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ABSTRACT 

Public rail transport systems concern infrastructure and control strategies with long life spans. While many rail system simu-
lations aim at planning and design, this paper proposes a dynamic data-driven approach to improve the adaptability of the 
model, hence promoting an extended use of the simulation model. In the proposed approach, the simulation study uses real 
data streams for automatic model calibration at run-time. For situations that cannot be automated, expert interference can be 
supported by interactive processes. Different model calibration schemes can be applied to several replications simultaneously 
to assess the schemes and to determine the parameter values that best match the most recent situation. The model can be fed 
with data derived from different scenarios, from decision variations or from real-time measurements to accomplish accurate 
and automated model calibration. This provides a foundation for the use of simulation for railway controller training tools 
and real-time rail monitoring systems. 
 

1 INTRODUCTION 

Simulation has been widely used by rail transport service providers seeking for supports to improve or possibly optimize their 
quality of service, as well as the efficiency of their management strategies at various levels. Because of the inherent long life 
span of rail infrastructure and services, and many issues and questions that usually come up for improving operations, crea-
tion of new timetables, new equipment, and infrastructural changes, rail simulation models should not be utilized only on a 
single-configuration basis. Often simulation analysts have to change the model and/or the model parameters by hand each 
time when there is a change in simulation scenarios. As this is quite a labor-intensive activity, this paper looks for an alterna-
tive, a more convenient and agile way for model calibration that provides a possibility for an extended use of the simulation 
model.  
 Data plays an important role in simulation. Relevant and correct data is needed to formalize the model and its environ-
ment, including parameter fitting, calibration and validating of the model, so we can have meaningful and credible simulation 
results (Ören 2001). Aware of the impact of data on simulation, a question that arises is how can we efficiently use the avail-
able data to prepare the simulation studies. In this paper, we propose a dynamic data-driven approach to adapt models for rail 
system simulation. The goal is to improve situation awareness of the simulation under high levels of uncertainty in rail opera-
tions and to automatically adapt the simulation (model) to frequent system changes using the extensive available set of data. 
Where appropriate adaptations are unable to be determined, expert interference has to be supported by interactive processes, 
which would make the system fall back to the traditional way of readying the data for a simulation study.  
 In section 2 of this paper, some background theories are presented. Important sources are DDDAS, Dynamic Data 
Driven Application Systems, and notions about extended use of simulation. Related research is reviewed in section 3. Section 
4 describes a classification scheme of data to differentiate data that requires diverse data analysis methods. It is followed by a 
description of the proposed data-driven approach. Several data analysis methods are discussed in section 6, and an empirical 
example is given with real data provided by HTM, a public transport light rail company in The Hague, the Netherlands.  
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2 BACKGROUND 

2.1 DDDAS 

Dynamic data-driven simulation of rail transport system is conceived with the “Dynamic Data Driven Application System” 
approach or DDDAS, a new paradigm for application of simulation and measurements, as well as the creation and enabling 
of a new generation of dynamic adaptive applications. The term has been coined by the US National Science Foundation or 
NSF (DDDAS 2000). The ensuing established DDDAS research community has fostered projects in many research and tech-
nology areas, such as transportation and logistics, manufacturing processes, and biogeochemistry, to name a few.  
 The concept is that simulation applications dynamically incorporate new data (archival, real-time generated data, or data 
from on-line measurements of the actual systems), to selectively enhance or refine the original models that are driven at exe-
cution-time by dynamic inputs, to offer more accurate analysis and predictions, and to provide more precise controls. How-
ever, today’s methods and techniques, developed assuming static data inputs, would need to be advanced to ensure their sta-
bility and convergence under dynamic inputs (Darema 2004, DDDAS 2006).  
 Sensors and detectors can produce large quantities of data that model key quantities of interest, which can be used to es-
timate parameters for simulation studies. As data are processed, simulation models are adjusted in DDDAS to best agree with 
known measurements (Douglas 2008). Michopoulos and Lambrakos (2006) explore three issues concerning DDDAS related 
modeling and simulation: (1) Data-driven simulations do not need conventional validation. (2) For some cases one has to 
consider that the measured data coupling the experimental frame and the real system can lead to an unrealistic simulation, if 
the data introduces (potential) uncertainties and deviations. (3) There is a need for better data space and model parameteriza-
tion procedures because of the pluralism of parametric representation and of potential mappings from the data space into the 
model space. Concerning point (1) above, it is of course still necessary to validate the models after “tuning” them with the 
observed data, but alternative methods might be needed compared to the current ways of validation. 
 Douglas et al. (2006, 2007) discuss several DDDAS enabling technologies including multiscale interpolation and pa-
rameter updating using an objective function. They conclude that frequent updating of the sensor data in the simulations can 
significantly improve the prediction results. It has to be researched for applications that require consistent initial conditions 
and boundary conditions how to advance the solution in time, because measurements can easily be violating the conditions in 
the simulation model.  

2.2 Extended Use of Simulation 

Apart from the functionality improvement, the data-driven simulation approach can result in an extended use of the simula-
tion model in additional phases of rail system development and management. Where traditionally simulations are used 
mainly to answer what-if questions, those tools can evolve via system development tools towards real-time control systems in 
the engineering process; nevertheless it is necessary to overcome a number of technical hurdles to turn the idea into applica-
ble reality (Saanen, Verbraeck, and Rijsenbrij 2000). The key requirement is to have clear interface definitions with the ex-
ternal modules and equipment, namely that the control interfaces of both the simulated and the real equipment should be 
identical, by which the control signals and operational data can be transmitted in an uniform manner.  

Versteegt and Verbraeck (2002) demonstrated that a simulated control system can be used for real-time control of physi-
cal logistic resources; the research also addressed several important issues that need to be solved, such as scalability, distur-
bance detection and resolving of problems. In this context, the data-driven simulation approach can offer powerful function-
alities such as detecting situation changes by data streaming and performing adequate adaptations in the simulation model(s) 
according to the changes.  

3 RELATED WORK 

In the framework of our research project, Kanacilo and Verbraeck (2006) developed a library of railway simulation compo-
nents that support rail designers to analyze the dynamic aspects of rail system for the purpose of assessing control strategies 
and time schedules. Simulations can be carried out with the library in a distributed microscopic multi-formalism manner. Sta-
tistical plotting, generation of output files, and animation aid the users to evaluate the simulation results. A case study by 
Kanacilo and van Oort (2008) showed the benefits of the tool in improving the reliability of rail network design. For dynamic 
data-driven simulation of rail transport system, the library provides a solid foundation on which various data processing and 
analysis methods, and parameter estimating algorithms can be added as reusable components.  
 In recent years, with the increasing availability of road traffic sensors/detectors and the advancement of simulation tech-
nologies, a number of researchers have looked for efficient use of the available measurement data in simulation to better cope 
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with the intrinsic dynamic nature of transport systems. Some emerging simulation-based tools that integrate data processing, 
analysis and parameter estimating capabilities are presented here.  
 Smith et al. (2002) propose an automated signal timing plan procedure using archived traffic data. They applied cluster 
analysis (hierarchical cluster method) to automatically identify time intervals in which traffic patterns are relatively constant 
and to auto-determine the representative traffic volumes for each interval.  
 HUTSIG (Kosonen 2003), a traffic signal control system, is based on on-line simulation connected to real-time detector 
data. In the system, each signal is implemented as an agent that negotiates with other agents about the signal control strategy. 
The algorithm chosen to provide the agents with decision-making capability is a fuzzy inference engine, which resembles 
human (expert) reasoning processes. 

Barceló et al. (2007) developed an on-line simulation-based traffic management support tool. Some problematic traffic 
data patterns and their countermeasure strategies are stored in a historical database. After filtering and processing, real-time 
traffic data is compared with the historical data. If a problem is identified that is similar to the data in the database, i.e. if 
there is a pattern match, several strategies will be proposed to the traffic controller, and simulation will help to choose the 
most adequate option.  

Wang, Papageorgiou, and Messmer (2006) present a real-time freeway network surveillance tool based on a macroscopic 
traffic flow model and extended Kalman filtering. This on-line tool estimates traffic flow variables and model parameters, 
and predicts flow variables over a short-term time horizon. The methods applied include extrapolation of historical data, dy-
namic traffic flow modeling, spatial interpolation of detector measurements, and more. The adaptive features of the traffic 
state estimator are further investigated in Wang et al. (2009). This work evaluated the performance of on-line model calibra-
tion, auto-adaptation to external conditions, and enabling of incident alarms.  

Regiolab Delft (Muller, Miska, and van Zuylen 2005) established in 2000 is a public-private partnership traffic labora-
tory in the Delft region of the Netherlands. Data collection systems, including electronic measuring systems on highways, in-
ductive loop detectors at intersections, license plate readers, infra-red measuring systems on rural roads, provide the labora-
tory with live traffic data from various sources. The data are subsequently transformed into on-line traffic information. 
Researchers of the laboratory use the (on-line or archived) data to develop models and to design anticipatory control systems 
such as origin-destination-matrix estimations, travel time predictions, dynamic traffic assignments, etc. Miska, Muller, van 
Zuylen (2006) use aggregated Regiolab data to feed a microscopic traffic simulation model and to predict the future traffic 
situation evolvement with a rolling horizon of 30 minutes. In the simulation, drivers are represented by agent-based self-
learning driving behavior models. Collected data is fed to a belief network coupled with a decision network to “train” the 
agent. As the “training result” is deterministic, the model also adopts a noise function to simulate the individual behavior  of 
the driver.  
 Research carried out in the field of DDDAS are reported in Darema (2004, 2006, 2007) and DDDAS (2006), which con-
tain complete lists and references of DDDAS projects funded by NSF. Among those, the research project at Georgia Tech of 
Hunter et al. (2006), Fujimoto et al. (2006), and Henclewood, Hunter, and Fujimoto (2008) concerns data-driven simulations 
of surface transportation systems. The NSF research at Georgia Tech uses real-time aggregated data streams to estimate the 
evolving state of surface traffic. Data streams with various update intervals were examined to study which is the best to drive 
the simulation for an appropriate representation of the actual traffic situation. The experiment environment contains two 
VISSIM simulation instances: (1) a simulated large network represents the “real-world”, and (2) a smaller network that re-
ceives aggregated data from the large network and simulates the “real-world” in real-time. The experiment is also designed as 
a proof of the feasibility of the data-driven concept. Henclewood, Hunter, and Fujimoto (2008) conclude that this data-driven 
model is capable of reflecting the performance measurements of the “real-world” with a relatively high level of accuracy.  

4 CLASSIFICATION OF DATA FOR TRAFFIC SIMULATION 

The measured data can have a lot of structural variety, which makes it difficult to treat all data with a rigid and uniform 
method. Diverse treatments and methods are necessary, for example, to sample the data, to study the distribution and spread 
of data, to prepare for testing hypotheses, to fit distributions for the simulation model, and so on (Siegmund 1998). Hence a 
classification of data is the first step towards tackling the data analysis issue.  
 First of all we need to differentiate outliers from rest of the data. Outliers (Unwin 2001) may indicate quality deficiencies 
in a dataset caused by measurement errors, or they might indicate some special cases. They can invalidate or adversely affect 
the use of statistical data analysis procedures. Therefore outliers should be considered very early in an analysis. Identification 
of outliers can depend on the available meta-information or on the defined criteria. Outliers in datasets may be excluded as 
errors or be analyzed separately as special cases. Robust statistical methods may be used to down-weigh the effects of out-
liers if they are kept in the dataset.  

Figure 1 depicts a sampling example of a public tram line’s travel time. The station names are listed at the upper part of 
the figure. SN is the departure station and DT is the destination station. The time-schedule of the tram line is indicated by the 
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dashed lines; in this case trams run every ten minutes. The diagram is a so-called x-t diagram, plotting traveled distance 
against time. The more “horizontal” the line, the faster the tram travels. When a tram is experiencing delays, the line becomes 
steeper. The solid lines indicate the actual travel time of the trams. Thus according to this figure, the tram that departed at 
16:00, for example, is more punctual than the one that departed at 15:50. The outliers in this figure are indicated by the 
dashed ellipse where two successive trams encountered a significant delay from station PH to station BS, apparently caused 
by some disturbance. The travel time of these two samples do not represent the typical travel time between these two stations 
and have to be studied as a separate case, if it is deemed interesting enough to study further.  

In transport research, the time-of-day and the day-of-week are often of central interest. These are important parameters in 
the analysis of travel behavior and traffic assignment models (Tseng and Verhoef 2008). In time-of-day traffic modeling, a 
day is segmented into a number of intervals in which traffic patterns are relatively consistent (Smith et al. 2002). For example 
the station dwell times at peak time are generally greater than those at non-peak time. Urban public transport is scheduled 
more frequent at peak time due to the increased passenger demand. Hence we need to analyze these data sets separately or 
use e.g. a periodogram analysis (Chatfield 2003). 

Another data classification criterion in public transport research is based on the type and location of stopping places 
(Bauer and Richter 2006): whether the stops have single or multiple stopping spaces, whether they are located on the near-
side or far-side of the intersection (with or without signals), or if they are located inside city centre. These factors strongly in-
fluence the station dwell time, and may be identified as categorical variables (Agresti 2003).  

 

 
Figure 1: Tram line travel time from 14:40 to 16:40, x-axis: traveled distance, y-axis: clock time 

 

5 SIMULATION APPROACH  

The effort of data-drive simulation is generally using an automated procedure that continually performs model calibration us-
ing the data available during a simulation run. In the context of rail system simulation, these data are, for example, the speed 
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and position of a vehicle, the timestamp when a vehicle arrives at a station, etc. Modern rail vehicles possess GPS systems 
and telecommunication devices that are able to periodically transmit those data to the rail control centre; however the data 
have limited use right now, and cannot yet be used for on-line rail simulations. Dynamically incorporating new data into a 
simulation offers more accurate predictions and more reliable outcomes (DDDAS 2006), but in order to use it, we have to in-
corporate extra functionality into the simulation model. Another potential benefit is model reuse for other purposes once the 
model is data-driven. Enabling the capability requires new methods in modeling, data processing, and advanced algorithms to 
tolerate the unstable nature of dynamic data inputs and to ensure the convergence of the result.  

 

             
(a) (b) 

Figure 2: A tram line simulation example (a) and a data-driven simulation approach (b) 
 

 Figure 2 shows a screenshot of a segment of a tram line simulation example (a) and a conceived data-driven approach 
(b). For a simpler demonstration, we observe one vehicle instance of a tram line in the example where one parameter meas-
urement, the actual location of the vehicle, will be fed to the simulation as a data stream. At any time instant ti of the simula-
tion, the model of the vehicle M has a state Si where 

{ }iiiiiiiiiii OSavSOlavlS \,|,, ∈∧⊆∈=  
        li  the location of the vehicle in the simulation 
        vi  the velocity of the vehicle in the simulation 
        ai  the acceleration of the vehicle in the simulation 
        Oi  the set of model parameters that are measurable from the real system 

in which the location of the vehicle li is a measurable or observable element (from the system), i.e. li ∈ Oi ⊆ Si; the unobserv-
able elements in Si\Oi, in this example the velocity vi and acceleration ai, are determined by the model. At simulation start t0, 
M is initialized with state S0 where l0 is mapped directly from the measurement 0, while the values for v0 and a0 are assigned 
by the model. After a certain simulation time Δt1 = t1 – t0 ( t1>t0 ), the simulation compares the modeled location l1 of state S1 
with the actual location l1’ of the measurement 1. If the discrepancy Δl1 of l1 and l1’ does not exceed a predefined threshold, 
the simulation resumes without a state change. Otherwise, it updates l1 with l1’, and more importantly it estimates the actual 
values of v1 and a1 at t1, updates them, then resumes the simulation until the next measurement data is available. The update 
of Si (if feasible) is carried out iteratively along with the simulation, anticipating a convergence of li’ and li, namely the sys-
tem’s measurable performance indicator(s) and the respective model state parameter(s).  
 In short, for a model M with state Si at ti, a dynamic data-driven simulation continually updates the model parameters that 
are observable (in Oi) with available measurements, and estimates model parameters that are unobservable (in Si\Oi) in accor-
dance with the system measurements. This “learning phase” continues with the hope that the modeled results will have a 
convergence with the measurements of the real system, hence obtaining a well-calibrated model. This model can be hereafter 
used to simulate faster than real-time giving in-time system predictions.  
 The primary benefit of data-driven simulation is the adoption of observed data into the simulation to calibrate the model 
more precisely in line with the evolvement of the system represented by the data stream. In the surface transportation simula-
tions reviewed in Section 3, some experiments of the data-driven concept have been conducted and reported. They demon-
strate that the model is capable of reflecting the performance measurements of the “real-world” with a relatively high level of 
accuracy (Henclewood, Hunter, and Fujimoto. 2008). However, model calibration has not been an issue since both the meas-
urements from the real system and its simulation are based on the “same” (model of) reality.  
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 Deriving model parameters from observed data requires an in-depth data analysis. As stated by Ulrich (2001), when data 
acquires context-dependent meaning and relevance, it becomes information; furthermore, we obviously expect information to 
represent valid knowledge on which users can rely for rational action. Unfortunately, it is less obvious how exactly the steps 
to get from data to information (and to knowledge and rational action) can be accomplished, or at least supported. Validation 
and calibration of a complex system is a challenging task even when the procedure is not automated. Some techniques in this 
regard, presented for example in Law (2007), include quantitative model-component validation, sensitivity analysis, compari-
son with expert opinions, statistical procedures for comparing real-world observations and simulation output data, etc. For 
(semi-)automated model validation and calibration, we devote our efforts to combine these classic techniques with simulation 
in run-time.  

6 DATA ANALYSIS AND PARAMETER ESTIMATION 

Simulation can be combined with different types of experiential as well as non-experiential knowledge generation techniques 
such as optimization, statistical inference, reasoning, and hypothesis processing, some of which lead to artificial intelligence 
applications (Ören 2001). The development of dynamic data-driven simulation raises issues that reach far beyond what we 
can discuss in a single article. In this section we focus on one essential and indispensable aspect, data analysis and the appli-
cable numerical and cognitive methods that help us use data to calibrate model parameters. The relationship of system meas-
urements and simulation parameters is illustrated in Figure 3.  

 

 
Figure 3: Data Analysis 

 
 Since it is not possible to employ the raw measurements directly for validation or for parameter calibration in almost all 
cases, processing and analysis of the measured data in parallel with the simulation modeling process is required. Where the 
available numerical and cognitive methods are insufficient, human intervention preferably with an expert opinion to improve 
data analysis is necessary.  
 In certain simple cases, system variables can be mapped directly or indirectly to model parameters. Such data are good 
candidates to be observed as they demand minor data processing and analysis. For example, direct parameter mapping can be 
applied to the turning time of a train at an end station. Indirect mapping can be used e.g. when the location of a train is ob-
servable in terms of real world coordinates such as GPS coordinates (given that the coordinates are not model parameters), 
and can be associated with a rail track, allowing to dynamically position the train along the track.  

In many other cases we need more advanced data analysis methods, e.g. clustering methods, time-series analysis, hy-
potheses testing, Bayesian methods, maximum-likelihood methods, neural networks, fuzzy logic, to name a few (Siegmund 
1998, Sivia and Skilling 2006). The main research concern is how to integrate intelligent data analysis methods into simula-
tion, namely to choose or develop appropriate techniques that best suit the characteristics of the observed data, and of the re-
lationship between the observed data and model parameters.  
 When a set of discrete data points is available and an approximate functional relationship is desired, curve fitting can be 
used to find a mathematical form or model. Different techniques are presented e.g. in Hobson and Weinkam (1977), Koenig 
(1998), Hoffman (2001), Veerarajan and Ramachandran (2008). They are dedicated to define the best-fitting approximating 



Huang and Verbraeck 
 

curves, e.g. in the least-squares sense, or in the moments sense. When an approximating function can be determined, the val-
ues of the dependent variables at designated points can be hereafter determined or estimated. Veerarajan and Ramachandran 
(2008) refer to some formulas and methods for interpolation and extrapolation with equal and unequal intervals. Consider 
that discrete datasets of distance travelled over time are observable, we may use interpolation to determine the distance at a 
former time point, and use extrapolation to estimate the distance at a later time point.  
 Automated reasoning tends to learn from how people reason. Reasoning, a cognitive method, is supported by knowledge 
inference and to a certain extent it is akin to mathematical theorem proving (Portoraro 2008). A fundamental view in cogni-
tive science is that an intelligent system is not completely homogeneous; a system has a cognitive architecture when it has 
built-in information-processing capabilities and mechanisms (Stillings et al. 1995). Kurtz, Gentner, and Gunn (1999) differ-
entiate two kinds of reasoning: (1) Formal reasoning that is based on propositions, rules, and schemas, which are explicit 
knowledge structures. (2) Similarity reasoning that is based on categorization and statistics, where prior experience is used as 
a basis for prediction, i.e. stored associations of feature occurrences (frequencies) and co-occurrences (correlations) of ob-
servable properties can be applied to predict unknowns as a function of the presence or absence of other features. Wickens 
(1998) also mentions the statistical inference in reasoning, the mnemonic effect, by which we can evaluate the chances that 
the conclusion will ultimately turn out to be correct.  

Moreover, an aging mechanism is desired as the entire collected datasets may not be as representative as recent dataset 
collections in terms of reflecting the evolving state of the system in some cases. Excluding or giving lower weight to the ear-
lier data may help to obtain more accurate data analysis hence better predict future evolvement. 

For stochastic variables (which have no available data), the estimation can be derived from the analysis of response vari-
ances of the model. To simplify the problem, the analysis may be applied to the sub-models (if feasible) instead of the overall 
model, given that the sub-models and their integration are valid. Experiments with random inputs or input combinations may 
help to find a best match for the expected output values. Depending on the requirement of the processing time and the re-
source constrains, the experiments can be conducted in parallel (by independent replications), or sequentially. In the former 
case, the replication that generates the best match will be chosen to continue the initial simulation thread, while the others 
will be terminated.  

7 AN EMPIRICAL EXAMPLE 

Analyzing the measured data can be quite a challenge. For the tram system in The Hague, The Netherlands, a system called 
TriTAPT is used to capture travel data of all trams (Muller and Furth 2001 or <http://www.tritapt.nl>). The data is quite rich, 
and can be used to estimate parameters of simulation models that are used for instance for testing timetables at the tram com-
pany, or for assessing changes in the control system or the physical lay-out of the system (Kanacilo and van Oort 2008, 
Kanacilo and Verbraeck 2006). The TriTAPT data can be used to estimate halting times, driving times between two halting 
places, and deviations from the schedule. An example of the travel time between two stations for all trams of a certain route 
during one day is given in Figure 4, and the halting times for one station during the day are given in Figure 5. 
 

 
Figure 4: Driving time samples in seconds for one day between two stations 
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Figure 5: Halting time samples in seconds for one day at one station along the route of a tram 

 
Figure 4 clearly shows a minimum driving time between these two stations, a deviation of around 10-15 seconds, and 

larger deviations that can lead to a double driving time. If patterns that explain the occurrence of longer travel times cannot 
be found in this data, we can take the average travel time without the 17 outliers (e.g. those more than 2 standard deviations 
away from the average) and the standard deviation of the remaining data points as the “normal” travel time, where a genera-
tor of disturbance can be added to the data in the model for this particular travel time with an average disturbance time and 
frequency of occurring during the day. 
 The samples in figure 5 show that there is an outlier around noon. This could have been a tram with a defect, a blockage 
along the route, or otherwise. As this did not affect the next tram along the route very much, it can also be that this was a 
measurement error. Further data needs to be analyzed to see if the tram suffered a big delay after this at next stations (propa-
gation of the delay). If so, all data points of this tram might be deleted from the dataset automatically if we want to simulate 
“normal” traffic. If not, only this data point might be deleted. These choices are not easy to make for a computer, and several 
types of heuristics will have to be researched to see which ones are effective in estimating parameters for the models. 

8 CONCLUSIONS AND FUTURE RESEARCH 

Preparing data for automated model calibration shows a lot of potential, but it turns out to be quite difficult. Many different 
algorithms exist for the analysis of data and time series, and for mapping measured data on the model state a number of steps 
have to be taken, such as cleaning the data for outliers by either leaving out individual data points or complete data series, 
separating the “normal” behavior in the system from “disturbed” behavior and instantiating generators to help the model 
show realistic behavior. The difference between an outlier and behavior to be modeled is very hard to make. It is already dif-
ficult for the human analyst, and even more difficult for the computer. Given the amount of data for models like those of a 
tram or train company, automated procedures are needed, however, to be able to populate the models with valid data. In case 
of the tram and train models we discussed in the paper, there are dozens of tram lines, hundreds of halting places, hundreds to 
a few thousand of individual distances between halting places or crossings, each with measured data for more than a hundred 
trams per day (daily pattern), with differences for the weekdays (weekly pattern). Analysis of a month of data can easily lead 
to a dataset with tens to hundreds of millions of data points to help in the estimation of the thousands of parameters in the 
model. 

Further research will therefore focus on finding and testing a number of straightforward techniques that can be used in 
analyzing this large set of data, and finding and testing heuristics that can help choosing between the methods. 
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