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ABSTRACT This paper proposes a multi-temporal image change detection algorithm based on adaptive
parameter estimation, which is used to solve the problems of severe interference of coherent speckle noise
and the retention of detailed information about changing regions in synthetic aperture radar remote sensing
images. The change area in the initial differential image has local consistency and global prominence.
By detecting the significant area to locate similar change areas, the coherent speckle noise outside the
area can be eliminated. The use of hierarchical FCM clustering to automatically generate training samples
can improve the reliability of training samples. In addition, in order to increase the distinction between the
changed area and the non-changed area, a sparse automatic encoder is used to extract the changed features
and generate a change detection map. Experiments using 4 sets of SAR images show that the algorithm can
effectively reduce the effect of speckle noise on detection accuracy, the extraction of changing areas is more
complete and meticulous, and the false detection rate is greatly reduced. Since the images in different time
phases will be disturbed by weather, clouds, sea water, etc., the target segmentation algorithm can be used
to extract the target of interest and highlight the changing area. Principal component analysis and k-means
clustering method are used to reduce the influence of isolated pixels, and change information is extracted to
obtain different images. The experiment uses four sets of image data of islands and reefs. The experiment
proves that the algorithm can well eliminate external interference, improve the accuracy of change detection,
and have a good detection effect on the area of islands and reefs. The adaptive parameter estimation plays a
good role in the detection of changing areas, and the visual effect is better, which can improve the accuracy
of the detection results.

INDEX TERMS Adaptive parameters, multi-temporal, remote sensing images, change detection model,

superficial superposition.

I. INTRODUCTION

With the development of remote sensing technology,
the acquisition of high-resolution remote sensing data has
become faster and the means are becoming more and more
abundant. The era of high resolution has come and we are in
the new century of remote sensing technology [1]-[5]. The
high-resolution remote sensing image improves the spatial
resolution of the image, shortens the change period of the
remote sensing image, broadens the coverage, and enriches
the image information. Real-time accurate change detection
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can help us better understand the features of the features
and the progress of the natural environment, and manage
and use the earth’s resources. Change detection technol-
ogy uses remote sensing images covering the same area to
extract surface change information, which has been widely
used [6]—-[8]. High-resolution remote sensing image change
detection technology has important applications in economic
development, national defense construction, urban planning,
environmental monitoring and other fields [9]. In agriculture,
change detection technology can be applied to real-time mon-
itoring of forest vegetation, agricultural crops, lake wetlands
In economic construction, change detection technology can
be used for urban planning management, illegal building
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extraction and monitoring and evaluation of natural disasters;
militarily, change detection technology is used in military
target detection, battlefield information dynamic perception,
battlefield environment simulation plays an important role.
Although high-resolution remote sensing images have high
resolution and good imaging quality, due to the limitations of
remote sensing imaging technology and the influence of noise
interference, the extraction of changing areas still needs to
be strengthened and improved, and it is necessary to develop
and study changes with better applicability [10]-[15]. With
the advancement of high-resolution remote sensing obser-
vation technology, the requirements for image quality have
gradually increased [16]-[20]. High-resolution remote sens-
ing images have become an important means of microwave
remote sensing observation, which greatly enriches the con-
tent of change detection technology, have good application
prospects in change detection and related fields, and has been
extensively studied [21].

Gillespie AR and others proposed a fusion algorithm
based on color normalization transformation (Brovey) [22].
The premise of using this algorithm is that panchromatic
images and multi-spectral images have the same spectral
response range, but there are some deficiencies in maintain-
ing the spectral characteristics of the images. Jackson JE pro-
posed the fusion algorithm of principal component analysis
transformation (PCA) in the paper ‘‘Principal Component
Analysis User Guide” [23]. The algorithm has no band
limitation and the spectrum remains good, but the infor-
mation is mainly concentrated in the first few principal
components, he will change. Zhang et al. used the HSV
color space model for image fusion in the paper “‘Image
Enhancement Using Mode-Selective Color Image Fusion™
and achieved the purpose of image enhancement [24].
Pathan et al. proposed an image fusion algorithm based on the
Gram-Schmidt (GS) [25]. The GS transformation is not lim-
ited by the number of bands and can better save image infor-
mation, but its anti-interference ability is not great, it takes
a long time. The Rochester Institute of Technology (RIT)
has proposed the Nearest Neighbor Diffusion Pan Sharpening
(NNDiffuse) [26]-[30]. The advantage of this algorithm
is that it better maintains the spectral information of the
image and maintains the color [31]-[34]. High performance,
Thyagharajan and Vignesh proposed an image fusion algo-
rithm based on dual-tree complex wavelet transforms [35].
After this, Ji et al. proposed an image fusion algorithm based
on current transformation [36].

In the threshold segmentation method, the pixels of the
difference map can be divided into a change class and a
non-change class by setting a threshold. Commonly used
methods are the maximum between-class variance algorithm,
Kittler algorithm and change vector analysis method [37].
Wickramasinghe et al. proposed an unsupervised model
based on Bayesian theory and applied the expectation
maximization algorithm to search for the optimal thresh-
old [38]. Li et al. assumed that the distribution of chang-
ing and non-changing classes was Gaussian distribution, and
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proposed Kittler-Illingworth threshold selection criteria [39].
Marinelli et al. assumed that the distribution of changing
and non-changing classes was non-Gaussian distribution,
and used the generalized Kittler-Illingworth minimum error
threshold algorithm to detect changes in SAR images [40].
The threshold method can produce a good classification effect
when changed and non-changed classes of the statistical dis-
tribution belong to different modes in the histogram of the
difference map. If the changing class and the invariant class
cannot be accurately modeled by Gaussian or non-Gaussian
distribution, the threshold model will not always produce
excellent results, and this method is greatly affected by noise
and the detection accuracy is not high [41]. Zhuang et al. pro-
posed a threshold algorithm based on logarithmic mean for
the detection of synthetic aperture radar image changes [42].
The difference image was generated by obtaining the loga-
rithmic ratio of two SAR images, and the average value of
the logarithm of each image was calculated [43]. The weight
is multiplied by the minimum mean to obtain a weighted
threshold to generate a different map. The algorithm has a
short running time and a simple algorithm, and performs
better in detection rate and Kappa coefficient [44]. Among the
clustering methods, common methods include means cluster-
ing and fuzzy C-means (FCM) clustering. Hakkenberg uses
the principal component analysis method to extract change
features, and use the means method to cluster pixels into two
categories to obtain a different map [45].

The development of remote sensing image change detec-
tion is getting better and better, and has made good progress
in agriculture, military, scientific research. At present, there
have been many advanced research results [46]. However,
change detection of remote sensing started late, and the
change detection technology and theory are far behind the
remote sensing data acquisition technology. The detection
technology is not mature and is still in the development stage.
At present, there are still many difficulties in the detection
of remote sensing image changes, and there are many prob-
lems that need to be solved, such as the lack of theoretical
support. At present, most change detection methods lack
the support of a theoretical foundation and mathematical
models. In the process of algorithm implementation, empir-
ical guidance is often used, such as selecting data sources,
image preprocessing, selecting change detection methods,
and evaluating the accuracy of results. High requirements
for data preprocessing. Because the field of remote sensing
image change detection is greatly affected by image quality,
noise, whether seasonal changes, cloud cover, and shooting
angle. The image preprocessing operations such as radiation
correction, geometric correction, and image fusion are very
strict, and the requirements for data quality are high. How
to further remove interference and improve the accuracy of
change detection is an important research topic. This paper
summarizes the background significance and related theories
of remote sensing image change detection, studies commonly
used change detection algorithms, and analyzes the research
status and existing problems with the algorithm. On this basis,
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we mainly study the problem of detecting changes in SAR
remote sensing images and high-resolution islands and reefs
images, put forward corresponding solutions according to
their respective characteristics, and verify the effectiveness
of the algorithm through experiments.

(1) The SLIC superficial segmentation algorithm is inte-
grated into the collaborative segmentation change detection
algorithm. As the first step of the algorithm, multi-temporal
images are super sensitized separately. In addition, through
multiple sets of experiments on two experimental areas with
different spatial resolutions, the optimal values of two impor-
tant parameters in superficial segmentation were determined:
compactness and segmentation step parameters.

(2) Using superposition analysis to achieve the unification
of super-pixel segmentation of multi-temporal images, that
is, after super-pixel segmentation of multi-temporal images,
the multi-temporal images are superimposed, and different
parts of the segmentation are extracted as new super-pixel
superposition. In the original superficial segmentation, the
unity of superficial objects obtained by segmentation in
multi-temporal images is realized.

(3) A super-pixel-based collaborative segmentation change
detection energy function is constructed. The energy function
is divided into two parts: change feature and image feature.
Both feature items are calculated using super pixels as the
basic unit.

Il. ADAPTIVE PARAMETER ESTIMATION TO ACHIEVE
MULTI-TEMPORAL REMOTE SENSING IMAGE CHANGE
DETECTION ALGORITHM

A. IMPROVED ALGORITHM IS BASED ON SPARSE
ADAPTIVE PARAMETERS

In probability theory and statistics, probability distribution
is a mathematical function that provides the probability
of different possible outcomes of an experiment. In more
specialized terminology, probability distribution describes
the random phenomenon with the probability of an event.
Probability distributions are generally divided into two cat-
egories [47]. Discrete probability distribution (applicable to
situations where the set of possible outcomes is discrete, such
as coin tossing or dice tossing) can be coded by a discrete
list of probabilities of the results, called probability mass
functions. On the other hand, a continuous probability distri-
bution is usually described by a probability density function
(a set of possible outcomes applicable to a scene can vary in
a continuous range of values, such as the temperature of a
certain day).

In calculating the relationship between the kernel
function K (x) and the regularization operator P, it is pos-
sible to detect the generalization ability of certain kernel
functions. This document also explains that the estimated
distribution of the RBF kernel data is very smooth and often
has good performance. The sparse representation can not
only automatically construct the adjacency graph of sample
points and avoid complicating parameter selection, but also,
it can better reflect the geometric structure of the sample
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and obtain potential discriminant information. As a kind
of structured sparse representation, group sparse has better
sparse representation ability than general sparse represen-
tation. Inspired by improved Sparse Representation (MSR)
proposed in [48], this paper proposes an improved group
sparse framework (Modified Group Sparse, MGS). Different
from the MSR framework, the MGS framework uses group
sparseness to construct the adjacency matrix of samples, so as
to obtain a higher level of sparseness of the sample matrix.
In order to obtain the sparse coefficient matrix of the sample,
the MGS framework solves the objective function shown in
equation (1).

n
1
min Y~ = [l = X, 3+ x 1Pl M
i=1

Sparse matrix P can reflect the similarity between sample
points, and the similarity between similar samples is higher.
According to the distribution characteristics of the samples,
the samples of the same type are closer. That is, have higher
locality. On the contrary, there is higher non-locality among
heterogeneous samples. Therefore, using the sparse matrix P,
the SUDP algorithm can directly describe the local and
non-local relationships of the sample points. This process is
implemented in the classic manifold learning algorithm using
the K-NN algorithm. The use of K-NN algorithm inevitably
requires the selection of k value, and the inappropriate k value
often has a great influence on the algorithm. Using the sparse
representation technique, the MGS framework can obtain the
matrix S reflecting the local relationship of the sample points
without determining the parameters, and the matrix S thus
obtained naturally has discriminant information, which can
improve the discriminant effect of the algorithm.

Use the obtained sparse matrix to describe the local infor-
mation of the data set and construct the local sparse degree.
Then the local sparseness can be expressed as equation (2).

1
QL(w) = 5 ) (Pi=P)’P; )
i.j

The optimization goal of local sparseness is to find the
projection matrix w to minimize the distance between local
points. For deriving equation (2) through a simple formula,
equation (3) can be obtained.

1
QL(w) = 5 3 Pyw!xi—w!x)*
i
1
=3 ZPU(wa,-—waj)(wa,- — wa]-)
i

1
= EWT(Z Pij(xi — xj)(xi — xj)T)w
i.j

1 ’ w
= EWT(ZPU(xl-xlT)'i_ZPU(x]ij)_22 Pij(xl'x]T))

i ij ij
1
= EwT(z)(DXT —2xsxTHw
=wlX(D - $HX™ (3)
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where D is a diagonal matrix, and each element of it is the row
sum of the sparse matrix S. Let L = D-S, the local divergence
can be expressed as:

Or(w) = wl XLX™ 4)

After finding the local sparse matrix S, define the non-local
sparse matrix SN is:

PY=1-p; 5)

Correspondingly, the non-local

expressed as:

divergence can be

1
On(w) = 5 > (1=Py)*(mi — mj) 6)
ij

After a simple formula transformation, each element in the
diagonal matrix ND is assigned to the sum of the elements in
each row of the matrix NS, and the non-local sparseness can
be expressed as equation (7).

On(w) = w! XLyX™ 7

After describing the local and non-local information about
the sample using local sparseness and non-local sparseness,
the optimization goal of the SUDP algorithm is to maxi-
mize the non-local sparseness while minimizing the local
sparseness. Therefore, the objective function of the algorithm
is defined as equation (8).

o) tr(wWIXLyX™)
CO0Lw)  tr(wTXLXTV)

The solution of equation (8) can be equivalent to solving
the feature decomposition problem shown in equation (9).

Q(w) (®)

trow! XLy X™) = tr(w” XLX™) ©

The adaptive algorithm uses a sparse representation to
construct the sample weight matrix, which is relatively time-
consuming. Therefore, its time complexity will be higher than
that of classic algorithms such as UDP. However, the sparse
matrix obtained by sparse representation often has good
discriminating ability, and the time-consuming process of
selecting suitable parameter size by classic algorithms such
as UDP is uncontrollable. From this point of view, it can
be said that although the SUDP algorithm has a higher time
complexity in theory than classic algorithms such as UDP,
in practical applications, it’s time performance may be better
than the classic algorithm.

The non-local sparseness between classes is shown in
equation (10).

1 2
oxom =3 Y Py=Pp*+ WX o)
i.j

After formula transformation and matrixing, equation (10)
is converted into equation (11).

Onw) = wl XLy X™Y 4wl X, XTI X™ (11)
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After obtaining the intra-class sparseness and non-local
sparseness, they are unified into a discriminant formula,
as showed in equation (12).

Ovw)  rw XLX™ + wI XX X™)

w) = =
Onw) Orw)  tr(wT XLy X™ + wT X, X X™)

(12)

B. CHANGE DETECTION MODELS OF MULTI-TEMPORAL
REMOTE SENSING IMAGES

The detection model can set different layers of networks in
the dense module, so that the model has a different network
depths [49]. Let’s take the 103-layer network in the detection
model as an example. The network consists of an input layer,
a 38-layer network with down sampling paths (including
4 Dense modules), a 15-layer Dense module, and a 38-layer
network with up sampling paths (including 4 Dense module),
consisting of a convolutional layer and Softmax layer, a total
of 103 layers of network. The specific network settings are
shown in Figure 1.

After pre-processing the original images, super-pixel seg-
mentation can be performed on the original images of differ-
ent times in the same area. The algorithm steps are described
in detail before, so they will not be described here. Although
the two-phase image after superficial segmentation has the
same number of superficial, the segmentation boundaries
of the two superpowers must not correspond to each other.
Super pixel segmentation cannot rely solely on the segmen-
tation boundary of one phase as a standard, so in order to
facilitate the next collaborative segmentation, the superficial
segmentation boundary needs to be unified. Therefore, this
study superimposes the two-phase superficial segmentation
boundaries, filters extracted patches as new superficial and
overlays the original segmentation boundary, to obtain a uni-
fied comprehensive superficial segmentation boundary. The
specific process is shown in Figure 2.

Super pixel superposition analysis needs to superimpose
two superficial images to extract patches with different divi-
sions between them. It can be seen from (c) that most of the
extracted plaques are some long and unit area interference
plaques. The analysis found that these interference plaques
are mostly located at the boundary of superficial, mainly due
to the two phases. The image is caused by a deviation of one of
half a pixel. Therefore, in this study, two screening conditions
were set to remove interfering plaques: remove the patches of
unit area (1-2 pixels); remove the patches of area perimeter
ratio <8.

The autoloader can obtain the features representing the
input data. When extracting features, you can add constraints
to the hidden layer so that it can obtain excellent sample
features under poor conditions [50]. The sparsity limit can be
used to constrain the hidden layer, which is more conducive
to obtaining the main characteristics of the input data, and
can effectively reduce the dimension of the sample and elim-
inate redundant information. Because the deep neural net-
work based on Sparse Automatic Encoder (SAE) has a good
learning feature function, this paper uses the sparse automatic
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FIGURE 2. Flow chart of overlay analysis.

encoder to extract the change information of multi-temporal
SAR remote sensing image and suppress the speckle noise.
In order to prevent useful information that may be lost
during the generation of the difference map, the two original
SAR images after the salient region detection process and the
neighborhood pixel features of the difference map are input
to SAE to learn more effective changing features, compared
to using only the difference map The extraction effect is
better. The resulting data are input into the sparse autoloader
network for training. Each network layer is composed of a
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1. Automatic training of
sparse coding model
2. Predict missing values

Change image

Sparse Automatic Encoder

Depth estimation
network decoding

T2

FIGURE 3. Flow chart of sparse automatic encoder change detection.

sparse autoloader. The hidden layer of each network is used
as the input of the next layer of the network, and the network
with two hidden layers is used. To extract the features of
the input data. The output feature of the last hidden layer is
used as the input of the surtax classifier, and the pixels are
divided into variable and non-variable classes by the classifier
to obtain the final change detection result. Figure 3 shows the
flow chart of sparse automatic encoder change detection.

C. MULTI-TEMPORAL REMOTE SENSING IMAGE CHANGES
DETECTION PARAMETERS AND EXPERIMENTAL DATA

The specific algorithm step parameters of the adaptive multi-
temporal remote sensing image change detection are shown
in Table 1.

After the construction of the energy function is completed,
the image features and change features of each pixel are
calculated, and then the two features of all pixels in the super
pixel block are averaged to obtain the image features and
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TABLE 1. Specific algorithm step parameters for the change detection of adaptive multi-temporal remote sensing images.

tep Description

S

1 Use the PCA algorithm to reduce the entire data set to a certain dimension to solve the problem of small samples in the data set.

2 Divide the sample set X into ¢ sample subsets according to the category label.

3 Use the supervised sparse framework to find the adjacency matrix S of the training set.

4 Use equation (1) to find the sparse reconstruction coefficient Si of each sample.

5 Arrange the sparse reconstruction coefficients corresponding to each sample into an adjacency matrix S.

6 Use the S matrix obtained in step 3 to construct a local Laplace matrix.

7 Use W to project the entire data set into a low-dimensional space, use the KNN classifier to determine the category of the unknown image.

TABLE 2. Mixture matrix.

Forecast category
Types Outlier Normol
Actual catego Outlier Predict the correct Outlier (TN) Outlier with wrong prediction (FP)
gory Normal Normal with wrong prediction (FN) Predict the correct Normol (TP)

change features of the super pixel. Collaborative segmenta-
tion is to optimize the energy function and finally complete
the image segmentation. The optimization of the energy func-
tion is achieved by obtaining the minimum cut of the network
flow graph. The minimum cut / maximum flow algorithm is
an energy function optimization method. First, the superficial
image needs to be mapped to a network flow graph, and
then the minimum cut of the network flow graph is obtained.
The network flow graph is constructed as follows: take each
superficial block as an ordinary node, and then set two special
nodes S (target) and T (background), connect the nodes with
edges, connect the two special nodes to each An ordinary
node is connected, which is an edge sum, and an ordinary
node is connected to its adjacent ordinary node (this article
uses four neighbors), which is an edge. Then, the changed
feature item is regarded as the weight of the edge between
the two special nodes and the ordinary mode; the image
feature item is regarded as the weight of the edge between
the two ordinary nodes. At this point, the network flow graph
is completed.

The confusion matrix is an evaluation method for the
quality of outlier detection. If the data set contains class
labels, the concept of the ledger can be used to evaluate the
effectiveness of outlier detection methods, such as accuracy
and recall, based on the class labels. Rates, false positive
rates, and others, in the absence of class labels, can also
be verified by removing the outlier data model. Obviously,
as showed in Table 2, the confusion matrix mainly contains
four parts of information.

Represents the ratio of correctly predicted points in normal
data to the sum of predicted wrong data in erroneous data.
Accuracy represents the accuracy of predictions in positive
sample results. The higher the value, the better it is. The
accuracy rate is defined as:

™

M=—"_ (13)
™ + FM

There are four sets of experimental data used in this paper,
which are SAR images of Bern, San Francisco, Red River,
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FIGURE 4. Original picture and Label picture.

and Shihmen Dam scenes. The experiment uses 500 remote
sensing images of ships marked by them as data sources,
including: architecture and background. We will use three
different methods to classify remote sensing images. The
relevant parameters of the three models are agreed to be
set as: (1) Learning rate: 0.0005; (2) Number of train-
ing batches: 500; (3) Decay: 0.9995; (4) Momentum: 0.99;
(5) the pre-trained model is: ResNet105, as shown in Figure 4.

Ill. RESULTS ANALYSIS

A. CLASSIFICATION ANALYSES OF REMOTE SENSING
IMAGES

In order to verify the proposed saliency guidance and the
performance of the sparse autoloader in the SAR image
change detection task, the experiment in this chapter is
mainly divided into two parts. The related comparison algo-
rithm is compared with the experimental result, including
the change detection result graphic and accurate of differ-
ent methods. In order to verify the effectiveness of this
method, five remote sensing data sets will be compared
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E

FIGURE 5. Remote sensing image classification result map.

with other excellent change detection algorithms, mainly
including FCM-based Extreme Learning Machine with FCM
(FCM-ELM), FCM-based Stacked Automatic Encoder wit
FCM (FCM-SAE), FCM-based Supervised Contractive Auto
encoders and Fuzzy Clustering (FCM-SCAE) and significant
guidance based on means clustering Detection (Saliency-
guided and K-means Clustering, SGK) Four change detection
methods, Bern, San Francisco, Red River, and Shihmen Dam
multi-temporal remote sensing images use 5 algorithms to
perform the change detection experiments. The statistical val-
ues of FN, FP, OE, PCC and Kappa are reported on each data.
The classification results of the remote sensing images of
ships by the three models are shown in Figure 5. Figure (a) is
the FC-Dense Net classification result. Figure (b) is the Deep
Lab V3 model classification result, and Figure (c) is the
Deep Lab V3 + classification result. It can be seen from
the figure that both the FC-Dense Net model and the Deep
lab V3 model have missed scoring, as showed in Figure (a2)
and Figure (b2), respectively, and DeeplabV3 has a serious
missing score. Deep lab V3 model and DeeplabV3 + model
have the phenomenon of mis-separation, which is shown
in Figure (b3) and Figure (c3) respectively. Among them,
the DeeplabV3 model has serious misclassification. From a
visual point of view, the Deep Lab V3 + model has the best
classification effect.

The images of both resolutions are more compact, and the
segmentation results are less precise, and the edges of superfi-
cial do not fit the original contours of the features, regardless
of the shape or texture of the features, they will disappear
as the compactness increases. You can’t even see the texture
state of the features at all. On the contrary, the smaller the
degree of compactness, the better the edge of the segmented
superficial fits the contour of the feature, and the feature
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information in the image can be better preserved. The size
of compactness has nothing to do with the resolution of the
image. The images of the two resolutions have the same
change with the change of the compactness, which is the
same.

It can be seen from the part marked by the red circle
in the figure that when the super pixel step size S is 5, 7,
or 9, the super pixels obtained in the two test areas and the
original contour of the ground feature are very consistent and
compact, which simplifies the image At the same time, it can
retain the basic features of the features in the image to a great
extent. When the super pixel step size S is 11, whether it is
a high-resolution image or a low-medium resolution image,
the resulting image is relatively blurry, and the original shape
and texture of the feature can hardly be completely presented,
or even some lines are blurred It is undesirable because it
is like a ground feature. When the step size is 5, divided
features are too fine, and considering that the split step size
is inversely proportional to the runtime, the optimal split step
size is finally selected between 7 and 9.

In order to objectively test the quality of the fused image,
this section evaluates the quality of the fused image from
four aspects: spectral characteristics, statistical characteris-
tics, clarity, and information content, as showed in Table 3.

From the evaluation results of the spectral characteristics,
the root mean square error (RMSE) value and the spectral
distortion value (DD) of the algorithm in this paper are the
smallest, indicating that the algorithm in this paper is closest
to the ideal fusion image and the spectral distortion of the
source image is the smallest, The highest spectral consistency
with the source image. In terms of standard deviation (o)
based on statistical characteristics, the standard deviation (o)
value of the algorithm in this paper is second only to the
CN algorithm, but higher than several other traditional fusion
algorithms, which shows that the algorithm in this paper is
relatively superior in the contrast of the fusion image. In terms
of clarity, the average gradient (g) value of the fusion image
of this algorithm is second only to the CN algorithm, but
it is higher than several other traditional fusion algorithms.
In terms of information volume, the information entropy (EN)
value of the algorithm fusion image in this paper is smaller
than the two algorithms CN and NND, which is higher than
the other four traditional fusion methods, indicating that the
image information richness after fusion is relatively good.
The amount of information obtained in being relatively large.
Although the algorithm in this paper is not optimal in terms of
standard deviation (o) and average gradient (g) information
entropy (EN), the overall spectral characteristics and clarity
are all optimal, indicating that the algorithm in this paper is
relatively traditional. For the fusion algorithm, the quality of
the fusion image has a great advantage.

Therefore, in terms of overall accuracy, calculation time
and segmentation effect, the introduction of super pixels has
greatly improved the speed of the collaborative segmentation
change detection method. High-resolution images are more
suitable for super-pixel-based collaborative segmentation
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TABLE 3. Experiment 1 Fusion evaluation results.

Tyes Spectral characteristics Statistical characteristics Sharpness Amount of information
P RMSE DD G o EN
R 22.8232 164177 55.1762 24.8644 7.6814
G 22.8810 16.4999 54.7105 24.8316 7.6873
CN-FUSE B 23.1283 16.6929 52,5979 247589 7.6253
AVG 22.9442 16.5368 54.1615 24.8183 7.6691
R 24.3438 18.6375 47.9969 21.7482 7.5252
Brovey-FUSE G 26.3497 20.0148 50.1939 24.1964 7.6088
vey B 247346 18.7191 45,0998 21.9460 7.4460
AVG 25.1427 19.1238 47.7635 22.6302 7.5430
R 23.0599 16.6678 54.7748 15.8777 7.6819
G 24.0321 17.6002 54.3608 15.8489 7.6741
GS-FUSE B 24.5807 18.3475 53.2082 15.7237 7.6471
AVG 23.8909 17.5385 54.1213 15.8168 7.6705
R 26.1210 19.9991 54.3996 24.9884 7.6782
G 26.1460 20.0262 53.0082 24.9130 7.6606
HSV-FUSE B 26.1554 20.0425 50.2801 24.7299 7.5897
AVG 26.1408 20.0226 52.5626 248771 7.6515
R 22.4502 16.1390 54.1472 24.4737 7.6697
G 22.8391 16.6114 53.9341 24.4753 7.6704
PCA-FUSE B 232311 16.9284 522336 244773 7.6214
AVG 22.8402 16.5596 53.4383 244754 7.6577
R 26.2907 19.9130 53.6780 25.3562 7.6692
G 26.1528 19.8107 52.1636 25.1682 7.6430
NND-FUSE B 27.4021 21.3098 51.6504 24.0842 7.6328
AVG 26.6152 203445 52.4974 24.8695 7.6546
R 12.7843 9.5485 492723 249144 7.5653
G 13.2690 10.0291 48.8111 249112 7.5608
PCA-FUSE B 14.4339 11.3061 47.4004 24.8892 7.5133
AVG 13.4957 10. 2946 48.4946 24.9049 7.5491
change detection methods, and low- and medium-resolution FC-DenseNet

images are relatively unsuitable for this method. In this study,
the best super pixel segmentation step for high-resolution
images is 9, and for low- and medium-resolution images, you
can choose according to the research needs. If you focus on
the accuracy of the results, you can choose a step size of 7.
If you focus on running speed, you can choose step 9. In this
study, the efficiency of the experiment is emphasized, so the
division step of the two experimental areas is fixed at 9.

To evaluate the classification accuracy of these three meth-
ods, we still need to start from the ACC, AA and MIOU
evaluation indicators. The evaluation data come from the
entire verification set. As showing in Figure 6. As can be seen
from Figure 6, the classification accuracy of the FC2Dense
Net ship class is 0.765, and the classification accuracy of this
method is low. Classification accuracy of Deep Lab V3 ships
is 0.776. DeepLabV3 + has a ship classification accuracy of
0.779, which is higher than DeepLabV3 classification accu-
racy, and MIOU is the highest. In comparison, DeeplabV3 +
has the best classification effect.

Another key parameter in superficial segmentation is the
superficial segmentation step size S. The selection of the
segmentation step size greatly affects the running speed
and accuracy of the subsequent collaborative segmentation
change detection algorithm. If the step size is set too small,
it can be maintained. Change detection accuracy, but cannot
improve the speed of the algorithm, if the step size is set too
large, it will increase the speed while reducing the accuracy
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FIGURE 6. Experimental results of remote sensing images.

of the result. From the perspective of the accuracy of the
detection results, the detection effect and the running time,
when the superimposed analysis condition is 4, that is, the
patches are merged according to the segmentation attributes
of the latter phase, and the superficies of the later phase are
divided into the bottom The change detection result obtained
by superimposing the graphs is the best. Whether it is accu-
rate, algorithm running time or the effect of the test results
is the best of the four. The reasons for the best results of
the analysis obtained by analyzing this superposition con-
dition are as follows: Most of the changing features of the
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FIGURE 7. Change detection accuracy under different methods of Bern
data.

two phases are increasing rather than decreasing. The con-
tours of the changing features can be clearly detected in the
image of the latter phase By the way, the changing features in
the previous phase image have not yet produced an inaccurate
detection of its outline and position, so the detection results
of using the latter phase as the base map are more accurate.

B. DATA EXPERIMENTAL ANALYSES

In order to prove the effectiveness of the algorithm in this
paper, Bern data is used for experiments. The statistical
results are shown in Figure 7. In this paper, the SGSAE
method obtains the best accuracy in SAR image change
detection. The overall error pixels are less than other mod-
els. The OE is increased to 268, and the PCC and Kappa
coefficients are better than other methods. Therefore, the
SGSAE algorithm has the best performance in detecting
changes in Bern data. Since the change occurs in an almost
continuous area, the speckle noise in the image is not serious,
and the result has been far fewer isolated pixels. Comparing
the change detection result map and the ground truth map,
the SGSAE method has better visual effects, which is consis-
tent with the results in Table 3 In addition, change detection
results of SGK and SGSAE have less speckle noise than the
other three methods, and the visual effect is better, indicating
that saliency detection helps to improve the performance of
change detection.

The detection accuracy of the SGSAE method is higher
than other methods, the PCC and Kappa coefficients are
significantly higher than other methods, and the overall error
pixels are less than other methods. Results of FCM-SCAE
and SGK are slightly worse than the SGSAE method. In addi-
tion, compared with other methods, results of FCM-ELM and
FCM-SAE are worse. The change detection chart is shown
in Figure 8. Based on the visual results, we observe that
SGSAE perform better than other methods, and it can produce
better local consistency and fewer isolated pixels, and the
detail retention effect is better. There are many error pixels in
the change graphs of FCM-ELM and FCM-SAE, indicating
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FIGURE 8. San Francisco data change detection accuracy under different
methods.

that these methods have poor ability to overcome speckle
noise in SAR images. The visual effects of SGK and SGSAE
are better, which shows that saliency detection can reduce
the effect of speckle noise. However, in the results of SGK,
the existence of isolated pixels has not been well dealt with.
Therefore, SGSAE has a good effect on the detection of
changes in synthetic aperture radar images.

Finally, a comprehensive analysis of the results of the
high scores No. 1 image and Landsat image, the running
time and accuracy show that the different segmentation steps
make the running speed of the two spatial resolution types of
images increase to the same extent. Among them, the detec-
tion results of high-score images are good, which basically
guarantees the accuracy of the changing patches, while the
accuracy of Landsat image detection results is very low, and
the accuracy of the patches is difficult to maintain. Therefore,
when the segmentation steps of the two spatial resolution
images are the same, the high-resolution images are more
adaptable to super pixel segmentation, and the low- and
medium-resolution images contain much feature information
in one pixel before the segmentation. For high-resolution
images, super pixels are used to simplify the image infor-
mation on this basis, which will cause the loss of feature
information and reduce the accuracy of the change detection
results.

Overall, the accuracy and visual effects of TSSAE and
the adaptive algorithm are not much different. Therefore,
the adaptive algorithm is more suitable for this project.
In order to further prove the effectiveness of the adaptive
algorithm in the detection of island and reef changes, this
paper uses X, Y, Z three islands and reefs for experiments,
the detection accuracy is shown in Figure 9. Among them,
X island reef, Y island reef, Z island reef adopts adaptive
algorithm to detect the average precision of change, the
accuracy rate reaches 0.9733, Kappa is 0.8090, the overall
accuracy performance is better. The experiment proves that
the adaptive algorithm has good performance in the change
detection of high-resolution remote sensing images in the
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FIGURE 9. X, Y, Z islands and reefs adopt adaptive method to change
detection accuracy.

island and reef area, can detect the change area very well, and
has good visual effect, which meets the project requirements.

In order to verify the performance of the proposed SGSAE,
Hong his data was also used in the experiment. Accuracy of
the proposed SGSAE method and SGK method is signifi-
cantly higher than the other three methods, OE is significantly
less than other methods, PCC increased by more than 4%,
and kappa increased by more than 13%. The FCM-ELM,
FCM-SAE and FCM-SCAE methods have low accuracy and
poor detection results. The visual effects of SGSAE and SGK
methods are better. FCM-ELM, FCM-SAE and FCM-SCAE
are noisier and the visual effects are poor. This is because the
speckle noise in the original image is very strong, and the
above method is seriously interfered by noise. The SGSAE
and SGK methods both use saliency detection methods,
which can well reduce the interference of coherent speckle
noise. The result of SGK is worse than that of SGSAE.
It can be seen that the sparse autoloader can detect the
characteristics of the changing area very well, strengthen the
distinction between changing pixels and non-changing pixels,
and improve the detection accuracy. In addition, SGSAE has
fewer false positive pixels than SGK because sparse auton-
omy has better classification capabilities than K-means clus-
tering. Therefore, SGSAE can obtain better change detection
results on Hong he data.

In this experiment, Shimen Dam was used to compare
the detection results of the five algorithms. SGSAE has the
highest accuracy of Shihmen dam data. SGSAE’s kappa is
improved by more than 0.04. The PCC is the highest, and the
total number of false detections is the smallest. In addition,
results of FCM-SAE and SGK are poor. The change detection
chart of each method is shown in Figure 9. SGSAE has
the best visual effect, with fewer isolated pixels and more
error pixels in the other four methods. The results show that
FCM-ELM, FCM-SAE and FCM-SCAE have poor ability
to overcome speckle noise in SAR images, and SGK cannot
effectively deal with isolated pixels, so the SGSAE detection
result is the best. In summary, the proposed SGSAE has
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the ability to improve the detection accuracy of SAR image
changes.

C. COMPARATIVE ANALYSES OF THE EXPERIMENTAL
RESULTS OF THE IMPROVED ALGORITHM

In order to verify the effectiveness and practicability of the
adaptive parameter estimation algorithm proposed in this
paper, multiple sets of experiments with PCA, UDP, LPP,
SPP, SUDP and other algorithms have been conducted on
FERET, AR60, PIE, and LFW data sets. The experiment is
divided into three steps: image preprocessing, running an
algorithm for dimensionality reduction, and using a classifier
to complete the classification task. In the process of image
preprocessing, the pictures in each data set are cropped to
the corresponding size, and then processed into a gray scale
image, and finally the pixels in the picture are processed into
a vector by row, and the vectors are sequentially arranged
into a data matrix. In the process of dimensionality reduction,
the data set is first divided into a training set and a test
set, then the algorithm is run on the training set to obtain a
projection matrix, and finally the test set is also reduced to the
same dimension through the obtained projection matrix. For
UDP and LPP algorithms, first find the most suitable number
of neighbors, and then reduce the training set to different
dimensions; for PCA, SPP and the algorithm proposed in this
chapter, directly reduce the dimension, and also reduce the
training set to different dimensions. In the classification task,
all algorithms finally use the nearest neighbor classifier to
complete the classification task and obtain the corresponding
classification accuracy. The experimental results are shown
in Figure 10.

The experimental results on the four data sets of FERET,
ARG60, PIE, and LFW show that the adaptive parameter esti-
mation algorithm proposed in this paper has the best effect
on the three experimental sets, especially on the AR60 data
set, which is better The recognition rate increased by 12 per-
centage points. In addition, the recognition rate on the PIE
dataset is also less than 1 percentage point compared to
the highest LPP algorithm. Experimental results prove the
effectiveness of the algorithm. The other five algorithms
compared with the adaptive parameter estimation algorithm
proposed in this paper are all unsupervised algorithms. These
algorithms do not use the category information of the sam-
ples. Therefore, in the classification task, the performance of
these five algorithms is worse than that of adaptive parameter
estimation. The adaptive parameter estimation algorithm is
a supervised extension of SUDP. The advantages of SUDP
such as sparsity and locality are also inherited in the adap-
tive parameter estimation algorithm. In addition, since the
adaptive parameter estimation is to sparsely represent the
samples of the same kind, in the process of solving the sparse
representation, the number of participating samples is small,
which improves the efficiency of the sparse reconstruction
of the adaptive parameter estimation algorithm. Although no
specific experiments have been done to prove it, from the
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FIGURE 10. The recognition rate of each algorithm on each data set.
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FIGURE 11. Comparison of adaptive parameter estimation and SUDP.

intuitive experience during the experiment, the running speed
of the adaptive parameter estimation is higher.

In order to comprehensively measure the experimental
results and increase the reliability of the experimental results,
the five methods of FCM-ELM, FCM-SAE and FCM-SCAE,
SGK and SGSAE were used to count the FN, FP, OE,
PCC and Kappa of 4 SAR image data. It can be seen from
Figure 10 that SGSAE have the smallest false detection rate,
the best accuracy and Kappa coefficient performance, and has
excellent SAR remote sensing image change detection perfor-
mance. It has been verified that the salient region detection in
this method can extract potential change regions and remove
background pixels, which can weaken the effect of speckle.
The HFCM model can select more reliable samples as the
training set, making the proposed method an unsupervised
method. In addition, the sparse autoloader has the ability
to obtain the features of two original SAR images and the
difference image. Experiments show that performance of the
proposed SGSAE is better than other related change detection
methods.

It can be seen from Figure 11 that the recognition rate
of the adaptive parameter estimation algorithm on FERET,
ORL, AR60, Yale and other four data sets is higher than
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that of SUDP, especially on the AR60 data set, the adaptive
parameter estimation algorithm is better than adaptive The
effect of the parameter estimation algorithm is 10 percentage
points higher. Although the recognition rate of the adaptive
parameter estimates is lower than that of SUDP on the AR
and PIE data sets, it does not exceed 2 percentage points.
These experimental results can prove that the recognition rate
of the adaptive parameter estimation is improved compared
with SUDP.

From the perspective of the accuracy of the detection
results, the detection effect and the running time, when the
superimposed analysis condition is 4, that is, the patches are
merged according to the segmentation attributes of the latter
phase, and the super pixels of the later phase are divided into
the bottom The change detection result obtained by superim-
posing the graphs is the best. Whether it is accurate, algorithm
running time or the effect of the test results is the best of the
four. The reasons for the best results of the analysis obtained
by analyzing this superposition condition are as follows: Most
of the changing features in the two phases are increasing
rather than decreasing. The contours of the changing features
can be clearly detected in the image of the latter phase By the
way, the changing features in the previous phase image have
not yet produced an inaccurate detection of its contour and
position, so the detection results using the latter phase as the
base map are more accurate.

The overall recognition rate of adaptive parameter esti-
mation has been improved because of adding the category
information of the sample. The advantage of this is that it can
more accurately reflect the geometric relationship between
the sample points during sparse reconstruction. Note that
on the AR60 dataset, the recognition rate of the adaptive
parameter estimation has been greatly improved compared
to SUDP.

It can be speculated that the influence of pseudo-neighbor
points on this data set may be relatively large. The
pseudo-neighbor point has a greater impact on the SUDP
algorithm, which makes the SUDP algorithm interfere with
sparse reconstruction, and assigns a larger weight to the
non-homogeneous neighbor points, resulting in the recon-
struction of the sparse matrix cannot be well reflected
The geometric relationship between samples. However,
in adaptive parameter estimation, sparse reconstruction only
occurs between similar samples, limiting the effect of
pseudo-nearest neighbors, and in the process of solving the
objective function, there are minimum and maximum con-
straints within the class, these Factors have led to this result.
Note that the accuracy of the adaptive parameter estimation
algorithm on the PIE data set is not much improved compared
to the SUDP algorithm. The reason may be that the PIE
data set has obvious characteristics. On this data set, both
algorithms can complete the dimensionality reduction task
well, and get a good recognition rate through the classifier.
Therefore, the label information used in the adaptive parame-
ter estimation algorithm. And global constraints do not bring
great advantages to the PIE data set.
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FIGURE 12. Classification graphs of remote sensing graphics with different algorithms.
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FIGURE 13. Comparison of adaptive parameter estimation and SUDP.

As showed in Figure 12, it is the classification
map of remote sensing graphics of different algorithms.
Figure 12 (A), Figure 12 (B), and Figure 12 (C) are the clas-
sification results of FC-Dense Net model, DeeplabV3 model,
and Deep Lab V3 4+ model. In FC-Dense Net classification
results, in Figure 12 (A), there is a phenomenon that the
background is mistakenly classified as vegetation or vege-
tation. In the classification results of Deep Lab V3, the roads
in Figure 12 (B) are coherent. In the classification results of
DeeplabV3 +, a small part of the road in Figure 12(C) was
mistakenly classified as background.

In order to verify the accuracy of the segmentation results,
this paper uses a confusion matrix to check the accuracy in
e Cognition software. This paper selects a certain amount of
changing and non-changing samples in the experimental area,
and evaluates the accuracy of the test results by calculating the
error matrix and Kappa coefficient. Figure 13 is a comparison
of the overall accuracy, Kappa coefficient, and running time
of the six change detection results.

The calculation time is closely related to the superficial
step size, and the shortest can reach no more than 4 hours.
The change detection running time of the two different spatial
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resolution images is reduced with the increase of the step
size, and the degree of reduction is almost the same, from
more than one day to about 3.5 hours. It can be seen that the
size of the superficial segmentation step is the running time
has nothing to do with the spatial resolution of the image.
Secondly, the accuracy of the results of the two resolution
images decreases with the increase of the superficial step size.
Accuracy of the GAO fen was reduced from 0.844 to 0.805,
while the accuracy of the Landsat image was reduced from
0.888 to 0.738. The detection accuracy of the changes in both
resolutions is reduced to varying degrees, and it is inevitable
to analyze this situation theoretically. Because the definition
of superficial is to simplify the information in the image to
improve the efficiency of image processing, the accuracy of
the results using superficial segmentation should be lower
than the accuracy of non-super pixel segmentation. However,
the accuracy of high-resolution images is lower than that of
low- and medium-resolution images. The overall accuracy
of high-resolution images is reduced by 0.04, while that
of low- and medium-resolution images is reduced by 0.15.
Therefore, the size of the superficial segmentation step has a
great relationship with the spatial resolution of the image in
terms of the accuracy of the result.

IV. CONCLUSION

This paper proposes a SAR remote sensing image change
detection algorithm based on an autoloader with adaptive
parameter estimation. Generally speaking, the change is in
the initial differential image has good local consistency and
global prominence. In order to mitigate the influence of
coherent speckle noise on the detection results, the signifi-
cant change area can be detected by using significant area
detection and thresholds to extract changes Area, exclude
the interference of noise outside the area. Hierarchical FCM
clustering is used to automatically generate training sam-
ples to improve the reliability of the samples. In order to
increase the distinction between the change area and the
non-change area, and better extract the change information,
the deep neural network of the sparse autoloader is used to
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generate a more complete and detailed change detection map
to improve the accuracy of change detection. Experimental
results show that the algorithm has good ability to suppress
coherent speckle noise, and can well the noise removal and
retain the details of changes, extract the change are more
finely and accurately, and is more suitable for SAR image
change detection. Histogram matching method is used for
color balance to eliminate the influence of color difference
of images in different time phases. Then, for environmental
interference factors such as weather, the target segmentation
algorithm can be used to extract the target area and exclude
the influence of the background. Then, use principal compo-
nent analysis and k-means clustering to process the difference
map, reduce the isolated pixels, and obtain the change area.
Finally, after the noise filtering, the final difference map is
obtained. Experiments were carried out using 4 sets of image
data of islands and reefs. The experimental results show that
the detection accuracy of the algorithm is high, which can
effectively reduce the interference of the external environ-
ment on change detection, especially for the interference
outside the target area such as seawater fluctuations and ships.
It can well extract the change area of the island and reef area.
The research in this article will have a huge impact on the
future.
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