

Delft University of Technology

How to build a good practice software project portfolio?

Huijgens, Hennie; Van Solingen, Rini; Van Deursen, Arie

DOI
10.1145/2591062.2591187
Publication date
2014
Document Version
Accepted author manuscript
Published in
36th International Conference on Software Engineering, ICSE Companion 2014 - Proceedings

Citation (APA)
Huijgens, H., Van Solingen, R., & Van Deursen, A. (2014). How to build a good practice software project
portfolio? In 36th International Conference on Software Engineering, ICSE Companion 2014 - Proceedings:
Software Engineering In Practice Track (SEIP) (Vol. 31-May-2014, pp. 64-73). IEEE.
https://doi.org/10.1145/2591062.2591187
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2591062.2591187
https://doi.org/10.1145/2591062.2591187

Delft University of Technology
Software Engineering Research Group

Technical Report Series

How To Build a Good Practice
Software Project Portfolio?

Hennie Huijgens, Rini van Solingen, and Arie van Deursen

Report TUD-SERG-2013-019

SERG

TUD-SERG-2013-019

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2013, by the authors of this report. Software Engineering Research Group, Department of
Software and Computer Technology, Faculty of Electrical Engineering, Mathematics and Computer Sci-
ence, Delft University of Technology. All rights reserved. No part of this series may be reproduced in any
form or by any means without prior written permission of the authors.

How To Build a Good Practice Software Project Portfolio?
Hennie Huijgens

Delft University of Technology and
Goverdson, Delft, The Netherlands

h.k.m.huijgens@tudelft.nl

Rini van Solingen
Delft University of Technology and

Prowareness, Delft, The Netherlands
d.m.vansolingen@tudelft.nl

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
arie.vandeursen@tudelft.nl

ABSTRACT
Context: What can we learn from historic data that is collected in
three software companies that on a daily basis had to cope with
highly complex project portfolios?
Objective: In this paper we analyze a large dataset, containing
352 finalized software engineering projects, with the goal to dis-
cover what factors affect software project performance, and what
actions can be taken to increase project performance when build-
ing a software project portfolio.
Method: The software projects were classified in four quadrants
of a Cost/Duration matrix: analysis was performed on factors that
were strongly related to two of those quadrants, Good Practices
and Bad Practices. A ranking was performed on the factors based
on statistical significance.
Results: The paper results in an inventory of ‘what factors should
be embraced when building a project portfolio?’ (Success Fac-
tors), and ‘what factors should be avoided when doing so?’ (Fail-
ure Factors).
Conclusion: The major contribution of this paper is that it ana-
lyzes characteristics of best performers and worst performers in
the dataset of software projects, resulting in 7 Success Factors
(a.o. steady heartbeat, a fixed, experienced team, agile (Scrum),
and release-based), and 9 Failure Factors (a.o. once-only project,
dependencies with other systems, technology driven, and rules-
and regulations driven).

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – performance measures,
process metrics, product metrics.

General Terms
Measurement, Economics.

Keywords
Success Factor, Failure Factor, Good Practice, Bad Practice,
Productivity, Time-to-market, Quality, Agile, Learning Cycle.

1. MOTIVATION

1.1 Problem Statement
Growing complexity faces many software engineering companies
nowadays with a portfolio- and project control capability that is
lagging behind with their high IT-expenditure. A trend towards
rapid application development, acceleration of the pace of change
in information technology, in organizations, in competitive coun-
termeasures, and in the environment has caused increasing frus-
tration with heavyweight plans [1]. An answer to this challenge

can be found in a need for instruments and techniques that support
transparency and orchestration of software engineering activities,
showing organizations what they can learn from their best per-
forming projects (good practices), and from their worst perform-
ing projects (bad practices). Especially in complex environments
successful software engineering requires companies to pay special
attention to a learning capability that supports flexible portfolio-
and project management to prevent from decreasing productivity,
increasing time-to-market, and low software quality [2]. However
this problem seems hard to solve. Still many software develop-
ment organizations have enormous difficulties developing reliable
effort estimates that result in on-time and on-budget delivery of
their software products [3], [4]. Many companies have no or lim-
ited historic reference data on their software engineering activities
available [5], [6]. This limits existing solutions on software
estimation to immature and unreliable estimation techniques and
hinders learning. An often-heard goal of continuous improvement
seems searching for the pot of gold at the end of the rainbow.

What can we learn here from historic data that is collected in three
software engineering companies that on a daily basis had to cope
with such highly complex project portfolios?

1.2 Research Objectives
Within the scope of the implementation of several measurement
programs as part of process improvements, a large dataset con-
taining 352 software projects was collected in practice in three
different organizations during a time-span of six years (2008 to
2013). We define the following research question:

What factors affect software project performance, and what ac-
tions can be taken to increase project performance when building
a software project portfolio?

1.3 Context
Data was collected on finalized software engineering projects
within three different companies. The companies – two large
banks (in this paper referred to as ‘B1’ and ‘B2’), and one telecom
provider (referred to as ‘T’) – were, with regard to their software
engineering activities, comparable to each other. The size of the
software project portfolio of the banks was considerably larger
than that of the Telco: The measured yearly throughput of soft-
ware projects for B1 was approximately 10,000 function points
(FPs) [7] [8], for B2 this was approx. 8,000 FPs per year, and T
measured approx. 2,000 FPs per year. However, on a business
domain scale the software engineering activities were equal in
many ways. Software engineering was organized in projects or
releases, different delivery models were adopted, and software
engineering was characterized by a variety of programming lan-
guages and business domains (varying from business intelligence
systems to mobile apps).

In all three companies a comparable and similar approach for
measurement and analysis of software projects was implemented
during the data collection period. A so-called learning-cycle was
implemented: (1) finalized software projects were measured, col-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

SERG How to Build a Good Practice Software Portfolio?

TUD-SERG-2013-019 1

lected in a measurement repository, and analyzed, (2) data of
groups of finalized projects was analyzed on specific trends and
benchmarked with internal and external peer-groups, and (3) fi-
nally trends were incorporated in an estimation process for newly
to be started projects. With regard to step 1 of the learning cycle
the measurement repository included both quantitative project
data (e.g. size, cost, effort, duration, and defects) and qualitative
project data (e.g. reasons named by the project manager that could
explain the projects’ performance).

In this paper we subsequently discuss research design, execution,
analysis, interpretation, related work, and conclusions and future
work.

2. RESEARCH DESIGN
2.1 Approach
There may be a large gap between how different stakeholders, and
researchers, define success and failure of software projects. Simi-
larly to Lindberg [9], we relate success and failure within this
research to better or worse than average cost, effort, and duration
performance. Although, where Lindberg compares to industry, we
posed to focus the study on identifying success and failure factors
of the sample software projects themselves. Every single project
from the sample is compared with the average performance of the
whole repository. The idea behind this is that a focus at identify-
ing projects that performed better than average, and projects that

Table 1. Overview of the measurement repository

Category Type Occurrence N Definition of Project Factors
Organizatio
n ID (ORG)

Nominal 3 352 Identification code of the organization where a project was performed; three
organizations were applicable (number of occurrence between brackets): B1 (206),
B2 (125), T (23).

Project ID Nominal 352 352 Identification code of a project.

Year of Go
Life

Ordinal 6 352 Year when a project was finalized; the following years Go Live were applicable:
2008 (32), 2009 (59), 2010 (81), 2011 (131), 2012 (41), 2013 (10).

Business
Domain
(BD)

Nominal 10 352 Customers business sector; the following BD were applicable: Finance & Risk (54),
Internet & Mobile (54), Payments (50), Client & Account Management (incl. CRM
systems) (46), Savings & Loans (40), Organization (incl. HRM) (31), Call Centre
Solutions (21), Mortgages (21), Data warehouse & BI (18), Front Office Solutions
(17).

Primary
Programmin
g Language
(PPL)

Nominal 21 352 Primary used programming language; the following PPL were applicable: JAVA
(154), .NET (59), COBOL (55), ORACLE (29), SQL (9), 3GL (8, unknown was
what specific languages were applicable here), Visual Basic (6), RPG (6), FOCUS
(5), PowerBuilder (5), PRISMA (4), MAESTRO (3). In the analysis 4th Generation
(1), PL1 (1), JSP (1), C++ (1), Clipper (1), Document (1), PL/SQL (1), Siebel (1) and
Package (1, unknown what specific language was applicable) were referred at as
Other.

Delivery
Model
(DM)

Nominal 2 352 Classification of the used delivery model; two DM were applicable: Structured (e.g.
Waterfall) (307), and Agile (Scrum) (45). One project reported as DM RUP is
included in the analysis of Structured.

Developme
nt Class
(DC)

Nominal 4 352 Classification of the development; the following DC were applicable: New
development (173), Major enhancement (25-75% new) (124), Minor enhancement
(5-25% new) (27), Conversion (28).

Project
Keyword
(KW)

Nominal 20 351 Characteristics on a specific project (multiple keywords could be mapped on one
project, on one project no keyword was mapped); the following keywords were
applicable: Single-application (270), Business driven (150), Release-based (one
application) (144), Once-only project (122), Phased project (part of program) (65),
Fixed, experienced team (62),), Technology driven (58), Steady heartbeat (49),
Dependencies with other systems (41), Migration (35), Rules & Regulations driven
(33), Multi-application release (21), Many team changes, inexperienced team (17),
Package with customization (16), Legacy (15), Security (14), Pilot; Proof of Concept
(10), Bad relation with external supplier (9), New technology, framework solution
(3), Package off-the-shelf (1).

Measure Type Occurrence* N For every project in the repository the measurements indicated in the table
below are inventoried.

Size (FP) Ratio - 352 Size of a project in Function Points (FPs).

Duration Ratio - 352 Duration of a project in Months; measured from the start of Project Initiation to
(technical) Go Live.

Cost Ratio - 352 Cost of a project in Euros; measured from the start of Project Initiation to (technical)
Go Live.

Effort Ratio - 352 Effort spent in a project in Person Hours (PHRs); measured from the start of Project
Initiation to (technical) Go Live.

Defects Ratio - 172 The number of errors or faults found in a project from System Integration Test to
(technical) Go Live. Not for all projects defects were administrated; for 172 projects
defects info was recorded in the repository.

*No occurrences are indicated for the 5 Measures, due to the fact that these are different for every measured project.

How to Build a Good Practice Software Portfolio? SERG

2 TUD-SERG-2013-019

performed worse than average, might help companies to realize
their ultimate goal of continuous improvement. The refined re-
search objectives of this study are to identify factors that are in-
strumental in software project success or failure. Following from
that, we analyze actions that help to improve the performance of
such projects. In the scope of this study a performance-rating
‘better than others’ must be read as better than the average per-
formance of the whole sample. ‘Worse than others’ must be read
as worse than the average performance of the whole sample.

2.2 Design
The strategy for this research can be defined as a data analysis
project. We did not study individual projects in our sample, but
the primary author collected and maintained the majority of the
projects in the measurement repository. A minority of the projects
was collected by third parties. Our goal was to explore the perfor-
mance of finalized software projects and identify key success and
failure factors in order to build a Good Practice Project Portfolio.
Our study proposition was twofold. First, we hypothesized that
within the repository good performers and bad performers can be
distinguished in a quantitative way. Second, we expected that the
qualitative information in the repository gives valuable, additional
information on success and failure of the projects and on software
engineering projects in general.

2.3 The Measurement Repository
Table 1 gives an overview of the measurement repository, includ-
ing the different aspects that are analyzed in our research. All data
in the repository was collected before we started our research, and
only with practical analysis purposes in mind. All data is about
finalized projects: the dataset does not hold any data on prema-
turely stopped or failed projects. All projects are related to solu-
tion delivery, i.e. an information system was modified or com-
pletely new designed. The dataset contains software engineering
projects, which in some cases contain an infrastructure component
or an implementation of middleware: no full infrastructure or
middleware projects are included in the repository. With regard to
our research, the dataset is where possible and applicable, dis-
cussed with the measurement team that was responsible for the
collection. For the research paper all available data in the reposi-
tory has been used; no deviations or outliers have been removed
from the dataset.

The repository contains both quantitative data (e.g. ratios on size,
duration, and cost), and qualitative data (e.g. applicable key-
words). The repository holds data of 352 software engineering
projects carried out in three companies during a period from 2008
to 2013. The projects represent a total amount spent of 266M
Euro. Project cost range from 12K Euro to 6.8M Euro. The sum of
function points across projects in the repository is 91,105 FPs;
ranging from projects with a size of 5 FPs to 4,600 FPs. The pro-
ject duration ranges from 0.9 Months to 26.8 Months.

Qualitative data is recorded for the following research categories:

• Business Domain (BD);
• Primary Programming Language (PPL);
• Organization (ORG);
• Delivery Model (DM);
• Development Class (DC);
• Size Category (SC), and;
• Project Keyword (PK).

Within these 7 research categories are in total 56 project factors
inventoried in the repository (see Table 1 for an overview).

For all inventoried projects size is measured in Function Points
(FPs). Function Point Analysis (FPA) has been performed either
by an expert member of a measurement team or an external certi-
fied FPA-specialist, according to ISO-standardized functional size
measurement (FSM) methods [8] [7]. FPA was performed based
on sets of final project documentation that usually were delivered
by the project manager. All projects were collected and analyzed
according to the so-called SEI Core Metrics, a standard set of
process-based software engineering metrics [10] [11]. Project
duration was measured in a number of months from the start of
the project initiation to technical Go Live. Effort was measured in
hours, although, measurement specialists that were responsible for
the data collection reported that data quality with regard to effort
was low, especially where (globally distributed) external suppliers
were involved in a project. Because of that we decided to use both
effort and cost data for analyzing purposes. Project cost – in this
case all project related cost excluding investments (e.g. software
license costs) - were recorded in Euros in the measurement repos-
itory. Besides that for a limited set of projects (N = 172) the num-
ber of defects was recorded.

2.4 Analysis procedure
All software projects in the measurement repository are analyzed
from a portfolio point of view, meaning that we were interested in
particular in the mutual coherence between the measured projects.
We perform the analysis of the portfolio (the measurement repos-
itory) in four steps:

1. First, we analyze the overall average performance of all pro-
jects in the repository with regard to project size, project cost,
and project duration, measured in function points, euros, and
months, respectively.

2. Subsequently, we analyze what projects performed as a good
practice, and what projects did perform as a bad practice. In
the context of our research a project is assessed as a good
practice when the performance on both cost and duration is
better than the average cost and duration corrected for the ap-
plicable project size. A project is assessed as a bad practice
when the performance on both cost and duration is worse than
the average cost and duration again correct for the project
size. To do so we classify the projects in a Cost/Duration Ma-
trix (see Figure 2). We challenge the project performance
exclusively against the performance of the whole sample (in-
ternal benchmarking). We compare the outcome of our analy-
sis with other studies in Section 6 on Related Work.

3. Once all projects are classified in the Cost/Duration Matrix,
we analyze how the 56 project factors (as defined Table 1) are
related to the four quadrants of the matrix. This analysis re-
sults in a percentage based on number of projects per quadrant
for every project factor and a percentage based on cost per
quadrant for every factor. We assess the outcome of the analy-
sis by calculating the significance of both outcomes (a range
of percentages per quadrant based on number of projects, ver-
sus a range of percentages per quadrant based on project cost),
by performing a chi-square test. An example: for the Primary
programming Language (PPL) ORACLE 29 projects are
measured, of which 26 small releases (measured in cost and
size) score as a Good Practice. Although, when assessed based
on project cost it shows that 3 large projects (in size and cost)
score as a Bad Practice. This leads to an indistinct result that
from a number of project point of view PPL ORACLE scores
high in Good Practice, and from a cost point of view it scores

SERG How to Build a Good Practice Software Portfolio?

TUD-SERG-2013-019 3

high in Bad Practice. In the further analysis factors with these
kinds of indistinct outcomes will be excluded.

4. We identify factors that are strongly related for the composi-
tion of software engineering project portfolios, by analyzing
specific subsets per research aspect. In other words: ‘What
factors should be embraced when composing a project portfo-
lio?’ and ‘What factors should be avoided when doing so?’
For this analysis we define a research aspect to be ‘strongly
related’ when the percentage Good Practice or Bad Practice
was 50% or more.

Once an inventory of strongly related factors is finalized we test
for each of them whether it indeed affects the probability that a
project ends up as a Good or Bad Practice. To that end, for each
strongly related factor F, we generate a null and alternative hy-
pothesis:

• H(F, 0): Factor F does not influence good (or bad) practice;
• H(F, 1): Factor F influences good (or bad) practice.

To test these hypotheses, we use the binomial distribution to esti-
mate the chance that our actual observation takes place under the
null hypothesis, as follows.

Let n be the total number of projects in the repository. Let prob(F,
n) be the proportion of projects for which F holds in n, and let k
be the number of good (bad) practice projects in which F holds.
Then p is given by the binomial distribution as follows:

p = (n over k) * prob(F,n)^k (1 - prob(F,n))^(n-k)

We reject the null hypothesis in favor of the alternative hypothesis
if the significance p is below 0.05.

3. EXECUTION
3.1 Distribution of the Sample
The distribution of the dataset is described as a positively skewed
distribution, or one whose elongated tail extends to the right end
of the range. The mean duration in the sample is 8.7 Months,
while the median duration is 8.0 Months (min 0.9 Months, max
26.8 Months). The mean project cost is EUR 750,777, while the
median project cost is EUR 459,150 (min EUR 12,233, max EUR
6,802,466). The mean project size is 259 FPs; the median project
size is 147 FPs (min 5 FPs, max 4,600 FPs).

Although due to the positively skewed distribution analysis based
on the median (instead of the mean) might be preferable (the ex-
pectation is that outliers will interfere the outcome less), we use
the mean in our analysis of factors. After performing both anal-
yses we found, except for some small differences in numbers and
percentages, no differences in the outcome of the study (Success
and Failure Factors). We assume the Central Limit Theorem to be
applicable in this case.

4. ANALYSIS
4.1 Overall Performance Analysis
We analyze the overall weighted average performance, with pro-
ject size (FPs) as weighting factor, of all projects in the repository
with regard to project size, project cost, and project duration. For
this purpose we calculate three Performance Indicators:

1. Productivity (PROD); expressed in cost per size unit
(EUR/FP) and size unit per hour (FP/HR);

2. Time-to-Market (TTM); expressed in project calendar days
per size unit (Days/FP);

3. Process Quality (PQ); expressed in quality of the process per
size unit (Defects/FP).

In Table 2 the values of these indicators are inventoried. In order
to get more insight in the effects of economy of scale, we divided
the sample in four size categories. The used bins, size categories
of 200 FP each, all projects larger than 600 FPs are considered
large, are commonly used as a measure for project size in two of
the applicable companies. Table 2 gives an overview of the
weighted average scores per size category within the measurement
repository with regard to the Performance Indicators. As the table
shows economy of scale does play an important role here: the
performance of the projects in the repository, measured in
Productivity, Time-to-Market, and Process Quality, is related to
the size of a project. The larger the project; the better the perfor-
mance on average is in terms of time, money, and quality. The
table further shows that most projects in the repository could be
categorized as small projects (62% of the projects are smaller than
200 FP).

The analysis shows a remarkable fact: while on the one hand me-
dium sized projects show the best performance in terms of time,
money, and quality, on the other hand companies give preference
to build their portfolio on small or small medium sized projects.
An often witnessed adage that ‘small projects do not fail while
large projects often do’ might play a role here. An interesting
side-effect of the observation is that nowadays software compa-
nies, in an attempt to become more agile, tend to opt for small
releases (however this is not always the case: our sample holds
two large Scrum releases of resp. 1,067 FPs and 4,600 FPs). Yet
maybe active steering on economy of scale can be an equally
effective – or even more effective – improvement strategy for
software companies. We did not study this side-effect; however
future research on the background of economy of scale versus
agile development methods might help software companies to find
an optimum on project size when building a portfolio.

4.2 The Cost/Duration Matrix
As a second step in the analysis all projects from the repository
are classified in the four quadrants of a Cost/Duration Matrix, by
combining two Plotter Charts (see Figure 1):

1. A chart (left in Figure 1) where all projects from the reposi-
tory (N = 352) are plotted in Size (FP) versus Duration
(Months). This plotter chart indicates what projects score be-
low the average trend line (M = 7.995, SD = 5.089, r2 = 0.21)
with regard to project duration, meaning the project duration

Table 2. Average Performance per Size Category.

Performance
Indicator SP SMP LMP LP Overall

PROD (EUR/FP) 4,364 3,395 2,508 2,111 2,929

PROD (FP/HR) 0.024 0.034 0.045 0.047 0.037

TTM (Days/FP 2.74 1.03 0.75 0.38 1.08

PQ (Defects/FP) 0.20 0.13 0.13 0.21 0.18

Percentage in Sample 62% 19% 10% 9% 100%
Explanation of abbreviations: SP = Small Projects (<200 FP); SMP = Small Medium

Projects (201-400 FP); LMP = Large Medium Projects (401-600 FP); LP = Large
Projects (>601 FP); PROD = Productivity in resp. Euros per FP and FP per hour;

TTM = Time-to-Market in Days per FP; PQ = Process Quality in Defects/ FP. The
indicators are calculated as weighted average, with Size as weighting factor (e.g.

Cost (Euros) divided by Size (FP), instead of number of projects as weighting factor.

How to Build a Good Practice Software Portfolio? SERG

4 TUD-SERG-2013-019

is shorter than average, and what projects score above the av-
erage trend line, meaning the project duration is longer than
average.

2. A chart (right in Figure 1) where all projects from the reposi-
tory (N = 352) are plotted in Size (FP) versus Cost (Euros).
This plotter chart indicates what projects score below the av-
erage trend line (M = 750777, SD = 1019949, r2 = 0.56) with
regard to project cost, meaning the project cost are less than
average, and what projects score above the average trend line,
meaning the project cost are higher than average.

For each project the measure of deviation from the average trend
line is calculated and expressed in a percentage; negative when
below the average trend line, positive when above the trend line.
Based on this percentage all projects from the repository are plot-
ted in a matrix, resulting in four quadrants. Each quadrant is char-
acterized by the measure of negative or positive deviation from
the average trend (see Figure 2).

Table 3 gives an inventory of the most important performance
indicators with regard to the four Cost/Duration Quadrants. The
table clearly indicates that projects that score as Good Practice on
average show the best Productivity, Time-to-Market, and Process
Quality of all four quadrants. And for Bad Practices these
performance indicators are the lowest of all four quadrants. The
cost of a FP is for example for a Bad Practice as much as four
times higher than the average cost for a FP of a Good Practice.

4.3 Analysis of factors
Once all projects have been classified in the Cost/Duration
Matrix, we analyze how the 56 project factors are related to the
four quadrants of this matrix (respective Good Practice, Bad
Practice, Cost over Time, and Time over Cost). Two different
perspectives are analyzed: the distribution over the four quadrants
per number of projects and the distribution over the four quadrants

based on project cost. In order to find significant differences be-
tween the two perspectives (i.e. number of projects and project
cost) we use the chi-square test. After removal of non-significant
results we base the interpretation at the percentage number of
projects per Cost/Duration Quadrant; resulting in an average per-
centage per quadrant for all 56 research aspects. A summary of
the total analysis, including the result of the chi-square test, is
established in the appendix of the accompanying technical report
[12].

Figure 1. Two plotter charts representing Size (FP) versus Duration (Months) and Size (FP) versus Project Cost (Euros).

Figure 2. Cost/Duration Matrix.

Explanation of the four quadrants in the Cost/Duration Matrix above:

Good Practice (GP) (upper right): This quadrant shows projects that scored
better than the average of the total repository for both cost and duration.

Cost over Time (CoT) (bottom right): In this quadrant projects are reported
that scored better than the average of the total repository for cost, yet
worse than average for duration.

Time over Cost (ToC) (upper left): In this quadrant projects are plotted
that scored better than the average of the total repository for duration,
however worse than average for project cost.

Bad Practice (BP) (bottom left): This quadrant holds projects that scored
worse than the average of the total repository for both cost and duration.

Table 3. Average Performance per Cost/Duration Quadrant.

Performance Indicator GP CoT ToC BP

PROD (EUR/FP) 1,285 1,448 3,834 5,285

PROD (FP/HR) 0.082 0.064 0.028 0.021

TTM (Days/FP) 0.64 0.92 0.75 1.77

PQ (Defects/FP) 0.06 0.20 0.19 0.27

Number in Sample 114 55 51 131

SERG How to Build a Good Practice Software Portfolio?

TUD-SERG-2013-019 5

4.4 Success and Failure Factors
As a fourth and last step we identify specific success factors and
failure factors for the composition of software engineering project
portfolios, by analyzing how the scores of the different research
aspects relate to the Cost/Duration Quadrants. We identify what
aspects are strongly related (50% or more) to a high percentage of
Good Practice and what aspects are strongly related (50% or
more) to a high percentage of Bad Practice.

5. EVALUATION
In this section we evaluate results and implications of the study.
Analysis results in an inventory of factors that are strongly related
to a high percentage of Good Practice (also referred at as Success
Factors) and factors that are strongly related to a high percentage
of Bad Practice (Failure Factors). To create better insight in the
measure of modification of the factors, both Success and Failure
Factors are classified into categories of factors that are IT-organi-
zational, business-organizational, and factors that are primarily
technical. In total 10 research aspects were found to be strongly
related to Good Practice (Success Factors), and 13 research as-
pects strongly related to Bad Practice (Failure Factors). Besides
that we found 1 factor that is strongly related to a high percentage
of Cost over Time, and 2 factors that could be related to a high
percentage of Time over Cost.

5.1.1 Factors excluded from the inventory
In order to find significant differences between the two perspec-
tives (i.e. number of projects and project cost) we use the chi-
square test. We have found a number of significant differences
between the two perspectives: 8 out of 56 factors are excluded
from the interpretation. One factor, KW Package off-the-shelf
(without customization), scores as related to a high percentage of
Good Practice; however only one such project was in the sample.
With regard to 6 factors we found a low significance between the
percentages GP, CoT, ToC, and BP, measured on number of pro-
jects and the percentages measured on project cost (χ2 of lower
than 5). These 6 excluded factors are:

• PPL Oracle, χ2(1, N = 29) = 0.38, p = .00.
• BD Finance & Risk, χ2(1, N = 54) = 3.27, p = .00.
• PPL RPG, χ2(1, N = 6) = 2.68, p = .18.
• KW Phased project, χ2(1, N = 65) = 4.26, p = .05.
• DC Minor Enhancement, χ2(1, N = 27) = 2.78, p = .04.
• PPL 3GL, χ2(1, N = 8) = 3.18, p = .19.

Two of these factors, PPL ORACLE (86% GP based on number
of projects) and BD Finance & Risk (69% GP based on number of
projects) both score as factors that are strongly related to a high
percentage of Good Practice, for which a remark is in place. PPL
ORACLE scores with a relation to a high percentage of Good
Practice when looked upon from number of projects (86%), how-
ever it also has a high percentage of Bad Practice when looked
upon from project cost (73%). This effect is caused by the fact
that a sample of 29 PPL ORACLE projects is analysed, including
26 very well performing small releases belonging to two applica-
tions [13]). The other three medium sized PPL ORACLE projects
did not perform well; two score as a Bad Practice, and one scores
in the Time over Cost quadrant, resulting in a low χ2-score. This
also affects the score for BD Finance & Risk, as all 26 good per-
forming projects are performed within this domain, including one
medium sized badly performing project that influences the score
with regard to project cost, again leading to a low χ2-value.

Finally a factor that is excluded from the inventory is the category
PPL Other: representing a collection of 9 primary programming
languages that were recorded for only one project each in the
repository.

5.1.2 Factors strongly related to Good Practice
We identified 10 factors that were strongly related to a high per-
centage of Good Practice:

5.1.3 Success Factors for Software Projects
After testing for statistical significance we found that of those 10
factors 7 satisfied the alternative hypothesis (H1) (see Figure 3). 4
factors of these 7 are tested to be strongly significant (p < 0.01) to
influencing project success (high probability to end up as a Good
Practice), and due to that can be specified as strongly significant
Success Factors for Software Projects (ranking based on proba-
bility of success):

1. Steady Heartbeat;
2. Fixed, experienced team;
3. Agile (Scrum);
4. Release-based (one application).

It is likely that these four strongly significant Success Factors are
related to each other, since release-based working, a steady heart-
beat, and a fixed, experienced team, are in fact preconditions of an
agile (Scrum) way of working. However keep in mind that not all
projects where factor 1, 2, or 4 was applicable used an agile deliv-
ery model. In fact all types of projects can adopt these Success
Factors, without opting for a specific delivery model. The prom-
ising idea behind these four Success Factors is that they all can be
implemented relatively easy and fast in any software engineering
company: no big organizational or technical changes are needed
to start working according to these Success Factors. In a way an
organization can decide to start working this way by tomorrow.

Besides these four strongly significant Success Factors, we found
out of the group of 7 factors that were strongly related to Good
Practice, 3 factors with a significant probability (p < 0.05) to per-
form as a Good Practice (ranking based on probability):

5. Business Domain Data Warehouse & BI;
6. Business Domain Organization;
7. Programming Language Visual Basic.

Table 4. Overview of factors strongly related to Good Practice.
Project Factor % GP N p

PPL Visual Basic 83 6 .03

PPL FOCUS 80 5 .06

KW Steady heartbeat 71 49 .00

KW Fixed, experienced team 66 62 .00

BD Data Warehouse & BI 61 18 .02

PPL PowerBuilder 60 5 .14

DM Agile (Scrum) 56 45 .00

PPL SQL 56 9 .10

BD Organization 52 31 .02

KW Release-based (one application) 50 144 .00

How to Build a Good Practice Software Portfolio? SERG

6 TUD-SERG-2013-019

One could argue that a difference is applicable with regard to the
three Success Factors above with the Success Factors 1 to 4 on the
fact that (where 1 to 4 seems relatively easy to implement) 5 to 7
are more difficult to change. A software company cannot simply
change its business organization structure overnight, and opting
for another programming language asks for a more long term ap-
proach. As an example we do see implementations in practice
where a company actively builds its application portfolio on a
limited number of programming languages, however in many
cases the reason behind such an improvement strategy lies in
steering on shortage versus availability of language-specific de-
velopers (avoiding of high labor cost) instead of implementing
continuous performance improvement.

Although we found a strong significance for PPL Visual Basic a
remark is in place: 6 projects were analyzed of which 5 scored as
Good Practice and one as Cost over Time. The projects took place
in two different companies and varied in size from 27 to 586 FPs.

5.1.4 Factors strongly related to Bad Practice
We identified 13 factors that were strongly related to a high per-
centage of Bad Practice:

5.1.5 Failure Factors for Software Projects
After testing for statistical significance we found that of those 13
factors 9 satisfied the alternative hypothesis (H1) (see Figure 4). 4
factors of these 9 are tested to be strongly significant (p < 0.01) to
influencing project failure (high probability to end up as a Bad
Practice), and due to that can be specified as strongly significant

Failure Factors for Software Projects (ranking based on probabil-
ity of failure):

1. Rules & Regulations driven;
2. Dependencies with other systems;
3. Technology driven;
4. Once-only project.

An interesting relation can be assumed here between the strongly
significant Success Factor Release-based, and the strongly signifi-
cant Failure Factor Once-only project. Although our research does
not show, we assume that starting up a once-only project, includ-
ing having to do things for the first time, and for one project only,
leads to a high probability of ending in between Bad Practice. On
the other hand the repeating character of release-based working,
including the effect of learning on-the-job and creating an experi-
enced team, creates a high probability to end up as a Good Prac-
tice.

Next to these four strongly significant Failure Factors, we found
that 5 factors from the group of strongly related to a high percent-
age of Bad Practice showed a significant (p < 0.05) probability to
perform as a Bad Practice (ranking based on probability of fail-
ure):

5. Security;
6. Many team changes, inexperienced team;
7. Business Domain Mortgages;
8. Migration;
9. Business Domain Client and Account Management.

5.1.6 Factors related to CoT and ToC
We did not find any factors that were strongly related to a high
percentage of Cost over Time (cost lower than average, duration
longer than average) or Time over Cost (cost higher than average,
duration shorter than average) that where significant (p < 0.05) for
respectively CoT or ToC.

5.2 Discussion
In this section we discuss the most important limitations with
regard to the study. Owing to the fact that the data of software
engineering projects that is used for the research was collected in
a practical setting and primary for practical purposes, this paper
must emphatically been seen as the result of analysis that was
performed on an existing measurement repository. As a conse-
quence of that we had to cope with the data that was available: no
additional data was to be collected at a later stage. The dataset
only contained data of finalized (successful) projects; no data of
prematurely stopped or failed projects was available. In particular
for the identification of Bad Practices, the study of failing projects
will be relevant.

Table 5. Overview of factors strongly related to Bad Practice.

Project Factor % BP N p

KW Security 71 14 .02

KW Many team changes, inexperienced team 71 17 .01

BD Mortgages 67 21 .01

KW Bad relation with external supplier 67 9 .07

KW New technology, Framework solution 67 3 .21

KW Rules & Regulations driven 64 33 .01

KW Dependencies with other systems 63 41 .00

KW Legacy 60 15 .05

KW Migration 57 35 .02

KW Technology driven 57 58 .00

BD Client & Account Management 54 46 .01

KW Once-only project 52 122 .00

KW Pilot, Proof of Concept 50 10 .15

Figure 3. Overview of Success Factors.

Figure 4. Overview of Failure Factors.

SERG How to Build a Good Practice Software Portfolio?

TUD-SERG-2013-019 7

5.3 Interferences
Analysis of the performance of the separate organizations showed
that Organization itself was not a distinguishing factor that could
be strongly related to either a high percentage of Good Practice or
Bad Practice. We assume that the results of our research general-
ize given this finding, in combination with the fact that our re-
search included three different software companies.

6. RELATED WORK
In the following, we discuss the contribution of our study in the
context of earlier research. Much has been written on identifica-
tion of success and failure factors for software engineering, in
many cases with reference to software process improvement
(SPI), a popular process-based approach to delivering improve-
ments in software products from the 80s [14]. Reel [15] argues
that in software, more “advanced” technologies are far less critical
to improving practice than five essential factors to managing a
successful software project: start on the right foot, maintain mo-
mentum, track progress, make smart decisions, and institutionalize
post-mortem analyses.

Later research seems to focus more at process specific factors.
Dybå [16] did find strong support for SPI success to be positively
associated with business orientation, employee participation, con-
cern for measurement, and exploitation of existing knowledge,
and partial support for SPI success to be positively associated with
involved leadership and exploration of new knowledge. In another
study Dybå [17] showed that small organizations reported that
they implement SPI elements as effectively as large organizations,
and in turn, achieve high organizational performance. Niazi et al.
[18] identified seven factors that are generally considered critical
for successfully implementing SPI: higher management support,
training, awareness, allocation of resources, staff involvement,
experienced staff and defined SPI implementation methodology.
Rainer et al. [19] found four factors (reviews, standards and
procedures, training and mentoring, and experienced staff) that
practitioners generally considered had a major impact on success-
fully implementing SPI, and a further four factors (internal leader-
ship, inspections, executive support and internal process owner-
ship) that the more mature companies considered had a major
impact on successfully implementing SPI.

In the 90s more advanced process improvement models such as
CMMI, and ISO’s SPICE were introduced [20], leading to supple-
mentary research on success and failure factors. Stelzer and Mellis
[21] describe ten factors that affect organizational change in soft-
ware process improvement initiatives based on the CMM and ISO
quality standards: management commitment and support, staff
involvement, providing enhanced understanding, tailoring im-
provement initiatives, managing the improvement project, change
agents and opinion leaders, stabilizing changed processes, encour-
aging communication and collaboration, setting relevant and real-
istic objectives, and unfreezing the organization. Mahmood et al.
[20] inventoried 3 categories of critical success factors: awareness
(senior management commitment, training and mentoring, staff
involvement, awareness of SPI), organizational (creating process
action teams, experienced staff, staff time and resources, formal
methodology), and support (reviews). The following critical bar-
riers were identified: lack of awareness, lack of support, lack of
resources, time pressure, inexperienced staff, organizational poli-
tics, and lack of formal methodology. Procaccino et al. [22] found
the most important factors for project success to be: (1) the pres-
ence of a committed sponsor and (2) the level of confidence that
the customers and users have in the project manager and devel-

opment team. Charette [23] names 12 factors why software fails
so often, however there is no clear link with the results from our
research with regard to these factors.

The common idea in these papers is that success and failure were
interconnected with process-based activities: in other words, fol-
low the process and success will come. Looking at the results of
our research, a close link with process related research, often
based on software projects performed during the last two decennia
of the former century, seems absent due to the fact that we did not
study this: no clearly process related (in terms of SPI, CMMI, or
ISO) factors were present in our list of project factors.

Recent research focusing on the factors that affect success and
failure of agile software engineering is more similar. Chow et al.
[24] state that, ‘as long as an agile project picks a high-caliber
team, practices rigorous agile software engineering techniques and
executes a correct agile-style delivery strategy; the project could
be likely to be successful’. Three other factors that could be criti-
cal to certain success dimensions are: a strict agile project man-
agement process, an agile-friendly team environment, and a strong
customer involvement. Although not stated in the same words a
similarity with the results from our research is noticeable here. On
the other hand we did not find evidence that some assumed pre-
requisites for success of agile projects such as strong executive
support, strong sponsor commitment, ready availability of physi-
cal agile facility, or agile-appropriate project types, are actually
critical factors for success. Misra et al. [25] found nine factors that
have statistically significant relationship with success in adopting
agile software development practices: customer satisfaction, cus-
tomer collaboration, customer commitment, decision time, corpo-
rate culture, control, personal characteristics, societal culture, and
training and learning. No clear link with results from our research
is found here. Sutherland et al. [26] studied best practices in a
globally distributed Scrum environment, with fixed, experienced
agile teams, and comes up with, as the paper states ’the most pro-
ductive Java projects ever documented’. Maybe stated differently,
however, a match with our findings is obvious here. Otherwise,
the idea that agile is always linked to project success is not shared
by Estler et al. [27] stating that ‘choosing an agile rather than a
structured process does not appear to be a crucial decision for
globally distributed projects.’

Our research indicates a relation between agile (Scrum) and econ-
omy of scale (project size). Boehm [1] states that ‘the most widely
adopted agile method has been XP, whose major technical prem-
ise was that its combination of customer collocation, short devel-
opment increments, simple design, pair programming, refactoring,
and continuous integration would flatten the cost-of change-vs.-
time curve. However, data reported so far indicate that this flat-
tening does not take place for larger projects.’ Apparently the
success of agile does not hold for larger sized projects, something
that matches an assumption in our research, since no medium
large or large projects were performed based at an agile delivery
method. The connection between agile (Scrum) and project size is
not clear yet and seems a challenge for future research.

A fascinating gap in related research turns up with relation to the
finding from our research that a programming language (Visual
Basic) and specific business domains (Data Warehouse & BI,
Organization) are significant for project success. It might be sur-
prising that a view at improvement, focusing at benchmarking the
outcome of the software process, instead on the software process
itself, seems less represented in related work. Jones [28] invento-
ries successful and unsuccessful project technologies, stating that
unsuccessful projects are related to a lack of measurement activi-

How to Build a Good Practice Software Portfolio? SERG

8 TUD-SERG-2013-019

ties, and conversely, successful projects are related to accurate
measurement and analysis activities. Jones [6] inventoried a large
amount of business domain and programming language specific
effects on project performance. In the 90s he performed extensive
research on performance aspects related to domain-specific and
language-specific software engineering, however since that not
many additional research on this area, and especially on the ef-
fects of agile delivery models, seem to be performed. Premrai et
al. [29] investigated how software project productivity had
changed over time, finding that an improving trend was measured,
however less marked since 1990. The trend varied over companies
and business sectors, a finding that matches the result of our re-
search with regard to differentiation over business domains.

7. CONCLUSIONS AND FUTURE WORK
7.1 Impact
We found 7 Success Factors for software projects: (1) Steady
Heartbeat, (2) Fixed, experienced team, (3) Agile (Scrum), (4)
Release-based (one application), (5) Business Domain Data
Warehouse & BI, (6) Business Domain Organization, and (7)
Programming Language Visual Basic.

We found 9 Failure Factors for software projects: (1) Rules &
Regulations driven, (2) Dependencies with other systems, (3)
Technology driven, (4) Once-only project, (5) Security, (6) Many
team changes, inexperienced team, (7) Business Domain Mort-
gages, (8) Business Domain Client and Account Management, and
(9) Migration.

Based on the findings we identify the following guidelines for
practice when aiming for a Good Practice Project Portfolio:

1. Avoid Bad Practice by steering at limitation of
interdependencies between projects and systems, stay away
from unnecessary team changes, and build teams where pos-
sible with experienced team-members.

2. Create Good Practice by actively steering on organizing
software development in a release-based way, set up fixed
teams with experienced team-members, implement a steady
heartbeat, and go for an agile (Scrum) delivery approach
where applicable.

3. When setting up a once-only project within a software pro-
ject portfolio, pay special attention to standardization and
limitation of procedures to smoothen the projects progress,
re-use of knowledge of other once-only projects (Lessons
Learned), and implementation of a learning cycle.

4. Implement a long- and medium term portfolio strategy, in-
cluding a learning capability, to avoid Bad Practice by limi-
tation (where possible) of projects that are characterized as
technology driven, rules & regulations driven, migration of
data, and security issues.

7.2 Future work
An interesting side-effect of the observation is that nowadays
software companies, in an attempt to become more agile, tend to
opt for small releases. Yet maybe active steering on economy of
scale can be an equally effective – or even more effective – im-
provement strategy for software companies. We did not study this
side-effect; however future research on the background of econ-
omy of scale versus agile development methods might help soft-
ware companies to find an optimum on project size when building
a portfolio. Another aspect that was not covered in our research,
yet might help companies to really improve, is whether the soft-
ware companies did really improve their performance over time.

During the six year measurement period many improvement ac-
tions were undertaken, yet how successful were these actions in
the end? Future research (on our dataset) might reveal this.

8. ACKNOWLEDGMENTS
We thank Hans Jägers, professor emeritus from the University of
Amsterdam, Rob de Munnik (QSM Europe), Bart Griffioen,
Georgios Gousios, Steven Raemaekers, and all other reviewers for
their valuable contributions.

9. REFERENCES

[1] B. Boehm, “A View of 20th and 21st Century Software
Engineering,” in IEEE International Conference on Software
Engineering (ICSE), Shanghai, Ghina, 2006.

[2] M. Tihinen, P. Parviainen, T. Suomalainen and K. Karhu,
"ABB Experiences of Boosting Controlling and Monitoring
Activities in Collaborative Production," in 6th IEEE
International Conference on Global Software Engineering
(ICGSE), Helsinki, 2011.

[3] C. Jones, "Software Cost Estimating Methods for Large
Projects," Crosstalk - The Journal of Defense Software
Engineering, pp. 8-12, 2005.

[4] K. Moløkken and M. Jørgensen, "A Review of Surveys on
Software Effort Estimation," Proceedings of ISESE -
International Symposium on Empirical Software
Engineering, pp. 223-230, 2003.

[5] A. Dagnino, "Estimating Software-Intensive Projects in the
Absence of Historical Data," in International Conference on
Software Engineering (ICSE), San Francisco, CA, USA,
2013.

[6] C. Jones, Software, Assessments, Benchmarks, and Best
Practices, New York: Addison Wesley Longman, 2000.

[7] IFPUG, IFPUG FSM Method: ISO/IEC 20926 - Software
and systems engineering – Software measurement – IFPUG
functional size measurement method, New York:
International Function Point User Group (IFPUG), 2009.

[8] NESMA, NESMA functional size measurement method
conform ISO/IEC 24570, version 2.2, Netherlands Software
Measurement User Association (NESMA), 2004.

[9] K. R. Lindberg, "Software developer perceptions about
software project failure: a case study," The Journal of
Systems and Software, vol. 49, pp. 177-192, 1999.

[10] CMMI Product Team, CMMI for Development, Version 1.3,
Hanscom: Carnegie Mellon, 2010.

[11] S. Kan, "Metrics and Models in Software Quality
Engineering," Addison Wesley Longman, Reading,
Massachusetts, 1995.

[12] H. Huijgens, R. v. Solingen and A. v. Deursen, "Technical
Report TUD-SERG-2013-019," Delft University of
Technology, Delft, 2013.

[13] H. Huijgens and R. v. Solingen, "Measurement of Best-in-
Class Software Releases," in Joint Conference of the 23nd
International Workshop on Software Measurement and the
Eighth International Conference on Software Process and

SERG How to Build a Good Practice Software Portfolio?

TUD-SERG-2013-019 9

Product Measurement (IWSM-MENSURA), Ankara, Turkey,
2013.

[14] T. Hall, A. Rainer and N. Baddoo, "Implementing Software
Process Improvement: An Empirical Study," Software
Process Improvement and Practice, vol. 7, pp. 3-15, 2002.

[15] J. Reel, "Critical Success Factors in Software Projects," IEEE
Software, Vols. May-June, pp. 18-23, 1999.

[16] T. Dyba, "An Empirical Investigation of the Key Factors for
Success in Software Process Improvement," IEEE
Transactions on Software Engineering, vol. 31, no. 5, pp.
410-424, 2005.

[17] T. Dybå, "Factors of Software Process Improvement Success
in Small and Large Organizations: an Emperical Study in the
Scandinavian Context," in ESEC/FSE, Helsinki, Finland,
2003.

[18] M. Niazi, D. Wilson and D. Zowgh, "Critical Success
Factors for Software Process Improvement Implementation:
An Empirical Study," Software Process Improvement and
Practice, vol. 11, pp. 193-211, 2006.

[19] A. Rainer and T. Hall, "Key success factors for
implementing software process improvement: a maturity-
based analysis," Journal of Systems and Software, vol. 62,
no. 2, pp. 71-84, 2002.

[20] M. Niazi, D. Wilson and D. Zowghi, "A maturity model for
the implementation of software process improvement: an
empirical study," The Journal of Systems and Software,
2003.

[21] D. Stelzer and W. Mellis, "Success Factors of Organizational
Change in Software Process Improvement," Software
Process Improvement and Practice, vol. 4, pp. 227-250,
1998.

[22] J. Procaccino, J. Verner and S. Overmyer, "Case Study:
Factors for Early Prediction of Software Success & Failure,"

Elsevier - Information and Software Technology, vol. 44, no.
1, pp. 53-62, 2002.

[23] R. N. Charette, "Why Software Fails," IEEE Computing /
Software, vol. September, pp. 1-9, 2005.

[24] T. Chow and D.-B. Cao, "A survey study of critical success
factors in agile software projects," The Journal of Systems
and Software, vol. 81, pp. 961-971, 2008.

[25] S. C. Misra, V. Kumar and U. Kumar, "Identifying some
important success factors in adopting agile software
development practices," The Journal of Systems and
Software, vol. 82, pp. 1869-1890, 2009.

[26] J. Sutherland, A. Viktorov, J. Blount and N. Puntikov,
"Distributed Scrum: Agile Project Management with
Outsourced Development Teams," in 40th International
Conference on System Sciences, Hawaii, 2007.

[27] H. C. Estler, M. Nordio, C. A. Furia, B. Meyer and J.
Scheider, "Agile vs. Structured Distributed Software
Development: A Case Study," in IEEE Seventh International
Conference on Global Software Engineering (ICGSE), Porto
Allegre, Brasil, 2012.

[28] C. Jones, "Patterns of large software systems: failure and
success," Computer, pp. 86-87, 1995.

[29] R. Premrai, M. Shepperd, B. Kitchenham and P. Forselius,
"An Empirical Analysis of Software Productivity Over
Time," in IEEE International Symposium Software Metrics,
Como, Italy, 2005.

How to Build a Good Practice Software Portfolio? SERG

10 TUD-SERG-2013-019

10. Addendum - Technical Report
Xxx

10.1 Addendum A – Average performance per Size Category

Performance Indicator
Small projects Small medium

projects
large medium

projects Large projects Total

Productivity (EUR/FP) 4.364 3.395 2.508 2.111 2.929
Productivity (FP/Hr) 0,024 0,034 0,045 0,047 0,037
Time-to-market (Days/FP) 2,74 1,03 0,75 0,38 1,08
Process Quality (Defects/FP) 0,20 0,13 0,13 0,21 0,18
Productivity Index (PI) 10,46 13,34 14,98 16,84 12,02
Number in sample 219 68 33 32 352
Percentage in sample 62% 19% 9% 9%

10.2 Addendum B – Summary of findings in Cost/Duration plot

Cost/Duration
Quadrant

Number of
projects

% of
Projects

Project cost
(EUR)

Avg. Project
cost (EUR)

Total
Throughput

(FP)

% Project
Size

Avg. Project
Size (FP)

Avg.
Productivity
Index (PI)

Good Practice 115 33% 34.239.442 297.734 26.655 29% 232 14,67

Cost over Time 55 16% 33.868.793 615.796 23.390 26% 425 12,88
Bad Practice 131 37% 150.429.066 1.148.313 28.466 31% 217 9,11
Time over Cost 51 14% 48.280.768 946.682 12.594 14% 247 12,55
Totals 352 266.818.069 91.105

10.3 Addendum C – Average Performance Indicator scores in Cost/Duration plot
Performance Indicator Good Practice Cost over Time Bad Practice Time over Cost
Productivity (EUR/FP) 1.285 1.448 5.285 3.834
Productivity (FP/Hr) 0,082 0,064 0,021 0,028
Time-to-market (Days/FP) 0,64 0,92 1,77 0,75
Process Quality (Defects/FP) 0,06 0,20 0,27 0,19
Productivity Index (PI) 14,67 12,88 9,11 12,55
Number in sample 115 55 131 51
Percentage in sample 33% 16% 37% 14%
Project Cost - Maximum 2.249.310 5.637.000 6.802.466 2.582.689
Project Cost - Third Quartile 365.350 707.450 1.302.180 1.369.781
Project Cost - Median 176.888 374.140 653.760 724.470
Project Cost - First Quartile 46.645 190.706 344.355 441.602
Project Cost - Minimum 12.233 29.700 60.078 35.540

10.4 Addendum D – Average Performance Indicators per Project Factor

Business Domain
Productivity

(EUR/FP)
Time-to-market

(Days/FP)
Process Quality

(Defects/FP)
Number in
sample (N)

Percentage in
sample

BD Call Center Solutions 2.181 0,57 0,22 21 6%
BD Client and Account Management 5.343 1,87 0,14 46 13%
BD Data Warehouse & BI 960 0,85 0,07 18 5%
BD Finance & Risk 2.636 0,65 0,07 54 15%
BD Front Office Solutions 2.805 1,00 0,21 17 5%
BD Internet & Mobile 3.263 1,53 0,39 54 15%
BD Mortgages 2.303 0,96 0,24 21 6%
BD Organization 1.794 0,70 0,06 31 9%
BD Payments 4.372 1,52 0,34 50 14%
BD Savings & Loans 3.642 1,55 0,08 40 11%
DC Conversion (<5% new) 3.258 1,52 0,18 28 8%
DC Major Enhancement (25-75% new) 2.521 0,84 0,17 124 35%
DC Minor Enhancement (5-25% new) 4.207 1,88 0,28 27 8%

SERG How to Build a Good Practice Software Portfolio?

TUD-SERG-2013-019 11

Business Domain
Productivity

(EUR/FP)
Time-to-market

(Days/FP)
Process Quality

(Defects/FP)
Number in
sample (N)

Percentage in
sample

DC New Development 3.143 1,17 0,18 173 49%
DM Agile (Scrum) 1.796 0,65 0,24 45 13%
DM Structured 3.116 1,15 0,17 307 87%
KW Bad relation with external supplier 3.859 1,15 0,74 9 3%
KW Business driven 2.249 0,90 0,24 150 43%
KW Dependencies with other systems 3.650 1,56 0,36 41 12%
KW Fixed, experienced team 1.792 0,57 0,27 62 18%
KW Legacy 4.727 1,43 0,73 15 4%
KW Many team changes, inexperienced team 3.994 1,65 0,60 17 5%
KW Migration 3.029 0,97 0,34 35 10%
KW Multi--application release 1.909 1,87 0,08 21 6%
KW New technology, Framework solution 6.398 1,45 0,64 3 1%
KW Once-only project 3.288 1,24 0,14 122 35%
KW Package off-the-shelf 588 0,53 - 1 0%
KW Package with customization 1.552 0,76 0,24 16 5%
KW Phased project (part of program) 3.283 1,12 0,26 65 18%
KW Pilot; Proof of Concept 2.014 0,59 0,34 10 3%
KW Release-based (one application) 2.565 0,82 0,18 144 41%
KW Rules & Regulations driven 4.610 1,45 0,23 33 9%
KW Security 5.051 3,08 0,24 14 4%
KW Single-application 2.535 1,00 0,17 270 77%
KW Steady heartbeat 1.835 0,62 0,19 49 14%
KW Technology driven 3.890 2,27 0,27 58 16%
ORG Organization A 2.678 1,13 0,28 206 59%
ORG Organization B 3.464 0,89 0,03 125 36%
ORG Organization C 2.929 1,87 0,08 21 6%
PPL .NET 2.390 1,08 0,17 59 17%
PPL 3GL 4.227 1,53 0,00 8 2%
PPL COBOL 4.766 1,63 0,33 55 16%
PPL FOCUS 1.055 0,52 0,02 5 1%
PPL JAVA 2.782 1,05 0,21 154 44%
PPL MAESTRO 2.625 0,34 0,06 3 1%
PPL ORACLE 6.956 2,02 0,01 29 8%
PPL Other 2.007 0,88 0,06 9 3%
PPL PowerBuilder 1.924 0,53 0,02 5 1%
PPL PRISMA 3.673 0,66 0,00 4 1%
PPL RPG 3.534 0,87 0,00 6 2%
PPL SQL 1.479 0,81 0,01 9 3%
PPL Visual Basic 1.513 0,69 0,02 6 2%
SC Large Medium Project (401-600 FP) 2.508 0,75 0,13 33 9%
SC Large Project (>601 FP) 2.111 0,38 0,21 32 9%
SC Small Medium Project (201-400 FP) 3.395 1,03 0,13 68 19%
SC Small Project (<200 FP) 4.364 2,74 0,20 219 62%

10.5 Addendum E – Percentage Number of Projects per Quadrant per Project Factor

Business Domain
% Good Practice

(nr. projects)
% Cost over Time

(nr. projects)
% Bad Practice

(nr. projects)
% Time over Cost

(nr. projects)
BD Call Center Solutions 33% 19% 24% 24%
BD Client and Account Management 7% 17% 54% 22%
BD Data Warehouse & BI 61% 39%

 BD Finance & Risk 69% 4% 22% 6%
BD Front Office Solutions 47% 12% 29% 12%
BD Internet & Mobile 22% 17% 48% 13%
BD Mortgages

29% 67% 5%

How to Build a Good Practice Software Portfolio? SERG

12 TUD-SERG-2013-019

Business Domain
% Good Practice

(nr. projects)
% Cost over Time

(nr. projects)
% Bad Practice

(nr. projects)
% Time over Cost

(nr. projects)
BD Organization 52% 19% 10% 19%
BD Payments 22% 14% 44% 20%
BD Savings & Loans 25% 10% 48% 18%
DC Conversion (<5% new) 36% 11% 43% 11%
DC Major Enhancement (25-75% new) 34% 14% 32% 20%
DC Minor Enhancement (5-25% new) 15% 15% 59% 11%
DC New Development 34% 18% 36% 12%
DM Agile (Scrum) 56% 11% 13% 20%
DM Structured 29% 16% 41% 14%
KW Bad relation with external supplier

22% 67% 11%

KW Business driven 38% 19% 32% 11%
KW Dependencies with other systems 17% 12% 63% 7%
KW Fixed, experienced team 66% 6% 11% 16%
KW Legacy 27% 13% 60%

 KW Many team changes, inexperienced team

24% 71% 6%
KW Migration 14% 17% 57% 11%
KW Multi--application release 10% 43% 43% 5%
KW New technology, Framework solution

67% 33%

KW Once-only project 20% 16% 52% 12%
KW Package off-the-shelf 100%

 KW Package with customization 19% 50% 31%
 KW Phased project (part of programme) 25% 22% 46% 8%

KW Pilot; Proof of Concept 10% 40% 50%
 KW Release-based (one application) 50% 9% 20% 21%

KW Rules & Regulations driven 12% 12% 64% 12%
KW Security 7% 14% 71% 7%
KW Single-application 37% 17% 33% 13%
KW Steady heartbeat 71% 4% 8% 16%
KW Technology driven 19% 16% 57% 9%
ORG Organization A 33% 17% 41% 9%
ORG Organization B 36% 8% 30% 26%
ORG Organization C 10% 43% 43% 5%
PPL .NET 42% 15% 31% 12%
PPL 3GL 13% 25% 38% 25%
PPL COBOL 15% 15% 47% 24%
PPL FOCUS 80%

20%

PPL JAVA 19% 19% 49% 12%
PPL MAESTRO

33% 67%

PPL ORACLE 86%

7% 7%
PPL Other 56% 11% 22% 11%
PPL PowerBuilder 60%

20% 20%

PPL PRISMA 25%

25% 50%
PPL RPG 50% 17%

33%

PPL SQL 56% 33% 11%
 PPL Visual Basic 83% 17%

 SC Large Medium Project (401-600 FP) 21% 36% 27% 15%
SC Large Project (>601 FP) 34% 19% 28% 19%
SC Small Medium Project (201-400 FP) 34% 15% 38% 13%
SC Small Project (<200 FP) 34% 12% 40% 14%

SERG How to Build a Good Practice Software Portfolio?

TUD-SERG-2013-019 13

10.6 Addendum F – Percentage Project Cost per Quadrant per Project Factor

Business Domain
% Good Practice

(project cost)
% Cost over Time

(project cost)
% Bad Practice

(project cost)
% Time over Cost

(project cost)
BD Call Center Solutions 30% 8% 26% 36%
BD Client and Account Management 3% 9% 64% 25%
BD Data Warehouse & BI 41% 59%

 BD Finance & Risk 19% 11% 64% 6%
BD Front Office Solutions 29% 2% 41% 28%
BD Internet & Mobile 7% 11% 69% 13%
BD Mortgages

40% 55% 5%

BD Organization 33% 16% 15% 36%
BD Payments 6% 7% 74% 13%
BD Savings & Loans 7% 5% 59% 28%
DC Conversion (<5% new) 19% 8% 65% 8%
DC Major Enhancement (25-75% new) 13% 18% 41% 28%
DC Minor Enhancement (5-25% new) 1% 7% 64% 29%
DC New Development 13% 10% 66% 11%
DM Agile (Scrum) 22% 36% 20% 22%
DM Structured 12% 10% 60% 18%
KW Bad relation with external supplier

15% 76% 9%

KW Business driven 14% 23% 44% 19%
KW Dependencies with other systems 4% 15% 70% 11%
KW Fixed, experienced team 30% 22% 17% 31%
KW Legacy 9% 5% 86%

 KW Many team changes, inexperienced team

10% 83% 7%
KW Migration 2% 23% 62% 13%
KW Multi--application release 2% 33% 49% 16%
KW New technology, Framework solution

68% 32%

KW Once-only project 10% 11% 67% 12%
KW Package off-the-shelf 100%

 KW Package with customization 4% 71% 25%
 KW Phased project (part of program) 4% 21% 66% 9%

KW Pilot; Proof of Concept 1% 46% 53%
 KW Release-based (one application) 24% 7% 39% 31%

KW Rules & Regulations driven 2% 6% 81% 11%
KW Security 6% 8% 83% 3%
KW Single-application 16% 15% 51% 19%
KW Steady heartbeat 42% 4% 14% 39%
KW Technology driven 9% 9% 75% 8%
ORG Organization A 12% 20% 55% 14%
ORG Organization B 15% 3% 59% 24%
ORG Organization C 2% 33% 49% 16%
PPL .NET 27% 11% 51% 12%
PPL 3GL 1% 6% 51% 41%
PPL COBOL 4% 6% 72% 17%
PPL FOCUS 56%

44%

PPL JAVA 10% 17% 59% 14%
PPL MAESTRO

30% 70%

PPL ORACLE 9%

73% 19%
PPL Other 29% 18% 26% 27%
PPL PowerBuilder 55%

25% 20%

PPL PRISMA 10%

23% 66%
PPL RPG 13% 3%

84%

PPL SQL 32% 32% 36%
 PPL Visual Basic 62% 38%

How to Build a Good Practice Software Portfolio? SERG

14 TUD-SERG-2013-019

Business Domain
% Good Practice

(project cost)
% Cost over Time

(project cost)
% Bad Practice

(project cost)
% Time over Cost

(project cost)
SC Large Medium Project (401-600 FP) 8% 22% 54% 16%
SC Large Project (>601 FP) 16% 18% 50% 16%
SC Small Medium Project (201-400 FP) 14% 9% 62% 16%
SC Small Project (<200 FP) 11% 7% 60% 22%

10.7 Addendum G – Statistics per Project Factor

Business Domain χ2 Base-rate

Number
positive
Good

Practice

Probability
Good

Practice (p)

Number
positive

Bad
Practice

Probability
Bad

Practice (p)
BD Call Center Solutions 9,57 0,06 7 0,15 5 0,10
BD Client and Account Management 10,44 0,13 3 0,00 25 0,01
BD Data Warehouse & BI 10,07 0,05 11 0,02 0

 BD Finance & Risk 3,27 0,15 37 0,00 12 0,01
BD Front Office Solutions 5,91 0,05 8 0,09 5 0,15
BD Internet & Mobile 7,21 0,15 12 0,04 26 0,03
BD Mortgages 13,36 0,06 0

14 0,01

BD Organization 9,48 0,09 16 0,02 3 0,00
BD Payments 6,04 0,14 11 0,04 22 0,07
BD Savings & Loans 6,66 0,11 10 0,09 19 0,05
DC Conversion (<5% new) 8,94 0,08 10 0,12 12 0,11
DC Major Enhancement (25-75% new) 7,68 0,35 42 0,07 40 0,04
DC Minor Enhancement (5-25% new) 2,78 0,08 4 0,04 16 0,02
DC New Development 6,56 0,49 59 0,06 63 0,07
DM Agile (Scrum) 5,59 0,13 25 0,00 6 0,00
DM Structured 7,81 0,87 90 0,00 125 0,00
KW Bad relation with external supplier 13,91 0,03 0

6 0,07

KW Business driven 6,93 0,43 57 0,02 48 0,03
KW Dependencies with other systems 7,44 0,12 7 0,02 26 0,00
KW Fixed, experienced team 5,92 0,18 41 0,00 7 0,00
KW Legacy 6,25 0,04 4 0,18 9 0,05
KW Many team changes, inexperienced team 9,33 0,05 0

12 0,01

KW Migration 6,12 0,10 5 0,02 20 0,02
KW Multi--application release 7,57 0,06 2 0,02 9 0,12
KW New technology, Framework solution 25,68 0,01 0

2 0,21

KW Once-only project 10,32 0,35 25 0,00 63 0,00
KW Package off-the-shelf

 KW Package with customization 5,94 0,05 3 0,13 5 0,16
KW Phased project (part of program) 4,26 0,18 16 0,05 30 0,04
KW Pilot; Proof of Concept 5,58 0,03 1 0,12 5 0,15
KW Release-based (one application) 7,32 0,41 72 0,00 29 0,00
KW Rules & Regulations driven 5,86 0,09 4 0,01 21 0,01
KW Security 10,94 0,04 1 0,05 10 0,02
KW Single-application 7,60 0,77 100 0,00 89 0,01
KW Steady heartbeat 7,77 0,14 35 0,00 4 0,00
KW Technology driven 9,41 0,16 11 0,01 33 0,00
ORG Organization A 7,20 0,59 68 0,07 84 0,03
ORG Organization B 6,41 0,36 45 0,05 38 0,02
ORG Organization C 7,57 0,06 2 0,02 9 0,12
PPL .NET 9,84 0,17 25 0,03 18 0,06
PPL 3GL 3,18 0,02 1 0,19 3 0,23
PPL COBOL 6,96 0,16 8 0,00 26 0,04
PPL FOCUS 8,98 0,01 4 0,06 0

 PPL JAVA 11,39 0,44 30 0,00 76 0,00
PPL MAESTRO 21,42 0,01 0

1 0,37

SERG How to Build a Good Practice Software Portfolio?

TUD-SERG-2013-019 15

Business Domain χ2 Base-rate

Number
positive
Good

Practice

Probability
Good

Practice (p)

Number
positive

Bad
Practice

Probability
Bad

Practice (p)
PPL ORACLE 0,38 0,08 25 0,00 2 0,00
PPL Other 7,57 0,03 5 0,10 2 0,20
PPL PowerBuilder 17,68 0,01 3 0,14 1 0,29
PPL PRISMA 8,82 0,01 1 0,36 1 0,34
PPL RPG 2,68 0,02 3 0,18 0

 PPL SQL 7,89 0,03 5 0,10 1 0,12
PPL Visual Basic 9,57 0,02 5 0,03 0

 SC Large Medium Project (401-600 FP) 7,14 0,09 7 0,07 9 0,08
SC Large Project (>601 FP) 8,26 0,09 11 0,12 9 0,09
SC Small Medium Project (201-400 FP) 7,20 0,19 23 0,09 26 0,09
SC Small Project (<200 FP) 6,26 0,62 74 0,07 87 0,04

How to Build a Good Practice Software Portfolio? SERG

16 TUD-SERG-2013-019

TUD-SERG-2013-019
ISSN 1872-5392 SERG

