↓

24K ) were derived from remote sensing. The other parameters T1 and T2 
(Eq. 6.4), were computed using field based Tav and Topt derived from the maximum 
LAI or NDVI in the plant growing season. Only two parameters were left for 
calibration: the maximum light use efficiency (ε') and the effective harvest index 
(Hi

eff).  

The ε' values were adjusted within the experimentally verified parameter ranges from 
the literature. The actual yield data were used to derive the field based harvest index 
that was compared with the permissible Hi

eff range for moisture content of the 
product during harvest (moi). The actual yield data were taken from field 
measurements and yield records from main stakeholders in the Pangani River Basin.  

Table 6.2 shows the experimentally verified ranges of ε' and Hi
eff for the four main 

crops grown in the Upper Pangani River Basin.  

Table 6.2. Crop biomass parameters ranges for calibration. 

Crop 
ε' 
(g MJ-1) 

Hi
eff  

(kg kg-1) 
moi

(kg kg-1) Sources 

Rice 1.8-2.9 0.35-0.50 0.10-0.15 
Casanova (1998), Boschetti et al. 
(2006), Boschetti et al. (2009) 

Sugarcane 3.0-4.0 1.82-2.72 0.63-0.75 

Varlet-Grancher et al. (1982), 
Bastiaanssen and Ali (2003), 
Waclawovsky et al. (2010) 

Banana 
(bunch) 3.0-3.5 0.80-1.20 0.80-0.85 Nyombi (2010), Turner et al. (2008)

Maize  2.7-3.7 0.30-0.47 0.10-0.15 Varlet-Grancher et al. (1982), Maas 
(1988), Wiegand et al. (1991)

Since there are no actual yield data for the natural land cover, the average values of 
ε' as reported in the literature were adopted. The effective harvest index was also 
adopted from the literature on the basis of carbon sequestration. Carbon quantities 
were estimated at 0.43 - 0.55 of the above-ground biomass weight (Brown et al., 1989; 
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Kilawe et al., 2001; Namayanga, 2002; Ponce-Hernandez et al., 2004). An average 
carbon conversion factor of 0.5 to annual accumulated dry biomass was therefore 
adopted for this study (Table 6.3). 

Table 6.3. Maximum light use efficiency and harvest index for natural land cover. 

Vegetation type  ε'
(g MJ-1)

Hi
eff

(kg kg-1) Sources 

Forest (tropical rain forest) 1.5 - 2.6 0.5 
Heinsch et al. (2003),
Ibrom et al. (2008) 

Shrublands and woodlands 0.8 - 1.3 0.5 
Mobbs et al. (1997), 
Molden et al. (2007) 

Wetlands (high vegetation grass) 0.8 - 1.6 - Li et al. (2012) 

6.2.8 Uncertainty analysis of biomass production 

Biomass production is related to vegetation growth and therefore has a temporal 
distribution due to seasonal variability. In remote sensing, the vegetation growth is 
accounted for by the phenological variability of NDVI over the cropping season or 
given time period (Kiptala et al., 2013a). Biomass production for a given land use 
type does not therefore follow a normal distribution. The nonparametric statistical 
inference is a technique to assess uncertainty for data that do not follow a normal 
distribution (Khan et al., 2006). The nonparametric bootstrapping technique was 
therefore used to estimate the confidence of mean biomass production. The pixel 
values of biomass were used as the sample population for the analysis. The 
bootstrapping draws random samples with replacement from the original population 
sample, each time calculating the mean or variance (Efron and Tibshirani, 1993). The 
process was repeated 1,000 times and a plot of the distribution of the sample means 
was made. The 95% confidence interval for the mean was determined by finding the 
2.5th and 97.5th percentiles on the constructed distribution. The statistical software 
Minitab Inc (2003) was used in the analysis. 

6.3 RESULTS AND DISCUSSIONS 

6.3.1 Biomass production 

Fig. 6.1a shows the spatial distribution of mean annual biomass production in the 
Upper Pangani River Basin based on calculations using Eq. (6.1) during a period of 
three years (2008-2010). The biomass growth covers 15 land use types (except water 
bodies) with the two main irrigation schemes, Lower Moshi (rice) and TPC 
(sugarcane) as shown in Fig. 6.1b and 6.1c respectively. The mean annual totals for 
the various LULC types are given in Fig 6.2.  
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Fig. 6.1. (a) Spatial variability of biomass growth in Upper Pangani River Basin; (b) 
Lower Moshi irrigation scheme; (c) TPC sugarcane irrigation scheme.  

 

 
Fig. 6.2. Mean annual biomass production in the Upper Pangani River Basin for 
different land use types for the years 2008 – 2010. 
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The key drivers of the spatial and temporal variability are the precipitation, the 
biophysical characteristics of different LULC types and the inter-seasonal/intra-
seasonal variation of the climate conditions during the period of analysis in the river 
basin. High biomass production is observed in the mountainous areas and in the main 
irrigation systems. The lower catchment areas that experience low rainfall have lower 
biomass growth. In the dry year of 2009, the biomass production was suppressed for 
most the LULC types in the lower catchment while enhanced in land cover types such 
as irrigated bananas and coffee, afro-alpine and dense forests and the wetlands that 
have sufficient water supply. 

Crop biomass production 

Table 6.4 shows the parameter values for light use efficiency and harvest indices from 
the calibration process for agricultural landscapes. The calibration process was based 
on actual field data for the four main crops in the Pangani Basin; rice, sugarcane, 
banana and maize. 

Table 6.4. Calibrated crop biomass parameters from calibration against secondary 
data and their ranges reported in the literature. 

Crop   ε' (g MJ-1) Hi (kg kg-1) Hi
eff (kg kg-1) moi (kg kg-1) 

Rice 2.9 0.39 0.45 0.14 
Sugarcane 3.5 0.69 2.20 0.68 
Maize  2.7 0.30 0.35 0.14 
Banana (bunch) 3.0 0.15 0.83 0.82 
 
Rice 

For rice, the calibration for biomass production was based on field data in the Lower 
Moshi Irrigation scheme (Fig. 6.1b). The Lower Moshi irrigation scheme has a 
command area of 2,300 ha for which 1,100 ha is used for paddy (rice) cultivation and 
the remainder mainly for maize and vegetable crops. Two rice varieties are cultivated, 
i.e. aromatic SAROS (TXD 306) and the non-aromatic IR64. The rice is grown as a 
monoculture with two crops per year to coincide with the Masika and Vuli rainfall 
seasons. However, due to water shortage, the rice in the middle to lower parts of the 
irrigation scheme is grown only during the Masika season, in rotation with maize or 
vegetables in the Vuli season. The growing cycle for the rice from germination to 
maturity ranges between 4-5 months. The irrigation scheme is organized in irrigation 
blocks of between 30-50 ha (5-8 pixels) which are further subdivided into small 
individual plots of approximately 0.3ha (Fig. 6.1b). 

Rice yield sampling was done for rice grown in five upstream irrigation blocks where 
rice is grown in two seasons. The 1st season fell in the Vuli season (Dec 2008 to Apr 
2009) and the 2nd season in the Masika season (May 2009 to Sept 2009). Rice yields 
were sampled at field level as rough rice (includes hull) and expressed as yield at 14% 
optimum moisture content at the rice milling plant (Table 6.4). The rice milling plant 
removes the outer hull and the bran layers from the rough rice. The whole grain 
white rice is estimated to be 67% by weigh to rough rice from field measurements at 
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the Lower Moshi Rice Milling Plant. This is also consistent with the value of 65% 
mostly used in literature (Bouman et al., 2006).  

Boschelli et al. (2006) showed that the maximum light use efficiency for high variety 
rice (flooded) has an averaged value of 2.9 g MJ-1 from agronomic field experiments 
using different rice cultivars. Traditional rice varieties had lower values of up to 1.8 g 
MJ-1. Therefore, ε' = 2.9 g MJ-1 was adopted for the two high variety rice (TXD 306 
and IR64) in the Pangani Basin. The average value will be slightly lower than the 
maximum when the limiting factors are taken in to consideration (see Eq. 6.4). The 
measured average ε for irrigated rice in Ebro delta, Spain for paddy rice was found to 
be 2.25 g MJ-1 (Casanova et al., 1998).  

Table 6.5 shows the harvest indices from the field sampling data at Lower Moshi 
Irrigation scheme. The effective harvest index was calculated at 14% moisture content 
(moisture content requirement at rice milling plant).  

Table 6.5. Actual yield to biomass sampling data for rice in the Lower Moshi 
irrigation scheme. 

Irrigation 
block 

Yield (ton  ha-1 season-1) 
14% moi 

Total yield 
rough rice 

(ton ha-1 yr-1) 

Total B 
(ton ha-1yr-1) 

Hi
eff 

(rough rice) 
Hi

eff 
(white rice) 1st season 

2009 
2nd season 

2009 
R 1-2 6.2 10.8 17.0 27.1 0.62 0.42
R 3-4 7.2 12.0 19.2 23.4 0.82 0.55
M 5-2 7.4 9.9 17.3 22.3 0.78 0.52
M 3-1 7.4 12.0 19.4 31.5 0.62 0.41
M. Kati 7.0 8.5 15.5 28.8 0.54 0.36
Average 7.0 10.6 17.6 25.9 0.68 0.45

The actual yield to biomass growth provides an effective harvest index (white rice) of 
0.45 which is within the range of 0.35 - 0.50 provided in the literature (Table 6.2). 
However, the average harvest index of the two irrigation blocks (R 3-4 and M 5-2) 
where slightly above 0.50. This result may be attributable to higher yields generally 
associated with tropical rice cultivars (Bouman et al., 2007).  
Sugarcane 

In sugarcane production, the biomass calibration was based on actual yield data from 
the TPC sugarcane irrigation scheme (Fig. 6.1c). TPC sugarcane irrigation scheme 
covers an area of 8,480 ha of which 87% is under sugarcane plantation. The irrigation 
scheme is divided into 301 irrigations blocks of approx. 24 ha (4 pixels) using 
sprinkler (4,450 ha) or furrow (2,805 ha) irrigation. Drip irrigation was introduced in 
a few irrigation blocks (135 ha) as a trial. Sugarcane varieties N14, N19, N25 and 
N30 developed by the South Africa Sugar Research Institute (SASRI) are the 
dominant varieties cultivated. Other commercial varieties, including NCo 376, B52-
313 and EA 70-97, are grown in small areas but have been replaced over time by 
SASRI varieties. 

The cropping calendar for sugarcane ensures the harvesting of the cane during the 
relatively dry months from August to February. This also ensures that most of the 
crops are at development stage during the Masika high rainfall season. The sugarcane 
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is harvested after 12 months at moisture content of 68%. The actual sugarcane yield 
ranges between 94 - 110 ton ha-1, which is within the range for commercial sugarcane 
under irrigation (80 - 150 ton ha-1) (Waclaworsky et al., 2010; Basnayabe et al., 
2012).  

The biomass production was analysed using an average ε' value 3.5 g MJ-1 derived 
from the ranges (Table 6.2). The biomass growth resulted in an average yield factor 
of 2.20, which was also within the range reported in literature (Table 6.4). The sugar 
content of 11% adopted from literature (Waclaworsky et al., 2010) provides an 
effective harvest index of 0.24 for sucrose. The harvest index is comparable with the 
value of 0.22 for sugarcane in Incomati basin, South Africa (Bezuidenhout et al., 
2006; Hellegers et al., 2009). 

Table 6.6. Actual biomass to actual yield for sugarcane in the TPC irrigation scheme. 

Period B (ton ha-1 yr-1) Actual Yields
(ton ha-1 yr-1)

eff
iH  

(yield factor) Mean STDEV Mean STDEV 
2008 44.9 10.9 95.7 23.9 2.13
2009 44.1 10.2 93.9 26.6 2.13
2010 46.4 10.3 110.3 27.7 2.38
Average 45.2 9.7 99.9 27.1 2.20

The results generally represent biomass production for commercial sugarcane as 
reported in the literature. The results are subject to uncertainty of 5% from the 
standard error on the actual yield data. 
Maize 

Maize is the dominant crop grown in the Upper Pangani River Basin. Smallholder 
maize is grown in the middle and upper catchments intercropped with beans, bananas 
and coffee in an expansive area of 294,200 ha. Irrigated maize is also grown in the 
Lower Moshi irrigation scheme in rotation with rice in an area of 59,800 ha. The 
average yield (2008-2010) for irrigated maize in Lower Moshi computed as 4.5 tons 
ha-1 was slightly lower than the world average (2010) of 5.1 tons ha-1 (FAO, 2013); but 
much lower compared to potential yield under irrigation of over 10 tons ha-1 (Hsiao, 
2009; Jarmain et al., 2014). The average yields for rainfed maize were substantially 
lower and varied between 0 to 3 tons ha-1. Despite the low yields of maize, the crop 
residue is also popular for silage and forage. The maximum light use efficiency of 
maize range between 2.7 - 3.7 g MJ-1. The biomass production was analyzed using a 
lower margin ε' value of 2.7 g MJ-1 which resulted in an effective harvest index of 0.35 
(Table 6.4).  
Banana 

Banana (bunch) is an important staple and cash crop grown mainly by smallholder 
farmers in the upper catchments of the Pangani Basin. The crop covers 
approximately 72,300 ha, intercropped with coffee or maize. The crop species grown 
is the East Africa highland banana (Musa spp., AAA - EAHB) under supplementary 
irrigation. Theε' for the East Africa highland banana range between 3.0 to 3.5 g MJ-1 

(Nyombi, 2010; Turner et al., 2008). The average yield for banana is low at 15.5 tons 
ha-1 compared to the world average (2010) of 20 tons ha-1 (FAO, 2013). It is much 
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lower than the potential which is reported to be over 60 tons ha-1 (Nyombi, 2010). A 
lower margin ε' value of 3 g MJ-1 is used in the biomass production which provided a 
lower level effective harvest index of 0.83 from the ranges available from the literature 
(Table 6.2). 

Natural ecosystems 

For natural ecosystems, the maximum light use efficiency (ε') is adopted from the 
literature (Section 6.2.2), as there was no field data on actual yield available for 
calibration. The average values of ε' were used with the actual light use efficiency (ε) 
expected to be corrected by the spatial environmental factors that are highly variable 
due to the large topographical range in the river basin (Eq. 6.4). In the natural forest 
cover (dense forest and afro-alpine), an average ε' value of 2.0 g MJ-1 was used from 
the permissible ranges for tropical rain forest. Similarly, average ε' values of 1.0 and 
1.2 g MJ-1 where adopted for shrublands and woodlands, and the wetlands 
respectively (Table 6.3). Implications of such selection in final results are discussed in 
the following section. 

6.3.2 Uncertainty assessment for biomass production 

The uncertainty for biomass production has been assessed through the confidence 
interval (CI) of the mean for each land use type. The lower and the upper bound 
confidence levels were estimated at 95% confidence limits using the bootstrap non-
parametric technique (Efron and Tibshirani, 1993). The uncertainty has been greatly 
influenced by spatial coverage of the land use types within topographical or ecological 
zones. Urban and barelands had the highest uncertainty of 8% and 17%, respectively. 
The other land use types had lower uncertainties of less than 2% (Fig. 6.3 and Table 
6.8). These results show that mean values of biomass production are representative 
for the given land use classes. 
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Fig. 6.3: Frequency distribution of the estimated annual mean biomass from 
bootstrap at 95% confidence limits for selected land use types in the Upper Pangani 
River Basin for period 2008–2010. 

6.3.3 Water Yield 

The mean annual water yields (P-ET) for 16 LULC are presented in Table 6.7. The 
water yields were derived P and ET computations in Chapter 4, Table 4.3. 

The water supply is an important ecosystem service especially for forest ecosystem 
(Ford et al., 2011). The water yields and snow storage offers water regulation services 
to downstream catchment (Millennium Ecosystem Assessment, 2005; De Groot et al., 
2012).  From Table 6.7, the ice caps and afro-alpine forests generate significant water 
yields. The other natural ecosystems with large land mass: dense forest, bushlands 
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and sparse vegetation also contribute substantial amounts of water flows to the river 
basin (Table 6.7). The water yields provide essential water flows for irrigation, 
wetlands and swamps, the water bodies (lakes, reservoirs) and hydropower for the 
Pangani river system. 

Table 6.7. The water yields for various LULC types in the Upper Pangani River 
Basin for the period 2008 – 2010. 

Land use and land cover Area Water yield (P-ET) 
No.   km2 mm yr-1 106 m3 yr-1

1 Bareland/ice caps 100 1,553 155 
2 Sparse vegetation 445 128 57 
3 Bushlands 1,152 162 187 
4 Grasslands/few croplands 1,517 61 93 
5 Shrublands/thicket 3,509 29 102 
6 Rainfed maize 2,942 -4 -12 
7 Afro-alpine forest 257 871 224 
8 Irrigated mixed crops 598 -17 -10 
9 Rainfed coffee/irrig. banana 723 5 4 
10 Irrigated sugarcane 89 -463 -41 
11 Forest, irrig. croplands 556 -113 -63 
12 Irrigated bananas, coffee 607 119 72 
13 Dense forest 637 186 118 
14 Wetlands and swamps 98 -647 -63 
15 Urban, built up 8 202 2 
16 Water bodies 100 -1,325 -133 

Italics represent the LULC with the highest water contribution in the catchment  

6.3.4 Water Productivity 

Biomass and crop water productivity 

The water productivity in terms of above-ground biomass and actual 
evapotranspiration (WPB/ET) has been computed based on Eq. (6.7) (Table 6.8). The 
highest WPB/ET was realised in irrigated agriculture with sugarcane providing the 
highest WPB/ET of 4.4 kg m-3. Dense and afro-alpine forests also attained high values 

of 2.4 and 1.4 kg m-3 respectively due to high biomass production. Land cover types 
with low biomass growth such as barelands or the sparse vegetation had the lowest 
WPB/ET values (Table 6.8).  

The coefficient of variation (CV) of the mean (pixel) values of WPB/ET has been 
presented for each land use type. For natural land use types, a high level of CV 
(greater than 0.3) is related to the high level of heterogeneity of the land cover. For 
rainfed and irrigated croplands the CV is low to moderately high (0.1-0.3) compared 
to more homogeneous irrigation systems which have a CV of 0.05 (Zwart and 
Bastiaanssen, 2007). The biomass water productivity is converted into crop or yield 
productivity (WPY/ET) using their corresponding effective harvest indices.  
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Table 6.8. Average above ground biomass (B), actual evapotranspiration (ET) and 
water productivity (WPB/ET) in Upper Pangani River Basin for the period 2008 – 
2010. 

Land Use and Land Cover     Annual B (kg/ha) Annual ET (mm/yr) WP (B/ET)
No
.  Mean STDEV CI1 Mean STDEV CI1 Mean 

(kg/m3) CV2 

1 Bareland/ice caps 319 538 27 643 653 32 0.05 1.3
2 Sparse vegetation 1,189 477 11 586 172 4 0.20 0.6
3 Bushlands 1,999 1,017 15 669 312 5 0.30 0.4

4 Grasslands/few 
croplands 2,550 652 8 630 223 3 0.40 0.4 

5 Shrublands/thicket 4,100 1,209 10 756 85 1 0.54 0.3
6 Rainfed maize 7,789 1,870 17 789 221 2 0.99 0.3
7 Afro-alpine forest 19,803 5,529 171 1,429 309 9 1.39 0.2
8 Irrigated mixed crops 17,923 4,133 86 905 207 4 1.98 0.3
9 Rainfed coffee/maize 18,973 4,352 80 1,022 261 5 1.86 0.2
10 Irrigated sugarcane 45,175 9,651 501 1,035 212 11 4.36 0.2
11 Forest, croplands 30,612 5,250 109 1,228 250 5 2.49 0.2

12 Irrigated bananas, 
coffee 42,316 5,239 108 1,330 156 3 3.18 0.1 

13 Dense forest 36,065 4,819 94 1,517 144 3 2.38 0.1
14 Wetlands and swamps 20,039 4,415 219 1,291 267 13 1.55 0.2
15 Urban, built up 1,409 327 57 774 80 14 0.18 0.6
1CI - confidence interval of mean at 95% confidence limits 
2CV - coefficient of variation of the mean (pixel) values of water productivity 

For sugarcane, the estimated WPB/ET of 4.36 kg m-3 was within the range reported in 
literature (3.5-5.5 kg m-3) (Thompson, 1976; Olivier and Singels, 2003; Hellegers et 
al., 2009; Carr and Knox, 2011). The average WPY/ET of 9.6 kg m-3 sugarcane (1.1 kg 
m-3 sucrose) compares well with the crop water productivity data reported for 
irrigated sugarcane of between 4.0-11.1 kg m-3 in India and 7.4 kg m-3 in Thailand 
(Mainuddin and Kirby, 2009). The average yield for sucrose (1.1 kg m-3) is also 
consistent with the estimates of 1.1-1.3 kg m-3 in the Incomati Basin (Hellegers et al., 
2009). There was no significant difference between the water productivities of furrow 
and sprinkler irrigation systems. Drip irrigation systems produced lower yields 
(average of 92 tons ha-1) with a lower actual ET usage, thus resulting in a statistically 
similar WPY/ET (9.6 kg m-3) compared with the other irrigation technologies.  

WPB/ET for rice of 1.5 kg m-3 is within the range (0.6-1.6 kg m-3) reported in the 
literature (Zwart and Bastiaanssen, 2004; Bouman et al. 2006; 2007; Mainuddin and 
Kirby, 2009; Zwart and Leclert, 2010). For irrigated bananas, the average WPB/ET and 

WPY/ET is 3.2 and 2.8 kg m-3 respectively. The average WPB/ET for irrigated banana is 
in the range of 1.4 – 5.5 kg m-3 in Nico Coelho irrigation scheme, Pernambuco, Brazil 
(Bastiaanssen et al., 2001). The WPY/ET  is also consistent with estimates of 2.8 kg m-3 
for the banana crop in the Incomati Basin (Hellegers et al., 2009). The water 
productivity WPB/ET for rainfed maize (with supplementary irrigation) is 1.0 kg m-3 
while for irrigated maize it is 2.0 kg m-3. The water productivity translates to WPY/ET 
of 0.35 and 0.70 kg m-3 for rainfed and irrigated maize crops. The low productivity for 
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rainfed maize is explained by the low yields that are generally associated with water 
stress due to long dry spells during the growing seasons. The result is consistent with 
a recent study that showed that the water productivity for irrigated agriculture is 
twice that of rainfed agriculture in the Indus Basin (Karimi et al., 2013b). In general, 
the maize productivity WPB/ET is within the range reported in literature of 1.1-2.7 kg 
m-3 (Zwart and Bastiaanssen, 2004). The yield productivity WPY/ET was also 
consistent with the range of 0.40 to 0.70 kg m-3 for irrigated maize in Mkoji, Great 
Ruaha river basin in Tanzania (Igbadun et al., 2006). 

For natural land cover, the WPB/ET is high for natural tropical forest because of the 
high biomass production associated with favourable rainfall throughout the year. 
WPB/ET for dense forests averaged 2.4 kg m-3 which was within the range of between 2 
- 3 kg m-3 for closed forest in the Nile Basin for year 2007 (Molden et al., 2009). The 
relatively high WPB/ET value for the wetlands and swamps of 1.6 kg m-3 is consistent 
with the values found for natural wetlands in the Nile Basin of 1.5 kg m-3 (Molden et 
al., 2009) and can be explained by year round access to water. The WPB/ET for 
shrublands, bushlands, sparse vegetation and barelands, located in the lower parts of 
the Upper Pangani, are lower than 0.5 kg m-3, mainly because of low rainfall. In 
natural grasslands, the average biomass production of 2.6 tons ha-1 represents a 
WPB/ET of 0.4 kg m-3 (Table 6.8). The water productivity is low compared to good 
pastures or forage (Alfalfa) grown for commercial purposes under irrigation which 
range between 1.0-2.6 kg m-3 (Grimes et al., 1992). The low productivity may be 
attributed to low rainfall and possibly combined with overgrazing.  

The relationship between average B and ET for various landscapes is presented in 
Fig. 6.4.  

 
Fig. 6.4. Variation between biomass and actual evapotranspiration (ET) for 
agricultural and natural landscapes using average values for period 2008 - 2010 in the 
Upper Pangani River Basin. 
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There is a moderately good linear relationship between the B and ET in irrigated 
(R2=0.72) and even stronger in natural (R2=0.90) landscapes. It is observed that 
biomass production in irrigated agriculture is more enhanced than in rainfed 
agriculture and natural landscapes. Most of the irrigated crops (maize, banana, and 
vegetables) are under supplementary irrigation where little blue water is added in 
critical times to supplement rainfall. This improves the water availability for the 
crops. In commercial sugarcane (fully irrigated), irrigation combined with soil fertility 
management provides optimal conditions for plant development. Fig. 6.4 shows the 
scope for increasing water productivity. Additional water storage (through water 
harvesting) and the subsequent water use by rainfed systems will result in a 
significant increase in biomass production. This can be observed by comparing rainfed 
maize and irrigated mixed crops (maize, beans and vegetables) where the biomass 
production increases by 130% with only 15% difference in ET. It is noteworthy also 
that different kinds of plants (C3, C4 and CAM plants) have different water use 
efficiency in terms of B and ET in its positioning in Fig.6.4. As such C4 crops such as 
sugarcane and maize are more water efficient than C3 crops such as rice (Molden et 
al., 2007). Fig. 6.4 can also provide implicitly (from water use) the shadow value or 
the opportunity cost of keeping the natural ecosystems in good conditions. These 
values are baseline data that can be used for detailed environmental valuation and 
modelling. 

Fig. 6.5 presents that land use and the corresponding water productivities in the 
Upper Pangani Basin.  

 

Fig. 6.5 (a) Land use and land cover map (Kiptala et al., 2013a) (b) Water 
Productivity (Biomass) for period 2008 – 2010 

Economic water productivity 

The economic water productivity was computed from the crop yields and the net 
production values using Eq. 6.9. Table 6.9 provides the yield and the corresponding 
economic water productivity for the main crops in the basin. 
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Table 6.9. Crop yield and economic water productivity for main agricultural crops in 
Upper Pangani River Basin. 

Land use land cover type Crops1 WPY/ET (kg m-3) WPEc/ET ($ m-3)
Irrigated mixed crop Rice  1.5 0.18 
Irrigated mixed crop Irrigated maize 0.7 0.13  
Rainfed coffee/maize Rainfed maize 0.35 0.07 
Irrigated mixed crop Vegetables 1.6 0.29 
Irrigated bananas, coffee Bananas 2.6 0.31 
Irrigated sugarcane Sugarcane (commercial) 9.6 (1.12 Sucrose) 0.31 
1The crops were selected from the pixel locations 
2Biomass to sugar (sucrose) harvest index of 0.24 

WPEc/ET values for irrigated crops show that sugarcane and bananas have a higher 
economic water productivity (0.31 $ m-3) compared to those of vegetables (0.29 $ m-

3), rice (0.18 $ m-3) and maize (0.13 $ m-3). The average WPEc/ET for rice was within 
the range of 0.10-0.25 $ m-3 reported in the literature (Mainuddin and Kirby, 2009; 
Molden et al., 2010). Rice and maize have relatively stable local markets and are the 
preferred crops in the Lower Moshi irrigation scheme. The banana and vegetable 
markets are controlled by middlemen and the market is volatile. The Pg for banana 
and vegetable crops was about 44% of the retail prices of the produce at the local 
markets. The high difference is mainly attributed to the high transport and brokerage 
costs.  

The economic water productivity for commercial sugarcane of 0.31 $ m-3 was higher in 
2008/10, compared to Incomati basin (2004/05) of 0.20 $ m-3 (Hellegers et al., 2009). 
Since the biomass and crop yield productivities were comparable, the difference can 
be attributed to the high sugarcane prices between the two periods (LMC 
International, 2010). 

For pastures (grasslands and scattered croplands), the economic water productivity 
was assessed using the biomass production that is grazed or harvested mainly for 
livestock. The assumption here is that the grass consumed by the livestock could 
otherwise have been purchased as dry feeding forage (hay) in assessing the economic 
water productivity. Using an effective harvest index of 0.70 for dry grass at 15% 
moisture (harvest index of 1 and field moisture of 50%); the WPY/ET becomes 0.28 kg 
m-3. The market price for hay (dry grass) is approx. 0.18$ kg-1 (20 kg hay market 
price averaged Tsh. 5,000). This implies thus that the WPEc/ET could be 
approximately 0.025 $ m-3 using a cost of production factor of 0.5. The productivity 
(natural grasslands) is approximately three times less than rainfed maize (0.07 $ m-3) 
despite the small difference (20% in average) in water usage (ET). However, the 
grassland’s water yield is higher than rainfed maize (Table 6.7), thus providing 
additional ecosystem services to the catchment. 

The dense forest and afro-alpine forest with an annual average biomass growth of 20 
tons ha-1 yr-1 and 36 tons ha-1 yr-1 (Table 6.8) has carbon storage of between 10 - 18 
tons C ha-1 yr-1. The economic potential for the carbon storage in forest would 
therefore range between 150-270 US$ ha-1 yr-1. Using the water productivity of carbon 
yield (from biomass), WPY/ET (CO2) of 0.7-1.2 kg m-3, the WPEc/ET translates to a 
range of between 0.01 - 0.02 US$ m-3. The WPEc/ET is low (about 15 times less) 
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compared to irrigated agriculture despite high WPB/ET 
 values (Table 6.8). This is 

mainly attributable to the low carbon market prices. The low cost of carbon market 
prices was also noted by Batjes (2014) as the greatest hindrance for quicker 
implementation of the CO2 mitigation measures in agriculture. However, there are 
prospects that the situation is poised to change with emerging markets for carbon 
trading where countries (through their industries) trade to meet their CO2 obligations 
specified by the Kyoto Protocol.   

Shrublands and bushlands also provides for carbon storage. The annual biomass 
production ranges between 2 - 4 ton ha-1 and the carbon storage will thus range 
between 0.5 - 1.0 ton C ha-1 yr-1. However, other provisioning and regulatory services 
for these biomes such as providing grazing fields for wildlife and food for local 
populations, as well as water regulation, add significant value to this land use 
(Costanza et al., 1997).  

Table 6.10 presents the yield and economic water productivity for the natural 
landscapes based on hay and carbon sequestration. The economic value for carbon is 
expected to increase by 25 – 30% to account for below ground biomass production. 

Table 6.10. Yield and economic water productivity for natural landscapes in Pangani 
River Basin. 

Land use land cover Crops1 WPY/ET (Kg m-3) WPEc/ET ($ m-3) 
Grassland Hay 0.28 0.025 
Dense/afro-alpine 
forest Carbon storage 0.7-1.2 0.01-0.02 

Shrublands and 
bushlands Carbon storage 0.15 – 0.27 < 0.004 

Fig. 6.6 presents the spatial crop yield and the economic water productivities in the 
Upper Pangani Basin. Both productivities accounted for CO2 storage for forest and 
shrulands, hay for grasslands and the harvestable yield for irrigated and rainfed 
agriculture. 
 

Fig. 6.6 (a) Water Productivity (Yield) (b) Water Productivity (Economic) for 
period 2008 - 2010. 

Apart from carbon storage, natural biomes provide other valuable services that may 
relate to ecological production. Water yields in natural landscapes are consumed in 
agricultural landscapes. Some of them are not monetized. Agricultural landscapes and 
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urban areas also have some disservices as well (Van Berkel and Verburg, 2014; 
Gómez-Baggethun and Barton, 2013).  Fanaian et al. (2015) provides a good and 
systematic overview of how to undertake local economic valuation of ecosystem 
services by way of assessing tradeoffs of alternative resource use in a river system. In 
this chapter, literature is referred to infer the extent of the value of the natural 
ecosystem services provided by the natural ecosystems part from the CO2 
sequestration considered in Table 6.10. De Groot et al. (2012) provided the ranges of 
economic values (2007 prices) based on over 3,000 peer reviewed studies, some in the 
tropical climate. Of interest are the tropical forest, woodlands, grasslands, inland 
wetlands and fresh water lakes that constitute much of the natural ecosystems in the 
Upper Pangani River Basin.  

The economic value for provisioning services for tropical forests is estimated at 2,695 
US$ ha-1yr-1 from 96 case studies at a standard error of 13%. From the water use for 
dense and afro-alpine forest in the Upper Pangani River Basin, the water 
productivity equals 0.19 US$ m-3, which is 10 times greater than the derived value for 
carbon storage (Table 6.10). Furthermore, the water value could significantly increase 
to 0.34 US$ m-3 (5,264 US$ ha-1 yr-1) if the other ecosystem services (water and 
climate regulation, erosion control, nutrient recycling) were also considered.  

The shrublands provide primarily food and pasture to livestock, wildlife and even 
local communities in form of plant leaves and fruits. From section 6.2.3, this part of 
biomass was not accounted for in carbon sequestration. From literature, the economic 
value of shrublands is estimated at 1,305 US$ ha-1 yr-1 based on 21 case studies with 
standard error of 4% for which 90% of the value is derived from food (De Groot et 
al., 2012). The assessment is consistent with the shrublands areas in the Africa 
savanna including Pangani, which hosts wide variety of wildlife, and pastoralists 
keeping cattle. Considering the water use for the shrublands in the Upper Pangani 
River Basin, the water productivity equals 0.17 US$ m-3. Habitat (genetic diversity) 
and cultural services of the shrublands increases further the water productivity to 
0.38 US$ m-3. On the other hand, bushlands provide ornamental and generic resources 
such as medicine to the local communities (Costanza et al., 1997) which is estimated 
at 253 US$ ha-1 yr-1 (De Groot et al., 2012), equivalent to a water value of 0.04 US$ 
m-3 in the Upper Pangani River Basin. Considering habitat services, the economic 
value of the bushlands would increase to 1,588 US$ ha-1 yr-1 or a water value of 0.24 
US$ m-3. These water values for both the shrublands and bushlands are significantly 
much higher than the economic benefits from carbon sequestration (<0.004 US$ m-3) 
given in Table 6.10. 

Inland wetland is known to provide the greatest value in ecosystem services in the 
form of water and disturbance regulation, waste treatment, food production and 
recreation. Although most of the functions are not directly related to biomass, its 
total economic value (2007 prices levels) was estimated at 25,682 US$ ha-1 yr-1 (De 
Groot et al., 2012). The valuation is consistent with earlier estimates (1994 price 
levels) of 15,000 US$ ha-1 yr-1 (Constanza et al., 1997). The provisioning services that 
relate to ecological production (biomass) such as food, pasture and raw materials is 
estimated much lower at 1,659 US$ ha-1 yr-1. The average value is based on estimates 
from 168 case studies at 11% standard error. The economic value from the 
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provisioning services is 0.13 US$ m-3 from water use (evapotranspiration) of 1300 mm 
yr-1. The water value would increase to 2.0 US$ m-3 if all the other regulating and 
habitat services (2007 price levels) were considered. 

The fresh water lakes also provide substantially high value in terms of water supply, 
water treatment, food (fish and grazing land) and recreation services. The water 
value from 15 case studies at 17% standard error is estimated at 1,914 US$ ha-1 yr-1 
(De Groot et al., 2012). In the Pangani River Basin, the Lake Jipe and Lake Chala 
provide these provisioning services. Considering the evaporation rate of 2000 mm yr-1, 
the water value equals 0.10 US$ m-3. Costanza et al. (1997) argues that additional 
water regulation services provided by the wetlands should also be added to the 
freshwater lakes. Thus, recreational services would increase the water value of the 
fresh water lakes to 0.4 US$ m-3. However, these natural biomes are located close to 
each other in the Upper Pangani River Basin and the water regulation may only be 
offered by one or partly by all.  

The comparison of the results for natural landscapes derived in Table 6.10 (based on 
CO2 and pastures) against literature reviewed showed that the biophysical analysis 
based on carbon storage and pastures only, significantly underestimates the total 
economic value of the natural ecosystem services. However, a local ecosystem 
valuation needs to be undertaken to explicitly derive the total value of ecosystem 
services generated by each natural biome. This will reduce the chances of avoiding 
double counting especially for parallel ecosystem services supported by nearby natural 
landscapes. As such the biophysical data and the baseline water values provided in 
this study provide boundary conditions for further detailed economic valuation. 

Economic water productivity for irrigation water use 

Crop water use (actual ET) comprises of both precipitation (P) and net irrigation 
(blue water) withdrawal (Qb). Table 6.11 shows the percentage of Qb to the total 
actual water use (ET) for the main irrigated crops in the Upper Pangani River Basin 
extracted from Kiptala et al. (2014). The economic water productivity in terms of 
blue water (WPEc/ETb) is derived by dividing the total economic water productivity 
(WPEc/ETb) by the blue water use factor (Qb/ET).  

Table 6.11. Economic water productivity for main irrigated crops expressed in terms 
of net irrigation water use for the period 2008 - 2010. 

Crop Qb (%) WPEc/ET (US$ m-3) WPEc/ETb (US$ m-3)

Sugarcane 44 0.31 0.70 

Rice 36 0.18 0.50 

Vegetables 24 0.29 1.21 

Bananas 21 0.31 1.48 

Maize 17 0.13 0.76 

Economic (blue) water productivity (WPEc/ETb) showed higher values for smallholder 
crops (banana, vegetables and maize) using less Qb compared to fully irrigated rice 
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and sugarcane. During periods of physical water scarcity, the opportunity cost for 
blue water (scarce) resources is much higher than that of precipitation.  

6.4 DISCUSSION AND CONCLUSION 
This chapter presents the spatial water productivity in terms of bio-physical (biomass 
and yield) and economic benefits for different LULC in the Upper Pangani River 
Basin in Eastern Africa. The methodology applied remotely sensed data to estimate 
accumulated biomass growth and field based data to estimate yield and economic 
indices. The study also relied on literature for crop yields and ecosystem services to 
estimate spatially explicit water productivity and water value in a data scarce and 
heterogeneous landscape in Africa. The results were based on three years of analysis 
(2008 (wet), 2009 (dry), 2010 (average)). Such water productivity indices generated 
can inform strategies for the optimal allocation of water in river basins such as the 
Upper Pangani.  

In agriculture, irrigated lands achieved the highest water productivity in terms of 
biomass, crop yield and economic productivity. The productivity for sugarcane and 
rice is high and within the ranges reported in the literature. In supplementary 
irrigated and rainfed systems, the productivity was moderate but significantly lower 
than the potential reported in literature. In natural ecosystems, natural forest and 
wetlands that have access to abundant water resources achieved a relatively high 
biomass production compared to the expansive shrublands and sparse vegetation. 
However, the economic productivity for the natural forest and wetlands was low when 
computed using biomass derived CO2 storage only.  

We found a linear relationship between biomass (and yield) and ET in both 
agricultural and natural landscapes. As expected, biomass production in irrigated 
(and supplementary irrigated) agriculture was higher than in rainfed agriculture and 
natural ecosystems in Upper Pangani. This can be explained by better plant water 
and soil fertility management in the irrigated landscapes, and relatively low rainfall in 
the rainfed landscapes. The relationship provides scope for improved water 
productivity especially for rainfed systems with little irrigation and good agronomic 
practices. Molden et al. (2007; 2010) provides various ways of increasing productivity 
for rainfed agriculture and crops under supplementary irrigation (see also Van der 
Zaag, 2010; ILRI, 2014). 

The pixel results for biomass water productivity of a given land use class showed 
large variations. The coefficient of variation (CV) is high for natural and conserved 
land uses (0.3-1.3). This is mainly due to high topographical ranges that influence the 
environmental factors (rainfall, temperature). For agricultural land uses, the CV is 
lower (0.1-0.3), but nevertheless still higher than reported for large scale irrigation 
systems. The result can be explained by the high levels of intercropping that exist 
within the land use types. Even so, the spatial analysis provided further scope for 
increased water productivity in agricultural plots that have low biomass growth.  

The economic productivity in terms of irrigation water use (Qb) was higher for the 
smallholder banana and maize under supplementary irrigation compared to the fully 
irrigated sugarcane and rice. In situation of physical water scarcity, the opportunity 
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cost for blue water (scarce) resources is much higher than that of precipitation. It 
would thus be more prudent to allocate river water to the supplementary irrigated 
crops than to fully irrigated crops that are grown during the dry season.  

The low market price for carbon sequestration was observed to lower the water 
productivity for the natural forest ecosystems. The market price was observed to be 
even lower than the social costs of carbon emission in the global market (Interagency 
Working Group on Social Cost of Carbon, 2009; Batjes, 2012). Nevertheless, the price 
is expected to increase significantly in the near future with expected carbon trading 
following the Kyoto Protocol (Carbon Market Watch, 2014). Additional provisioning 
ecosystem services for natural land cover inferred from the literature increased 
substantially the economic water productivity especially for the wetlands, natural 
forest and the shrublands. Advanced techniques for localized environmental and 
social ecosystem valuation for natural environment exist (FAO, 2004), but these 
techniques require specific expertise and are quite costly (Hermans and Hellegers, 
2005). However, the biophysical data and baseline water values derived here can 
therefore provide boundary conditions for further detailed economic or environmental 
modelling.  

The social water value to the local populations is also a key factor for consideration 
by policy makers when interpreting water productivity indices. Banana, maize and 
rice provide staple food for local livelihoods and income thus enhancing food security 
and social well-being. On the other hand, sugarcane grown by the TPC Company has 
a relatively high economic productivity, may not provide high benefits to local 
livelihoods. Trade-offs therefore has to be made between attaining high economic 
water productivities and social equity. 

It is clear from the spatial water productivity maps that biomass production is closely 
correlated with economic water productivity. Water yields, carbon credits and other 
ecosystem services provide insight into the water value society attaches to a certain 
cultural and natural land use activity. Standard PES also relates with efforts to 
enhance water yields, prevention of soil erosion and carbon sequestration amongst 
others. A holistic approach that involves the improvement of both the biophysical and 
economic factors through sustainable basin-wide interventions can therefore result 
into higher economic water productivity at lower social and environmental cost. Such 
a comprehensive water productivity analysis will allow policy makers to quantify the 
foregone economic benefits for allocating water for socio - environmental gains. 
Moreover, the physical water productivity can inform long term basin strategies 
based on future market trends and socio-economic scenarios. The remotely sensed 
estimate of the economic water productivity that includes natural ecosystems would 
therefore provide vital information for sustained green growth and socio-economic 
development in many African river basins. 
 



 

 

Chapter 7 

MULTI-OBJECTIVE ANALYSIS OF GREEN-BLUE WATER5 

The concept of integrated water resource management (IWRM) attempts to integrate 
all relevant elements related to water resources. Different tools exist that can inform 
sound IWRM plans and identify trade-offs. One such tool is multi-objective analysis 
using integrated hydro-economic models (IHEM). However, IHEM mainly deals with 
the optimization of river flow (blue water) in a river basin and does not incorporate 
water used in the landscape. This chapter connects these two elements by linking a 
distributed model of green and blue water uses in the upper catchment, with the 
mainly blue water uses in the lower part of a basin. As such, it allows for basin wide 
analysis of water use. The analysis focuses on maximizing three primary objectives: i) 
hydropower production, ii) supplementary irrigation where crop water requirement is 
met by both precipitation (green water) and river abstraction (blue water), and iii) 
fully irrigated agriculture where all crop water requirements are met only by the blue 
water. The analysis also considers five socio-environmental objectives, and is con-
ducted for a wet, a dry and an average year. 

The results show that agricultural water use (supplementary and fully irrigated) 
achieves relatively high water productivity and competes with all the other objective 
functions. The guaranteed hydropower at 90% reliability (firm energy) favours con-
stant flow conditions throughout the year, which then competes with the environment 
that requires both high and low flows. Water abstraction for smallholder irrigation 
and urban use deprive downstream hydropower and the environment of water. The 
study shows that improving rainfed cropping (maize) through supplementary irriga-
tion during the rainy seasons has a slightly higher marginal water value than full 
scale irrigation (sugarcane). The developed methodology may be applicable in other 
river basins with predominantly green water use upstream and blue water use down-
stream. 
  

                                     
5 This chapter is based on the paper: Kiptala, J.K., Mul, M.L., Mohamed, Y.M., Van der 
Zaag, P., 2016b. Multi-objective trade-off analysis of green-blue water uses in a highly util-
ized river basin in Africa. Submitted to Journal of Water Resources Planning and Manage-
ment, American Society of Civil Engineers (ASCE). 
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7.1 INTRODUCTION  
Water is an important natural resource for all forms of life and it forms the backbone 
for economic productivity and social wellbeing in many parts of the world. With 
growing demands for water, it is becoming increasingly challenging to satisfy those 
needs. Competition between different water uses and between upstream and down-
stream use is therefore increasing. Many river basins are overexploited, and the ca-
pacity to meet the different social demands is decreasing (Mostert et al., 1999; 
Molden et al., 2007). 

In Africa, over 60% of the total population relies on water resources that are limited 
and highly variable (UNEP, 2010). About 75% of the continent's cropland is located 
in arid and semi-arid areas, where irrigation can greatly improve productivity and re-
duce poverty (Smith, 2004; Vörösmarty et al., 2005). There has been an increased fo-
cus on the development of multipurpose reservoirs during recent years. These dams 
have enabled better water management that have significantly increased economic 
benefits to river basins. However, many large storage projects worldwide are failing to 
produce the level of benefits that provided the economic justification for their devel-
opment (WCD, 2000; Ansar et al., 2014). This is due to the overstated benefits por-
trayed in the feasibility documents among other factors. In addition, there are social 
and environmental externalities that include the displacement of communities and the 
alteration of the hydrology that cause disbenefits to downstream communities and 
the natural environment. The vulnerability of the often poor riparian population who 
rely on ecosystem services generated by the natural environment is increased due to 
these developments (Malley et al., 2007). 

According to Postel (1992), the main thrust of the management of river basins is 
finding ways of turning these potential conflicts into constructive cooperation, and to 
turn what is often perceived as a zero–sum predicament, in which one party’s gain is 
another’s loss, into a win–win proposition. While the physical water is a finite re-
source, the quantity of water resources available can be influenced by management 
decisions. This requires a broad perspective in the management of water resources; 
looking at maximizing benefits (Sadoff and Grey, 2002) and allocating sufficient water 
to the environment to secure ecosystem services (Rood et al., 2005; Konrad et al., 
2012).  

Integrated hydro-economic modelling (IHEM) tools have been developed to integrate 
economic efficiency and equity objectives in river basins (Ward et al., 2006; Ringler 
and Cai, 2006; Pulido-Velazquez et al., 2008). These studies have used a range of de-
terministic and stochastic single to several objective problem formulations. In recent 
studies, advanced multi-objective optimization algorithms that rely on Pareto-optimal 
curves or surfaces have been developed (Kaspryk et al., 2009; Kollat et al., 2011; 
Reed et al., 2013). These methodologies require high computational effort, and use 
super computers and parallel computing techniques (Hurford and Harou, 2014). How-
ever, all these studies focus solely on the blue water use in a river system. 

Solving the challenge of water resources management is not only about blue water al-
location (water in rivers, aquifers, lakes, reservoirs) but includes green water use (soil 
moisture from precipitation). Green water use through rainfed agriculture generates 
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most of the food in Africa, yet the productivity per ha remains low. A key strategy to 
upgrade rainfed agriculture is investment in supplementary irrigation to bridge dry 
spells (Falkenmark and Rockström, 2006). Improved water productivity in rainfed 
systems can be significantly increased with little extra water use (Molden et al., 
2007). However, an increase in green water use will inevitably result in a decrease in 
blue water availability. Water resources management decisions should therefore recon-
sider the predominant focus on blue water to the full water balance that also includes 
green water use.  

In this study, a multi-objective exploration of trade-offs in competing water uses is 
analysed for the Pangani River Basin in East Africa. Enhanced green water use for 
improved rainfed and supplementary irrigated agricultural systems is integrated into 
the IHEM.  The following section outlines the Pangani river system, followed by the 
IHEM model set-up for Lower Pangani hydro-system and the description of model 
scenarios. The results and discussion are presented in Section 7.4, and finally the con-
clusions are given in Section 7.5. 

7.2 PANGANI RIVER SYSTEM 
The Pangani River system starts at the mountains of Mt. Meru, Mt. Kilimanjaro and 
the highlands of the Pare and Usambara mountains and runs through the semi-arid 
middle course into the Pangani estuary and empties in the Indian Ocean (Fig. 7.1). 
The Upper Pangani River Basin, defined as the catchment area upstream of Nyumba 
ya Mungu (NyM) reservoir, is the main source of water (blue water) for the Lower 
Basin (Kiptala et al., 2013a; 2013b). Rainfall (300-800 mm yr-1) has a bimodal pat-
tern where long rains are experienced in the months of March to May (Masika sea-
son) and the short rains in the months of November to December (Vuli season). 

The water resources from the main upstream sources of Kikuletwa and Ruvu rivers 
provide water for hydropower and irrigation and also provide essential environmental 
flows to maintain key ecosystem services such as the Kirua swamp in the lower 
catchments. The water resources are supplemented by the Mkomazi, Soni and Lu-
engera rivers along the river system that stretches for over 500km. The three hydro-
electric power stations (HEP) in the lower basin; NyM (8MW), Hale (21MW) and 
New Pangani Falls (NPF) (68 MW) together contribute 17% of total installed hydro-
power generation capacity to the Tanzania national grid (Table 7.1 presents the key 
features of these HEPs).  
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Fig. 7.1: Schematic layout of the Pangani River System 

NyM reservoir with a storage capacity of 1.14×109 m3 regulates the river flow down-
stream. The dam has dramatically changed the downstream river regime; from the bi-
annual flooding of the floodplain to a fully controlled flow in the river channels. This 
has led to the reduction of Kirua swamp from an area of 852 km2 to 10 km2 

(PBWO/IUCN, 2008). The Lower Pangani River basin also represents a major poten-
tial area for irrigated agriculture. According to records at Pangani Basin office, by 
2010, a total flow of 3.12 m3 s-1 has been issued as water rights for smallholder irriga-
tion systems in the Lower Pangani.  
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Table 7.1: Salient features of reservoir and hydropower systems in Pangani river 
system (PBWO/IUCN, 2009). 

 NyM Hale NPF
Reservoir 
Commissioning Year 1968 1965 1995
Catchment area km2 12,100 42,200 42,200
Max. supply level m.a.s.l 688.45 331.0 177.5
Min. supply level m.a.s.l 679.62 329.8 176.0
Total reservoir storage 
capacity 

Mm3 1,140 0.14 1.4

Active storage capacity Mm3 600 0.13 0.8
Long term average inflow Mm3 yr-1 1,100 730 730
Residence time T 200 days 1.6 hrs 9.6 hrs
Power plant equipment 
Turbine type Vertical 

Francis
Vertical 
Francis 

Vertical 
Francis

Installed capacity MW 2×4 2×10.5 2×34
Max. design discharge 
Min. design discharge 

m3 s-1

m3 s-1
35
9.8

45 
8.5 

45
9

Max. operating head 
Min. operating head

m
m

27
21

63 
62 

170
168

Machine efficiency % 87 76 93
Average annual energy GWh yr-1 35 93 341
Firm annual energy GWh yr-1 20 55 201

The operation policy at NyM reservoir is mainly aimed at generating firm energy at 
the three HEPs (Moges, 2003). The firm energy production is the amount of energy 
available for production or transmission which is guaranteed at 90% reliability 
(TANESCO, 2014). A discharge of 15 m3 s-1 (39×106 m3 month-1) is therefore main-
tained as the minimum discharge to guarantee firm energy production at Hale and 
NPF power stations (Andersson et al., 2006).  

The energy production, transmission and distribution is managed by Tanzania Elec-
tric Supply Company Limited (TANESCO), a state owned utility company. The En-
ergy and Water Utilities Regulatory Authority (EWURA) determines the electricity 
tariffs. The electricity tariff comprises of 3 segments namely generation, transmission, 
and distribution and supply (EWURA, 2012). The value for hydropower production 
can be estimated from the tariff derived from the generation segment. The price of 
power (for monthly usage of less than 50 KWh) to domestic consumers is subsidized 
by government and represents the generation costs (FBD, 2003). In 2012, the price 
was estimated at 130 Tsh KWh-1 (80 US$ MWh-1). A similar tariff is charged for bulk 
supply to Zanzibar Island in addition to transmission charges of TSh 35 KWh-1. The 
energy price doubles for the monthly energy usage of more than 50 KWh units (160 
US$ MWh-1), since the demand is met by dispatching the more expensive thermal 
power plants in the TANESCO system (EWURA, 2012). The cost of bulk electricity 
purchases from independent power producers (IPPs) supplied by thermal sources is 
approximately US$ 166 MWh-1 (MEM, 2013). The bulk energy price is comparable 
with the higher electricity tariff for high energy users (160 US$ MWh-1). In Tanzania, 
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Songas and Independent Power Tanzania Limited (IPTL) are the largest IPPs and 
supply 29% of energy supplied by TANESCO. 

NyM reservoir is the only HEP with a storage reservoir while Hale and NPF operate 
as run-of-river systems. Through the construction of the NyM reservoir, the annually 
flooded area has reduced and vast areas are now (extensively) inhabited. Regulation 
of the flow by the NyM reservoir therefore prevents flooding of this area to protect 
the communities. The release from NyM reservoir is therefore limited to 25 m3 s-1 for 
the river banks not to overflow at Kirua (PBWO/IUCN, 2007). The low lying Kirua 
swamp riparian ecosystem consumes part of the release from NyM reservoir through 
ground water recharge, transpiration and/or evaporation, of about 5 to 6 m3 s-1 
(PBWO/IUCN, 2007; Turpie et al., 2003; Andersson et al., 2006). The minimum op-
erating level at NyM reservoir provides for a minimum surface area of the reservoir of 
40 km2. The surface area is considered sufficient to provide for environmental benefits 
mainly from fisheries to the local communities in NyM reservoir (Musharani, 2012).  

The construction of NyM and NPF reservoirs has reduced the sediment flows into the 
Pangani Estuary, and affected the balance between tidal dynamics and morphology 
(Sotthewes, 2008). The sediment imbalance has resulted in erosion of river banks and 
the estuary bay, which influenced the tidal flow movement and hence the salt intru-
sion. However, the salt intrusion has been limited by the minimum (high) discharge 
released from the NPF HEP located 72 km upstream of the estuary. Sotthewes 
(2008), using a steady state salinity distribution model (Savenije, 2005), showed that 
the salinity profile reaches up to 5.5 km with a minimum discharge of 10 m3 s-1. At 5 
m3 s-1 salt intrusion would increase exponentially to 32 km upstream of the Pangani 
Estuary.  

The Pangani estuary is also rich in mangrove resources that offer ecosystem services 
to local populations. There are at least 8 species of mangroves that cover an area of 
1,750 ha (Turpie et al., 2003). The mangroves are mainly harvested for construction 
purposes and mostly exported to Zanzibar. Mangroves require both high and low flow 
conditions (de Lacerda et al., 2002; Alleman and Hester, 2011). The high flow is nec-
essary for abscission of propagule and dispersal while the low flows are needed for 
propagule establishment and development. According to de Lacerda et al. (2002), 
high flows should not be sustained for longer periods since this may cause invasion of 
fresh water gycophytes that normally out-competes mangroves. Presently, there is no 
study to show how much of the high flows is required for mangroves growth nor how 
much of the mangroves in the Pangani estuary were affected by the construction of 
the NyM dam.  

The major users of the Lower Pangani therefore are NyM HEP, Kirua swamp, irriga-
tion and urban water users, Hale and NPF HEP and the Pangani estuary. The com-
petition between demands of these users is analysed through a hydro-economic model 
(IHEM) that is described in the following section.  
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7.3 MATERIALS AND METHODS 
The IHEM is the central component of the multi-objective analysis. This model is fed 
by flows generated by the STREAM model, a fully distributed hydrological model 
that accounts for green and blue water flows from the Upper Pangani into the Lower 
Pangani river basin at NyM reservoir (Kiptala et al., 2014). The IHEM then opti-
mises the water flows with the mostly blue water in the lower basin using the GAMS 
(General Algebraic Modelling System) programming language (GAMS, 2015). Objec-
tive functions or demand functions are developed for key water users in the basin. To 
reduce the number of objective functions, desirable levels of some objectives (mainly 
non-monetary) have been predetermined either through field investigation, by stake-
holders and/or by expert knowledge. These ‘secondary’ objectives specify firm energy 
requirement, water supply for smallholder irrigation and urban water use. Other ‘sec-
ondary’ objectives include flood flow restrictions, environmental flows at a sensitive 
and large wetland located in the basin (Kirua swamp) and minimum environmental 
flow at the estuary. All objective functions are described in the following sections. 

The hydropower, supplementary and full irrigation benefit functions, which are val-
ued in monetary terms, are considered as primary objectives subject to the other 
predetermined constraints based on desired levels of ‘secondary’ objectives. The 
trade-offs between various objectives are then identified by removing each constraint 
and evaluating the gains or losses to other water users compared to a base case. The 
computations were conducted for a wet (2008), dry (2009) and an average year 
(2010). An overview of the methodological framework is presented in Fig. 7.2. 

 
Fig. 7.2: Methodological framework for the multi-objective analysis. 
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7.3.1 STREAM hydrological model 

A fully distributed hydrological model developed by Kiptala et al. (2014) is used to 
simulate stream flow for the period 2008-2010 for the Upper Pangani River Basin. 
The distributed model relies on remotely sensed data on actual total evaporation 
(Kiptala et al., 2013b) and land use and land cover (Kiptala et al., 2013a). The model 
is used to quantify green and blue water use such as supplementary and fully 
irrigated agriculture in the Upper Pangani upstream of the NyM reservoir and the 
blue water flow (river, groundwater) into the Lower Pangani hydro-system at the 
NyM reservoir (Fig. 7.3). 
7.3.2 Hydro-Economic Modelling Approach 

Whereas the formulation of an IHEM has no universal set-up, such a model adheres 
to the following essential requirements: a) consistent accounting of flows, water 
storages, and diversions, b) representation of demand for water and economic benefits 
for its use, c) network representation of a physical basin, and d) incorporation of 
institutional rules and policies (Cai et al., 2006). Water availability is determined by 
the water balance in the river system, while water demand is determined exogenously 
based on calculations of water requirements for irrigated agriculture, hydropower, 
issued water rights and estimated environmental flow requirements. Our model is 
schematized as a node-link network representing the spatial relation between various 
off- and in-stream demands in the river basin (Fig.7.3). The nodes represent the 
demand sites and links represent the river reaches. The nodes include simple nodes, 
source nodes at which inflows occur, reservoir nodes, and demand nodes. Each node 
should fulfill the water balance requirement.  

For the source and simple node, there is no storage considered. The releases from 
these nodes are equal to the total inflows.  

The equations that governs the mass balance for the source and simple nodes: 

( ) ( )tnQtnQ inout
,, =         (7.1) 

where  

( ) ( )tqtnQ
nDj

jnout ∑
∈

= ,,        (7.2) 

( ) ( )tqtnQ
nUj

niin ∑
∈

= ,,         (7.3) 

( )tq jn,  represents flow from node n to node j, Dn is the set of all the nodes that are 
immediately downstream of node n and Un is the set of all the nodes that are 
immediately upstream of node n.  

Qout(n,t) is the release from the node n in period t, which is distributed over the 
downstream nodes. Qin(n,t) is the source of water or for the simple nodes the inflows 
at the time period t. Depending on the requirements at each node, water is diverted 
to users or remains in the river. 

In the Kirua swamp (KS), the simple node that represents the release of flow to the 
area between the upstream node and downstream node is given by an empirical 
equation developed by IVO-NORPLAN (1997) (Eq. 7.4, all units in m3 s-1).  



Managing Basin Interdependencies, Pangani 115 

( ) ( ) 0308.1),(9193.0,005.0, 2 −+−= tKSQtKSQtKSQ ininout   (7.4) 

Equation 7.4 holds for Qin (KS,t) < 25 m3 s-1 and excess inflows would drains out of 
the river system and is consumed by the wetlands. 

Reservoir nodes are different as they consider storage. Here, we only consider the 
NyM storage reservoir and the following equation applies (Loucks et al., 1981) for 
period t: 

( ) ( ) ( ) ( ) ( ) ( ) toutintt tnQtnQtnStnS βαα −−+−+=+ ,,1,1,1    (7.5) 

where 

( )
2

, tnEA oa
t =α      (7.6) 

( )tnEA oot ,=β      (7.7) 

( )tnQin ,  and ( )tnQout ,  are defined in Eq. 7.2 & 7.3 and S is the storage (Mm3), Ao is 
the water surface area corresponding to the dead storage volume (km2), Aa is the 
water surface area per active storage volume above the dead storage level (km2), and 
Eo(n,t) is the evaporation rate in node n in period t (Loucks et al., 1981). The 
monthly evaporation rate is derived from pan evaporation measurements at NyM 
reservoir. The open water evaporation is computed using a pan coefficient factor of 
0.81 (Kiptala et al., 2013b).  

The water surface areas are computed from the reservoir area - volume equations 
(Eq. 7.8 & 7.9) derived from the original design report of NyM dam by Sir William 
Halcrow & Partners (1970): 

( ) 27.11259.649HV =         (7.8) 

( ) 15.8859.651HA =         (7.9) 

where V is the reservoir volume (Mm3), A is the surface area of reservoir (km2) and H 
is the water level in metres above sea level (masl).  
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Fig. 7.3:  Schematic structure of Lower Pangani hydro-system. 

7.3.3 Multi-objective problem formulation for the Pangani hydro-system 

Dynamic programming is a widely used optimization technique to determine optimal 
operating policies (Loucks et al., 1981). The objective of the reservoir operation 
problem optimization is to derive optimal release decisions as a function of variables 
describing the state of the system. The objective function therefore seeks to maximize 
benefits for each water sector subject to hydrological constraints (Eq. 7.1 – 7.7). For 
water use that comprise in-stream use such as hydropower, and off-stream functions 
such as irrigation, the water value is derived from the accumulated benefit functions 
to account for the cyclic nature of water use (Seyam et al., 2003; Pande et al., 2011).  

The optimisation problem formulation (Eq. 7.10) is consistent with Tilmant et al. 
(2007), Kasprzyk et al. (2009) and Hurford and Harou (2014). 
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where x is the optimized water diversions and reservoir release for the set of water 
dependent sectors (Ω ). 

Two objective functions were considered that seek to maximize irrigated agriculture 
(fag_I) and rainfed agriculture (fag_R) in the upper catchments. Five objective functions 
were considered in the lower Pangani hydro-system. They include maximum 
hydropower (fhydro), firm energy (ffirm), fulfilling water rights for smallholder farmers 
and urban water use in the mid-stream (fWR), and environmental requirements for the 
Pangani estuary (festuary) and the Kirua swamp (fkirua). The optimal requirements for 
ffirm, fWR, festuary, fKirua are determined exogenously using field data and/or given by 
stakeholders. These water uses are considered as ‘secondary’ objectives that either 
used as constraints or whose deviations from their respective optimal requirement are 
minimized in the problem formulation (Eq. 7.10).   

The multi-objective optimization would therefore seek to maximize three primary 
objectives: irrigated agriculture, rainfed agriculture and hydropower (Eq. 7.11) 
subject to secondary constraints (ffirm, fWR, festuary, fKirua) and the hydrological 
constraints (Eq. 7.1 – 7.7).  

 ( ) ( )hydroRagIag fffxF ,, __=       (7.11) 

The model runs on a monthly time step with an optimisation period of 3 years (36 
time steps). The problem formulation is solved using the GAMS MINOS solver 
(McKinney and Savitsky, 2003). The following sections detail the various water uses. 

Fully irrigated agriculture 

The objective function for the fully irrigated agriculture is to maximize the proceeds 
from the expansion of the sugarcane irrigation project to its potential.  

Maximize ( )
( ) )(

_ )(

tl

d

r

tsssnIag tW
tWYSPf ⎥
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⎤
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⎣

⎡
Π×××=    (7.12) 

( )sps SS <         (7.13) 

where Pn(s) is the net gate price of sugar (US$ kg-1), Ss is the irrigation area (ha), Sp(s) 

is the potential (sugarcane) irrigation area (ha), Ys is the yield (kg ha-1), t is the time 
index (month), Wr(t) is the water diverted in each time period (Mm3 month-1), Wd(t) 
water demand in each time period (Mm3 month-1) and l(t) is the stress coefficient for 
sugar for each time step (equivalent to 1.2).  

The potential irrigation area for irrigated sugarcane is 7,400ha, average sucrose yield 
of 10 tons ha-1 and net farm gate price of 0.25 US$ kg-1 (Kiptala et al., 2016a). 

Supplementary irrigated agriculture 

The objective function for supplementary irrigated agriculture (in the upper 
catchment) is to enhance yields in rainfed systems by increasing productive 
transpiration (T) through supplementary irrigation. The impact of enhancing green 
water use would result in a reduction of blue water availability downstream (Kiptala 
et al., 2014). It was shown by Makurira et al. (2012) that an increase of productive T 
of up to 47% can be achieved in rainfed systems in the Pangani Basin. An increase in 
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total ET (includes soil evaporation) of 30% can achieve relatively high T since part of 
soil evaporation would be shifted in favour of T. The concept of vapour shift in green 
water use has been described in more details by Rockström (2003). Kiptala et al. 
(2016a) developed an analytical relationship between biomass production (Bacc) and 
ET for rainfed and supplementary irrigated agriculture, Eq. 7.14 and Eq. 7.15 
respectively. 

1.29.3rainfed −= ETBacc       (7.14) 

`  6.23.5irrsuppl −= ETBacc       (7.15) 

where Bacc is the accumulated biomass production in kg ha-1 yr-1 and ET is the total 
evapotranspiration in m3 ha-1 yr-1. The management option for enhanced green water 
use in rainfed systems involves both rainwater harvesting, and soil conservation and 
the use of fertilizers. An average rate of change in biomass production from Eq. 7.14 
and Eq. 7.15 is adopted since the interventions would yield a hybrid agricultural 
system. Rainfed maize crop is considered with a potential area for improvement (high 
rainfall areas) of 36,000 ha. 

The change in biomass production, Bacc (kg ha-1 yr-1) due to an increase in green 
water use (Qg_b) is converted into yield (Ymz) using an effective harvest index of 0.35 
for maize (i.e. accmz BY ×= 35.0 ) (Wiegand et al., 1991; Kiptala et al., 2016a). 

The objective function to be maximized therefore becomes Eq. 7.16: 
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( ))(__ rpdgbg SQQ ×<       (7.17) 

where Pn(mz) is the (net) farm gate price of maize (US$ kg-1), Ymz is the additional 
yield per hectare for maize (kg ha-1), Qg_b is the additional green water use in rainfed 
area per month (Mm3 month-1), Qg_d is the additional green water demand per hectare 
(Mm3 ha-1 month1) and Sp(r) is the potential rainfed area (ha).  

The reduction of soil evaporation (Es) in supplementary irrigated crops (maize) in the 
Upper Pangani River Basin was also considered as an intervention. The reduction in 
Es by 15% is considered feasible and results in a water saving (Qws) that has been 
quantified using the STREAM model (Kiptala et al., 2014). 

Hydropower production 

The production function of hydropower is used to derive its benefit function. The 
production function is a nonlinear function of the head (storage) and release 
variables. Power output Py (Nm/s or W) and energy output Ey (Nm or Ws) is a 
function of discharge Qp and head He derived using the following equations (Revelle, 
1999). 

epgty HgQeeP ρ=         (7.18) 

where Qp is the plant discharge (m3 s-1), ρ  is the density of water (kg m-3), g  is the 
acceleration due to gravity (~9.81 m s-2), He is the effective water head (m) (static 
water head – head loss) and gt ee  is the turbine and generator efficiency. 
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gyy TPE ×=          (7.19) 

where, Ey is the Energy output (W s) and Tg is the generating time (s).  

The optimization problem can be made linear by assuming that the production of 
hydroelectricity is dominated by the release term and not by the head (or storage) 
term. This assumption is valid as long as the difference between the maximum and 
minimum heads is small compared to the maximum head (Archibald et al., 1999; 
Wallace and Fleten, 2003). This assumption was used for main HEPS; Hale and NPF 
run-of-river systems where the difference between maximum and minimum operating 
head is small (Table 7.1).  

The objective function for hydropower is to maximize the hydropower benefits from 
the water release at NyM reservoir. The bulk hydropower energy price is US$ 80 
MWh-1. The opportunity cost for hydropower is estimated from cost of despatching 
alternative thermal sources or cost of bulk electricity purchases from IPPs which is 
equivalent to US$ 160 MWh-1. A similar approach was adopted by Kiptala et al. 
(2010) and Hurford and Harou (2014) for the Tana River Basin in Kenya. 

Maximize ( ) { }NPFHaleNymivenuef
i

hydro ,,Re
36

1
∈=∑∑     (7.20) 

Eq. 7.20 is subject to the minimum monthly firm energy requirement at the NyM, 
Hale and NPF hydropower stations (Table 7.2) formulated as secondary objective in 
Eq. 7.21. 

Minimize ( ) { }NPFHaleNymiEnergyFirmDeficitf
i

firm ,,_
36

1

∈→= ∑∑  (7.21) 

Irrigation and municipal water rights 

According to the Pangani Basin office, there are 29 water abstraction canals for 
smallholder agriculture in the Lower Pangani Basin. The irrigation canals supply 
water to community development projects for food production, domestic use as well 
as for livestock. By 2010, water rights totalling 3.12 m3 s-1 for water abstractions had 
been issued to various water user groups. Lemkuna, Naururu, Ngage are the main 
irrigation canals with a water right of 0.5 m3 s-1 each, used mainly for rice and maize 
cultivation. An assessment of water flows between gauge station 1d8c at NyM and 
1d14 at Korogwe (Fig. 7.1), less water uses/losses at Kirua using Eq. 7.4, showed a 
consistent irrigation water use of 3.14 m3 s-1. The municipal water use at Korogwe 
Township has a water right of 0.83 m3 s-1. The water is mainly used for domestic 
water supply and to a smaller extent by a sisal factory.  

Since the objective of water allocation to these users is social rather than economic, 
the optimization problem is formulated to minimize deficits to their water rights 
provisions for irrigation (I) and municipal (M). A similar approach was adopted by 
Gurluk and Ward, 2009.  

Minimize ( ) { }MIiWRDeficitf
i

WR ,
36

1
∈→=∑∑       (7.22) 

Removing the objective function reveals the trade-offs with other economic activities 
in the river basin. 
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Environmental requirements 

Demand curves for environmental benefits can be derived from the environmental 
goods and services that are provided to sustain ecosystems and to the environment by 
the water use. This however requires detailed environmental valuations that are 
linked to the hydrologic (supply) conditions and environmental benefits. This 
information is difficult to derive or estimate though there is a general understanding 
that valuing water should also account for environmental and social values (GWP, 
2000; Hermans et al., 2006). An alternative approach is to remove the environmental 
flows from the objective function and treat them as additional constraints, thereby 
giving them priority (Gandolfi et al., 1997; George et al., 2011). The flow regime 
representing the lower bounds, i.e. the minimum flow requirements in space and time 
or flow constraints, could then be changed in order to establish the trade-off 
relationship. This approach requires an accurate hydrological assessment of the 
environmental flow requirement for the river basin.  

Water use at the Kirua swamp is conditioned in the model using Eq. 7.4 for flows less 
than 25 m3 s-1 to account for water use in the wetland. The maximum flow of 25 m3 s-

1 is imposed (on inflow) to prevent overtopping of river banks and flooding of areas 
currently occupied by local populations. These flow constraints will be removed in the 
model to assess trade-off with other water users. 

Presently, there is no study on the environmental flow requirements for mangroves 
growth in the Pangani estuary before or even after the construction of the NyM dam. 
The model requirement for a maximum flow during the dry period or the high flows 
during wet seasons is therefore unknown and is not considered in this study. The 
study however uses maximum flow targets to assess implicitly the environmental 
flows. Since there is no evidence of any damage to the mangroves since the 
construction of the dam, conclusions will be drawn on the sustainability of the flow 
targets assessments. The targets are set based on 1) for the minimum flow 
requirement during the dry season on the fixed (or maximum) releases from two 
downstream hydropower dams provided through its high water demands and 2)  from 
the peak flows during the wet season provided by the unregulated flows from 
Mkomazi and Luengera tributaries. For the minimum environmental flow (low flow, 
dry season) for the estuary, the study adopts the discharge of 10 m3 s-1, to minimize 
the impact on salt intrusion (Sotthewes, 2008).  

Minimize ( ) { }EstuaryKiruaiDeficitf
i

i ,
36

1

∈=∑∑      (7.24) 

The secondary objectives are summarized in Table 7.2. 
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Table 7.2. Secondary objectives considered in the Pangani hydro-system optimization 
model. 

Secondary Objective Model constraints
ffirm  Minimum discharge of 39 Mm3 month-1 (15 m3 s-1) at Hale and 

NPF HEPs to guarantee firm energy.
fWR 2.3 Mm3 month-1 (0.83 m3 s-1) urban & 8.1 Mm3 month-1 (3.12 m3

s-1) small-scale irrigation water rights 
festuary 26.4 Mm3 month-1 (10 m3 s-1) at the outlet
fkirua Release, Qout (KS,t)  at Kirua conditioned by Eq. 7.4 for Qin

(KS,t) ≤ 65.0 Mm3 month-1(25 m3 s-1) 

Problem Formulation 

The problem formulation is carried out in two phases. The first phase involves the 
blue water use in the Lower Pangani hydro-system. In this phase, the current demand 
case (base scenario) is used to validate the IHEM model and represents the baseline 
water balance of the Lower Pangani hydro-system. The secondary objectives 
functions are considered as constraints in the base scenario. The secondary objectives 
are removed one by one in subsequent scenarios (Table 7.3).  

Table 7.3: Problem formulations for blue water use in the Lower Pangani hydro-
system. 

Scenario Primary 
objective 

Secondary objectives Remarks 

1  (base) fhydro ffirm, fWR, fKirua, festuary ALL 
2 fhydro fWR, fKirua, festuary No firm energy
3 fhydro ffirm, fKirua, festuary No Water rights
4 fhydro ffirm, fWR, festuary No Kirua 
5 fhydro ffirm, fWR, fKirua No Estuary 

Subsequently, the IHEM model is integrated with the green water use options in the 
upper catchments through their production functions (Table 7.4). The intervention 
for the reduction in soil evaporation (Es) by 15% in supplementary irrigation (mixed 
crops) through water conservation (Qws) is also evaluated with all the objective 
functions (scenario B) and base demand case (scenario C). This is a water saving 
scenario (Qws) in the upper basin. The firm energy secondary objective is minimized 
and the other socio-environmental objectives (water rights and environment) are 
prioritized. 

Table 7.4: Problem formulations for green and blue water use in Pangani Basin. 

Scenario Primary objectives Secondary 
objectives

Remarks 

A fhydro,  fag_I , fag_R ALL All objective functions 
B fhydro,  fag_I , fag_R,  Qws ALL All objective functions plus 

water savings in agric. 
C fhydro,  Qws ALL Base scenario plus water 

saving in agric. 
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7.4 RESULTS AND DISCUSSIONS 
This section provides the results of the optimized scenarios, starting with the present 
demand (base scenario) that is used to validate the simulated results and generate 
the baseline water balance for the Lower Pangani hydro-system. The problem 
formulation scenarios are analyzed and discussed in subsequent sections. 

7.4.1 Model validation 

For scenario 1 (base), the goodness of fit between the observed and simulated water 
levels at NyM reservoir and the discharge at Korogwe (1d14) and the NPF (1d17) 
gauge stations are estimated using the coefficient of determination (R2). The actual 
discharges at the outlet of NyM reservoir (1d8c) were not available for the period of 
analysis. The energy production is also compared to firm energy production and the 
average historical energy production. In addition, the water balance for the system 
was calculated and compared with values obtained from the literature. 

Comparison observed vs simulated discharge and reservoir level 

Fig. 7.4 shows observed and simulated water levels computed by base scenario (1) at 
NyM reservoir under Scenario 1. The convergence of observed and simulated reservoir 
water level occurred after 8 time steps.  The simulated and observed water levels 
after convergence showed a good correlation (R2=0.99).  

 
Fig. 7.4: Observed and simulated water levels in NyM reservoir for the period 2008 - 
2010. 

The simulated discharge and observed discharge at the downstream gauge stations 
1d14 at Korogwe and 1d17 at Mnyuzi also showed reasonable correlations with R2 of 
0.7 and 0.8 respectively (Fig. 7.5).  
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Fig. 7.5: Observed and simulated discharge at a) gauge 1d14 at Korogwe, b) gauge 
1d17 at Mnyuzi for the period 2008 - 2010. 

Station 1d17 is just downstream of Hale HEP where its simulated flow is influenced 
by the high flow requirement of 39 Mm3 month-1 (about 15 m3 s-1) needed to meet the 
firm energy requirements at the HEP. Both gauge stations located downstream of 
Kirua swamp. The lower performance of the model to simulate discharge compared to 
reservoir water level can partially be attributed to uncertainties in discharge 
measurements. Errors in estimating water losses from Kirua swamp and actual water 
abstractions especially during low flows may also have affected the performance, in 
particular during low flows 

Comparison of observed versus simulated energy generation 

The simulated and historical annual energy generation (firm, 5-yr and long-term) for 
each of the hydropower stations are provided and compared in Fig. 7.6. The long 
term historical energy production was available for the period 1985 - 2006 for NyM 
and Hale HEP and 1995 to 2006 for the NPF HEP (PBWO/IUCN, 2009). The 5-year 
historical hydropower was for the period 2002 - 2006 for all HEPs. 

 
Fig. 7.6: Simulated annual energy production compared with firm, avg. 5 yr (2002 - 
2006) and long term avg. for NyM, Hale and NPF Hydropower stations. 
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The simulated hydropower production is higher than the firm energy requirements for 
the HEPs, which is expected. The average long term hydropower is higher than both 
5-yr and the simulated hydropower. This may be caused by declining water inflows 
into the Lower Pangani hydro-system due to increased water use by agriculture 
(PBWO/IUCN, 2007). The simulated hydropower for NyM reservoir shows small 
variance due to the regulated flow at NyM reservoir. High hydropower generation is 
realized in the dry year 2009 in NyM HEP due to increased outflow from NyM 
reservoir, an increase that is explained by the objective function of meeting the firm 
hydropower production by the large capacity HEPs downstream, and a subsequent 
lowering of the water level in NyM reservoir. In Hale and NPF HEPs, the hydropower 
production is higher in 2008 (wet year) due to higher (unregulated) discharge from 
Mkomazi and Luengera tributaries. The variability in energy production in 2008 
(wet), 2009 (dry) and 2010 (average) years is also due to uncontrolled inflows from 
Mkomazi and Luengera tributaries. There is general consistency between the average 
hydropower production over the simulated period (2008 - 2010) with the 5-yr 
historical data (2002 - 2006). There is also consistency in the intra-seasonal trend in 
the hydropower production for the run-of-river Hale and NPF HEPs 

Water balance for Lower Pangani hydro-system 

The simulated evaporation losses at NyM reservoir were estimated at 7.9 m3 s-1, about 
28% of the total inflow (27.8 m3 s-1) into NyM reservoir for the period 2008 - 2010. 
The simulated evaporation is within the upper limit of the ranges of 4 - 8 m3 s-1 
reported in the literature (Turpie et al., 2003; Andersson et al., 2006; PBWO/IUCN, 
2009). The NyM reservoir releases an average of 20 m3 s-1 of which an average of 4 m3 
s-1 was utilized for environmental functions in Kirua swamp, and another 4 m3 s-1 for 
irrigation and municipal water use. Mkomazi and Luengera rivers injected an 
additional 6 m3 s-1 into the Lower Pangani hydro-system, yielding an average total 
flow of 18 m3 s-1 into the Pangani estuary (Fig. 7.7). Overall this shows that the 
model is able to simulate the system credibly and was therefore used for the 
optimisation scenarios. 

 
Fig. 7.7: The water balance (in m3 s-1) for Lower Pangani hydro-system for the period 
2008 - 2010. 

7.4.2 Problem formulation cases for Lower Pangani hydro-system 

Table 7.5 presents the results of the five optimisation scenarios computed by the 
IHEM model based on five scenarios (Table 7.3). In scenario 1, the benefit functions 
of all water users are incorporated in the problem formulation (base scenario) and 
result in hydropower production of 355 GWh yr-1, equivalent to US$ 28 million per 
year in energy revenue.  
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For the other scenarios where certain constraints are removed, hydropower production 
increases, this implies that maximising hydropower production affects other users in 
the basin. These trade-offs are further explained in the following section. 

Table 7.5: Trade-off in hydropower between water users in Lower Pangani hydro-
system. Values in italics indicate years when the firm energy requirement is not met. 
HEP  NyM 

(GWh/yr) 
 Hale 

(GWh/yr) 
NPF
(GWh/yr) 

Total 
Energy Revenue

Cases  2008 2009 2010  2008 2009 2010 2008 2009 2010 GWh/yr US$ Million/yr 

1 (base)  36 41 33  90 61 71 297 201 233 355 28 

2  54 30 23  124 47 57 410 156 188 364 29 

3  50 33 27  128 63 74 420 204 244 416 33 

4  54 31 26  152 61 73 500 201 241 447 36 

5  36 41 33  90 61 71 297 201 233 355 28 

Firm   20   55 201 276 22 

In scenario 2, the firm energy benefit function (ffirm) is removed from the objective 
function. The optimal operating policy maintains a lower head at the NyM reservoir 
to reduce evaporation losses through increased release to the downstream higher 
capacity HEP. The release policy provides more naturalized flow conditions where 
high flows are released during the wet year and low flows during dry years. The 
simulated evaporation loss at NyM reservoir is reduced from 7.9 to 6.7 m3 s-1. 
However, the water uses (losses) at Kirua swamp increase from 4.4 to 4.9 m3 s-1. There 
is a substantial increase in energy production of 165 GWh in year 2008 and a 
reduction of 69 GWh in both 2009 and 2010. The firm energy production is not 
maintained in 2009 and 2010 in Hale and NPF HEPs. In the end, an average annual 
energy production increase by 9 GWh (US$ 1 million) is realized. The firm energy 
requirement maintains moderate flows during drier years which tradeoffs with natural 
flow conditions required by the environment.  

It is noteworthy that the cost for failing to meet the guaranteed firm energy 
production may be higher than the savings realized if emergency thermal systems, 
that have high short run marginal costs, are dispatched. However, if high capacity 
alternative energy sources like geothermal were available, then the hydropower 
production can be optimized within the naturalized flow regime. Examples of re-
optimization techniques on reservoir operation or river restorations have been 
presented by Jacobson and Galat (2008). The re-designed reservoir policy will result 
in high energy production during wet seasons and low energy production during dry 
seasons. Alternatively, the bulk energy prices can be varied seasonally, as for the case 
in Kenya (Kiptala et al., 2010; Hurford and Harou, 2014), and independent providers 
can be invited to supply firm energy from thermal systems on long-term contracts. In 
such a case, the long term marginal cost of energy generation will be much lower. 

Under scenario 3, the benefit function of maintaining water rights for smallholder 
irrigation and urban water use in the Lower Pangani is evaluated. Under this 
scenario, no water is diverted for these uses allowing more flow for HEP production 
at the hydropower stations downstream. The optimal operating policy would also 
maintain a lower water level at NyM due to reduced water rights requirements. The 
relatively small minimum flow requirements allow for flow conditions where higher 
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flows are released during the wet seasons and lower flows during dry seasons. The 
evaporation at NyM reservoir would therefore reduce by 0.8 m3 s-1 which is nearly 
balanced out by increased water uses (0.7 m3 s-1) at the Kirua swamp. In total, the 
energy production would increase by 14 and 47 GWh at Hale and NPF respectively 
mainly during the wet year (2008). There is no change in NyM HEP. The water right 
provision is equivalent to an average of US$ 5 million yr-1 in foregone hydropower 
benefits (smallholder agriculture (US$ 4 million yr-1) and urban water use (US$ 1 
million yr-1)). The water use by smallholder agriculture and urban is in competition 
with hydropower and also with environmental flows.  

In scenario 4, the flow restrictions and water uses at the Kirua swamp of 4 m3 s-1 are 
removed from the multi-objective function of the Pangani hydro-system. The optimal 
release policy at NyM reservoir also maintains a lower reservoir level to minimize 
evaporation losses due to reduced water requirements from Kirua swamp 
downstream. The simulated evaporation losses reduce by 1 m3 s-1 at NyM reservoir to 
yield a total increased average outflow downstream of 5 m3 s-1. The annual energy 
production increased by 92 GWh in average over the period. The Kirua swamp 
therefore has an economic value of US$ 8 million yr-1 in foregone revenue to 
hydropower, using the bulk hydropower tariff of 80 US$ MWh-1. 

The objective function on the minimum environmental requirement of 10 m3 s-1 at the 
Pangani estuary has no effect on the energy production (scenario 5). The high 
discharge requirement (15 m3 s-1) for firm energy at Hale and NPF HEP ensures that 
the minimum flow requirement for the estuary (downstream) is met and in many 
cases even exceeded. The uncontrolled inflows from the Mkomazi and Luengera 
tributaries also provide (and maintain) peak flows during the rainy seasons as 
observed in Fig. 7.5. Any future plans to control the river flows at Mkomazi and 
Luengera should be carefully considered taking into account high flow requirements 
for the mangroves and other ecosystem services at the estuary (de Lacerda et al., 
2002; Alleman and Hester, 2011). For now, the level of high flow requirements for the 
estuary has not been explicitly established. 

7.4.3 Problem formulation for green and blue water use 

In this section, the three water management scenarios on increasing irrigated area, 
enhancing rainfed agriculture and reduced soil evaporation in the upper catchments 
were evaluated with the blue water uses in the Lower Pangani hydro-system. The 
STREAM model provided the hydrological input data into the IHEM model, 
considering all objective functions as used in scenario 1. Table 7.6 presents the 
optimization results. 
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Table 7.6: Green and blue water optimization scenarios in Pangani Basin. Values in 
italics indicate years when the firm energy requirement is not met. 
HEP  NyM  Hale NPF Annual Totals

Energy Revenue Agric.

 2008 2009 2010  2008 2009 2010 2008 2009 2010 GWh US$ 
Million 

US$
Million

Base  36 41 33  90 61 71 297 201 233 355 28 -

A  27 31 25  76 44 59 249 144 194 283 23 55

B  28 32 26  79 49 62 261 160 205 301 24 55
C  44 41 33  104 61 71 342 201 233 376 30 -

In scenario A, the three multi-objective functions for hydropower, irrigated and rain-
fed agriculture are optimized. The optimization model diverts river flow to the total 
potential irrigation area (7,400 ha) for sugarcane and for 36,000 ha of rainfed maize 
(highland crop). The resulting minimum flow is 11 m3 s-1, below 15 m3 s-1 that is re-
quired for firm energy. The water use (losses) at Kirua swamp reduces from 4.4 m3 s-1 
to 3.2 m3 s-1. The reduction (1.2 m3 s-1) represents about 27% of the additional re-
quirements for both sugarcane irrigation and the rainfed system (4.5 m3 s-1). The av-
erage energy production reduces by 72 GWh yr-1. The firm energy requirement for 
Hale and NPF is not met in dry (2009) and average years (2010). In terms of energy 
revenue, a total of US$ 5 million yr-1 is lost which represents an increased cost of US$ 
10 million yr-1 if this power would have to be purchased from thermal sources. The 
revenue loss is much lower than the additional income to agriculture for sugarcane 
(US$ 19 Million yr-1) and rainfed maize (US$ 36 Million yr-1). The revenue for in-
creased sugarcane production is calculated for a sucrose yield of 10 tons ha-1 (su-
crose), farm gate price of 0.6 US$ kg-1 and a relative  cost of production of 58% (Kip-
tala et al., 2016a). The area to be expanded for sugarcane irrigation is currently un-
der grassland/woodlands which has a marginally low productivity, which is here ne-
glected. The increase in transpiration in rainfed systems results in an increased bio-
mass production of 15×103 kg ha-1 yr-1 (produced in the two Masika and Vuli rainy 
seasons). The total revenue was derived from an effective harvest index of 0.35 and 
(net) farm gate price of 0.19 US$ kg-1. It is noted that an additional 9,000 ha of rain-
fed agriculture can still be irrigated before the IHEM model is fully constrained by 
the minimum flow requirements of 10 m3 s-1 at the estuary. 

Fig. 7.8 shows the trade-off analysis among competing primary objectives 
(hydropower, irrigated sugarcane and supplementary irrigated maize) in the upstream 
and downstream catchments of the Pangani River Basin.  
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Fig. 7.8: Trade-offs between hydropower (downstream), agricultural water use 
(upstream) and the outflow (envir. flow) into the Pangani estuary, Scenario A. 

In scenario B, the inflow into the river system is increased by the reduction of soil 
evaporation in the supplementary irrigated area (mixed crops) in the upper catch-
ments. The additional inflow is 27% of the additional water requirements for agricul-
ture. The additional inflow increases the energy production in the HEPs by 18 GWh 
yr-1. The water uses at Kirua swamp slightly increase from scenario A, with a reduc-
tion of 23% to the base scenario. The minimum flow to the estuary also increases 
from 11 m3 s-1 to 12 m3 s-1.  

In scenario C, the optimal policy maximizes hydropower production by maintaining a 
lower reservoir operating level. The lower reservoir operating level reduces evapora-
tion losses by 0.4 m3 s-1 that was balanced by increased water uses (losses) at Kirua 
swamp (due to the increased outflow). In total, the average energy production in-
creased by 21 GWh yr-1 (all during the wet year 2008) resulting in additional reve-
nues of US$ 2 million yr-1 (savings of US$ 4 million yr-1 from thermal sources).  

The increased agricultural water use in the upper catchments reduces benefits from 
hydropower, firm energy and the environment. The analysis shows that agricultural 
water use upstream of NyM reservoir has a higher marginal water value compared to 
hydropower. The marginal water value for the agriculture water use (blue water) is 
0.35 US$ m-3 for irrigated sugarcane and 0.37 US$ m-3 for supplementary irrigated 
maize. This is much higher compared with the accumulated marginal water value of 
0.05 US$ m-3 for hydropower production (0.005 US$ m3 (NyM) + 0.010 US$ m3 
(Hale) + 0.034 US$ m3 (NPF), the water productivity being 0.05, 0.13 and 0.42 KWh 
m-3 for NyM, Hale and NPF respectively). This result is consistent with findings of 
multi objective optimization of water use between hydropower and irrigation in the 
Tana River Basin, Kenya (Kiptala et al., 2010; Hurford and Harou, 2014). 
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7.5 CONCLUSION 
A multi-objective optimization model was developed and applied for the Pangani ba-
sin with a view to understand the trade-offs between all water uses, including green 
water use in the upper catchment. This has been a challenge since most if not all 
published optimization exercises only consider blue water uses. A hydrological model, 
STREAM, provided the hydrological information for green water flows in the upper 
catchments, which together with their economic productivity provided the production 
functions for the IHEM model. The distributed grid based STREAM model was 
linked to the IHEM (node-link) in such a way that all competing water users were in-
tegrated. 
The model could therefore quantify the relationship between competing objectives in-
volving blue water in the main stem of the river basin downstream NyM reservoir, 
and the green water uses in the run-off generating catchment upstream of the reser-
voir. The optimization analysis focused on three primary objective functions: i) hy-
dropower production, ii) supplementary irrigated agriculture, and iii) fully irrigated 
agriculture. The analysis also considered five socio-environmental objectives, and a 
wet, a dry and an average year to represent the varying climate conditions in the ba-
sin.  
The trade-off analyses show that hydropower, environment, urban and agriculture all 
have competing objectives. Firm energy that is guaranteed at 90% reliability main-
tains moderate flow conditions at all times, but competes with the environmental 
flow requirements (high and low flows). Neglecting the flow requirements for Kirua 
swamp resulted in an increase in hydropower production of US$ 8 million yr-1. At the 
estuary, the minimum environmental flow requirements were met as these were lower 
than the demand for firm energy. The high flow conditions, in this location, were pro-
vided and sustained by the uncontrolled inflow from Mkomazi and Luengera rivers. 
Future plans to control the river inflows from Mkomazi/Luengera tributaries should 
consider the environmental high flow requirement at the Pangani estuary, although 
this was not quantified. 
Water saving by reducing soil evaporation losses in irrigated agriculture in the Upper 
Pangani resulted in increased hydropower revenue of US$ 2 million yr-1. This is 
equivalent to 33 US$ ha-1 yr-1 of investment in soil and water conservation in irrigated 
agriculture, a potential for payment for environmental services (PES). The figures 
may double if the saving from expensive thermal energy sources were considered in 
the analysis. The increase water flow also enhanced environmental services in the 
lower catchment such as the observed enhanced water usage in the Kirua swamp.  
As expected, increased water use for agriculture (rainfed maize and irrigated sugar-
cane) resulted in decreasing benefits for hydropower and firm energy. The estimated 
additional benefits for increased agricultural water use (US$ 55 Million yr-1) were 
much higher than the benefits foregone from hydropower (US$ 5-10 Million yr-1). 
However, the reduced flows also affect the downstream ecosystems, whose benefits 
were not quantified in this study. Furthermore, the study showed that improving rain-
fed maize through supplementary irrigation during rainy seasons has a slightly higher 
marginal water value than full scale sugarcane irrigation. 
IHEM model provided the blue water balance for the Lower Pangani Basin and 
showed that the Upper Pangani River Basin contributes 82% of the total blue water. 
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Evaporation losses from the regulating reservoir constitute about 28% of the total in-
flow into the reservoir. With these analyses, the decision makers in the Pangani River 
basin have the information required to decide whether to allocate additional water for 
upstream agricultural development or to trade-off with hydropower subject to the 
water requirements for ecosystem services. Since hydropower is a non-consumptive 
water user, the operating policy of the NyM reservoir could be further optimized for 
the conjunctive use with the environment. This may involve lowering the firm energy 
requirements which can be achieved by reducing dependency on hydropower in the 
river systems during dry periods. Alternative power sources, such as geothermal, and 
alternative institutional arrangements, e.g. through power purchase agreements, 
should be explored. However, this may result in higher energy prices during the dry 
seasons. 
The study showed how this new methodological framework can be used by policy 
makers and stakeholders to identify holistically the impacts and opportunities of vari-
ous water management decisions in the basin. The developed methodology may be 
useful for other closed river basins with green and blue water uses in the upper 
catchment and mainly blue water uses in the lower parts of a basin. 
 

. 



 

 

Chapter 8 

CONCLUSIONS 

Increasing competition over water resources in many river basins urge for increased 
water productivity of both green and blue water. Green and blue water follow distinct 
pathways and are associated with different water use practices. In African savannah’s, 
rainfall-runoff processes are dominant in headwater catchments, while confined flows 
in the main river channels dominate downstream areas. Typically, natural land cover 
and rainfed agriculture dominate the landscape of headwater catchments, whereas 
irrigated agriculture, hydropower and environmental demands are the main water 
uses in the downstream part. Given the increasing demands for both green and blue 
water, the challenge is to build an integrated analytical system for the entire river 
basin, incorporating both upper and lower catchments processes. This would then 
allow for a quantitative assessment of upstream-downstream interdependences that 
can inform the establishment of an optimal management plan at the entire river basin 
scale. This thesis employed a number of approaches – some of which being 
innovations – to generate validated information for the optimal management of a 
heterogeneous, highly utilized and data scarce river basin in Africa. An accurate 
assessment of water availability, water use, water productivity and water value 
informed the identification of basin interdependencies, and allowed the formulation of 
a set of development options and their tradeoffs. Starting with hydrological 
modelling, the water balance of the basin has been verified at different spatial and 
temporal scales. Next, the complex green-blue water continuum has been quantified 
by modifying the structure of the hydrological model STREAM so that it can 
account for blue water contribution (irrigation and groundwater use) to the green 
water supplies. Actual evapotranspiration derived from RS data was a key input used 
to account for the use of blue water from groundwater and streams. Benefits from 
water use, in terms of water productivity, were assessed for both agricultural and 
natural landscapes. A key feature was the inclusion of ecosystem services in economic 
water productivity and their pitfalls in assessment. Lastly, the green and blue water 
uses in the upper catchment together with the predominantly blue water use in the 
lower part of the basin were integrated using an integrated hydro-economic model 
which can simulate water allocation decisions while accounting for ecosystem services 
and/or environmental flows. Although this analytical system has been developed for 
the Pangani River Basin in East Africa, it can be equally applied in river basins in 
the region and in other parts of the world, that have similar characteristics, i.e., 
extensive combined green – blue water use in the headwaters and nationally 
important natural and built infrastructure in the downstream part of the river basins.  
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8.1 ACADEMIC INNOVATION 

8.1.1 Water balance assessment using RS data 

A prerequisite for water resource management is the accurate assessment of water 
fluxes in a river basin. These include both blue water flows in rivers, wetlands and 
aquifers, as well as green water within the unsaturated zone. However, this presents a 
challenge in large, heterogeneous and data scarce river basins. The estimation of 
actual evapotranspiration, which is a major component of the water balance (in 
tropical climates), is not trivial, in particular in heterogeneous landscapes. This study 
employed different satellite measurements to establish the water fluxes in the Pangani 
basin in East Africa, in a spatially explicit manner. 

Due to the high heterogeneity of land use in the Pangani basin, a detailed land use 
map was developed which yielded 16 land use classes that included classes relevant 
for hydrology and water management. The salient hydrological features are: wetlands, 
lakes and urban areas, natural land cover and modified landscapes fields. Different 
land use classes were distinguished using the phenological variability of vegetation, 
i.e. NDVI values at high spatial resolution, which was corroborated by expert 
knowledge of cropping calendar and ground observations. The resultant land use map 
managed to capture small scale informal smallholder irrigation developments that are 
prevalent in the river basin. The land use classification achieved acceptable accuracy 
levels for land use classification at a river basin scale and was consistent with the 
FAO-SYS framework for land suitability based on climate, topography and soil 
factors. 

For each of these land use classes, actual evapotranspiration was computed on an 8-
day timestep for three hydrological years (2008 to 2010). The time step (8-day) was 
chosen to correspond with agricultural water use processes and hydrological processes 
whose timescales are more than 8 days. An advanced interpolation technique was 
used to work around the cloudy pixels. The three hydrological years captured the 
varying weather conditions within the catchments. The actual evaporation estimates 
provided information on the intra-seasonal and inter-seasonal variability of actual 
evaporation for various land use types including the natural environment. The time 
series of actual evapotranspiration is a key boundary condition for hydrological 
modelling and water productivity analysis. 

8.1.2 Modelling of green-blue water interaction and quantifying blue 
water use with a modified STREAM model  

Current approaches to assess the impact of anthropogenic influences on water 
availability fail to account for a large part of the water use in rural Africa, in 
particular, spatially distributed water use such as small scale informal irrigation. In 
addition, estimates of this water use are often simplistic and notoriously inaccurate 
(assumed area, crop type diversity, actual irrigated area, application rate). This 
research therefore applied a novel approach of incorporating actual ET observed from 
satellites to calculate actual water abstraction at pixel scale. The new hydrological 
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model used next to precipitation data, remotely sensed ET and soil moisture as input 
data into the model, decreasing the number of model variables for calibration - thus 
decreasing the problem of model equifinality widely associated with hydrological 
models. Furthermore, two hydrological landscapes (wetlands, hill-slope) that are 
typical in African landscapes were explicitly represented in the model configuration. 
Other hydrological processes such as capillary rise in natural landscapes were 
implicitly considered through the remotely sensed data. Comparing model results 
with observed river flow data validated the model; low flows during dry season were 
particularly well simulated, which is an important achievement when anthropogenic 
activities dominate river flows.  

The modified STREAM model thus quantifies blue water use. The spatial nature of 
the analysis allowed for the assessment or tracking of blue water use at different 
nodes (either gauge station or dummy point) within the catchment. Also excessive 
and unregistered blue water users in the river systems could be identified.  

8.1.3 Mapping ecological production and gross returns from water 
consumed in agricultural and natural landscapes 

Water productivity is a key indicator for assessing water use efficiency for a given 
land use activity. Carbon credits and water yields (P-ET) provide insights into the 
water value society attaches to a certain cultural or natural land use activity. 
Standard Payment for Ecosystem Services (PES) touches also base with water yield, 
prevention of soil erosion and carbon sequestration, among others. It is therefore 
essential to evaluate the water productivity for both agricultural and natural 
landscapes in river basin scale. The methodological approach used combined various 
remote sensing models using Monteith's framework for ecological production. Instead 
of using default MODIS products, the biomass production and water yields were 
computed with the Surface Energy Balance Algorithm for Land (SEBAL) using 
locally calibrated model parameters. Grid biomass production (kg ha-1) was estimated 
and converted into crop yield and amount of carbon sequestered. Gross returns were 
estimated using conversion factors for crop yield, carbon assimilates and market 
prices. 

For the first time through this research, gross return from carbon credits and other 
ecosystem services were included in the concept of Economic Water Productivity 
(EWP). The analysis showed the level of EWP for various land use types and their 
scope for improvement. The EWP when formulated as production functions may be a 
basis for trade off analysis between green water and blue water uses if coupled to a 
hydrological model in a river basin. This could provide the basis for further sustained 
green growth in many African river basins, and demonstrate that spatially explicit 
information on EWP as estimated from earth observation is a vital piece in river 
basin planning and management.  
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8.1.4 Integrated hydro-economic modelling of green-blue water use  

Through the integrated analysis of green and blue water use in a river basin, it has 
become clear that green and blue water use are hydrologically linked, and contributes 
significantly to economic productivity and wellbeing of local livelihoods in river 
basins. However, this is not always reflected in river basin planning and management, 
where national objectives (mainly blue water dominated uses such as hydropower 
production and irrigation) are sometimes prioritised over unregulated local uses of 
water, which typically includes large volumes of green water use. This research used a 
novel approached that linked the hydro-economics of green water use in the upper 
catchments of the Pangani Basin, with the blue water use further downstream in the 
main stem of the river. For the first time, green water use has been included in multi-
objective optimization of water use using an integrated hydro-economic model 
(IHEM). 

The study showed that agricultural water use in the form of supplementary and fully 
irrigated agriculture (upper catchment) achieves high levels of water productivity. It 
therefore competes with all the other water uses downstream, including hydropower. 
Supplementary irrigated agriculture (maize) had a slightly higher marginal value than 
fully irrigated sugarcane. Although the finding is specific to the Pangani basin, it re-
emphases the high water value of using water resource (rainfall) at the starting point 
of the hydrological cycle (Pazvakawambwa and Van der Zaag, 2000; Hoekstra et al., 
2001; Kijne et al., 2009; Bossio et al., 2011). For sustainability of the river basin, 
agricultural water uses need to be balanced with the environmental water 
requirements, that can be used conjunctively for hydropower production. However, 
the firm energy requirements that favours moderate low flow conditions over seasonal 
variability may have to be limited.  

8.2 UNCERTAINTY OF RS DATA FOR WATER RESOURCE 

PLANNING 
RS data was used to provide spatially explicit information on land use, actual 
evaporation and soil moisture and biomass production in the Upper Pangani River 
Basin (13,400 km2). Data sources were mainly MODIS images at a resolution of 250 
m and 8-day interval. The research validated the results with ground observations. 
These validations allow for a better insight in the uncertainty of remotely sensed data 
and their usefulness for water resource management. 

The overall accuracy of the land use map of 85% was consistent with a recent review 
of previous studies that reported an average accuracy of 85% (STD 5%) (Karimi and 
Bastiaanssen, 2015). The accuracy levels for individual classes were generally over 
70%. Low accuracies were observed for land use types with low spatial coverage, 
influenced by the moderate resolution of the satellite images. The Kappa coefficient 
factor that extents the accuracy limit by incorporating off-diagonal elements of the 
error matrices corrects this anomaly.  

For the ET values estimated using SEBAL, the accuracy was inferred from other ET 
estimates since there were no in-situ measurements in the river basin. The ET 
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estimates (250-m) for the entire river basin were found to be comparatively 
significant in variance but not with the mean at 95% confidence level to the global 
MODIS 16 ET (1 km resolution). The statistics between SEBAL ET and global 
MODIS 16 ET showed that the correlations (at monthly scale) were moderately fair 
(R=0.74; R2=0.32; RMSE=34%; MAE=28%). At annual scale the correlations 
(R=0.91; R2=0.70; RMSE=26%; MAE=24%) were better. The MAE range was 
within the 10-30% acceptable range of accuracy for comparative ET observations 
(also see Mu et al., 2011). The closing error of the annual basin water balance was 
12% against the measured discharge (at the outlet). The bias (12%) was within the 
uncertainty (13%) level at 95% confidence interval for the P-ET estimates. The 
spatial distribution of SEBAL ET was consistent with the potential evaporation and 
also the temporal pattern of crop given by the crop coefficient factor (Kc). 

The biomass production estimates relied on the evaporative fraction that is computed 
using SEBAL. The evaporative fraction was used to account for the spatio-temporal 
distribution of soil moisture in the estimation of light use efficiency. The uncertainty 
from the remotely sensed data (soil moisture) would therefore be within the range of 
SEBAL ET estimates. The biomass production was further subject to uncertainty 
from the model calibration parameters, i.e. the maximum light use efficiency and the 
effective harvest index that were calibrated against field data on crop yield. These 
parameters have experimentally verified ranges from the literature that limit the 
extent of errors in the validation process. It is observed that all the validation 
parameters for individual land use types used in this thesis were within these ranges. 
Moreover, the uncertainty of the biomass distribution to the mean was evaluated 
using the non-parametric bootstrapping technique. The uncertainty was low at below 
1% at 95% confidence interval for all land use types. 

A major limitation and challenge in all the RS computation of land use, ET and 
biomass is the persistent cloud cover especially for the land use types in the higher 
elevations around Mt. Kilimanjaro and Mt. Meru. In order to reduce the uncertainty 
associated with this limitation, the clouded pixels were removed and corrected using 
an advanced interpolation technique using neighbouring pixels or unclouded pixels 
from the previous or next available image. This procedure benefitted from the multi-
temporal scales of the MODIS datasets and advanced computational capabilities of 
ERDAS software for which the level of uncertainty was limited. However, the 
uncertainty and the computational effort in the analysis can be eliminated by using 
radar based satellite data that are not affected by cloud cover (Bastiaanssen et al., 
2012). Similarly, uncertainties that resulted from the use of moderate scale images on 
land use types of small coverage could be reduced by using RS data of finer 
resolutions such as from Landsat (30-m). The ET from Landsat can thereafter be up-
scaled to MODIS (250-m) scales (e.g. in Hong et al., 2009). However, this will 
increase considerably the computational effort in the analysis of RS data in a river 
basin as the Upper Pangani (13,400 km2).   

8.3 RIVER BASIN MANAGEMENT IN THE PANGANI BASIN 
The Pangani is a unique river basin with its high topographical range and associated 
range of climate and landscape characteristics. The basin is typically dominated by 
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agriculture (mainly smallholder) in the upstream catchment and hydropower 
production in the downstream. The topological features have influenced the dominant 
hydrological processes in the landscape. Land use change through increasing 
agricultural activity (rainfed and irrigation) has changed the partitioning of green and 
blue water flows. This has significantly reduced the river flow downstream. The river 
basin has become water scarce and water related conflicts have emerged in the river 
basin (Sarmett et al., 2005; Komakech et al., 2011; Kiptala et al., 2013b).  

For effective management of the water resources, one need to know how much water 
is available where and how it is being used. This knowledge is critical for water 
allocation decisions that the Pangani Basin Water Office has to make taking into 
consideration the principles of IWRM and sustainability. In a highly utilized and 
heterogeneous river basin, water availability and water use is highly varied. This 
therefore requires enormous investments in (the installation of) hydro-meteorological 
stations. Operation and maintenance of these hydro-met stations has proven a great 
challenge. For instance, out of 93 rain gauge stations installed over time in the river 
basin, less than 50% are presently operational. Some of the rain gauge stations at 
higher elevation (above the forest line of Mt. Kilimanjaro and Mt. Meru) that receive 
substantially high rainfall are no longer operational. There are also only six climate 
stations in the entire river basin. The climate data is essential for computing actual 
evapotranspiration, the principal water user in the river basin. The river basin 
therefore relies on few stream flow measuring devices to estimate its water uses. The 
Pangani River Basin is therefore a data scarce basin whose existing hydro-met 
measurements cannot be used effectively for water resource planning and 
management. 

The water allocation and management by PBWO is mainly focussed on blue water 
(water in rivers, reservoirs, and wetlands as well as groundwater). The increasing uses 
of both green water and supplementary irrigation influence significantly the 
availability of blue water. This challenge is exacerbated by un-registered (illegal) 
water abstractions along the river canals and springs including excessive groundwater 
abstractions. Notable is the drying up of formerly perennial rivers in the dry seasons 
(Keller et al., 1998). The situation is made much more difficult by the presence of 
over 2000 traditional (furrow) irrigation canals that have a wide coverage with the 
majority been informal (Komakech et al., 2012). The irrigation canals consist of a 
complex and intricate network of furrows and ponds that presents big challenges for 
the estimation of water flows and their use. Commercial large scale agriculture 
(sugarcane) developed more recently has brought many technical and governance 
issues on water allocation especially in relation to the smallholder farmers. The 
usefulness of RS data to account for spatio-temporal water flows for all land uses is 
no longer in doubt in the Pangani basin. 

The evaporative water use in the Upper Pangani River Basin was estimated at 94% 
of the total water resources (precipitation). The spatial P-ET estimates established 
the level of green water use for various land use types including the natural 
environment and provided their relative contribution and or effect to the 
downsatream hydrology. The IHEM model provided the extended blue water balance 
for the Lower Pangani Basin and showed that the Upper Pangani River Basin 
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contributes 82% of the total blue water. The rest is provided by the downstream 
tributaries of Mkomazi and Luengera. There is thus a high degree of dependency of 
the lower catchment on the water resources from the upper catchment. The research 
also showed that the high flow requirement for Hale and NPF hydropower stations 
and the additional blue water flows from the downstream tributaries are currently 
sufficient to cover the minimum environmental flow requirement of the Pangani 
estuary. Investments in interventions to reduce soil evaporation in irrigated 
agriculture (upstream) may result in increased blue water flows downstream to the 
benefit of hydropower and the environment. Lowering of the firm energy production 
will result in a decrease in evaporation losses which is accompanied by seasonalized 
flows that can benefit the environment. The evaporation loss at NyM reservoir is 
presently high at 28% of the total blue water inflows into the reservoir. Further, the 
water uses at the Kirua swamp (20% of inflows) were found to be equivalent to US$ 8 
million yr-1 of foregone hydropower production. These scenarios may create insights 
into the mutual dependencies between different water users in a river basin, which in 
turn may provide an opportunity to promote hydro-solidarity between the (upstream 
and downstream) users and between the various sectors. It also provides a framework 
for assessing tradeoffs in optimizing both green and blue water resources and the 
redistribution of benefits in the river basin. 

The water balance analysis has shown that the river basin is closing. This means that 
any additional use of water may have direct implication for other uses including the 
environment. This requires a change in focus towards water use efficiency and 
ecological integrity. Currently, water allocation is based on water rights entitlement 
and political considerations. In this regard, the water productivity analysis provides a 
basis for re-allocation, opportunities for water saving and possible tradeoffs between 
water users. For instance, there is ample scope and opportunities for improving 
rainfed and supplementary irrigated agriculture which generates a higher economic 
return than the reduction in hydropower. Interestingly, up-scaling of supplementary 
irrigation was found to have a higher marginal water value (blue water) than full 
scale irrigation (large scale sugarcane). This may imply that up-scaling 
supplementary irrigated agriculture in the upper catchment of the Pangani river basin 
not only provides for rural livelihoods and significant economic returns but also has a 
large impact on downstream flows. The reduced inflows downstream thus not only 
result in lower hydropower but also reduced welfare for environmental and their 
associated vital ecosystem services. The relative economic importance of green and 
blue water as well as finding a balance with the environmental requirements should 
therefore not be ignored. Furthermore, the ecological productivity and specifically the 
gross returns from carbon credits and other ecosystem services can be formulated 
with an enhanced PES system and/or other conservation programmes for sustainable 
soil and water conservation programmes in the river system. 

The PBWO can therefore develop with its stakeholders various optimal portfolios 
using the knowledge base and information and tools generated from this thesis to 
effectively manage the scarce water in the river basin. This may enhance water 
resource planning and management in an efficient and sustainable manner as well as 
provide for mechanisms for addressing the interdependence of the various 
stakeholders or water users in the river basin. 
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8.4 LESSONS FOR OTHER RIVER BASINS 
The methodological approach presented in this thesis provides a comprehensive 
research framework to enhance water resource analysis at river basin scale. The 
methodology starts with scientifically derived and verified (validated) biophysical 
data. Since the river basin was expansive, grid based biophysical data were derived 
for the upper catchments that is dominated by green water use. Due to the size of the 
catchment (13,400 km2), a moderate grid size satellite data was utilized at a temporal 
resolution of 8-day. The spatial hydrological link between green and blue water flows 
presented using the modified STREAM model highlighted the importance of 
landscape characteristics. The heterogeneity of the river basin was influenced by the 
high topographical range of over 5,000 m. In essence, an accurate land use and land 
cover map was found to be indispensible in this analysis. In the lower catchments, the 
vector based analysis of the biophysical data was used for the vast semi-arid plateau 
(30,000 km2) dominated by blue water flows along the river channels. The 
methodological framework enabled a basin-wide analysis and integration of green and 
blue water uses for the entire river basin. Such an innovative approach (and methods) 
could be applied in any typical river basin (102 – 105 km2) in the region. 

The biophysical data on ET showed the general importance of green water in tropical 
climates. ET is normally a large component of the hydrological mass balance 
especially in highly utilized river basins. ET is therefore a key parameter in 
hydrological modelling. Recently developed surface energy balance methods that rely 
on satellite and/or airborne sensors have shown great potential in mapping ET. It is 
known that hydrological processes can be more realistically simulated at finer spatial 
and temporal resolutions and have to be locally validated. This therefore increases 
the computational effort and technical know-how on manipulation of RS data to deal 
especially with temporal challenges such as cloud cover. Nevertheless, the challenges 
of persistent cloud cover especially in the temperate climate could stimulate further 
innovate ways of using airborne sensors that are not affected by cloud cover. The high 
technical capacity required to generate ET data could also encourage research 
institutions to provide already processed information (at good levels of accuracy) 
through various public domain platforms for direct use by river basins around the 
world. 

The spatial and temporal variability of water use presents challenges in water 
management between upstream and downstream water users. Validated hydrological 
models running various scenarios of water use for different configurations (or 
portfolios) can provide relevant information that can inform decision making. It was 
in this light that the modified STREAM model was developed to utilize RS validated 
ET data, given the high blue water use by informal supplementary irrigation. The 
development of this model presented a novel way of quantifying blue water use in a 
river basin. The model set-up could also improve hydrological and land surface energy 
simulations in landscapes dominated by blue water use. Such landscapes may include 
wetland ecosystems and landscapes with complex informal irrigation systems such as 
the Pangani. The hydrological model development using a flexible and open platform 
means therefore that the modified STREAM model can be applied in any other river 
basin. 
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The comprehensive economic water productivity assessment that included ecological 
services provided a framework for the sustainable management of natural ecosystems. 
Establishing the correct water value of natural ecosystem services would therefore 
stimulate conservation measures that could safeguard natural capital embodied in the 
environment that has hitherto often been associated with low water productivity. 
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SAMENVATTING  

Het integraal waterbeheer concept (IWRM) heeft als doel om alle relevante elementen 
van water te integreren op een omvattende en holistische manier. Een integraal wa-
terbeheerplan moet oog hebben voor het gecombineerde beheer van blauw en groen 
water in een stroomgebied en hun ruimtelijke en temporele verdeling. Groen en blauw 
water volgen verschillende routes en worden geassocieerd met verschillende waterge-
bruikspraktijken. In sub-Sahara Afrika worden bovenstrooms gelegen landschappen 
gedomineerd door regen-afhankelijke en supplementair-geïrrigeerde gewassen, welke 
voornamelijk aangewezen zijn op groen water. In stroomafwaarts gelegen gebieden is 
het gebruik van blauw water beperkt tot de nabijheid van rivieren, voornamelijk voor 
waterkracht en voor ecosystemen. In de loop van de tijd, en als gevolg van de bevol-
kingsgroei en de toegenomen vraag naar voedsel en energie, is de vraag naar zowel 
groen als blauw water toegenomen. Het toegenomen gebruik van groen water in bo-
venstroomse delen van stroomgebieden heeft vaak geleid tot dalende beschikbaarheid 
van blauw water in benedenstroomse delen. De klassieke aanpak van waterbeheer 
richt zich vaak slechts op blauw water (rivierafvoer). Dit kan worden toegeschreven 
aan beperkte informatie over de temporele en ruimtelijke verdeling van het groene 
water (bodemvocht) in een stroomgebied. Uiteraard heeft dit de ontwikkeling van 
omvattende en duurzame IWRM plannen in dergelijke stroomgebieden belemmerd. 
Om afhankelijkheden tussen bovenstroomse en benedenstroomse gebieden te beoorde-
len, en randvoorwaarden te identificeren voor een optimaal waterbeheersplan op 
stroomgebiedsniveau, is daarom een geïntegreerd analyse-systeem voor het hele 
stroomgebied nodig, waarin zowel het groene als het blauwe water wordt vervat. 

Voor het beheer van de onderlinge afhankelijkheden in een stroomgebied - in het bij-
zonder in geval van waterschaarste – zijn beschikbare kennis en gegevens van funda-
menteel belang. Dit proefschrift heeft verschillende benaderingen - waarvan sommigen 
worden beschouwd als innovaties – toegepast om lokaal gevalideerde informatie te ge-
neren voor een heterogeen, sterk benut en gegevens-schaars stroomgebied in Afrika, 
namelijk de Pangani. Door een nauwkeurige evaluatie van (i) de beschikbaarheid van 
water, (ii) het gebruik van water, (iii) de productiviteit van water, en (iv) de waarde 
van water, konden de onderlinge afhankelijkheden in het stroomgebied, alsmede de 
kwantificering van compromissen en synergiën tussen de verschillende gebruikers van 
groen en blauw water, geïdentificeerd worden. 

Het stroomgebied van de Upper Pangani kan als gesloten worden beschouwd vanwege 
het intensieve gebruik van water, vooral in de landbouw. De vele irrigatiesystemen 
ontwikkeld door kleine boeren bestaan uit complexe en ingewikkelde netwerken van 
aarden kanalen die supplementaire irrigatie leveren aan gewassen die grotendeels re-
genafhankelijk zijn, waarbij regenwater (groen water) en rivierwater (blauw water) 
gecombineerd worden. Er is zeer weinig officiële informatie over het watergebruik en 
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de waterproductiviteit van deze irrigatiesystemen. Het toenemende watergebruik voor 
irrigatie in bovenstroomse gebieden heeft geleid tot externaliteiten en water-
gerelateerde conflicten tussen de verschillende gebruikers in het bekken. Met de tijd 
zijn ook ecosystemen negatief beïnvloed aangezien de meeste zijrivieren niet langer 
water voeren gedurende de droge tijd. 

In semi-aride gebieden als het Upper Pangani stroomgebied vormt de verdamping de 
grootste component van de hydrologische cyclus, terwijl rivierafvoer nauwelijks meer 
is dan 10%. De verdampingsterm is een functie van bodembedekking en landbeheer. 
Informatie over het ruimtelijke landgebruik en de bodembedekking (LULC) is nodig 
om (i) het groen watergebruik per LULC vast te stellen, en (ii) die parameters voor 
een hydrologisch model te karakteriseren welke het groene water met het blauwe wa-
ter verbinden. Door middel van remote sensing werden zestien verschillende LULC 
klassen geïdentificeerd en ingedeeld aan de hand van hun unieke temporele fenologi-
sche signatuur. De methode gebruikte vrij beschikbare satellietgegevens van vegetatie 
van de Moderate-resolution Imaging Spectroradiometer (MODIS). De gegevens heb-
ben een resolutie van 8 dagen (temporeel) en 250 m (ruimtelijk), en betreffen de hy-
drologische jaren van 2009 tot 2010. Automatische en begeleide clustering technieken 
werden gebruikt om verschillende soorten LULC te identificeren op basis van grond 
observaties uit het stroomgebied tijdens de twee regen seizoenen (de korte en lange 
regens). De multi-temporele MODIS data en de lange tijdreeks zorgde voor een juiste 
timing van de veranderingsmomenten in de vegetatie groei. De algemene classificatie 
nauwkeurigheid was 85%, met een samensteller nauwkeurigheid van 83% en een ge-
bruiker nauwkeurigheid van 86% (op 98% betrouwbaarheidsniveau). De individuele 
klassen behaalden relatief goede nauwkeurigheden, groter dan 70%, met uitzondering 
van braakliggende gronden. De kleinere LULC klassen haalden lagere nauwkeurighe-
den. Deze onzekerheid werd toegeschreven aan de matige raster resolutie van MODIS 
(250 m). De onjuistheden werden gecorrigeerd met behulp van de Kappa statistiek 
(K). De LULC klassen waren consistent met de FAO-SYS landgeschiktheidsclassifica-
tie. Lokale databases van kleinschalige landbouw en grootschalige irrigatie plantages 
(suikerriet) werden gebruikt voor additionele controles, en er werden nauwe overeen-
komsten gevonden (74% en 95%, respectievelijk), met een vrij goede geografische 
spreiding. 

Het nauwkeurige schatten van de werkelijke verdamping (ET) voor de 16 verschillen-
de LULC klassen in een regio waar gegevens schaars zijn is een uitdaging. Deze studie 
gebruikte de MODIS satellietgegevens en de Surface Energy Balance Algorithm of 
Land (SEBAL) om de werkelijke ET te schatten op basis van 138 beelden, met 250-m 
en 8-daagse resolutie voor de periode 2008-2010. Er was een goede overeenkomst tus-
sen de SEBAL ET en verschillende validaties. De geschatte ET (open water) voor 
Nyumba ya Mungu (NYM) reservoir had een goede correlatie met de gemeten pan 
verdamping (R2 = 0,91; Root Mean Square Error (RMSE) van minder dan 5%). Een 
absolute relatieve fout van 2% werd gevonden op basis van de gemiddelde jaarlijkse 
waterbalans van het reservoir. De geschatte ET voor de landbouw gebruiksklassen 
waren consistent met de seizoensgebonden variabiliteit van de gewas coëfficiënt (Kc) 
op basis van de Penman-Monteith vergelijking. De ET ramingen voor bergachtige ge-
bieden werden significant onderdrukt op grotere hoogte (boven 2300m), wat overeen-
komt met de verminderde potentiële verdamping in die gebieden. De ET schattingen 
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waren vergelijkbaar met de globale MODIS 16 ET data set wat betreft de variantie 
van de gegevens (significant met 95% betrouwbaarheid), maar niet voor de gemiddel-
de waardes. Deze significantie biedt optimisme maar tegelijkertijd ook voorzichtigheid 
bij het gebruik van de vrij beschikbare globale ET datasets, omdat deze niet lokaal 
zijn gevalideerd. 

Een belangrijke beperking in het afleiden van remote-sensed ET, speciaal voor land-
gebruikstypes op hoger gelegen gebieden in de humide tot sub-humide tropen, is aan-
houdende bewolking. De pixels met bewolking moesten worden gecorrigeerd door in-
terpolatie op basis van de volgende en/of voorgaande beelden. Hoewel er gebruik is 
gemaakt van de multispectrale reeksen van de MODIS beelden, kan deze vulprocedu-
re nog steeds onzekerheden in de uiteindelijke resultaten introduceren. Voor het gehe-
le stroomgebied was de geschatte ET 94% van de totale regenval, wat resulteerde in 
een afvoer bij de uitlaat van het stroomgebied dat 12% verschilde van de gemeten af-
voer. De afwijking (12%) viel binnen de onzekerheidsmarge (13%) bij 95% betrouw-
baarheid. De waterbalans analyse toonde duidelijk aan dat het stroomgebied snel aan 
het sluiten is. Daarom is het belangrijk en tijdig om de waterproductiviteit te verho-
gen door middel van verbeterde waterefficiëntie en water reallocatie in het Upper 
Pangani stroomgebied. 

Het kwantificeren van het hydrologische verband tussen het ruimtelijk gebruik van 
groen (verdamping) en blauw water (rivier afvoer) is van essentieel belang voor de 
beoordeling van onderlinge afhankelijkheden op stroomgebiedsniveau, maar is een 
uitdaging. Fysiek-gebaseerde ruimtelijke modellen worden vaak gebruikt. Maar deze 
modellen vereisen enorme hoeveelheden gegevens, wat kan leiden tot equifinaliteit, 
wat dergelijke modellen minder geschikt maakt voor scenarioanalyses. Bovendien rich-
ten deze modellen zich meestal op natuurlijke processen en houden geen rekening met 
antropogene invloeden. Deze studie heeft een innovatieve methode gebuikt om de 
blauwe en groene waterstromen te kwantificeren. De methode gebruikt ET en bodem-
vocht data die afgeleid zijn van remote-sensing als input in het Spatial Tools for Ri-
ver basin Environmental Analysis and Management (STREAM) model. Om de wijd-
verbreide irrigatiewater onttrekkingen in het model mee te nemen werd een extra 
blauw water component (Qb) opgenomen in het STREAM model om het irrigatiewa-
ter gebruik te kwantificeren. Om model parameter identificatie en kalibratie te ver-
gemakkelijken werden twee hydrologische landschappen (moerassen en heuvels) on-
derscheiden op basis van veldgegevens en topografische kaarten. Het model werd ge-
kalibreerd met afvoergegevens van vijf meetstations, met goede resultaten vooral wat 
betreft de simulatie van episodes van laagwater. De natuurlijke logaritme Nash-
Sutcliffe Efficiency (Ens_ln) van de afvoer waren groter dan 0,6 zowel voor de kali-
bratie en validatie periodes. De Ens_ln coëfficiënt van de afvoer aan het eind van het 
stroomgebied was nog hoger (0,90). De enige uitdaging met het gebruik van remote 
sensing data (met een 8-daagse interval) als input in hydrologische modellen betreffen 
processen met tijdschalen korter dan 8 dagen, zoals interceptie. Dergelijke hydrologi-
sche processen moeten worden berekend buiten het model om, en dragen zo bij aan 
extra onzekerheden. 

Tijdens laagwater verbruikte Qb bijna 50% van het rivierwater in het Upper Pangani 
bekken. Qb voor irrigatie was vergelijkbaar met de veld-gebaseerde netto irrigatie 
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schattingen, met een afwijking van minder dan 20%. Een aantal waterbeheerscena-
rio’s met betrekking tot waterbesparing en de effecten van het toegenomen waterge-
bruik werden verkend. Het gewijzigde STREAM model kan gerepliceerd worden in 
andere landschappen met complexe interacties tussen groen en blauw water. De flexi-
biliteit van het model biedt de mogelijkheid voor een doorlopende verbetering ervan 
zodra meer gegevens beschikbaar komen. De output van het model, met name de in-
formatie over groene en blauwe waterstromen, werd gebruikt als input voor de analy-
se van de waterproductiviteit. 

Hoewel de waterproductiviteit een belangrijke indicator is in het waterbeheer van 
stroomgebieden is het niet direct beschikbaar, in het bijzonder voor natuurlijke land-
schappen. De maatregelen om de waterproductiviteit te verbeteren verschillen ook per 
stroomgebied. Deze studie heeft de waterproductiviteit in de Upper Pangani berekend 
met behulp van een combinatie van remote-sensing modellen. De modellen waren ge-
baseerd op de Monteith’s droge-stof productie methode om de bovengrondse biomassa 
productie in de landbouw en in natuurlijke landschappen te schatten. Het SEBAL al-
goritme werd gebruikt voor het berekenen van de biomassa productie op basis van 
MODIS beelden. De ruimtelijke informatie van biomassa productie werd vervolgens 
omgezet in gewasopbrengst en hoeveelheid vastgelegde koolstof. Deze werden vervol-
gens omgezet in bruto opbrengsten met behulp van marktprijzen. Deze studie incor-
poreerde het bruto rendement van carbon credits en van andere ecosysteemdiensten 
in het concept van de economische waterproductiviteit (EWP). De EWP liet de ni-
veaus van het watergebruik zien; indien geformuleerd als productiefuncties toont het 
de mogelijkheden voor verbeteringen en kan het een trade-off analyse maken op 
stroomgebiedsniveau. De biofysische productiviteit (biomassa en gewasopbrengst) en 
water opbrengst maakte ook inzichtelijk wat de water waarde is die een samenleving 
toekent aan bepaalde natuurlijke landgebruiken. 

Geïrrigeerde suikerriet en rijst behaalden de hoogste waterproductiviteit, zowel biofy-
sisch als economisch - ruim binnen de waardes die in de literatuur genoemd worden. 
De waterproductiviteit van regen-afhankelijke en supplementair-geïrrigeerde bananen 
en maïs vertoonden een grote ruimtelijke variabiliteit en was significant lager dan po-
tentieel. De supplementair-geïrrigeerde gewassen die groen en blauw water combine-
ren behaalden echter een hogere economische productiviteit van blauw water dan vol-
ledig geïrrigeerde gewassen. In situaties van waterschaarste is het daarom verstandig 
om water te alloceren aan supplementair-geïrrigeerde gewassen in plaats van aan vol-
ledig geïrrigeerd gewassen. Dit proefschrift ontwikkelde expliciete analytische relaties 
tussen biomassa productie en ET voor geïrrigeerde, regen-afhankelijke en natuurlijke 
landschappen in het Pangani stroomgebied. Deze relaties, geformuleerd als productie-
functies, toonden het potentieel van het verbeteren van de productiviteit van de re-
gen-afhankelijke en supplementair-geïrrigeerde landbouw in het stroomgebied. De fre-
quentieverdeling van de biomassa productie op pixel-niveau gaf aanvullende bewijs 
voor de verbetering van de waterproductiviteit. 

Een geïntegreerde hydro-economisch model (IHEM) werd ontwikkeld om groen en 
blauw water te integreren voor de meervoudige doelen analyse van het watergebruik 
in het gehele Pangani stroomgebied. De IHEM, die gericht is om het blauw waterge-
bruik te optimaliseren, werd innovatief geformuleerd om rekening te houden met de 
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volledige waterbalans. Dit is gedaan door het opnemen van groen water door middel 
van hun productie functies in de Upper Pangani. De analyse richt zich op drie primai-
re doel functies: i) waterkracht productie, ii) volledig geïrrigeerde landbouw, waarbij 
de water behoefte geheel door blauw water wordt vervuld, en iii) supplementaire irri-
gatie, waar de waterbehoefte van de gewassen wordt vervuld door zowel groene als 
blauw water. De analyse beschouwde ook vijf socio-ecologische doelstellingen die wa-
ren geïnformeerd door de belangrijkste stakeholders en door vakkennis. De resultaten 
toonden aan dat de (supplementair- en volledig geïrrigeerde) landbouw een relatief 
hoge waterproductiviteit behaalt wat concurreert met waterkracht, stedelijke water-
gebruik en ecosystemen. Betrouwbare energie (90% betrouwbaar) heeft een constante 
gematigde rivierafvoer nodig gedurende het gehele jaar; deze concurreert met het mi-
lieu dat zowel hoge als lage rivierafvoeren vereist, afhankelijk van de seizoenen. Deze 
studie vond dat de verbetering van regenafhankelijke maïs door supplementaire irri-
gatie een iets hogere marginale water waarde heeft dan de volledige geïrrigeerde sui-
kerriet. Om duurzaamheid van het stroomgebied te bereiken, moet het watergebruik 
van de landbouw worden afgewogen tegen andere economische, sociale en ecologische 
watergebruiken. Omdat de waterbehoefte voor waterkracht grotendeels non-
consumptief is, kan, althans in theorie, waterkracht productie seizoens-afhankelijk ge-
varieerd worden, zodat het synchroniseert met de water behoefte van het ecosysteem. 

Het IHEM model genereerde de blauwe waterbalans van het Lower Pangani stroom-
gebied en toonde aan dat de Upper Pangani 82% bijdraagt van de totale blauw water 
hoeveelheid. Verdamping van het NyM reservoir bedraagt ongeveer 28% van de totale 
instroom in het reservoir. Het gebruik van water in het Kirua moeras, hoewel beperkt 
vanwege de regulering van de rivierafvoer door het NyM reservoir, vertegenwoordigt 
een waarde van 8 miljoen US$ per jaar aan potentiële waterkracht inkomsten. De 
studie toonde aan dat de minimale water behoefte van het ecosysteem in het Pangani 
estuarium gegarandeerd wordt door de waterbehoefte van de twee waterkrachtcentra-
les niet ver bovenstrooms daarvan. Verder wordt de behoefte van een seizoensgebon-
den hoger debiet in de monding momenteel ondersteund door ongereguleerde afvoeren 
van de Mkomazi en Luengera zijrivieren. De scenario-analyses toonden verschillende 
niveaus van trade-offs tussen concurrerende watergebruikers. Elke maatregel die de 
instroom naar het reservoir verhoogt, of de waterbehoefte benedenstroom verkleint, 
resulteert in een operationeel beheer dat reservoir verdamping minimaliseert en zorgt 
voor een natuurlijker rivierafvoer stroomafwaarts. Investeringen in interventies die de 
niet-productieve verdamping van bodemvocht in de geïrrigeerde gemengde gewassen 
in bovenstroomse gebieden verminderen resulteerde in een verhoogde blauw water in-
stroom in NyM reservoir dat de waterkracht productie zou doen stijgen met 2 miljoen 
US$ per jaar. Dit komt overeen met 33 US$ ha-1 jr-1, dat beschikbaar is voor investe-
ringen in bodem en water conservering, mogelijk in de vorm van betaling voor mili-
eudiensten (PES). De toename van de omzet komt bovenop de niet-gekwantificeerde 
additionele ecosysteemdiensten die zouden voortvloeien uit toegenomen beneden-
stroomse rivierafvoeren. 

Hoewel dit onderzoek duidelijk de voordelen van geïntegreerd hydro-economisch mo-
delleren kon aantonen door het opnemen van groen watergebruik in bovenstroomse 
gebieden en blauw watergebruik benedenstrooms, bleek het afleiden van een nauw-
keurige water waarde voor ecosysteemdiensten, met name voor moerassen, een uitda-
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ging. De waarde van ecosysteemdiensten kunnen worden geïncorporeerd in de niet-
economische productiefuncties (gebruikt als beperkingen in ons model) om zodoende 
een breder scala aan opties en trade-offs voor belanghebbenden en besluitvormers te 
genereren. 
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For integrated water resources management 
both blue and green water resources in a 
river basin and their spatial and temporal 
distribution have to be considered. This is 
because green and blue water uses are 
interdependent. In sub-Saharan Africa, 
the upper landscapes are often dominated 
by rainfed and supplementary irrigated 
agriculture that rely on green water 
resources. Downstream, most blue water 
uses are confined to the river channels, 
mainly for hydropower and the environment. 

Over time and due to population growth and 
increased demands for food and energy, 
water use of both green and blue water has 
increased. This book provides a quantitative 
assessment of green-blue water use and 

their interactions. The book makes a novel 
contribution by developing a hydrological 
model that can quantify not only green but 
also blue water use by many smallholder 
farmers scattered throughout the landscape. 

The book provides an innovative framework 
for mapping ecological productivity where 
gross returns from water consumed in 
agricultural and natural vegetation are 
quantified. The book provides a multi-
objective optimization analysis involving 
green and blue water users, including the 
environment. The book also assesses the 
uncertainty levels of using remote sensing 
data in water resource management at  
river basin scale.

This book is printed on paper 
from sustainably managed 
forests and controlled sources
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