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Introduction

The main topic of this thesis is large deviations for stochastic processes in a geo-
metric setting, such as a sphere. Large deviations is a mathematical theory that is
concerned with quantifying the exponentially small probabilities of rare events, in
particular deviations from the typical behaviour.

This chapter serves the purpose of providing a panoramic overview of the subjects
treated in this thesis. Before we give an outline of the thesis, we embark on a
journey to get an understanding of what large deviations are. We start with some
fundamental examples and results. Based on these, we explain how to extend the
problems to a geometric setting, which are studied in this thesis. Besides that, we
also refer to other related directions which have been investigated in this area.

1.1. Large deviations for random walks

Arguably the most well known example of a probabilistic experiment is the tossing
of a coin. Suppose we play a game in which we win 1 euro if the coin lands on
heads, while we lose 1 euro if it lands on tails. If we keep on playing this game, we
can win quite some money, but we can also lose it. Hence, we are interested in the
behaviour of our profit after a (large) number of games. We explain how to study
this in a variety of ways.

First, let us state the problem mathematically. We denote by X,, our winnings for
the n-th toss. Since the coin is fair, we have

Our profit after n tosses is then given by the sum S,, = >, ; X;. Such a sum is
often referred to as a random walk. To understand why, we can plot the value of
S, against the time n. At each time step, the value of S,, either moves up 1 or
moves down 1. After n steps, we then have a trajectory moving up and down. The
randomness comes from the fact that we toss a coin to decide if we move upwards
or downwards.

The goal is to study the behaviour of S,,. A first way to do this is to consider the
average profit %22;1 X;. Intuitively, if we perform a large number of tosses, we

3



4 1. INTRODUCTION

expect approximately an equal amount of heads and tails. This translates to an
equal amount of times gaining or losing 1 euro, so that the profit will be close to 0.
This result is known as the law of large numbers. More precisely, it states that

1 n
E;Xiao.

The law of large numbers shows that the probability for S,, to deviate order n from
the expected behaviour goes to 0 when n becomes large.

We can of course also study fluctuations of different sizes around the expected be-
haviour. In the law of large numbers, the limit is deterministic, which shows that
the variance has vanished. Since S,, consists of n independent tosses, its variance is
precisely n times the variance of a single toss. Since the variance measures the ex-
pected squared deviation from the mean, it follows that ﬁsn has constant variance.
The central limit theorem states that

1 &

where Z has a normal distribution with mean 0 and variance equal to the variance
of a single toss. The central limit theorem allows us to study the probability of
deviations of S, from its expectation of order 4/n.

In contrast to the law of large numbers, the central limit theorem provides us with
more specific information on the probabilities of deviations of order 4/n. One can
wonder whether this is also possible on the scale of the law of large numbers, i.e.,
for deviations of order n. Such deviations are referred to as large deviations, since
a sum of n terms typically has a size of at most order n. Where the law of large
numbers only tells that the probability of large deviations goes to 0, the theory of
large deviations is concerned with how fast this convergence is. More precisely, it
quantifies the limiting behaviour of the exponentially small probabilities.

For the coin flipping example with which we started, one can show that

1 n
Pl=Y X,~2]|~e® 1.1.1
(z ) : (1)

where I(z) = 3(1 + z)log(1 + ) + $(1 — x)log(l — ). This result should be
interpreted as follows: the probability that the average profit %22;1 X; is close to
x decays exponentially in n with rate I(x). In particular, we have that I(0) = 0,
meaning that the probability that 2 " | X; is close to 0 converges to 1. This is
exactly what the law of large numbers tells us. Furthermore, the farther we go
from = = 0, the larger I gets. This confirms our common sense that the larger the
deviation from 0, the less likely it is to occur.

The result in (1.1.1) is a special case of a more general result known as Cramér’s
theorem, see Theorem 2.1.10. Moreover, Cramér’s theorem shows how to compute
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the function I from the distribution of the random variables {X,,},,>1. Furthermore,
the result also holds when the X,, are d-dimensional vectors. The large deviations
for empirical averages were first proven in [25] and improved upon in [20] to hold
for more general distributions of the random vectors. In all these cases, the random
variables {X,},>1 have to be independent and have the same distribution. This
was relaxed in [50] and further generalized in [34]. This result is known as the
Gértner-Ellis theorem, see Theorem 2.1.12 for the version from [50].

1.1.1. Areas of application

To explain the relevance of large deviations, we continue with the example we in-
troduced in the previous section, i.e., we have random variables {X,,},>1 with

Now consider the random variable

Z, = ﬁzxi.

One can think of Z, as follows: If the coin flip lands on heads we multiply by
2, and if it comes up tails, we multiply by % Since we expect approximately an
equal amount of heads and tails, we expects Z, to be approximately 1. However,
the expectation of 2%i is %, so that the expected value of Z,, is (%)" We thus
see that Z,, is expected to be exponentially large, and certainly not close to 1. To
understand what happens, note that we can write Z,, = 25, where S,, = X
This shows that the large deviation events of the sum .S,, control the behaviour of
the expectation of Z,. The reason for this is that, although the large deviations
for S, have an exponentially small probability to occur, they have an exponentially
large contribution to the expected value of Z,. Even though this is a toy-example,
the observations we make are certainly relevant. For example, they play a role in the
entropy-energy balance in statistical mechanics, a field of research which provides a
wealth of applications of large deviation theory, see e.g. [90].

Another, fairly early area of application in which one is interested in large deviations
is information theory, which was introduced by Shannon in [84]. The idea is that we
want to transmit information over a noisy channel. We can think of this information
as a string of zeros and ones, and for each bit there is a certain probability that we
make an error in its transmission. Too many errors in the transmission can result
in a wrong transmission of the message, and the risk of this happening is relevant
to know. Early results in this direction can be found in [43].

One can also use large deviations in risk assessment, for example in the context of
insurance claims, see [78] among others. Let us sketch a simplified version of this
application. For this, let X,, be the amount of the n-th insurance claim done by
any of the customers. Assume that all insurance claims have the same distribution,
and are independent of each other. The sum S, = >, X; now represents the
total amount of the first n insurance claims. If this value is excessively large, it
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is impossible for the insurance company to pay out all claims, with bankruptcy
following. It is therefore worthwhile to know the risk of an excessive number of high
1

claims, which can be estimated with the large deviations for ;- Z?:l X;.

Finally, we also want to mention the area of statistics, in which we try to estimate for
example parameters based on a certain amount of data. These estimators converge
to the true value if we let the amount of data grow. However, the estimator is still
random, and we would like to understand the probability that our estimate is far
off. In a certain way, this quantifies the risk of a ‘wrong’ estimate.

1.2. Large deviations for trajectories

Large deviations can also be studied for objects other than empirical averages. In
general, as long as some version of a law of large numbers is satisfied, one can ask
the question if there is also some form of large deviations. We will explain large
deviations for trajectories of processes. More specifically, we consider trajectories of
random walks and of Brownian motion.

1.2.1. Large deviations for trajectories of random walks
Sometimes we are not only interested in the end point of a random walk, but also
want to understand how we got there. In order to study the behaviour of the
trajectory of a random walk, we define for every ¢ € [0, 1] the random variable

i

Note that the path Z,(t) is constant on time-intervals [

times 2;., = .

, =), and steps occur at

If we assume that the random variables {X,},>1 are independent, identically dis-
tributed with mean 0, then the law of large numbers gives us that

Zn(") — 0.

More precisely, the trajectories Z,(-) converge to the trajectory which is constant 0.

Likewise, we also have an analogue of the central limit theorem. This is called the
invariance principle, which states that

—N'X; > W()

Wi
in distribution, where W is a Brownian motion, see e.g. [12]. This is one of the
reasons why Brownian motion is sometimes viewed as the path-space analogue of
the normal distribution.

Since the trajectories Z,(-) satisfy the law of large numbers, we can also study their
large deviation behaviour. We explain heuristically how these can be obtained from
the large deviations for random walks.
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For every individual time ¢ € [0, 1], we obtain from the large deviations for random
walks that
P(Z,(t) ~ x) ~ et

Since the increments of the random walk are independent and identically distributed,
one can prove that I(z) = tI(t~1x), where I = I;.

For two times ti,ts € [0, 1] with ¢; < t9, the tuple (Z,(t1), Z,(t2)) also satisfies the
large deviation principle:

P(Z,(t1) ~ 21, Zn(t2) = 22) ~ e M2 ()

Since Z, (t2) depends on Z, (t1), the rate function Iy, 4, is not the sum of I;, and Iy,.
However, since the increments of the random walk are independent, the increment
Zn(te) — Zy(t1) is independent of Z,,(t1). Furthermore, the increments all have the
same distribution, so that Z,,(t2) — Z, (¢t1) has the same distribution as Z, (ts — t1).
Therefore, heuristically we have

P(Z,(t1) & 1, Zn(t2) ~ x2) = P(Z,(t1) ~ 21, Zp(t2) — Zn(t1) =~ 2 — 21)
=P(Z,(t1) = 21)P(Zp(t2) — Zn(t1) = z2 — 1)
=P(Z,(t1) = 1)P(Z,,(t2 — t1) ~ x2 — x1)

~ e—nltl (xl)e_nltg—tl (z2— 351).

Remembering that I;(z) = tI(t"'z), we thus find that

X X9 — I
Itl’t2($1,l'2) = Itl (1'1) + Itzftl (QCQ — 1’1) = tlf <t11> + (tz — tl)I < tz — t11> .

Continuing this idea, for a curve v and partition 0 =ty <t; < --- <t < 1 we find
that

P(Zn(t) = A(t), - Zu(te) = A(t)) €7t O (8)),

where

t_tz 1

k .
Lyt (310, Z (ts — ;1) (v@)v(t))

Under some conditions on =, if we let the mesh-size of the partition tend to 0, we
have

: Y(ti) = y(ti-1) !

St =ty (LU f I(3(t)) dt.

i=1 t o tl 1 0

This suggest that
P(Zn() ~ ) ~ e S 1) &t (1.2.1)

This can be made precise, and was proven in [74]. The result is known as Mogulskii’s
theorem, see Theorem 2.1.13.
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The form of the rate function in Mogulskii’s theorem is a special case of a more
general form given by

I(v) = JO L(y(t),5(t))dt.

The function £ is called the Lagrangian, and the function Z is then interpreted as
an ‘action’. When considering Brownian motion in the next section, we will see this
form again.

1.2.2. Large deviations for Brownian motion with small vari-
ance

On the level of processes, arguably the most important stochastic process is Brown-
ian motion. As mentioned earlier, it acts as the analogue of the normal distribution
on process level, as is for example justified by the invariance principle.

The increments of Brownian motion are independent, stationary and have a normal
distribution. Therefore, if we take an appropriate scaling W, (t) = a(n)W(t) of a
Brownian motion W (t), it should be possible to approximate W, (t) by

where {X,},>1 is a sequence of independent, standard normal random variables.
To find the correct scaling a(n), observe that by the invariance principle we have

[nt]
1
\/ﬁZn(t) = = X — W<t)
V)
in distribution. This implies that for n large, Z,(t) is approximately equal to

ﬁW(t) in distribution. We thus should take a(n) ﬁ This is also supported

when we study the increments of Z,,(t) and W, (¢). Indeed, with this specific choice
of a(n), Wy(%) — W,(=21) has a normal distribution with mean 0 and variance
a(n)?L = J;. The increments of Z,(t) also follow this distribution, so that Z,(t) is
a piecewise constant approximation of W, (t).

It is possible to prove that Z,(t) approximates W, (t) well enough, such that their
limiting behaviour on an exponential scale is the same, i.e., they follow the same
large deviation principle. It is therefore enough to understand the large deviations
of Z,,(+), which follow from Mogulskii’s theorem. One can compute that the function
I in Mogulskii’s theorem is given by I(z) = %|z|* in the case of standard normal

random variables. As a consequence, we have

1 101 (g |2
Pl —=W()~ ~P(Z, () ~ ) ~ ezl H®OFd
(FoW0 ) ~ Pz =) ~ o
This result is due to Schilder, see [83]. We also give the precise statement in Theorem
2.1.14. Observe that the rate of a trajectory v is given by the action 3 Sé |5(t)|? dt
obtained from the kinetic energy. More precisely, the higher the action, the less
likely the trajectory.
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1.3. Random walks in curved spaces

Large deviations for random walks have been studied in a variety of settings. In
theoretical context, the result of Cramér’s theorem also holds in Banach spaces, see
[31]. Furthermore, one can also consider large deviations for empirical measures,
the result on which is known as Sanov’s theorem, see e.g. [56, 29]. Recently,
a lot of attention has also gone to large deviations for random walks in random
environments, see e.g. [94, 100] for some initial results. Finally, we mention the
recent development of obtaining large deviations for Markov processes based on
convergence of non-linear semigroups and viscosity solutions of Hamilton-Jacobi
equations. This method was introduced in [39]. Among a wealth of applications, it
is for example applied to obtain results concerning empirical measures of Markov
jump processes, see [62]. We will also make use of this method to obtain some of
our results.

In this thesis, we consider random walks in curved spaces, i.e., manifolds. Such
random walks are mainly studied in the context of approximating diffusions on
manifolds. The origin of this can be found in [58], where the central limit problem is
considered. This result has been extended to a time-inhomogeneous setting in [64].
Other recent results concerning approximating solutions to stochastic differential
equations on manifolds can be found in [1].

However, it seems that the large deviations of such random walks have not been
considered. Therefore, our aim is to obtain results similar to those in (1.1.1) and
(1.2.1) for random walks in manifolds. In order to do this, we first have to define
random walks in manifolds. Indeed, if we would simply copy the approach from the
Euclidean case, a problem we immediately run into is that we cannot add points
in a manifold together and rescale by a factor. This problem already occurs when
one considers the sphere, which is the prototypical example of a manifold. We thus
need to find a suitable generalization of % >, X; in such spaces. For this, we will
use the viewpoint of random walks.

1.3.1. Geodesic random walks

The increments {X,,},,>1 of the random walk } " | X; may be thought of as vectors.
The addition of such a vector then amounts to following the straight line in the
direction of the vector for time 1 to assure that we add the entire vector. See the
left picture in Figure 1.1 for a visualization of this interpretation.

On a manifold, vectors providing directions are precisely the tangent vectors. There-
fore, to make a ‘step’ of the random walk, we take a random tangent vector. We
then have to follow the ‘straight line’ in that direction. In Euclidean space, straight
lines are lines of shortest distance between points, i.e., they are geodesics. This ex-
plains that in the manifold, following the ‘straight line’ means that we have to follow
the geodesic in that direction. We again do this for time 1, to ‘add’ the entire vec-
tor. We now construct a random walk by concatenating a number of random steps.
Since each time we are at a different point, we need for every point on the manifold
a distribution on the tangent space to tell us how to sample the next direction. In
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S

S1 ™~

Xi} 1

So

Figure 1.1: Visualization of the construction of geodesic random walks. On the left, we see the
interpretation of a random walk in Euclidean space as repeatedly following straight lines in the
direction of vectors. On the right, this idea is extended to the sphere, where we follow geodesics
in the direction of tangent vectors.

Figure 1.1 this construction is shown for the sphere.

To summarize, to construct a random walk on a manifold, we first take on every
tangent space a probability distribution. Then, to take a step, we sample a tangent
vector at the point where the random walk is, and then follow the geodesic in that
direction for time 1. We will denote the random walk after n steps by S,,. Since we
‘walk’ along geodesics, we will refer to S,, as a geodesic random walk.

What remains is to define how we can rescale the random walk by a factor % Since
we cannot rescale S,, what we do, is we rescale the tangent vectors we sample
instead. Equivalently, we can also follow the geodesics for time % instead of time 1.
We denote the rescaled random walk by (L *S),.

Example: the sphere

As an example, we can consider the sphere as a 2-dimensional manifold, see Figure
1.1. To start the random walk, we need to select a point Sg = x¢ on the sphere.
Furthermore, we have to define a probability distribution on every tangent space.
For this, we can for example say we always take a tangent vector with a uniformly
random direction and a fixed length. Since geodesics on the sphere are the great
circles, the geodesic random walk then consists of following pieces of great circles of
equal length, in random directions. This approach of defining random walks on a
sphere agrees with early definitions made specifically in this case, see e.g. [81].

Random walks using grids

For completeness, we also shortly discuss another approach to defining random walks
in curved spaces. For this, one takes a collection of points {p;}; in the manifold,
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which together form a grid. To define a random walk on the manifold now reduces
to defining a random walk on the grid. One can do this by assigning to each pair of
points (p;,p;) a probability to jump from point p; to point p;.

In Euclidean space, we usually take an equidistant grid, for example consisting of
all points with integer coordinates. If we then want to consider random walks with
small stepsize, we can take the grid containing points with coordinates which are
multiples of % For general curved spaces, such regular grids do not necessarily exist,
and choosing appropriate grids is more involved. Also, in order to obtain a grid with
small stepsizes, we cannot simply rescale, and must for example add points to the
grid to make sure that grid points tend to be closer to each other.

Grids for manifolds naturally arise when we have a collection of data points from a
certain manifold. Laplacian based machine learning algorithms rely on the conver-
gence of the discrete Laplacian on the approximating grid to the Laplace-Beltrami
operator on the manifold. We refer to [85] and references therein. Furthermore,
grids may be used to study interacting particle systems on manifolds, see e.g. [45].

1.3.2. Applications of probability theory in manifolds

A question we have to ask ourselves is whether it is necessary to complicate matters
and take curvature into account. Indeed, while the Earth is spherical, if we look
around us, we perceive it as flat. If we would then zoom in enough, we may just as
well locally approximate our curved space with a flat one.

However, our perception of the Earth as flat is a matter of scale. If we for example
would like to predict the trajectory of a hurricane or of streams in the ocean, the
curvature does become relevant. Scale is also important if we study the behaviour
of systems in nano-biology. Limit results then help us to understand macroscopic
behaviour from the (stochastic) microscopic behaviour of the system.

Furthermore, as already mentioned above, manifolds occur naturally when consid-
ering data. The problem of manifold learning or visualization is concerned with
retrieving the manifold structure of the data, which is usually of a much lower di-
mension than the data itself. This is for example treated in [89, 101] among others.
Related to this problem is the problem of sampling from a distribution on a manifold.
In Euclidean space, this can often be done effectively using Markov Chain Monte
Carlo. The idea is essentially to construct a Markov chain which has the target
distribution as its invariant distribution. This approach can also be taken in the
manifold setting, see e.g. [16].

Finally, we also mention the role probability theory and geometry play in shape
analysis. One can for example consider an object, such as a human organ, that
deforms over time. This deformation may be modelled as a stochastic process.
However, since we cannot measure continuously, the problem is now that given
observations at different time points, we would like to reconstruct the underlying
process of deformation. This can for example be done by constructing diffusion
bridges. We refer to [4] among others.
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1.4. Brownian motion in Riemannian manifolds

In addition to Cramér’s and Mogulskii’s theorem, we also wish to extend Schilder’s
theorem to a geometric setting. For this, it is necessary to have a notion of Brownian
motion in curved spaces.

In the Euclidean setting, Brownian motion W (t) is usually defined as the unique
continuous process with independent, stationary increments such that W (t) — W(s)
has a normal distribution with mean 0 and variance ¢ — s. Since there is no clear
way to define increments of a manifold-valued process, this approach is not suitable
to define a Brownian motion in a manifold.

It is thus necessary to consider other characterizations of Brownian motion. As we
have seen before, it follows from the invariance principle that Brownian motion is
the limit of random walks of the form

Furthermore, since Brownian motion is a Markov process, we can also consider
its generator. The generator of a Markov process describes in a certain way the
infinitesimal evolution of the process. For Brownian motion, the generator is given
by %A, where A is the Laplacian, i.e.,

Finally, Brownian motion is also uniquely characterized as the martingale W (t)
having quadratic variation [W]; = ¢.

We will explain how each of these characterizations can be used to define Brownian
motion in manifolds. Furthermore, we also introduce a geometric construction.

It turns out that in order to define Brownian motion in a manifold, we need some
additional structure. A Riemannian metric on a manifold is a smooth selection
of inner-products on the tangent spaces. A Riemannian manifold is a manifold,
together with a Riemannian metric. It is possible to define a notion of Brownian
motion in a Riemannian manifold. However, in contrast to the Euclidean case, this
process can blow up in finite time. One can define Riemannian Brownian motion
either geometrically or in a probabilistic way. We discuss both approaches.

Geometric construction of Brownian motion

Firstly, we discuss a purely geometric way of defining Brownian motion in Rieman-
nian manifolds. This method is due to Eells-Elworthy-Malliavin, see [35, 71, 57].
For simplicity, we again consider the sphere, which is a two-dimensional manifold.
The entire procedure explained works equally well in general Riemannian manifolds.
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The idea is that we transfer a curve + from the plane R? to the sphere by rolling the
sphere along the curve, without slipping. The contact point between the plane and
the sphere then traces a curve along the sphere, which we call the development of ~
onto the sphere. In this rolling procedure, ‘without slipping’ intuitively means that
the motion of the contact point between the plane and sphere is only influenced by
the velocity of the curve « and the curvature of the sphere. This procedure can be
made mathematically precise, the details of which can be found in Section 2.3.
The idea is now to start with a Brownian motion B(t) in the plane, and develop this
onto the sphere. Unfortunately, as described above, we need to know the velocity
of a curve if we want to develop it onto the sphere. An insight by Malliavin, called
Malliavin’s transfer principle shows that in a suitable way, the same procedure may
also be carried out for stochastic processes. The ‘velocity’ of the stochastic process
is then replaced by the Stratonovich differential. This is extensively explained in
Section 2.4. A Brownian motion on the sphere is now obtained by considering the
development of a Brownian motion in the plane.

A probabilistic approach to Riemannian Brownian motion

It is also possible to define Brownian motion in a Riemannian manifold in a prob-
abilistic way. The different probabilistic approaches are based on the characteriza-
tions of Brownian motion in the Euclidean case.

In the Euclidean setting, Brownian motion is a Markov process generated by %A.
A Riemannian manifold possesses a natural analogue of the Laplacian, namely the
Laplace-Beltrami operator, which we denote by Ajs. Since the notion of a generator
can be extended to manifold-valued Markov processes, we can define Riemannian
Brownian motion as the continuous process generated by %A M-

Furthermore, it was shown in [58] that the invariance principle also holds in Rie-
mannian manifolds. Therefore, Brownian motion can be obtained as the limit of
geodesic random walks which are scaled by ﬁ

Finally, we also mention the extension of the idea that Brownian motion is a martin-
gale W (t) with quadratic variation [W]; = t. For this, one first defines a notion of
manifold-valued semimartingales and a notion of quadratic variation. One then uses
the Levi-Civita connection of the Riemannian manifold to define manifold-valued
martingales. Finally, Brownian motion is then characterized as a martingale with a
specific quadratic variation in terms of the Riemannian metric. For details on this
approach, see [36, 57].

1.4.1. Schilder’s theorem for Riemannian manifolds

With a Riemannian Brownian motion at hand, we can pose the question if an
analogue of Schilder’s theorem also holds in Riemannian manifolds. For this, we
first of all should notice that if W (t) is Riemannian Brownian motion, then ﬁW(t)
is not defined. Instead, observe that in the Euclidean case, ﬁ (t) = W(%t) in
distribution. This motivates that in order to study large deviations, we should
consider the processes W, (t) = W(1t).
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Let us motivate the generalization of Schilder’s theorem. As a Markov process,
Brownian motion in Euclidean space R? possesses a transition density p(t,z,y)
given by

1 1 2
- —3rlz—yl
p(t,xz,y) = e 2t .
( ) (27t) 2

From this it follows that
lim tlog p(t, x, y) = 1| |2
tg% ogplt,r,y) = D) =y,

which describes the short time behaviour of the transition density of Brownian
motion.

A Riemannian Brownian motion also possesses a transition density pys (¢, z,y). How-
ever, contrary to the Euclidean case, we cannot give an explicit expression. Nonethe-
less, Varadhan studied the short time behaviour of the transition density in [93],
obtaining that

. 1 2
lmp (8, 2,y) = —5d(z,)".

Here, d(z,y) is the so called Riemannian distance between points « and y, which in
the Euclidean case is precisely |z — y|.

Recall that in Euclidean space we can prove the large deviation principle for Brow-
nian motion by approximating with polygonal paths over meshes with size tending
to zero. The similarity in the short time behaviour of the transition densities then
suggests that in the Riemannian setting, we should be able to obtain a similar large
deviation result for Riemannian Brownian motion. More precisely, if W(t) is a
Riemannian Brownian motion, then for W, (t) = W (1t) we have

B(W, ()~ 9) ~ e "3l 0oy .

Here, g denotes the Riemannian metric, and |y(t)
respect to the inner product g((t)).

‘g(’y(t)) is the norm of ’y(t) with

The rate function Z(v) = % S(l) |5 (t) 3(7(0) dt is again given by the action of the path
. Different from the Euclidean case is that we evaluate the norm of #(t) with
respect to the inner product g(y(t)). The precise statement is given in Theorem
5.1.3 and can also already be found in [9, 41]. We also refer to [13] for related
results. Although the result is already known, we provide several novel approaches
for proving it, see Chapter 5. While developed to prove Schilder’s theorem for
Riemannian Brownian motion, the approaches are interesting in itself and can be

applied to a wider variety of problems.

1.4.2. Brownian motion in evolving manifolds

The final generalization we consider in this thesis is Riemannian Brownian motion
in a time-evolving manifold. More precisely, this means that we study manifolds
with a Riemannian metric which changes over time. One can for example think of
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a sphere, whose radius varies in time. Furthermore, one could think of studying
the random movements of proteins in cell membranes. Cells usually deform over
time, and this influences the stochastic process that describes the movement of the
proteins. Additionally, it is also possible that the parameter space of some model
forms a manifold, and the relation between different parameters changes over time.

We describe the time-evolution of the Riemannian manifold by letting the Rie-
mannian metric g(¢) depend on time. The geometric and probabilistic approaches
to define Riemannian Brownian motion in the time-homogeneous setting may be
adapted to the time-inhomogeneous case, see Chapter 7. In this way we can define
Riemannian Brownian motion in an evolving manifold.

It was recently shown in [64] that the invariance principle for geodesic random walks
also holds in this time-inhomogeneous setting. Other work in this direction mainly
focusses on functional estimates, such as gradient estimates for the heat semigroup,
to characterize curvature and solutions to the Ricci flow. A selection of references
includes [18, 19, 54]. A result in the direction of large deviations can be found in
[24], where the probability for Brownian motion to be in a small band around some
given curve is studied.

To find the analogue of Schilder’s theorem in this time-inhomogeneous setting, we
cannot simply consider the process W, (t) = W(Lt) for W (t) a Riemannian Brow-
nian motion with respect to the evolving metric g(¢). Indeed, in the limit of n to
infinity, we will only notice the contribution of the metric g(0). To solve this, we also
have to scale the time-dependence of the metric. More precisely, we first define W, (t)
as a Riemannian Brownian motion with respect to the evolving metric g, (t) = g(nt).
We can then study the large deviations for the processes W, (t) = Wn(%t) This is
done in Chapter 7. It turns out that the idea of the rate function being the action
of the path carries over, i.e.,

1t
I(v) = §f0 (O 50 (e At

The difference with the time-homogeneous case is that we evaluate the norm of (t)
with respect to the metric g(¢).

1.5. Outline of the thesis

We conclude the introduction by providing an outline of the thesis, and shortly
summarizing the content of each chapter. The thesis consists of three main parts:

I Introduction: The current chapter with a general introduction to the topics
studied, and a chapter providing some necessary mathematical background.
(Chapters 1 & 2)

II Large deviations for processes in Riemannian manifolds: Extensions
of classical large deviation result to a geometric setting. (Chapters 3-5)
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IIT Large deviations in a time-inhomogeneous setting: Large deviations for
random walks with time-inhomogeneous increments in the Euclidean setting,
and Brownian motion with respect to a time-evolving metric in the geometric
setting. (Chapters 6 & 7)

In addition to the general introduction to the topic we have given here, Chapter 2
gives a more rigorous introduction to the mathematical concepts used in this thesis.
We introduce the concept of large deviations, and provide some basic results from
the literature. Furthermore, we discuss the relevant notions from (Riemannian) ge-
ometry. Additionally, we explain the notion of horizontal lift and (anti-)development
of curves via the frame bundle over a manifold. We conclude by extending these
notions to hold also for stochastic processes.

In part II we treat extensions of classical large deviation results to the geometric
setting. We start in Chapter 3 by extending Cramér’s theorem to random walks
in Riemannian manifolds. For this, we first introduce geodesic random walks in
Riemannian manifolds. To prove the analogue of Cramér’s theorem for geodesic
random walks, we show how to identify the random walk in the manifold with a
process in some tangent space. This way, we can use Cramér’s theorem in vector
spaces. To get this identification, we perform a careful geometric analysis of geodesic
random walks.

Chapter 4 is also concerned with random walks in manifolds, but now specifically
in Lie groups. The additional group structure allows for a slightly different and
simpler definition of a random walk. In some cases, this coincides with the notion of
a geodesic random walk. We discuss when exactly this is the case. With or without
this identification, we show that a roughly similar approach as taken for geodesic
random walks also results in the large deviations for random walks in Lie groups.
However, the estimates we have to make for this are different from the ones for
geodesic random walks.

In Chapter 5 we focus on path-space large deviations for processes in Riemannian
manifolds. More precisely, we study the analogues of Mogulskii’s and Schilder’s
theorem. We take two approaches of studying such large deviations. The first ap-
proach is based on the convergence of non-linear semigroups and viscosity solutions
for Hamilton-Jacobi equations as introduced in [39]. Without going into details, we
only state the results we need for our purposes. The second approach relies on lifting
the process in the manifold to the frame bundle, and is only used for the analogue
of Schilder’s theorem. For Riemannian Brownian motion, the lifted process satisfies
a globally defined stochastic differential equation. We prove the large deviations for
this by embedding the frame bundle in Euclidean space and using Freidlin-Wentzell
theory.

In part III, we generalize classical large deviation results to a time-inhomogeneous
setting. In Chapter 6 we start by studying random walks in Euclidean space with
time-inhomogeneous increments. Under suitable condition on the time-dependence,
we prove the analogues of Cramér’s and Mogulskii’s theorem. As a step up towards
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the next chapter, we also prove the large deviation principle for processes generated
by weighted Laplacians, where the weight depends (only) on time.

The latter is a special case of a Riemannian Brownian motion with respect to a time-
evolving metric. We study the large deviations for such processes in Chapter 7. In
order to do this, we extend the notions of horizontal lift and (anti)-development to
time-dependent connections. We then show that the embedding approach used in
the time-homogeneous case can also be used in the time-inhomogeneous setting.






Mathematical background

This chapter serves the purpose of introducing the various mathematical topics that
are necessary in the main part of this work. Furthermore, it allows us to fix the
notation. Before we get to the individual topics, we first discuss some generalities
that do not belong to any of the treated subjects in particular.

First of all, we use Einstein’s summation convention whenever there is no confusion.
This means that if an index occurs twice in an expression, once as subscript and
once as superscript, this index is summed over. For example, if {e1,...,e4} denotes
the standard basis of R?, then for v € R¢ we write

v =v'e;.

Furthermore, we define the function spaces that we will encounter. For the set of
bounded, measurable function on R? we write L*(R%). We denote by C(R?) the
set of continuous functions and we write Cy(R?) for the set of bounded, continu-
ous functions. Furthermore, we denote by CP(R?) the set of p-times continuously
differentiable functions, and by C®(R9) the set of smooth functions, i.e., infinitely
differentiable functions. A subscript ¢ denotes that we only consider functions with
compact support, i.e., we write C.(R?), C?(R?) and C*(R%). If we work in a space
different from R?, but in which any of the notions make sense (think of a manifold
M, see Section 2.2), we use the same notation, with R? replaced by the given space.

Additionally, we also need to define spaces of curves. For an interval [a,b] € R we
write L®([a,b]; R?) for the set of bounded, measurable curves 7 : [a,b] — R%. We
denote the continuous curves by C([a, b]; R?). Furthermore, we write L'([a, b]; R?)
for the set of integrable curves.

We say a curve 7 : [a,b] — R? is absolutely continuous if for every ¢ > 0 there exists

a & > 0 such that for any partition a < sy < t; < --- < s, < t, < b satisfying
Sy (ti — s;) < 6 it holds that

n
D) —(si)] <.
i=1
Equivalently, a curve v : [a,b] — R? is absolutely continuous if 7 is almost every-

19
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where differentiable with 4 € L!([a, b]; RY) and such that

2(t) = 7(a) + J i(s) ds.

a

We write AC([a, b]; R?) for the set of absolutely continuous curves 7 : [a,b] — R
Finally, we define the space H'([a,b]; R?) by

H'([a,b];RY) := {7 : [a,b] — R?

b
~ differentiable a.e.,f [ (t)]? dt < oo} .
a

In the case of curves, if we only consider curves y with a given initial point vy(a) = z,
we write C,([a, b]; R?), AC,([a,b]; R?), H!([a,b]; RY). Again, whenever each notion
makes sense for spaces other than R?, we replace R? in the notation accordingly.

In the remainder of this chapter we provide a mathematical introduction to the top-
ics we are studying. In Section 2.1 we discuss the large deviation principle, together
with some useful and noteworthy results. Section 2.2 is devoted to introducing the
necessary basics from (Riemannian) geometry, and most importantly, fixing the no-
tation we will use. In Section 2.3 we study the frame bundle over a manifold, and
define the notions of horizontal lift, development and anti-development of curves.
Finally, in Section 2.4 we discuss some stochastic calculus in manifolds.

2.1. Large deviations

The theory of large deviations is concerned with the limiting behaviour on an ex-
ponential scale of a sequence of random variables {X,},>1 in some state space
X. Examples of sequences for which this problem can be studied include empirical
averages and diffusions with decreasing variance.

In this chapter, we define the notion of a large deviation principle in general. We
also collect some useful results from the theory that will be of later use. Finally,
we state the classical results concerning large deviations for empirical averages and
diffusions with decreasing variance, the extensions of which to geometric and time-
inhomogeneous settings are the main topic of this thesis.

2.1.1. Large deviation principle

We begin with the basic definition of a large deviation principle. For our purposes,
we will restrict ourselves to processes taking values in a metric space X.

Definition 2.1.1 (Rate function). A rate function is a lower-semicontinuous func-
tion I : X — [0,00]. A rate function is good if its level sets {x € X|I(x) < a} are
compact. The domain Dy of a rate function I is the subset of X where I is finite,
i.e., Dy = {x € X|I(z) < }.

The rate function governs the exponential rate of decay in the large deviation prin-
ciple, which we define next.
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Definition 2.1.2 (Large deviation principle). Let {X,}n,>1 be a sequence of random
variables with values in X. The sequence {X,}n>1 satisfies the large deviation
principle (LDP) in X with rate function I if the following are satisfied:

1. (Upper bound) For any F < X closed we have

1
limsup — logP(X,, € F) < — inf I(z).

n—oo N zeF
2. (Lower bound) For any G < X open we have

1
liminf —logP(X,, € G) = — inf I(z).

n—o n zeG

Remark 2.1.3. The large deviation principle is in a way the exponential version of
the notion of weak convergence. Indeed, by Portmanteau’s theorem (see e.g [12]),
X, converges weakly to X if and only if for all closed sets ' we have

limsupP(X, € F) <P(X € F),

n—o0

or equivalently,

liﬁigclfP(Xn EG)=2P(X e@)
for all open sets G.
Furthermore, the infimum occurs in the upper and lower bound of the large deviation
principle, since only the largest exponential contribution will determine the rate.
This follows from the Laplace principle, which states that

. 1 na nby __
nlgxgoﬁlog(e + e™”) = max{a, b}.

Theoretical results in large deviation theory

We now discuss some theoretical results that will help us in proving large deviation
principles. Furthermore, we discuss how to obtain new large deviation principles
from old ones.

In many cases, it is easier to prove the upper bound for compact sets, rather than
general closed sets. If the lower bound of the large deviation principle holds, and
the upper bound holds only for compact sets, we say the sequence {Z,},>1 satisfies
the weak large deviation principle. If the mass of the random variables is then con-
centrated enough on compact sets, then the upper bound may actually be extended
to all closed sets. We have the following definition.

Definition 2.1.4 (Exponential tightness). A sequence {X,}n>1 is exponentially
tight if for every a > 0 there exists a compact set K, < X such that

1
limsup — logP(Z,, € K3) < —a.

n—oo N
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We have the following proposition, which can for example be found in Section 1.2
in [29].

Proposition 2.1.5. Let {X,,},>1 be a sequence of random variables satisfying the
weak large deviation principle in X with rate function I. Assume furthermore that
the sequence is exponentially tight. Then {X,},>1 satisfies the (full) large deviation
principle in X with the same rate function I.

One can obtain new large deviation principles from given ones by applying contin-
uous functions to them. The following is Theorem 4.2.1 in [29)].

Theorem 2.1.6 (Contraction principle). Let X and Y be metric spaces and let
f: X = Y be continuous. Suppose I : X — [0,0] is a good rate function.

1. Define I' : Y — [0, 0] by
I'(y) = inf{I(x)|z € X, f(x) = y}.

Then I' is a good rate function on Y. Here, the infimum of the empty set is
taken to be infinite, as usual.

2. Suppose { X, }n=1 satisfies the large deviation principle in X with rate function
I. Then {f(X,)}n=1 satisfies the large deviation principle in Y with rate
function I'.

Finally, there are also conditions under which two different sequences of random
variables satisfy the same large deviation principle.

Definition 2.1.7 (Exponential equivalence). Let (X,d) be a metric space, and
let {Xn}n=1 and {Y,}ns1 be two sequences of random variables with values in X.
The sequences { X, }n>1 and {Y,}n>1 are exponentially equivalent if there exists a
sequence {Py, }n>1 of joint distributions of { X, }ns1 and {Y,}ns1 such that

1
lim sup — log P, (d(X,,,Y,,) > 0) = —©

n—oo 1

for every § > 0.

If two sequences of random variables are exponentially equivalent, then in the limit
they are indistinguishable on an exponential scale. The following is Theorem 4.2.13
in [29].

Theorem 2.1.8. Suppose {X,,}n>1 satisfies the large deviation principle with good
rate function I and let {Y,}n>1 be exponentially equivalent to {X,}n>1. Then
{Yi}n=1 also satisfies the large deviation principle with rate function I.

2.1.2. Large deviations for empirical averages

Let {X, }n>1 be a sequence of independent, identically distributed random variables

taking values in R?. Define S, = >, X; and consider the sequence {%Sn}n>1 of
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empirical averages. If E(X;) < o0, then by the law of large numbers we have

1 n

= > X; > E(X))

n 4

i=1

in probability.
Cramér’s Theorem is concerned with the large deviations for the sequence {%Sn }n>1.
Define M(\) = E (e<)"X1>), the moment generating function of X; and set A(\) =
log M (). A is called the log-moment generating function, and is also known as the
cumulant generating function.

The rate of the large deviation principle for {%Sn}nzl is governed by the Legendre
transform of the log-moment generating function, which we define next.

Definition 2.1.9 (Legendre transform). The Legendre transform A* : R? — [0, o0]
of a function A : R* — R is defined by

A*(z) = sup {\,2) = A(A)}

AeRd

The following is Cramér’s theorem, see e.g. Theorem 2.2.3 in [29] or Theorem 1.4
in [56].

Theorem 2.1.10 (Cramér). Let {X,}n>1 be a sequence of independent, identically
distributed random variables taking values in R%. Denote by A the log-moment

generating function of X1 and assume that A is everywhere finite. Then {%Sn}n>1

satisfies the large deviation principle in R% with good rate function I given by

I(z) = A*(z) = fuﬂsj {Ox) — AN}

The conditions on A in Theorem 2.1.10 may be weakened significantly. It can be
shown that it suffices to assume that 0 is in the interior of the domain of A.

Beyond independent, identically distributed increments

Apart from weakening the condition on A in Theorem 2.1.10, it is also possible
to weaken the conditions on the sequence {X,},>1. To this end, we present a
more general result, which includes the case of empirical averages of a sequence of
increments which are not necessarily independent and identically distributed.

Let {Z,}n>1 be a sequence of random variables in R?. For every n > 1, define
A () = logE <e<)"Z">) ,
the log-moment generating function of Z,.

Assumption 2.1.11. For every A € R?,

A = lim SA,(nA)

n—o N,

exists and A is differentiable.
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Theorem 2.1.12 (Girtner-Ellis). Let {Z,},>1 be a sequence of R*-valued random
variables. Suppose that Assumption 2.1.11 is satisfied. Then {Z,}n>1 satisfies the
large deviation principle in R® with rate function I given by

I(x) = A*(x) = sup {(A, z) = A(N)}

AeR4

As for Cramér’s theorem, the conditions on A in Assumption 2.1.11 can be weakened
in order for Theorem 2.1.12 to still hold. This relies on some intricate convex
analysis, which is beyond the scope of this exposition. We refer to Section 2.3 in
[29].

2.1.3. Path-space large deviations

The study of large deviations is not restricted to empirical averages of sequences of
random variables. We will also study large deviations on the level of trajectories.
We do this for trajectories of random walks, as well as trajectories of diffusions with
small variance.

Path-space large deviations for empirical averages

For a sequence { X, }n>1 of R¢valued random variables, the sum S,, = Z?:l X; may

be considered as a random walk in R%. Therefore, the sequence of empirical averages

{%Sn} may also be considered as a random walk of n steps with size of order %

Cramér’s theorem can now also be used to obtain the large deviations for other

points of this random walk, not simply the endpoint. More generally, for every
€ [0,1], Cramér’s theorem gives the large deviations for

%@:%ZX“ (2.1.1)

where |x] denotes the largest integer below . Given times 0 < t; <ty < ---t; < 1,
we can use the Géartner-Ellis theorem to obtain the large deviations for the sequence
{(Z.(t1), -+, Zn(t1)) }n>1. By making the partition ever finer, we finally obtain the
large deviations for {Z,,(-)},>1 as random variables in L*([0, 1]; R%). This is known
as Mogulskii’s theorem, see e.g. Theorem 5.1.2 in [29].

Theorem 2.1.13 (Mogulskii). Let {X,},>1 be a sequence of independent, identi-
cally distributed random variables in RY. Assume that the log-moment generating
function A of X, is everywhere finite. Define Z,(t) for t € [0,1] as in (2.1.1).
Then {Z,(-)}n=1 satisfies the large deviation principle in L= ([0,1]; R?) with good
rate function I given by
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Large deviations for Brownian motion with small variance

Let {W(t)}:>0 be a standard Brownian motion in R¢. Note that for every ¢t we can

write
[nt] . .
|nt] i i—1
Wit)=W(t)-w|— wWil-)-Ww .
=wo-w (1) 3w (] -
Since the increments W (%) -Ww (%) are independent with a normal distribution
with mean 0 and variance £, we find that \/n (W (£) — W (1)) follows a standard

n’

normal distribution. Hence, Mogulskii’s theorem (Theorem 2.1.13) implies that

{Zn()}n=1, where
i) = Vlﬁlij{w (2) W(Z;1>} (2.1.2)

satisfies the large deviation principle in L*([0,1]; R¢) with rate function

1oy = {30 ye G0, 11R
! o0 otherwise.

Here, the form of the rate function follows from the fact that for a standard normal
distribution we have A(X) = £|A|?, so that A*(z) = L|z|?.

ow define W, (t) = —= t). en Z,(t) in (2.1.2) can be written as
Now define W, \}EW Then Z in (2.1.2 b i

oS (3)w ()

It can be shown that {W,,(-)},>1 and {Z,(-)}n>1 are exponentially equivalent in
L*®([0,1];R%). As a consequence, we obtain the large deviations for {W,(-)},>1 in
L*([0,1];R%). Since the paths of Brownian motion are almost surely continuous,
the large deviation principle actually holds in C([0, 1]; R?), see Lemma 4.1.5 in [29].
This result was proved in [83] and is known as Schilder’s theorem.

Theorem 2.1.14 (Schilder). Let {W (¢)}:;>0 be a standard Brownian motion in R%.
For everyn = 1 and t € [0,1], define W,,(t) = ﬁW(t) Then {Wy,(-)}n>1 satisfies

the large deviation principle in C([0,1];R?) with good rate function I given by

1) = {EHBOPA e Hi(o, 1R
0 otherwise.

Freidlin-Wentzell theory

Brownian motion with small variance is an example of a diffusion process with a
small diffusion constant. The study of the large deviations for diffusions with small
variance is known as Freidlin-Wentzell theory, see [41].
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Let {W(t)};=0 be a standard Brownian motion in R? and let b : R? — R? be
Lipschitz continuous. Let X, (¢) be the solution of the stochastic differential equation

1
X = b(X, — X = 0.
AXa(1) = BXu() A+ —dW(D), X(0) =0
Define the map F : Cy([0,1];RY) — C([0,1]; R?) given by F(g) = f, where f is the
solution of the integral equation

Jb ))ds + g(t),

for all t € [0,1]. Then X, = F(W,) and it can be shown (see Theorem 5.6.3 in
[29]) that F is continuous. It now follows from the contraction principle (Theorem
2.1.6) together with Schilder’s theorem that {X,,(-)},>1 satisfies the large deviation
principle in C([0, 1]; R?) with good rate function I given by

10 - { H 0 b0, v (011 R)

We conclude the discussion by also considering the case where the diffusion constant
depends on space, i.e., it is a map o : R? — R4*4 Assume furthermore that o is
Lipschitz continuous. Let Y;,(¢) be the solution of

AV, (t) = b(Y (£))dt + ——=0 (Yo ())dW (),  Yp(0) = y € RL (2.1.3)

1
Jn
In this case, Y, is no longer a continuous function of a rescaled Brownian motion.
However, it can be approximated well enough by processes which are a continuous
function of rescaled Brownian motion. This is shown in the proof of Theorem 5.6.7
in [29], which states the following.

Theorem 2.1.15 (Freidlin-Wentzell). Let b : R — R? and o : R? — R4 pe
Lipschitz continuous and bounded. Fir y € R? and for every n = 1, let Y, (t) be the
process defined by (2.1.3). Then {Y,(-)}n>1 satisfies the large deviation principle in
C([0,1]; R?) with good rate function I given by

o) =t {3 [ |¢)(t)l2dt‘<ﬁ e ([0, 1))

. f br(s)) ds + j 70635 ds}

2.2. Some differential geometry

In this section we introduce the required notions from differential geometry, see for
example [86] for a general introduction. Our main focus is towards Riemannian
geometry, for which we refer to [69] among others.
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2.2.1. Generalities

A topological space M is a manifold if for every point x € M there is a neighbour-
hood U which is homeomorphic to some Euclidean space. Such a neighbourhood,
together with the homeomorphism is called a chart, which provides coordinates for
the points in U. A collection of charts covering M is called an atlas. We call a
manifold second countable if there exists an atlas of countably many charts. The di-
mension of the manifold at a point x € M is given by the dimension of the Euclidean
space to which it is locally homeomorphic. We say the manifold M has dimension
d if it has dimension d at every point. Finally, a manifold is called smooth if the
transition maps between different charts are all smooth. In what follows, whenever
we consider a manifold, we always consider it to be smooth, second countable and
of finite dimension, unless otherwise stated.

For x € M, the tangent space T,M consists of all possible derivatives of curves
through x. Elements of T,, M are called tangent vectors. In coordinates, if we write
{e1,...,eq} for the standard basis of R? then we define aii to be the tangent
vector of a curve whose coordinates only move in the direction of e;. For notational
purposes, we often write ¢; for % The tangent vectors Til’ ..., =% form a basis

) xd
for T, M. This allows us to write v € T,,M as

0
oz’

v =1

This shows that equivalently, we can define tangent vectors in 7, M as derivations
at x.

We define the tangent bundle T M to be the vector bundle with fibres T, M, i.e.

TM = |_| T, M.
xeM

Here, the | | denotes the disjoint union. To avoid cumbersome notation, we will
consider an element v € T, M also as element of T'M, where the base point x € M
is implicit in the notation when considering v € TM. A section of TM is a map
v: M — TM such that v(z) € T, M for every z € M. A smooth section of TM is
called a vector field. The set of all vector fields on M is denoted by I'(T'M).
The dual of T,, M, i.e., the set of linear functions on T, M, is denoted by T:*M. We
refer to T¥ M as the cotangent space, and to the elements as cotangent vectors. The
vector bundle

T*M = | | T#M

xzeM

is called the cotangent bundle. Smooth section of the cotangent bundle are called
1-forms.

Finally, consider a smooth function f : M — N between two manifolds. The
derivative of f, also called the differential, is a map df : TM — TN defined as

af@w = 5| F0)

t=0
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where 7 : (—g,e) —> M is such that ¥(0) = z and 4(0) = v. In particular, for every
xr € M we have that df(z) : T,M — Ty N. Furthermore, for every vector field v
on M, w(x) :=df(x)(v(z)) defines a vector field on N. We denote this vector field
by df(v) (and sometimes also by f«(v)) and it is called the push-forward of v along

f.

2.2.2. Connections, geodesics and parallel transport

Let # : B — M be a vector bundle over M. A connection on E is a way to
differentiate smooth sections of E, which we denote by I'(E). We have the following
definition.

Definition 2.2.1 (Connection). Let w7 : E — M be a vector bundle over M. A
connection on E is a map V : T(TM) x T'(E) — T'(E), denoted by (X,Y) — VxY
satisfying the following:
1. VxY is C®-linear in X, i.e., for all X e (TM), Y e T'(E) and f € C*(M)
we have
VixY = fVxY.
2. VxY is linear inY.
3. V satisfies the Leibniz rule:
Vx(fY) = (Xf)Y + fVxY
for all f e C*(M).
We call VxY the covariant derivative of Y in the direction of X.

If we take E = T'M in Definition 2.2.1, we obtain a connection V on T'M, which is
sometimes also referred to as a linear connection. It provides a way to differentiate
vector fields on M. When there is no confusion, we say that V is a connection on M.
In coordinates around x € M, writing 0; = % € T, M, we have that Vy,0; € T, M.

Since {01, ..., 04} is a basis for T,, M, there exist coefficients I‘fj (z) such that
Vo, 05 =T5(x)0k.

We refer to the coefficients Ffj(x) as the connection coefficients. It follows from
the Leibniz-rule and linearity of the connection that we can use the connection
coefficients to express V,w in coordinates for general vector fields v,w € I'(T'M).
Indeed, if we write v = v*9; and w = wia], then

Vow = (v(w®) + injf‘fj)ak.

Example 2.2.2. As example, let us consider the canonical connection on M = R¢.
For vector fields v,w on R? we can write v(z) = v;(z)>> and likewise w(z) =

ow;
wl(:r)a% We then define the connection V on R by

ow &wj 0

2 (x) = v;(x) 22, T %

Vow(z) := vi(z)
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In particular, writing 0; = %, we have
Vo0, = 0.
This shows that the connection coefficients of V are 0.

A curve in M isa map v : I — M, where [ is some real interval. Curves are always
assumed to be smooth, unless otherwise stated. A wvector field along ~y is a smooth
map v : [ — TM with v(t) € T, M for all t € I. We denote the space of vector
fields along v by I'(Ty). A connection V on T'M allows us to differentiate vector
fields v along 7. The following is Lemma 4.9 in [69].

Proposition 2.2.3. Let V be a connection on M, and let v : I — M be a curve.
There exists a unique linear map Dy : T'(Tv) — T'(T) satisfying the following:

1. D, satisfies the Leibniz rule
Dy(fv) = f'v+ fDw
for all f e C*(I).
2. If ve I(Tw) extends to a vector field € T(TM) on M, then
Dyo(t) = Vi)

Abusing notation, we sometimes write V. v(t) even if the vector field v along
does not extend to a vector field on M. Furthermore, we sometimes write v(t)
instead of Dyv(t).

Using the derivative of vector fields along a curve, we define parallel vector fields
and geodesics.

Definition 2.2.4. A vector field v along a curve v : I — M is called parallel if
Dyu(t) =0 forallt € I. A curvey is called a geodesic if the vector field 7 is parallel
along ~.

Equivalent to having a connection is having a notion of parallel transport. Given
a curve v : [a,b] — M and v € T, M, we can consider the solution v(t) of the
differential equation

Vimo(t) =0, v(0) = v. (2.2.1)
In coordinates, equation (2.2.1) is a system of linear differential equations, so that
the solution is unique, and exists for all time. This allows us to define a linear map

Ty(a)y @)y * Ty M — Ty M

by setting 7., (a)y(1);y ¥V = v(t). The map Ty(a)y(t);y 1S called parallel transport along
~v. We omit the reference to the curve v when it is understood.

We can use parallel transport to compute covariant derivatives. To this end, let
v,w € T'(TM) be vector fields and = € M. Let v be a curve with v(0) = = and
4(0) = v(x). Then

o w((h) = w()

Vouw(z) = lim = h

(2.2.2)
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2.2.3. Riemannian geometry
For every © € M, we can equip T, M with an inner product g(z), which is a positive
definite, symmetric bilinear form. For v, w € T, M we write g(x)(v, w) = (v, w)4(z)-
The reference to the point x is omitted whenever the tangent space is understood.
In coordinates, the inner product g(z) is given by a matrix G(z) = (g;;(z)) such
that

9(z)(v,w) = gij(z)v'w,
where v = v°0; and w = wj(?j. A Riemannian metric on M is a smooth selection
g = {9(x)}zem of inner products on the tangent spaces. More precisely, for every
v,w € I'(TM), the map z +— (v, w)y(,) is smooth. A manifold M with Riemannian
metric g is called a Riemannian manifold and is denoted by (M, g).
For general vector spaces, an inner product can be used to identify the dual of the
vector space with the vector space itself. Using the Riemannian metric, this allows
us to identify T:* M with T,, M for every x € M. For an element w € T.* M, we define
w# € T, M as the unique element satisfying

w(v) = <w#’ U>g(z)

for all v € T, M. This procedure is sometimes referred to as ‘raising an index’, which
has to do with the fact that coefficients of cotangent vectors are written with lower
indices, while for tangent vectors the coordinates are written with upper indices.
Likewise, for w € T, M we can define w’ € T*M by setting

b
w’(v) = (W, v)g(a)
for all v € T, M. This procedure is known as ‘lowering an index’ for the same reasons
as explained above.

By identifying T:* M with T,, M via the inner product g(z), we can define an inner
product on T¥ M. Indeed, for w,n € T.* M we define

<W7 77>q(w) = <w#7 77#>9(W)'

If G(z) = (gs5(x)) are the coordinates of the inner product g(x) on T, M, one can
show that the coordinates of the inner product on T¥M are given by G~!(z) =
(g (x)), i.e., we have

<wa 77>g(1) = g” (m)winjv
where w = w;dz® and n = n;dz7.
Finally, the identification of cotangent vectors with tangent vectors may also be
used to define parallel transport of cotangent vectors. For w € T:* M and a curve 7y
with 7(0) = = and y(1) = y we define 7,,.,w € T;* M by the relation

(Twyww)# = Twy;v(w#)-
In particular, this implies that
(Tayyw) (v) = w(75,0)

for all ve Ty M.
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The Levi-Civita connection

Associated to a Riemannian metric is a unique connection on M which behaves well
with respect to the metric. This is stated in the following theorem, see e.g. Theorem
5.4 in [69].

Theorem 2.2.5 (Fundamental lemma of Riemannian geometry). Let (M,g) be a
Riemannian manifold. There exists a unique connection V on M satisfying the
following:

1. Compatibility: for all XY, Z e T(TM),

XY, 2)g = VXY, Z)g + Y, Vx Z)y.

2. Symmetric: for all X, Y e T(TM),
VxY - VyX =[X,Y].
Here, [X,Y] = XY — Y X, the commutator of X and Y.
This connection is called the Levi-Civita connection of g.

The symmetry property of the Levi-Civita connection is sometimes also referred to
as the Levi-Civita connection being torsion-free. Since the Levi-Civita connection
is compatible with the metric g, the inner product of parallel vector fields along a
curve is constant. In particular, this implies that the associated parallel transport is
an isometry, see e.g. Lemma 5.2 in [69]. Finally, we call the connection coefficients
of the Levi-Civita connection Christoffel symbols.

Given a Riemannian metric g on M, we define the length of v € T, M by its usual

formula
|v|g(l) =/ <va>g(m)'

We omit the reference to the point x € M whenever the tangent space is understood.
Given a curve v : [a,b] — M, we define its length by

b
L6 (a0 = [ HOyoi)
Using this length function, we define the Riemannian distance d on M as
d(z,y) = inf{L(y)|y : [a,b] > M,~y(a) = z,v(b) = y,v piecewise smooth}. (2.2.3)

One can prove that the Riemannian distance d is a metric on M, which generates
a topology which coincides with the topology of M as manifold, see Lemma 6.2 in
[69]. In particular, this shows that all Riemannian distances on M generate the same
topology. Furthermore, it can be shown (Theorem 6.6 in [69]) that optimal paths
for the distance between points in M are geodesics with respect to the Levi-Civita
connection.
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Riemannian exponential map

Given © € M, define for every v € T, M the geodesic v, satisfying 7,(0) = = and
4»(0) = v. By Theorem 4.10 in [69] geodesics are unique, but generally only exist
on a small time interval. We say that the manifold M is geodesically complete if
every such geodesic can be extended indefinitely. By the Hopf-Rinow theorem (see
e.g. Theorem 6.13 in [69]), this is equivalent to the completeness of M as a metric
space with the Riemannian distance d defined in (2.2.3).

We define the Riemannian exponential map Exp, : £(x) — M by setting Exp,v =
v»(1), where £(z) < T, M contains all v € T, M for which ~, as above exists at
least on [0,1]. If M is complete, we have £(x) = T, M. If additionally M is simply
connected, it holds that Exp, is surjective.

However, due to curvature, the exponential map is not necessarily injective. For
x € M we define the injectivity radius 1(x) € (0, 0] as

t(x) = sup {0 > 0|Exp,, is injective on B(0,4)}.

That «(x) > 0 for all z € M follows from the fact that the Riemannian exponential
map is a local diffeomorphism.

Given a set A © M, the injectivity radius of A is defined by
L(A) = inf {t(z)|z € A}. (2.2.4)

We have the following result, which can be found in e.g. [59].

Proposition 2.2.6. The injectivity radius 1(z) depends continuously on x. In par-
ticular, this implies that if K < M is compact, then (K) > 0.

Example 2.2.7. As an example, we derive the injectivity radius for points on a
sphere of radius R. For any point = on the sphere, the antipodal point is responsible
for the Riemannian exponential map failing to be injective. This implies that Exp,
is injective on B(0,7R), but not on any larger set. We conclude that ¢(z) = 7 R.
Since the injectivity radius is independent of z, we find that ¢(4) = 7R for every
subset A of the sphere.

2.2.4. Curvature

The idea of differential geometry is that it allows us to study non-flat spaces. Curva-
ture is introduced as a measure of how non-flat a space is. This can be quantified in
different ways, which we discuss here. However, first we should say what we consider
to be a flat space. A Riemannian manifold is called flat if it locally isometric to
Fuclidean space with the usual Euclidean inner product. Not only Euclidean space
is flat, but for example a cylinder is as well.

It turns out that a space is flat if and only if we have that (see e.g. [69, Theorem
7.3])

VxVyZ —-VyVxZ —Vxy1Z =0, (2.2.5)
where [X,Y] = XY — Y X is the commutator of X and Y. This leads us to define
the Riemann curvature endomorphism R : T(TM) x T(TM) x T(TM) — T'(TM)
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given by
R(X,Y)Z =VxVyZ —VyVxZ —Vxy]Z.

The Riemann curvature endomorphism can be visualized as the way a tangent vector
changes when it is parallel transported along an infinitesimal parallelogram. Using
the result in (2.2.5) we find that a manifold is flat if and only if the Riemann
curvature endomorphism is 0.

Associated to the Riemann curvature endomorphism is the Riemann curvature ten-
sor, obtained by lowering an index of the Riemann curvature endomorphism. More
precisely, it is the map Rm : T(TM) x T(TM) x I(TM) x T(TM) — C*(M) given
by

Rm(X,Y, Z, W) =(R(X,Y)Z,W),.

By taking the trace of the Riemann curvature tensor on its first and last index, we
obtain the Ricci curvature. More precisely, the Ricci curvature is defined as the
map Ric : T'(TM) x I'(TM) — C*(M), where Ric(Y, Z) is given as the trace of
the linear map X — R(X,Y)Z. The Ricci curvature measures how the volume of a
small piece of a geodesic ball differs from its Euclidean counterpart. Here, a geodesic
ball around x € M of radius € > 0 is defined as the set Exp, (B(0,¢)).

Finally, by taking the trace of the Ricci-curvature, we obtain a function on M
which is called the scalar curvature which is denoted by S. More precisely, for every
X e I'(TM) we have that Ric(X,-) € [(T*M) and hence Ric(X,-)# € T'(TM). The
scalar curvature S is then given as the trace of the linear map X — Ric(X,-)#. In
particular, this shows that the scalar curvature depends on the Riemannian metric,
since we raise an index. In two dimensions, positive scalar curvature means that
the surface bends away from the outward facing normal, while negative curvature
means exactly the opposite. The sphere is a prototypical example of a manifold
with constant positive curvature.

2.3. Horizontal lift to the frame bundle

In order to study trajectories in a d-dimensional manifold M, it can be worthwhile
to identify curves in M with curves in R%. However, not any such identification will
be useful, since we want to preserve certain properties of the curves.

A natural way of transferring a curve from a manifold to R? is by ‘rolling’ the
manifold over R? along the curve. The curve in the manifold serves as the contact
points on the manifold. The curve of contact points in R? is then the resulting curve
with which we identify our original curve in M. This procedure should only be
influenced by the velocity of the curve and the curvature properties of the manifold.
Therefore, the displacement of the contact point should only be caused by these
properties, and should not be influenced by any external forces. Hence, we have to
roll the manifold along the curve without ‘slipping’.

To state this mathematically, the aim is to identify a curve v in a d-dimensional
manifold M with a curve w in R? and vice versa. As mentioned above, the velocity
of ~ should be one of the determining factors for the velocity of w. Note that
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Y(t) € Ty M. Hence, if we are given a basis u(t) = {ui(t),...,uq(t)} of Ty M, we
can identify 4(t) with its vector of coordinates in the basis u(t). We then define w(t)
to be exactly this vector of coordinates. The curve w is then obtained by integration
(which makes sense in R?). For this procedure, we need to choose bases u(t) for
every tangent space T, M. Since we require the procedure to furthermore only
depend on the curvature of M, u(t) cannot be chosen freely. Instead, when moving
along the curve, we should not ‘twist’ the coordinate system. Therefore, the bases
u(t) should be parallel along ~(¢).

A coordinate system wu(t) for T ;M will be called a frame. The curve () with a
parallel collection of frames u(t) attached to it will be called the horizontal lift of ~.
The curve w in R? is called the anti-development. It turns out that this procedure
is invertible. More precisely, if we start with a curve w in R%, we can find a curve
~(t) in M and a parallel collection of frames u(t) attached to ~(t) such that w(t)
are the coordinates of 4(t) in the frame w(¢). In this section we define these notions
and the sketched procedure rigorously. References include [61, 87, 57].

2.3.1. Frame bundle

For x € M, a frame for T, M is a linear isomorphism u : R* — T, M. This can be
thought of as providing a basis for the tangent space T, M. Indeed, if we denote
by e1,...,eq the standard basis of R?, then ue1, ..., ueq is a basis for T, M. The
collection of frames for T, M is denoted by F,M, i.e.,

F,M = {u: R% — T, M|u linear isomorphism}.

Denote by GL(d, R) the general linear group over R, i.e., the group of invertible d x d
matrices with real entries. If g € GL(d,R) and w € F, M, then the composition ug is
again a frame for T,,M. Therefore, GL(d,R) acts on F, M by right multiplication.
The frame bundle FM over M is the bundle with fibres F,, M, sometimes denoted
as
FM = |_| F, M.
zeM

Here | | denotes the disjoint union. The frame bundle can be made into a manifold
of dimension d + d?, with the projection 7 : FM — M being a smooth map.
Furthermore, its tangent bundle can be split in two parts, namely in directions in
M and in the direction of the frames, i.e., vectors tangent to the fibres of F'M.
If Ve T,FM is tangent to the fibre F, M, then V is said to be vertical. More
precisely, V € T,,F'M is vertical if and only if it is the tangent vector of a curve that
remains inside Fr, M. We denote the vertical subspace of T,, FM by V, FM. Since
FyM has dimension d? (as manifold), we find that V,, F M is a subspace of dimension
d?. Now consider left multiplication L, : GL(d,R) — Fy, M defined as L,g = ug.
Then dL,(I) : T1GL(d,R) — T, Fy, M, where we note that TGL(d,R) = M(d,R),
the set of all d x d-matrices (which is the Lie algebra of GL(d,R)). Using this, a
basis of V,, FFM is given by

Vij(u) = [dLu(D](Eij), (2.3.1)

where Ej; is the matrix of all zeros, except for a 1 in position (i, j).
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Horizontal lift

Since the subspace V,FM of vertical vectors has dimension d2, there are still d
independent directions left in T, F M. These will represent the directions along M
in the frame bundle F'M, and we want to call these directions horizontal. However,
different choices of d independent vectors in T, F'M, independent of V,, FM, span
different subspaces of T,, F'M. We will explain how to make an appropriate choice if
we are given a connection V on M. In Section 2.3.2 we show that conversely, every
choice of horizontal subspaces satisfying certain consistency assumptions gives rise
to a connection on M.

We now define the notion of horizontal curves, which we need to define horizontal
vectors.

Definition 2.3.1. Let V be a connection on M and~ : [0,1] > M a curve in M. A
horizontal lift of v (with respect to V) is a curve w : [0,1] — FM with mu(t) = v(t)
and

Vimu(t)a =0 (2.3.2)

for allt € [0,1] and all a e RY. A curve u : [0,1] — FM s said to be horizontal if
it is a horizontal lift of the curve wu(t) in M.

Since locally, u(t) satisfies a system of ordinary differential equations, we have local
existence, and uniqueness once an initial frame ug € F )M is given. As we will see
in Section 2.3.3, the horizontal lift actually exists for all time. In what follows now,
the local existence is sufficient.

If u(t) is a horizontal lift of ~y, then for every a € R? the condition in (2.3.2) implies
that wu(t)a is parallel along 7. As a consequence, u(t)a € Ty M is the parallel
transport of u(0)a € T, o)M. We thus see that the horizontal lift encodes parallel
vector fields along v by a single vector in R?. Moreover, since equation (2.2.1) has
a unique solution, we find that parallel transport along ~ is given by

Ty ()7 = w(t)u(0) 7 (2.3.3)

Using horizontal lifts of curves, we can define a notion of horizontal lifts of tangent
vectors.

Definition 2.3.2. Forpe M, let X € T,M and u € F,M. Let v be a curve in
M with v(0) = p and ¥(0) = X and denote by u(t) its horizontal lift satisfying
u(0) = w. Then the horizontal lift of X via the frame u, denoted by X*(u), is
defined as X*(u) = 0(0).

A vector W e T,,FM is said to be horizontal if W = X*(u) for some X € T, M.
Equivalently, W is horizontal if it is the tangent vector of a horizontal curve through
u. We write H, F'M for the set of horizontal vectors in T,, F M and refer to this as the
horizontal subspace of T,, F M. Note that this definition depends on the connection
V, and that in general different connections lead to different horizontal subspaces.
The following lemma justifies this definition.
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Lemma 2.3.3. For every ue FM we have that T,FM = H,FM ® V,FM.

Proof. Since V,, FM is d?>-dimensional, and T,, F M has dimension d+d?, it suffices to
prove that H, F' M is a subspace of at least dimension d, which is linearly independent
from V,FM.

First of all, note that for every X € Ty, M we have that dn(X*(u)) = X. Indeed,
let y(¢) be a curve with v(0) = 7u and 4(0) = X and denote by u(t) its horizontal
lift with «(0) = u. By definition of X*(u), 4(0) = X*(u). From this it follows that

an(X*() = & () = <

t=0

~v(t) = X.
t=0

This proves that H,FM is at least d-dimensional. Furthermore, it shows that if
W e H,FM is such that dm(W) = 0, then W = 0. A similar computation shows
that for all V € V, FM we have that d7(V) = 0. Combining everything, we find
that H,FM nV,FM = {0}. O

Finally, given a € R? and u € F,M, we have that ua € T, M, so that we can define
its horizontal lift. We denote this by H (u)a, which is thus given by

H(u)a := (ua)*(u). (2.3.4)

If we again denote by ey, ..., eq the standard basis of R?, then the horizontal vectors
Hy(u),...,Hq(u) given by

H;(u) := H(u)e; (2.3.5)

form a basis for H,F' M. The vector fields Hy,..., H; so defined are referred to as
the canonical horizontal vector fields.

Development and anti-development

A horizontal lift of a curve assigns to a curve v in M a horizontal curve u in F'M.
For every t, u(t) is a frame for the tangent space T’ ;) M. This allows us to convert
the velocity of v to a velocity in R?. This observation can be used to associate to a
curve in M a curve in R? and vice versa. We have the following definition.

Definition 2.3.4. Let v:[0,1] > M be a curve in M and let u(t) be a horizontal
lift of v. The anti-development of 7 is defined as the curve w : [0,1] — R? given by

w(t) = f u(s) " 4(s) ds. (2.3.6)

If we fix a frame u € F, )M, we can speak about the anti-development of v via u
since in that case the horizontal lift of v satisfying u(0) = wu is unique.

If w(t) is the anti-development of (¢) via the horizontal lift u(¢), then (2.3.6) implies
that
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which rewrites to

Y(t) = u(t)w(t).
Since both sides are elements of T’ ;) M, we can consider their horizontal lifts, which
must be equal (see (2.3.4) for a definition of H (u(t))):

H(u(t))w(t) = (u(t)u(t)* = (¥(1)* = i(?). (2.3.7)

Here, the last equality holds because u(t) is the horizontal lift of v. We thus obtained
a differential equation for the horizontal lift «(t) in terms of the anti-development w.
This shows how to invert the operation of taking the anti-development of a curve.
We make the following definition.

Definition 2.3.5. Let w : [0,1] — R be a curve in R? and fir ug € F,M. Let
w:[0,1] > FM be the solution of

u(t) = H(u(t))w(t)

with w(0) = ug, where H(u(t)) is as defined in (2.3.4). Then the curve v(t) = mwu(t)
is called the development of w onto M.

Sometimes, the curve u is referred to as the development of w, rather than the
projection of u onto M.

To summarize, given a curve v in M and frame ug € F )M, there exists a unique
horizontal curve w in FM with with «(0) = up and 7u(t) = v(¢) for all . The curve
u is the horizontal lift of v via the frame wug. Using the horizontal lift, we can define
the curve w in R? by

The curve w is the anti-development of ~.

Conversely, given a curve w in R? and ug € F, M, there exists a unique horizontal
curve u in F'M with u(0) = up and satisfying

w(t) = H(u(t))w(t)

for all ¢t. Here H is as defined in (2.3.4). The curve v given by v(¢) = wu(t) for all
t is the development of w onto the manifold M.

2.3.2. Connection on the frame bundle

In the previous section we have seen how to define horizontal tangent vectors in
FM when we are given a connection on M. In this section we show that these two
approaches are equivalent, in the sense that we can also first define a suitable notion
of horizontal tangent vectors on F'M, and use these to define a connection on M.

Using a connection on M we defined the collection {H,FM},crp of horizontal

subspaces by
H,FM = {X*(u)|X € Tr M}. (2.3.8)
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One can show that these subspaces depend smoothly on wu.

For every g € GL(d,R), let R, : FM — FM denote right-multiplication by g, i.e.
Ryu = ug for all w € FM. The collection {H,FM },ern satisfies the following
consistency property.

Proposition 2.3.6. Let g € GL(d,R) andu e FM. Then dRy(H,FM) = H,,FM.

Proof. Let v be a curve in M with v(0) = 7u and 4(0) = X and let u(t) be its
horizontal lift with u(0) = u. For a € R? we have ga € R?, and hence

Vipu(t)ga =0,

because u(t) is horizontal. It follows that u(t)g is again a horizontal lift of v. From
this, it follows that

d d
ARy(X*(u) = = Reu(t) = | u(t)g€ HugFM,
t=0 t=0

where the latter holds since u(0)g = ug. We conclude that dRy(H,FM) < H,,FM.
In the same way we find that dRy-1 (HugFM) < H,FM. Since

dRy(dRy-1 (HyuyFM)) = d(Rg 0 Ry—1)(HygFM) = Hy,zF M,
we find that H,,FM < dR,(H,FM), concluding the proof. O

Collecting everything, it turns out the collection {H,F M },crn of horizontal sub-
spaces defines a so-called principal connection which we define next (see e.g. [61,
Chapter 2] or [87, Chapter 8]).

Definition 2.3.7 (Principal connection). For every u € FM, let H, < T,FM be
a subspace. The collection {H,}uern s called a (principal) connection on FM if
the following hold:

1. T,FM = H, ® V,FM for allue FM,
2. dR,(H,) = Hyg for allue FM,g e GL(d,R),
8. H, depends smoothly on u.

The subspaces H,, are called horizontal. For X € T,FM we write X = h(X)+v(X)
for the unique decomposition in a horizontal and vertical vector.

Now the notion of horizontal lift of curves and tangent vectors can also be defined in
terms of a principal connection on FM. A curve u : [0,1] — FM is called horizontal
if u(t) € Hyyy for all ¢t € [0,1]. A horizontal lift of a curve v : [0,1] — M is a
horizontal curve u : [0,1] — M such that wu(t) = ~(t) for all ¢ € [0, 1]. This notion
of horizontal lift coincides with the notion of a horizontal lift in Definition 2.3.1
if we take the collection {H,FM},cras of horizontal subspaces defined in (2.3.8).
Therefore, existence of horizontal lifts for all time with respect to a connection V on
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M follows from the existence for all time of horizontal lifts defined via a principal
connection on FM. We sketch how to prove the latter. We refer to [61, Chapter 2]
or [87, Chapter 8] for the details.

Given a curve v in M, by working locally and patching pieces smoothly together, we
can find a curve v : [0,1] —» FM with v(0) = ug and 7v(t) = ~(¢) for all ¢ € [0, 1].
However, v(t) need not be horizontal and hence, we need to adapt the curve. More
precisely, we look for a curve a : [0,1] — GL(d,R) such that u(t) = v(t)a(t) is
horizontal. By the Leibniz rule we have

u(t) = ALy (a(t))(a(t)) + dRag) (0(8)(0(2))- (2.3.9)

For u(t) to be horizontal, the vertical part of the right-hand side in (2.3.9) has to
vanish. Since dL,(a(t))(a(t)) is vertical, we must have

dLyy(a(t))(a(t)) = —v(dRqw (v(t))(0(t))) € Vityae F M.

Using that V,,(¢)q(n) F"M can be identified with M (d, R) using the map dL;(lt)u(t) (1),
we obtain a differential equation for a(¢) in M (d,R). It can be shown (see e.g. [61,
Lemma on p.69]) that this differential equation has a unique solution which exists
for all ¢ € [0,1] and takes values in GL(d,R). But then u(t) = v(t)a(t) also exists
for all time, and by construction, this is a horizontal lift of ~, which concludes the

sketch of the proof.

Finally, we can also define a connection on M when starting with a principal con-
nection on FM. By (2.2.2) it is sufficient to define parallel transport along curves.
For this, let u be the horizontal lift of . Inspired by (2.3.3), we define the map
Ty * Ty)M — TyeyM by

Ty )y (t)iy = u(t)u(0)~.

It can be shown (although this is not trivial, see again [61, 87]) that this defines a
genuine parallel transport, meaning that it defines a connection on M (in the sense
of Definition 2.2.1) via formula (2.2.2).

2.3.3. Principal bundles

The notion of a horizontal lift can also be defined in a more general setting than
the frame bundle. It suffices to have a bundle over M and a Lie group (see Chapter
4) that acts on the fibres of the bundle by right multiplication. More precisely, we
have the following definition, see for example [61].

Definition 2.3.8 (Principal bundle). Let M and P be manifolds. Furthermore, let
G be a Lie group (see Chapter 4). The manifold P is called a principal bundle over
M with structure group G if the following are satisfied:

1. G acts freely on P by right multiplication, i.e. (u,g) € P x G implies ug € P
and if ug = u for all u € P then g = e, the identity element of G.
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2. M is diffeomorphic to the quotient P/G under the equivalence relation ~ given
by u ~ v if and only if there exists a g € G such that u = vg, and the induced
projection w: P — M 1is smooth.

8. P is locally trivial: for all x € M there exists a U < M open and a diffeomor-
phism ¢ : 7Y (U) — U x G of the form ¥(u) = (w(u), o(u)) with ¢ a map
o Y (U) — G satisfying p(ua) = o(u)a for allue n=1(U) and a € G.

Adapting Definition 2.3.7 by replacing F'M with P and GL(d,R) with the Lie group
G gives us the definition of a principal connection on P. Following the same proce-
dure as in Section 2.3.2, a principal connection gives rise to a notion of horizontal
lift of a curve in M to a curve in P.

We conclude this section with some examples of principal bundles that we will
encounter in future chapters. The frame bundle FM is a prototypical example of a
principal bundle over M, its structure group being GL(d, R).

If M is equipped with a Riemannian metric, for every p € M we can consider the
collection of orthonormal frames given by

Op,M :={ue F,M|u:R% - (T,M, g) isometry}.

Here, we consider R? to carry the standard Euclidean inner product. The bundle
OM with fibres O, M is called the orthonormal frame bundle and is also denoted as

OM = | | O,M.
peM

Here, | | denotes the disjoint union. The orthonormal frame bundle is a principal
bundle with structure group O(d), the orthogonal group.

Finally, the frame bundle can also be considered as bundle over M := R x M. More
precisely, we consider the bundle F with fibres given by

F(tm) = FpM

for all p e M and t € R. This is a principal bundle with structure group GL(d,R). In
this case, the time-coordinate does not really add anything new. However, suppose
we are given a collection of Riemannian metrics {g(t)}:cg. Then for every t € R, the
orthonormal frame bundle is different. Let us set

Oy = {u€ FyMlu: R — (T, M, g(t)) isometry}
for all pe M and t € R. The bundle O with fibres O(; ), also denoted by

0= |_| Oty

(t,p)eM

is a principal bundle over M with structure group O(d). This bundle will be impor-
tant when we study large deviations for diffusions in evolving Riemannian manifolds,
see Chapter 7.
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2.4. Stochastic analysis in manifolds

One way of studying stochastic processes in manifolds, is to generalize the notion
of horizontal lift and anti-development of curves to processes. The idea is that we
can then derive properties of the process from its anti-development. Since the anti-
development is a process in some Euclidean space, this is either easier to study, or
has already been studied extensively.

The Malliavin transfer principle (see e.g. [72]) states that any construction for
smooth curves in a manifold can be extended to processes by replacing the ordi-
nary differential equations by Stratonovich stochastic differential equations. This
is a heuristic principle which is motivated by the fact that Stratonovich stochastic
differential equations satisfy the usual fundamental theorem of calculus.

First, we discuss how to define Stratonovich stochastic integrals in Euclidean space
in terms of It integrals. In a similar way, we also define Stratonovich stochastic
differential equations, and explain some of its properties. These properties inspire
the definition of stochastic differential equations on manifolds, which we give next.
We then use these to generalize the notion of horizontal lift and (anti-)development
to stochastic processes. We conclude by defining Riemannian Brownian motion. For
further reading, we refer to [57, 36]

2.4.1. Stochastic differential equations on R?

In this section we consider stochastic calculus in Euclidean space. For a general
introduction, we refer to [38].

Let X; be an R%valued semimartingale, i.e., the sum of a martingale and a process
of bounded variation. By Itd’s formula, we have for f € C*(R?) that

F(Xy) = f(Xo) +ZJ X Azt + Z J e axj X)) d[X7, X7],. (24.1)

Here, [X*, X7], is the quadratic variation of X* and X7. It is defined as the limit
in probability of

k
DX =X )X - X))
=1

when the mesh-size of 0 =g =0 < t; <--- <t = s tends to zero.

The stochastic integrals in (2.4.1) are Ité-integrals. We see that such integrals do
not follow the ordinary rules of calculus, since we have to correct with a quadratic
variation term. The idea is to define an alternative stochastic integral in terms of
the It6 integral which does satisfy the ordinary fundamental theorem of calculus.
We refer to Chapter 6 in [38].

Definition 2.4.1. Let X, be an R%-valued semimartingale and let V : R* — R? be
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smooth. We define

LtV(Xs) o dX, i LtV(

The stochastic integral so defined is called the Stratonovich stochastic integral.

Z J axj d[x?, X7],.

7.]1

In Definition 2.4.1 we interpret V(x) as a row vector. This is in order to match the
dimensions of the integrand and the integrator in the stochastic integrals.

For f € CX(R?), we can consider the vector field V = Vf, where we view the
gradient as row vector. The following is an immediate consequence of the definition

of the Stratonovich integral for this particular vector field and It6’s formula in
(2.4.1).

Proposition 2.4.2. Let X; be an R¥-valued semimartingale, and let f € C*(R?).
Then

FX0) — F(Xo) = ij )odX,.

Next, we want to consider a Stratonovich stochastic differential equation of the form
dXt = V(Xt) o th, (242)

where W, is a standard, R'-valued Brownian motion and V : R% — R?*!, We can
think of the columns of V' as a collection of [ vector fields Vi,...,V;. A precise
definition of such an equation is given in [38]. For our purposes, it suffices to know
to which It6 stochastic differential equation the equation in (2.4.2) is equivalent.
The following theorem can be found in [38].

Theorem 2.4.3. Let W; be a standard Brownian motion with values in R! and let
V i R — R¥! be smooth. Denote by V; the j-th column of V. A process X; is a
solution of the Stratonovich stochastic differential equation

dXt = V(Xt) o th

if it is a solution of the Ito stochastic differential equation

dX, = V(X,)dW, + = Z DV;(X,)Vj(X,) dt.
] 1

The following result is an extension of Proposition 2.4.2.

Proposition 2.4.4. Let W, be a standard, R'-valued Brownian motion and let
V :R? — R be smooth. Suppose X, satisfies

dXt = V(Xt) e} th
Then for every f € C*(R?) we have
df(Xy) = Vf(Xy) o dW;.

Here Vf should be interpreted as (Vif,...,Vif) € R!, where Vi,..., Vi are the
columns of V.
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Proof. By Proposition 2.4.2 we have that
df(X:) = Vf(X¢) odXy.
Since dX; = V(X;) o dW;, we thus find
df(X:) = VA(X)V(Xy) odWy = V f(Xy) o AW,
concluding the proof. O

The generator of a solution

Let A be an operator on Cp(R?) with domain D(A) containing C*(R%). A Markov
process X; solves the martingale problem for A if for all initial distributions of X
and all f € C*(RY) the process

t

MY = (X)) — F(Xo) - f Af(X,) ds

0

is a martingale. In this case, we say that X; is generated by A, or that A is the
generator of X;. For more details, we refer to [37].

For solutions of Stratonovich stochastic differential equations, the generator has a
particularly simple form.

Proposition 2.4.5. Let W, be a standard, R'-valued Brownian motion and let
V :R? - R be smooth. Let X, be the solution of

dX; = V(X,) o dW,.

Then X has generator A given by

where V; is the i-th column of V.. Here V2f is given by

V2 f(x) = (Vi(x), V{Vi(2), V f(2)))-

Proof. By Theorem 2.4.3, X; solves the It6 stochastic differential equation

dX, = V(X;)dW, + Z DV;(X,)Vi(X,)dt.
i=1

From this it follows that the generator A of X, is given by

d 2
Z( > v )vm)) T+ Y V@VE@ g (@)
=1 i=1 Ly Lk OLm

j k,m=1
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l

l
2. V@) DVi@)Vi(w) + 3 Vi) H f(2)Vi(a).

i=1

NN

Here, H f denotes the Hessian of f.
We now compute V;2f. From the product rule it follows that

V{Vi(z), Vf(z)) = Vf(x)DVi(z) + Hf(z)Vi(z).
It follows that
VP2 f(x) = (Vi(x), V{Vi(x), V f(x))) = V f(2) DVi(2)Vi(z) + Vi(x)" H f (2)Vi(x).

Comparing to the expression we found for Af, we conclude that

l
Af = Y V2S.
i=1

O

Finally, like for It6 stochastic differential equations, one can also consider Stratonovich
stochastic differential equations with a drift. Since the integral occurring in the drift
has nothing to do with being a Stratonovich or It6 integral, this is defined in exactly
the same way as usual.

2.4.2. Stochastic differential equations on manifolds

Before we can define stochastic differential equations on a manifold, we first have
to define M-valued semimartingales. Since the expectation of a manifold-valued
random variable is not well-defined, we cannot use the usual definition. However, a
real-valued process X; is a semimartingale if and only if f(X;) is a semimartingale
for all smooth functions f. Following [57, 36], we make the following definition.

Definition 2.4.6. Let M be a manifold, (2, F,P) a filtered probability space and
T a stopping time with respect to the filtration F. An M-valued semimartingale is
a continuous M -valued process X; on [0,7) such that f(X;) is a real-valued semi-
martingale on [0,7) for all f € C®(M).

Remark 2.4.7. The approach for defining manifold-valued semimartingales is not
suitable for defining martingales with values in M. Indeed, in general f(X;) is not
a martingale when X, is a (real-valued) martingale. However, it is possible to define
martingales on a manifold once the manifold is equipped with a connection. In that
case, different connections generally give different martingales. We refer to [36] and
[57, Section 2.5].

Semimartingales with values in M will serve as solutions of stochastic differential
equations on M, which we define next. Let V1,..., V] be [ vector fields on M and let
Z be an Rl-valued semimartingale. We consider the stochastic differential equation

dX; = Vi(Xy) 0dZ, (2.4.3)
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where X is given, and may be random. The notion of a solution to (2.4.3) is
inspired by Proposition 2.4.4.

Definition 2.4.8. Let Z; be an Rl-valued semimartingale and let Vy,...,V; be d
vector fields on M. An M -valued semimartingale X; defined up to a stopping time
T is a solution of

dX; = Vi(X;) 0dZ;} (2.4.4)
up to time T if

af(X,) = fo Vif(X,) 0 dZi

for all fe C*(M).

In general, a solution to (2.4.4) only exists up to some stopping time e(V, Z), called
its explosion time. However, since Vi,...,V; are smooth, we can show that the
solution is unique. For this we use the fact Stratonovich stochastic differential
equations as in (2.4.4) behave well under push-forward via a diffeomorphism. This
illustrates well why we need to consider Stratonovich stochastic differential equations
rather than the Itd variant. The following is Proposition 1.2.4 in [57].

Proposition 2.4.9. Let ¢ : M — N be a diffeomorphism and suppose that X is a
solution of

dX; =V, 0dZ}
on M with given initial value Xo. Then'Y = ¢(X) is a solution of
dY; = ¢4 Vi0dZ;

on N with given initial value Yy = ¢(Xo). Here, ¢, V; denotes the push-forward of
V; via ¢, which is sometimes also written as dp(V;).

To show that equation (2.4.4) has a unique solution, we take the following approach.
First observe that by Whitney’s embedding theorem, we can embed M into some
Euclidean space RY. We denote this embedding by ¢. Since ¢ is a diffeomorphism,
using Proposition 2.4.9, we have that X; is a solution of (2.4.4) if and only if ¢(X})
is a solution of

dY; = 1. V; 0 dZZ.

Since ¢(M) is closed in RY, we can extend the vector fields 1, V; to vector fields
V; on RN, Since these vector fields are locally Lipschitz, the solution of the so
obtained stochastic differential equation on RY is unique. Since the vector fields
V; are tangent to (M), every solution started in +(M) will remain inside ¢(M).
Because the solutions of the equation in RY are in one to one correspondence with
solutions of (2.4.4), the uniqueness carries over.
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2.4.3. Stochastic horizontal lift and development

Given a smooth curve w : [0,1] — R?, its development onto the frame bundle of M
is the solution of the differential equation

u(t) = H(u(t)w(t),

see Definition 2.3.5. Using the canonical horizontal vector fields defined in (2.3.5),
we can also write this equation as

a(t) = Hi(u(t))w' (t).

Here, 1’ denotes the i-th coordinate of .

Now, let Z; be a semimartingale with values in R?. With the transfer principle of
Malliavin in mind (see e.g. [72]), we consider the stochastic differential equation on
the frame bundle F'M given by

d
AUy = " Hi(Uy) 0 dZ;. (2.4.5)
i=1

In analogy to the case of smooth curves, the solution U; to (2.4.5) should be a
horizontal process. We use this as our definition, see also [57].

Definition 2.4.10. An F M -valued semimartingale U is called horizontal if there
exists an R¥-valued semimartingale Z; such that (2.4.5) is satisfied. The process Zy
1s called an anti-development of U;. Furthermore, we call Uy the development of Z;
onto FM and X; := wU; the development of Z; onto M.

It follows from Theorem 2.3.4 in [57] that the anti-development Z; of a horizontal
semimartingale U, is unique once Zj is fixed.

With a notion of a horizontal process at hand, we can define what we mean by a
horizontal lift of a process in M.

Definition 2.4.11. Let X; be a semimartingale with values in M. A semimartingale
U; in FM is a horizontal lift of X; if Uy is horizontal and U, = X;.

Following the relation between parallel transport and a horizontal lift in (2.3.3), we
can use the stochastic horizontal lift to define parallel transport along a semimartin-
gale.

Definition 2.4.12. Let X; be a semimartingale with values in M and let U; be a
horizontal lift. We define parallel transport along X; as the map 7x,x, : Tx,M —
Tx,M by

TXoX: — UtUgl.

2.4.4. Riemannian Brownian motion

In Euclidean space, a standard Brownian motion is generated by %A, where A
denotes the Laplacian. In order to have a notion of a Laplacian on a manifold, we
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need a Riemannian metric. A Riemannian manifold possesses a natural analogue of
the Laplacian, namely the Laplace-Beltrami operator. It is denoted by Ajs and is
defined in coordinates by

1 0 o 0
Ay = - | Vdet Gg¥ — | .
M Vdet G O0x* < g 61:3)

Here G = (g;;) is the matrix of coefficients of the Riemannian metric with inverse
denoted by G~! = (¢*). One can show that the definition of Aj; is independent of

the coordinates used.

With the Laplace-Beltrami operator defined, we make the following definition, in-
spired by the Euclidean setting.

Definition 2.4.13 (Riemannian Brownian motion). A continuous M -valued process
W, is a Riemannian Brownian motion if for all f e CX (M),

FOV) = F(Wo) ~ JO At F(W,) ds

is a local martingale up to the explosion time of Wi.

Note that a priori there is no guarantee that Riemannian Brownian motion is defined
for all times ¢ > 0. It turns out that this depends on the geometry of M. We make
the following definition.

Definition 2.4.14 (Stochastic completeness). We say that a Riemannian manifold
is stochastically complete if the explosion time of its Riemannian Brownian motion
is almost surely infinite.

The following proposition gives an important sufficient geometric condition for
stochastic completeness (see e.g. [57, Section 4.2]).

Proposition 2.4.15. Let (M, g) be a Riemannian manifold. Assume there exists a
finite constant L € R such that Ric = L. Then M is stochastically complete.

Using the stochastic development, it is possible to develop a standard Euclidean
Brownian motion onto M. In order for the resulting process in M to be a Rieman-
nian Brownian motion, we need to restrict the development procedure to only use
orthonormal frames. The reason for this is that the equality in (2.4.6) only holds
for orthonormal frames.

For this, we define the set of orthonormal frames for (T, M, g(x)) by
O.M = {ue F;M|u:R? - (T, M, g(z)) isometry}.

The orthonormal frame bundle is the bundle OM with fibres O, M. It is a principal
bundle with structure group O(d), the orthogonal group. As explained in Section

2.3.3, all constructions of horizontal lift, development and anti-development are also
valid in OM.
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If W; is a standard Euclidean Brownian motion, then its stochastic development
onto OM satisfies the equation

dU; = Hy(U;) o dW}

with Uy € OM almost surely. Recalling Proposition 2.4.5, we see that the process
U; has a generator given by

1 d
,_72 2
AOM = 2i=1Hi,

which is known as Bochner’s horizontal Laplacian. It is the horizontal lift of the
Laplace Beltrami operator Ay in the following sense: for all f € C* (M) we have
(see [57, Proposition 3.1.2])

AMfO’]T:AOM(fOﬂ') (246)
on OM. This motivates the following result, which is Proposition 3.2.1 in [57].

Proposition 2.4.16. Let W, be a standard FEuclidean Brownian motion, and let
U; be a stochastic development of Wy onto OM. Then the process Xy := wU; is a
Riemannian Brownian motion in (M, g).

If X, is the development of W; onto M, then W, is the anti-development of X;. This
observation gives the following result.

Proposition 2.4.17. A continuous semimartingale X; with values in M is a Rie-
mannian Brownian motion if and only if its anti-development via OM is a standard
Brownian motion in RY.
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Large deviations for geodesic
random walks

In this chapter we prove a generalization of Cramér’s theorem (Theorem 2.1.10) to
the setting of a Riemannian manifold (M, g). For this, we define the appropriate
analogue of a random walk in RY, namely a geodesic random walk. The result is
proven by performing a careful analysis of the geometry behind geodesic random
walks, in conjuction with the Géartner-Ellis theorem (Theorem 2.1.12) in Euclidean
space. The results presented here are based on:

Rik Versendaal. “Large deviations for geodesic random walks”. In: Flectron. J.
Probab. 24 (2019), Paper No. 93, 39 pp.

Random walks are among the most extensively studied discrete stochastic processes.
Given a sequence of random variables { X, },>1 in some vector space V', one defines
the random walk with increments {X,,},>1 as the random variable

i=1

When rescaled by a factor %, one can study large deviations for the so obtained
sequence {%Sn},@l. Recall from Section 2.1.2 that when the increments are in-
dependent and identically distributed, Cramér’s theorem (Theorem 2.1.10) states
that the sequence {%Sn},@l satisfies the large deviation principle. Intuitively, this
means that there is some rate function I : V' — [0, o0] such that

1 n
Pl - XZ% ] 7’”’[(1).

More specifically, the rate function is given as the Legendre transform of the log
moment generating function of the increments, i.e.,

I(z) = sup {N a2y — AN},

o1
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where A(\) = logE(e*X1). One may weaken the independence assumption to
obtain for example the Gértner-Ellis theorem, see Theorem 2.1.12 in Section 2.1.2.
Also, Cramér’s theorem can be generalized to the setting of topological vector spaces
or Banach spaces. Furthermore, Cramér’s theorem provides a basis for path space
large deviations, such as Mogulskii’s theorem (random walks) and Schilder’s theo-
rem (Brownian motion), see e.g. [29, 88, 30].

However, the analogue of Cramér’s theorem in the Riemannian setting was originally
obtained as a consequence of the generalization of Mogulskii’s theorem, as explained
in Section 5.1. Indeed, since evaluation in the end point of trajectories is a continuous
map, Cramér’s theorem then follows from Mogulskii’s theorem by an application of
the contraction principle (Theorem 2.1.6). The results in Chapter 5 are obtained
via a general approach using convergence of non-linear semigroups and viscosity
solutions to Hamilton Jacobi equations as initiated in [39]. A drawback of this
approach is that it is only suitable for Markov processes. Therefore, it does not
allow for extensions to a setting where the increments of the random walk may
be dependent. This causes an obstruction in finding a Riemannian analogue of
the Géartner-Ellis theorem for example. Additionally, the order of first proving
Mogulskii’s theorem and then deducing Cramér’s theorem is historically unnatural.
It is thus a fair question to ask whether there is a more direct approach to proving
Cramér’s theorem to fix this discrepancy.

It turns out that it is possible to only study the underlying geometry of a geodesic
random walk in order to prove Cramér’s theorem. This gives us new insight in what
geometrical aspects allow us to still obtain the large deviation principle for rescaled
geodesic random walks, even though the geodesic random walk is in general no
longer a simple function of its increments. Apart from large deviations, the geomet-
ric results also allow us to obtain Gaussian concentration inequalities for geodesic
random walks. Furthermore, this geometric approach does not rely on the fact that
the random walk is a Markov process, and thus seems suitable to be extended to
random walks with dependent increments for example.

The main difficulty in the Riemannian setting, is that we lack a vector space struc-
ture to define a random walk as sum of increments. The appropriate analogue is
a geodesic random walk as introduced by Jgrgensen in [58]. To define a geodesic
random walk, we need to find a replacement for the additive structure, as well as a
generalization of the increments. It turns out that as increments one uses tangent
vectors, while the additive structure is replaced by an application of the Riemannian
exponential map.

More precisely, we introduce a family of probability measures {p;}zeasr such that
for each © € M, p, is a measure on T, M, the tangent space at x. These measures
{ it }zers provide the space-dependent distribution of the increments. Now we start
a random walk at some initial point Zy = xq € M. Then recursively, we define for
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k=0,...,n—1 the random variable

1
Zk+1 = Expy, (nXkH) )

where Xy, is distributed according to pz,. Hence, the random variable Z,, takes
values in M and is the natural analogue of the empirical average of the increments
X1,...,X,. In Euclidean space, this definition reduces to the usual one, because
the Riemannian exponential map is simply vector addition, i.e.,

Exp,v =z + v.

To obtain an analogue of Cramér’s theorem, we also need to generalize the notion of
the increments of the random walk being identically distributed, since the increments
are no longer in the same space. To compare two distributions p, and p,, we need
to identify the tangent spaces 1T, M and T,M. We do this by taking a curve vy
connecting x and y and using parallel transport along . Because different curves
lead to different identifications, we say that the distributions ;, and pi,, are identical
if for all curves ~ connecting x and y we have
o = iy 0T

Here, 7 denotes parallel transport. Equivalently, one can characterize this property
by assuming that the log moment generating functions are invariant under parallel

transport, i.e.,
Az (N) = Ay(Tayy ),

where A, () =log{, N, (dv).

In Euclidean space, the end point of the random walk is a simple function of the
increments. In the Riemannian setting, curvature ensures that this is in general
no longer the case. For example, the endpoint in general depends on the order of
the increments. Nonetheless, it is possible to utilize the vector space structure of
the tangent spaces. Denote by %22;1 X; the empirical average of the appropri-
ately transported increments in Ty, M, were ¢ is the starting point of the random
walk. By controlling the error induced by the curvature, the large deviations for the
1

geodesic random walk Z,, can be obtained from the large deviations for .- >y X;.

To support this claim, we can also define an alternative random walk in M. For
this, we take a sequence of independent, identically distributed random variables
{Yo}ns1 in Tpy M with distribution pug, and consider the process

~ 1 &
Z, = Exp,, (n > Yi> :
i=1

In general, Z, is different from Z,, even in distribution. Although our method
of proving the large deviation principle for Z, does not immediately allow us to
conclude that Z, and Z, are exponentially equivalent, the main idea of our proof
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does rely on the fact that we can (in some sense) relate and compare the geodesic
random walk to a sum of independent, identically distributed random variables in
the tangent space at z, following the distribution p, .

This chapter is organised as follows. In Section 3.1 we introduce Jacobi fields, which
are essential for the geometric approach we take in this chapter. Section 3.2 intro-
duces the geodesic random walks, which are the main objects of interest. In Section
3.3 we give the precise statement of Cramér’s theorem for geodesic random walks.
Additionally, we provide an overview of the various steps that are needed for the
proof. In Section 3.4 we obtain a Taylor expansions of the Riemannian exponential
map with appropriate error bound. Furthermore, we compare the differential of the
exponential map to parallel transport. We also provide bounds for how far geodesics,
possibly starting at different points, can spread in a given amount of time. Finally,
we show that convex functionals which are invariant under parallel transport are
minimized by geodesics. These geometric results are key ingredients in the proof
of Cramér’s theorem, which is given in Section 3.5. We conclude this chapter with
some Gaussian concentration inequalities for geodesic random walks in Section 3.6.

3.1. Some additional Riemannian geometry

In this chapter, we work in a complete Riemannian manifold (M, g) of dimension
N. Let d be the associated Riemannian distance, and V the Levi-Civita connection.
For a curve v : [a,b] — M, we write 7. (q)y(s);y for parallel transport along . For
the sake of readability, we omit the reference to v when the curve is understood.

Since M is complete, we have that for every x € M the Riemannian exponential
map Exp, is defined on all of T, M. Recall that for x € M, the injecitivity radius
t(z) € (0,00] is defines as

t(x) = sup {0 > 0|Exp,, is injective on B(0,9)} .
For a set A ¢ M, the injecitivity radius of A is defined by
t(A) = inf {t(z)|z € A}. (3.1.1)

It follows from Proposition 2.2.6 in Section 2.2 that if K < M is compact, then
u(K) > 0.

3.1.1. Calculus of variations

Calculus of variations is often used in optimizing functionals over trajectories, such
as finding trajectories of minimum length or minimum energy. For our exposition,
we follow roughly the approach taken in [69]. Other references include [86, 40].

We start out by defining what we mean by a variation of a curve.

Definition 3.1.1. Let~: [0,1] — M be a piecewise smooth curve, i.e., v is contin-
uous and there exist 0 = ag < a; < --- < ap = 1 such that y is smooth on [a;—1,a;]
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foralli=1,...,k. A variation of v is a continuous map T : (—e,&) x [0,1] > M
which is smooth on every rectangle (—e,e) x [a;—1,a;] and such that T'(0,t) = v(¢)
for all t € [0,1].

A wvariation T of a curve v induces two types of curves. We refer to the curves
Ts(t) :=T'(s,t) as main curves and to T't(s) :=T'(s,t) as transverse curves.

We write
d

d
0sI(s,t) := £Ft(s) and 0:(s,t) := &Fs(t).
We use variations of curves to find optima of functionals of curves. For this, we
would like to differentiate the functional. We therefore need the rate of change of

the variation of curves in the transverse direction. We make the following definition.

Definition 3.1.2. Let I' be a variation of a curve y. The vector field V' along ~
defined by
V(t) :== 0,T(0,1)

is called the variational vector field of I'.

Furthermore, given a continuous map I' : (—e,¢e) x [0,1] — M, we define a vector
field along T as a continuous map V' : (—¢,¢) x [0,1] — T'M with V(s,t) € Ty M
for every (s,t) € (—e,¢e) x [0,1] and such that V is smooth wherever T" is. Whenever
well-defined, we write DV, respectively D,V for the covariant derivative of V in
the direction of the main curves and the transverse curves of I'. More precisely, we
define

D,V (s,t) := Vo r@snV(s,t) and DV (s,t) := Vo sV (s:1).

Because the Levi-Civita connection is symmetric, we obtain the following symmetry
lemma, see e.g. [69, Lemma 6.3] or [40, Theorem 10.1].

Lemma 3.1.3 (Symmetry lemma). Let v : [0,1] — M be a smooth curve and
L : (—¢¢e) x[0,1] > M a variation of v. If M is equipped with the Levi-Civita
connection, then

Dsﬁtf(s, t) = Dtasf(s, t)

3.1.2. Jacobi fields

Suppose v : [0,1] — M is a geodesic. Let I' : (—¢,¢) x [0,1] — M be a variation
of v such that for every s € (—¢,¢), the curve I's(t) = I'(s, t) is a geodesic. We call
I" a variation of geodesics, and the corresponding variational vector field is called a
Jacobi field along ~.

It is possible to derive a second order differential equation satisfied by Jacobi fields.
One can show (see e.g. [69, Theorem 10.2] or [40, Section 10.1]) that a Jacobi field
J(t) along a geodesic v satisfies

D2 J(t) + R(J(t),5(1)¥(t) = 0. (3.1.2)
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Here, R denotes the Riemann curvature endomorphism, see Section 2.2.4. Equation
(3.1.2) is called the Jacobi equation.

If J(0) = 0 and J(0) is given, we can give an explicit formula for the Jacobi field
along ~ satisfying these conditions. Note that for every v € T, M, the curve v, (t) =
Exp,(tv) is a geodesic. Since a Jacobi field is intuitively the derivative of a variation
of geodesics, it is not surprising that the differential of the Riemannian exponential
map plays a role in the theory of Jacobi fields.

The differential d(Exp,) of the Riemannian exponential map at x is a linear map
from T(T,,M) into TM. Upon identifying T, (T, M) with T,, M, we find that for any
v e T, M we have

d(Exp, )y : To M — Texp, oM.

This map is sometimes also written as d(Exp,)(v). We can use this map to write
down Jacobi fields with J(0) = 0.

Proposition 3.1.4. Let v be a geodesic. Then

J(t) = d(EXPy(o))t;y(o) (tv) (3.1.3)
defines a Jacobi field along v with J(0) = 0 and J(0) = v.
Proof. Consider the variation of geodesic of v given by

[(t,5) = Exp. o) (t(7(0) + sv)).

Using the chain rule, we find that

J(t) = 77| Expy)(t(3(0) + sv)) = d(Exp, ) (£7(0)) (tv).

Sls=0
Furthermore, we have that
O) - &
0=
= Jm 7, () (0) A(EXDy 0) )13 (0) (V)

h—0

= d(Exp,(0))o(v)

T (h)5(0) A(EXD 0y ) 1 (0) (hv) — J(0)
h

d
~qs OEXP«,(O)(SU)
=w.

Here we used in the second line that J(0) = 0 and that 7. () (0)d(Exp,0))ny(0) s a
linear map. In the third line we used continuity, together with the fact that 7. () (o)
is the identity.

In Euclidean space, the Jacobi field in (3.1.3) reduces to J(t) = tj(()), which is
indeed the variation field of the variation T'(¢,s) = v(0) + t(¥(0) + s.J(0)).
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Properties of Jacobi fields

We conclude this section by collecting some properties of Jacobi fields that we need
later on.

Proposition 3.1.5. Let v : [0,1] — M be a geodesic and J(t) a Jacobi field along
~v. Then

(), 7(1)) = 1 (0),4(0)) + (J(0),5(0))
for all t € [0,1].

Proof. Define f(t) = {J(t),¥(t)). Then

F1(#) =D (£),5(£)) + (T (1), Diy () = (DeJ (1), 7(t)),

because v is a geodesic. We are done once we show that f”(¢) = 0. For this, notice
that, using (3.1.2)

F1(t) = DFI (1), 5 (1)) = (R (1), 7 ()7 (1), (1)) = 0.

Here, the last step follows from the symmetry properties of the Riemann curvature
tensor. O

Proposition 3.1.6. Let v: [0,1] »> M be a geodesic and J(t) a Jacobi field along
. For every t € [0, 1] there exists & € (0,t) such that

. . 1 .
J(@t)] = |J(0)] — t——(R(J(&), %(ENA(&), T (€)).
[J(t)| = 1J(0)] tlJ(&)l< (J(€e)s (&)Y (&), T (&)

Proof. Define f(t) = |.J(t)|. We have
1

1) = m<J(t)7J(t)>
1 1 . .
= 7 B O5030), J0).
The statement now follows from the mean-value theorem. .

3.2. Geodesic random walks

In order to generalize Cramér’s theorem to the setting of Riemannian manifolds, we
first need to introduce the appropriate analogue of the sequence {% D Xitnso for
a sequence of increments {X,, },>1. In order to do this, we introduce geodesic random
walks, following the construction in [58]. Furthermore, we generalize the notion
of identically distributed increments to geodesic random walks and characterize it
using log moment generating functions. We conclude by providing some examples
of geodesic random walks with identically distributed increments.
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3.2.1. Definition of geodesic random walks

We start by defining a geodesic random walk {Sp, }n>0 on M with increments { X, },>1.
For this we need to generalize how to add increments together. This is achieved by
using the Riemannian exponential map. Because the space variable determines in
which tangent space the increment should be, we have to define the random walk
recursively, which is the main difficulty in the definition below.

Definition 3.2.1. Fiz o in M. A pair ({Sn}ns0, {Xn}tn=1) is called a geodesic
random walk with increments {X,}n>1 and started at o if the following hold:

1. 80 = Zo,
2. Xnt1€Ts, M for alln >0,
3. Spy1 = Expg, (Xny1) for alln > 0.

In what follows, the sequence {X,},>1 of increments will usually be omitted and
we simply write that {S,},>0 is a geodesic random walk with increments { X, }n>1.

Note that in the above definition, we fix nothing about the distribution of the
increments {X,}n>1. The distribution is allowed to depend both on the space
variable, as well as on time.

For M = RV, the Riemannian exponential map can be identified with addition,
i.e., Exp,(v) = ¥ + v. Hence, a geodesic random walk in RY reduces to the usual
random walk, ie. S, =" | X;.

Next, we introduce the concept of time-homogeneous increments for geodesic ran-
dom walks. For this, we need to fix the distribution of the increments independent
of the time variable. Because the increments can take values in different tangent
spaces, we need a collection of measures {p, }zeps such that p, is a probability mea-
sure on T, M for every z € M. We denote the set of probability measures on T, M
by P(T,M). We have the following definition.

Definition 3.2.2. Let {S,}n>0 be a geodesic random walk with increments { X, }n=1
and started at xo. Let {uy}zers be a collection of measures such that p, € P(T, M)
for every x € M. We say the random walk ({Sp}n>0, {Xn}n>1) is compatible with
the collection {piz}eens if Xnt1 ~ s, for everyn = 0.

Essentially, the collection of measures provides the distributions for the increments
of the geodesic random walk. Because the collection of measures is independent of
n, the increments are time-homogeneous.

Next, we want to define what it means for the increments of a geodesic random walk
to be independent. Because the distribution of increment X, depends on S,,, we
have that X, is in general not independent of A,, = ¢({X1,...,X,}) in the usual
sense. However, this dependence is purely geometric, as S,, simply determines in
which tangent space we have to choose X, 1. If this is the only dependence of X, 11
on A,, we say the increments of {S, },>0 are independently distributed. We make
this precise in the following definition.
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Definition 3.2.3. Let {,}zenr be a collection of measures such that pi, € P(TpM)
for every x € M. Let {S,}n=0 be a geodesic random walk with increments { X, }n>1,
compatible with {{i;}zens. For every n = 1, define the o-algebra F,, by

Fn = O’({(So,Xl), sy (Sn—len)}) .

We say the increments of {Sp}ns0 are independent if for every n = 1 and all
bounded, continuous functions f : M™ — R we have

E(f(X1, .., Xo)|Fu1) = JT I X o, (),

Remark 3.2.4. Because S,, = Expgs, _, Xy, we have that S,, is F,-measurable. From
this it follows that o({So,...,Sn}) € Fn. However, equality need not hold. Indeed,
if the Riemannian exponential map Exp, is not injective, one cannot retrieve the
increments X1,..., X, from Sgp,...,S,-

Remark 3.2.5. Let {{iz}zens be a collection of measures such that p, € P(T, M)
for all x € M. Let {S,}n>0 be a geodesic random walk with increments {X,,},>1
compatible with {g,}zens. Suppose furthermore that the increments are indepen-
dent. Then {S,},>0 is a time-homogeneous, discrete time Markov process on M
with transition operator

Pi() = E(£(51)[So = 2) = f F(Bxp, (1) 2 (dv).

Ty M

This is the point of view taken in Chapter 5, in particular in Section 5.3.

Rescaled geodesic random walks

In Euclidean space, one commonly encounters rescaled versions of a random walk,
for example for laws of large numbers and central limit theorems. On a general
manifold, this rescaling cannot be achieved by multiplication.

Before we define the appropriate analogue of {% pI Xi}nzo’ we first need to define
how to rescale a geodesic random walk by a factor @ > 0 independent of n. Note
that in Euclidean space we can write o) ; X; = >, | (aX;). This shows that we
should rescale the increments of the random walk, which is possible in a manifold
because the increments are tangent vectors.

Definition 3.2.6. Fiz xg in M and o > 0. A pair ({(a * S)n}tnz0, {Xn}n>1) s
called an a-rescaled geodesic random walk with increments { X, }n>1 and started at
xo if the following hold:

1. (v 8)g = xo,

2. Xnt1 € Tiaxs), M for alln =0,

8. (a* 8)nt1 = Exp(ans), (@Xnt1) for alln = 0.
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As with geodesic random walks, we will often omit the sequence of increments
and simply write that {(a * 8),}n=0 i an a-rescaled geodesic random walk with
increments {X,,}n>1.

Note that an a-rescaled geodesic random walk can itself be considered as a geodesic
random walk. Indeed, if (a *S),, is an a-rescaled geodesic random walk with incre-
ments {X,,},>1, then it is a geodesic random walk with increments {a X, },>1.

As for geodesic random walks, we say that an a-rescaled geodesic random walk
{(a * 8)p}nzo with increments {X,},>1 is compatible with a collection of proba-
bility measures {1z }eerr if Xny1 ~ paxs), for every n > 0. It follows that when
considered as geodesic random walk, {(a*S,,)},>0 is compatible with the collection
of measures {u$}zen given by

a —1
Ky = Hg © MMy,

where mg, : T, M — T,,M denotes multiplication by «, i.e., m4(v) = av.

Empirical average process

We conclude this section by introducing the analogue of the sequence of empirical
averages {% D' Xitnso for a sequence {X,,},>1 of random variables.

Fix 29 € M and let {1, }zens be a collection of measures such that p, € P(T,M)
for all z € M. For every n > 1, let {(+ = S)j}jzo be a +-rescaled geodesic ran-
dom walk started at zo with increments {X['};>1, compatible with the measures
{2 }zers- By considering the diagonal elements of {(% * S>j}n21,j20» we obtain for
every n > 1 a random variable (% * S)n in M. If we now set the initial value of
the sequence {(% * S)n}">0 to be x, we obtain the Riemannian analogue of the
sequence {% >ty Xitnso. We refer to this process as the empirical average process
started at xg, compatible with the collection of measures {fi;}zens-

3.2.2. Identically distributed increments

For our purposes, we also need a notion of identically distributed increments. In
general, the increments of a geodesic random walk do not live in the same tangent
space. In order to overcome this problem, we use parallel transport to identify tan-
gent spaces. Because the identification via parallel transport depends on the curve
along which the vectors are transported, we need to make the following definition.

Definition 3.2.7. Let {u,}zear be a collection of measures such that p, € P(T,M)
for all x € M. Let {Sp}n>0 be a geodesic random walk with increments {X,}n>1,
compatible with {{iz}zers. We say the increments {Xp}n>1 are identically dis-
tributed if the measures satisfy the following consistency property: for anyy,z € M
and any smooth curve v : [a,b] — M with v(a) =y and v(b) = z we have

_ -1
Bz = Hy O Tyziny-

By the transitivity property of parallel transport, one can equivalently define the
consistency property to hold for all piecewise smooth curves.
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Note that in Euclidean space, our definition of independent increments implies that
the measures are independent of the space variable, because parallel transport is
the identity map. Hence, our definition reduces to the usual one, as we obtain that
every increment has some fixed distribution pu.

In Section 3.2.3 we provide some examples of families of measures {, }zens satisfying
the consistency property in Definition 3.2.7. Here, we state a noteworthy property
of the expectations of such a collection of measures.

Proposition 3.2.8. Let {us}zens be a collection of measures satisfying the con-
sistency property in Definition 3.2.7. Then for every xz,y € M and every curve
v :[0,1] = M with v(0) = x and v(1) = y we have

Toyy (JTIM v ux(dv)> = L L Hy(dw).

Y

Proof. Since parallel transport is linear, we have

Taysy (J v Nw(dv)> = J Tayiy¥ Ha(dV) = f W fg © Taj_yl;’y(dw)'
T, M T, M

Ty M

Since the collection of measures satisfies the consistency property in Definition 3.2.7,
we have

J W flg O Tz_ylw(dw) = J w, fiy(dw)
T, M

T,M
which concludes the proof. O
The consistency property in Definition 3.2.7 may also be characterised by a con-

sistency assumption for the corresponding log-moment generating functions A, :
T,M — R of u, given by

Az (X) =log JT Ny M 1 (dv).

This is recorded in the following proposition.

Proposition 3.2.9. Let {1, }zem be a collection of measures such that p, € P(T, M)
for every x € M. Assume that A (N\) < o0 for all x € M and all X\ € T,M. The
following are equivalent:

(a) The collection {u,}zem Satisfies the consistency property in Definition 3.2.7.

(b) For all x,y € M and all smooth curves v : [a,b] - M with v(a) = x and
v(b) =y and for all A\ € T, M we have

Az (A) = Ay(TayyA).

Proof. We first prove that (a) implies (b). Fix x,y € M and 7 : [a,b] — M a smooth
curve with y(a) = « and v(b) = y. Let A € T, M. Writing 7, = 7y, we find

AN = logJ N 1 (d)
TeM
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= 10g J e<7my)‘v7—myv>uw (dU)
TwM

= 1og J e<7—myA7w>My (dw)
T, M )

Y

= Ay(TzyN).

Here, the second line follows from the fact that the inner product is invariant under
parallel transport and the third line follows from the consistency assumption of the
collection of measures.

For the reverse implication, fix 2,y € M and let 7 : [a,b] — M be a smooth curve
with y(a) = z and y(b) = y. A similar argument as above shows that the log moment
generating function of y, o 7-;; coincides with the log moment generating function
of u,. Because the moment generating function determines the distribution, we

conclude that g, o T;:Lll = [iy as desired. O

The Legendre transform A% : T,M — R of A, is defined by

AX(v):= sup N\ v) —Ag(N).
NeT, M
If the collection of log-moment generating functions {A,}.cns satisfies the consis-
tency property in (b) of Proposition 3.2.9, then so does the collection {A¥*},cpr of
their Legendre transforms.

3.2.3. Examples

We give some examples of collections of measures {1, }.ens satisfying Definition 3.2.7

Example 3.2.10 (Uniform distribution on a ball). Fix r > 0. For any x € M,
let p, be the uniform distribution on {v € T, M| |v|, < r} © T, M. To see that
this collection of measures satisfies the consistency property, observe that parallel
transport is an isometry between tangent spaces. From this it follows that parallel
transport maps balls of same radii in different tangent spaces bijectively onto each
other.

The next example will be used in a later chapter to indicate the connection between
Mogulskii’s theorem and Schilder’s theorem.

Example 3.2.11 (Normal distribution). We now want to consider geodesic random
walks with normally distributed increments. For this, we define what we consider to
be a standard normal distribution on T, M and show that it satisfies the consistency
property. We say that V has a standard normal distribution if for some basis
(equivalently, all bases) ey, ...,en of T, M it holds that

VLV V) ~ N(0,G7(2))

where V = V'e; and G(z) is the matrix of the metric tensor at z with respect to the
basis e, ...,en. This is well-defined, because G~!(z) transforms tensorially under
coordinate transformations.
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To show that this collection of measures satisfies the consistency property in Defini-
tion 3.2.7, we make use of Proposition 3.2.9. We compute the log moment generating
function A, of u,. For this, we will show that

O Vg(ay ~ N(O, A2 ,)-
for any A e T, M. To this end, write v = V'e; and \ = )\jej. Then
A Vgw) = NV'gis ()
Note that this has a normal distribution with mean 0 and variance

MG (2)GH2)G(2)\ = |)\|§(I).

Using this, the log moment generating function becomes

v 1
ey (dv) = §|>\|_(2](x)'

Az(A) = log J

TwM

Because parallel transport along any smooth curve is an isometry, we find that (b) of
Proposition 3.2.9 is satisfied and as a consequence, the collection {p},ens satisfies
the consistency property in Definition 3.2.7.

Remark 3.2.12. The previous example shows that if we have for all x € M that
Az(A) = F(|Mg)) for some function F, independent of z, then the measures
{lz}oen satisfy the consistency property in Definition 3.2.7. This is for exam-
ple the case if pu; conditioned on the norm is uniformly distributed, and the norm
is distributed according to a distribution v independent of x.

Finally, we will show that if a geodesic random walk has identically distributed
increments, it is sufficient to know the probability distribution in a given tangent
space. This leads to an equivalent characterization of a geodesic random walk.

Example 3.2.13 (Equivalent characterization of a geodesic random walk). Suppose
we have fixed an initial point o € M and a measure p on T, M with the following
property: For every smooth loop 7 : [a,b] —> M with y(a) = v(b) = xo it holds that
B = 1O Ty(a)y(b)iys b-€-, p 18 invariant under parallel transport along any loop.
Given such a measure u, we can construct a family of measures {p,}zers which
satisfies Definition 3.2.7. Indeed, given x € M, we take a smooth curve v : [a,b] —
M with y(a) = 29 and v(b) = = and define p, = 11 0 7y (q)y(s);y- The assumption
on 4 implies that this is well-defined, i.e. independent of the curve -, and that the
given collection of measures satisfies the consistency property. More precisely, by
arguing in a chart around x and z( respectively, one can make sure to concatenate
a smooth curve from z to xg to the one from x to zg in a smooth way to create a
smooth loop.

Now if {Xn}n>1 is a sequence of T, M-valued random variables with distribution
1, one can parallelly transport these along the path of the geodesic random walk to
obtain the sequence {X,},>1 of the geodesic random walk.
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3.3. Sketch of the proof of Cramér’s theorem for
Riemannian manifolds

In this section we provide a sketch of the proof of Cramér’s theorem for geodesic
random walks and stress what observations and properties are important to make
the proof work. Before we get to this, let us first state the exact theorem we wish
to prove.

3.3.1. Statement of Cramér’s theorem

Cramér’s theorem is concerned with the large deviations for the empirical average
process {(% % S),},>1 with independent, identically distributed increments.

Along with the large deviation principle, we need to identify the rate function. In
Euclidean space, the rate function is given by

I(z) = A*(x),

the Legendre transform of the log moment generating function of an increment.
Note here that one can consider the vector = as the tangent vector of the straight
line from the origin to the point x. Using this viewpoint, the analogue of the rate
function in the Riemannian setting should be

I(z) = inf {A% (v)[Exp,, v =z}.

Here, we have to take the infimum, because the Riemannian exponential map is not
necessarily injective, i.e., there may be more than one geodesic connecting zy and
z. We will show that this is indeed the correct rate function, as collected in the
following theorem.

Theorem 3.3.1 (Cramér’s theorem for Riemannian manifolds). Let (M, g) be a
complete Riemannian manifold. Fix xo € M and let {p,}zenm be a collection of
measures such that pg, € P(Ty M) for all x € M. For everyn =1, let {(l S)i}i=o0
be a l-rescaled geodesic random walk started at xo with mdependent increments
{X7 }]>1, compatible with {jiz}zenr. Let {(£ % S)n}nso be the associated empiri-
cal average process started at xg. Assume the increments are bounded and have
expectation 0. Assume furthermore that the collection {iz}ren Satisfies the consis-
tency property in Definition 3.2.7. Then {(% * S)ntns0 satisfies the large deviation
principle in M with good rate function

In(z) = inf {A} (v)[Exp,,v=x}.

Due to geometrical influences, which become apparent when sketching the proof,
we prove Cramér’s theorem only in the case when the increments are bounded.
This allows for a less technical proof of the theorem, but nevertheless introduces all
geometrical obstructions that have to be dealt with. The details of the proof can be
found in Section 3.5.
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Like in the Euclidean setting, we prove Cramér’s theorem for geodesic random walks
by separately proving the upper and lower bound for the large deviation principle
of {(£ %8)n}n=0. In Section 3.3.2 we give an overview of the steps one needs to take
to prove the upper bound, while in Section 3.3.3 we sketch how to prove the lower
bound.

3.3.2. Sketch of the proof of the upper bound

In the Euclidean case, one proves the upper bound in Cramér’s theorem by using
Chebyshev’s inequality. More precisely, the key step is to show that for I' c R?
compact one has (see e.g. [56, 29])

1 1 1

lim sup — log P (Sn € I‘) < — inf sup {()\, x) — limsup — log E (e”<>‘=315">)} )
n—soo N n z€l’ \cRrd n—oo N

The upper bound is then extended to all closed sets by proving exponential tightness.

The idea is to follow a similar procedure in the Riemannian case. However, because

(% x S),, is M-valued, its moment generating function is not defined.

Step 1: Analogue of the moment generating function E(e"<’\7%5n>)

To overcome the problem of not having a moment generating function of (% *S)p,
we want to identify points in M with tangent vectors in T,,M. For this we use the
Riemannian exponential map. However, this map is not necessarily injective. Hence,
we first assume that for each n > 1, the %-rescaled geodesic random walk stays
within the injectivity radius ¢(zo) of its initial point zo up to time n. Because Exp,
is injective on B(0, t(zg)) < Ty, M, we can uniquely define v € T, , M satisfying
|vp| < t(zo) and
1
Exp;()l (vp) = <n * S)k .

Ideally, we would like to prove the large deviation principle for {(% * S)ptn=0 by
proving the large deviation principle for {v]'},,>0 in Ty, M and then apply the con-
traction principle (see e.g. [29, Chapter 4]) with the continuous function Exp, . For
this to work, we would need to show that

lim 1 logE (e”<’\’”2>) = Agy (A).

n—w n

Unfortunately, using the estimate for E(e”*»”) found in Step 2 as explained below,
we are only able to show that

1 n
lim sup — log E (en<w>) < Auy(N) + CJA| (3.3.1)
n—ow N
and likewise 1
lim iorolf —logE (e"<’\’”2>) = Ay (N) = CA|, (3.3.2)
n— n

where the constant only depends on the curvature and the uniform bound of the
increments.
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Step 2: Upper bound for the moment generating function of v;

In R? we simply have v? = % >, X; and hence its moment generating function is
given by

n

E (en<A,v;%>) _ H]E (6<A,X7¢>) _E (€<A,X1>)n

Here we use the fact that we can write v} = vf_; + X This fails in the Rie-

mannian setting, which results in the fact that we can only estimate E(e™*n?) as
mentioned above in (3.3.1) and (3.3.2).

In a Riemannian manifold we replace the identity v = vj_; + =X} by the Taylor
expansion of Expgzo1 (see Section 3.4.1, Proposition 3.4.4). This results in

1 N 1
v =R + Ed(EXpr)UilXﬁ +0 (712) : (3.3.3)

Here one needs to be careful that the constant in the error term may depend on
curvature properties of the manifold around (H # S)y—1. Because we assume the
increments are uniformly bounded, there exists a compact set K < M such that for
alln > 1 and all 0 < j < n we have (1 «8); € K. This allows us to control the
constant in the error term.

However, the problem arises that this expression does not yet allow us to use the
assumption that the increments of the geodesic random walk are identically dis-
tributed, which essentially means that the distribution of the increments is invariant
under parallel transport.

Therefore, we need to argue that d(Exp, O);; can be approximated well enough by
c—1

parallel transport. It turns out there exists a constant C' > 0 such that
Ay, )it XE ol g XE| < Clofy PIXT, (3.3.4)

see Section 3.4.2 for details, in particular Corollary 3.4.8. By the same reasoning as
before, the constant C' may be controlled independent of k.

Combining (3.3.3) and (3.3.4) and using that v = >;'_, vf — v} ;, we have

1 n
n 2 Tt 1 7 Sk— 1
Using the Cauchy-Schwarz inequality, we now find

" WINTON Xy
E(enM0i) < (O nCINR <62~< Mook sn s k>>

1
41 3.
S -+ (3.3.5)

3

(3.3.6)
— (O nCINR <6<A,x1>)"

Here, the last line uses that the increments are independent and identically dis-
tributed. From this it follows that

lim sup — logIE( DY < CIN| + Mgy (M),

n—owo N
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so that

1
limsup —logP(v; € F') < —inf  sup {{A,v) — Ay (A) — C|Al}.
n—o N veF \eT,, M

It remains to get rid of the C|A| term. In the next step we show how to reduce
the order n term in the upper bound in (3.3.6), so that we can still use the above
estimating procedure to obtain the upper bound of the large deviation principle for

{(% #S)n b0

Step 3: Reducing the upper bound in Step 2 by splitting the random
walk in pieces

The problematic factor in estimate (3.3.6) arises from the replacement of the differ-
ential of the exponential map with parallel transport as done in Step 2. This error
depends on |v}[, i.e., the distance from zy to (% * S). Note that in Step 2, we
simply estimated |v}| uniformly in k. However, if we write r for the uniform bound
on the increments, we actually have |[v}| < %r. Consquently, we can reduce the
upper bound if the amount of steps for which we need to compare parallel transport
and the differential of the exponential map becomes smaller.

To do this, the idea is to cut the random walk in finitely many pieces, say m,
each consisting of (roughly) m~1n steps. We can then consider each of these pieces
as separate random walks which we need to identify with a vector in some tangent
space. In the end, we can then let the amount of pieces tend to infinity by considering
the limit m — o0, so that the part of the upper bound which we want to reduce
vanishes entirely.

More precisely, fix m € N, and define for [ = 0,...,m — 1 the indices n; = I|m~1n|
and set n,, = n. This divides the random walk in m pieces, where a piece starts
in (% % S),,, and consists of [m~!n| increments. Now recall there is a compact set
K < M such that for all n and all 0 < j < n we have (1 xS); € K. Because

L(K) > 0, we can choose m sufficiently large, such that for all n, all il = 1,...,m
and all k = 1,...,|m n| we have
1 1
(*8) eB((*S) ,L(K)).
n n_1+k n ny—1
We may thus follow the same procedure as in Step 1, so that for every [ =1,...,m
and every k = 1,...,|m~'n| we can uniquely define @Z’m’l € T(14s),, , M such that

1
~n,m,l —1
0, € Exp i, (*S)
(5 #S)ni n ni_1+k

and [5"™!| < (£ %8),,_,). Finally, we define o™ e T, M by

Un,m,l _ 7_71 ’Dn,m,l
k xo(%*S)nFl k ’
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where the parallel transport can be taken along any path connecting zy and (% * S ) -
as long as it is measurable with respect to F,,_, = o(X1,..., Xn,_,)-
This associates to (1 % S), € M a tuple

<vn’m’1 R i ) € (Tp, M)™.

[m~1n]’ [m~1n]
Following the procedure in Step 2, apart from some technical details, we find
m,l

1 ndv™ 1 1
lim sup — logE (e vy, 1"J>) < C|>\|—3 + — Az (N,
m m

n—ow N

for all A € T, M. From here it is possible to show that

1 " m ,U’n,m,l 1 m 1 m
limsup — log E (e 2t lman>) < C—S E N+ — E Az (M)
m m
=1 =1

n—oo N

for all (A1,...,A\m) € (ThoM)™. We conclude that

1
lim sup — log P ((vﬁ’:_l’llnj, . ,v[;’fffzj) € F)
n—oo N

1 1
ST oM e A ) = Agy(A) — —5CIAl}.
(U17~~1-Ell}7n)eF m = /\es%ii) {CA mor) o(A) =" |A}

Step 4: Upper bound for the large deviation principle of {(% * S)ntnz0
To prove the large deviation upper bound for {(% #S)n tn>0, we notice that the map
n,m,1 n,m,m

sending (U[mflny e ,vlm,an) to (£ % 8), is continuous. Hence, if F < M is closed,

there exists a closed set F' < (T, M)™ such that

P ((i *S>n e F) = (ol o) € F)

From this it follows that

1 1
limsuplog]P’<< *S) EF)
n—soo N n n

m

. 1 1
< - inf — 2 sup {</\,Ul> — Ay M) — mQCl/\} .

(V150 )EF M =) XeTwy M

Now note that for every v € Exp, ' F' we have that (Lv,..., Lv) € F. Furthermore,
by convexity, the infimum in the upper bound is attained when all v; are equal.
Therefore, the upper bound reduces to

1 1
hmsuplog]P’((*S) eF)
n—oo N n n

< — inf sup {<)\,’U> — Az (N) — T;C’|)\|} .

veExp, ) F AeTypy M

The desired upper bound now follows by considering the limit m — co.
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3.3.3. Sketch of the proof of the lower bound

To prove the lower bound of the large deviation principle for {(L #S),}n>o0, it suffices
to show that if G < M is open, then

1 1
liminf — log P (< * S) € G) > —Iy(x),
n n

n—w n

for all z € G. Because In(z) = inf g -1 A7 (v), it is in fact sufficient to show
x
that
oL 1 1 %
liminf —logP | { =S| €G | = —A} (v)
n—n n n N

for any v € ExpgolG. Therefore, we again need to transfer the problem to the
tangent space T, M.

Transfer to the tangent space T, ,M
Similar to how estimate (3.5.2) is derived, we find that

lm™1n| 1 1
—1 Xl <
1 k ~ JU.. + 73'
o7 Sk—1 nm  m

S|

n
v[m_an
k=1

n

[m—1n] arbitrarily

As a consequence, by choosing m sufficiently large, we can get v

close to + Z,[:illnj 7';01% 5., Xk - The latter is a sum of independent random variables
with distribution u.,, which is a consequence of the fact that the increments of
the geodesic random walk are independent and identically distributed. Hence, by
Cramér’s theorem for vector spaces we obtain that for every m € N the sequence
{%legzlmJ T;)I%SKIXE}”;O satisfies the large deviation principle in 7,,M with
good rate function I(v) = LA¥ (mv).

Putting everything together, after some technicalities, we find that if € > 0 is small
enough, there exists a constant ¢ € (0,1) such that for m large enough

1
lim inf — log P(v[} € B(v,¢))

n—w n [m~tn]
1 plm e ,
> lim inf ~logP | — kzl s, Xi € B(v,cs?) (3.3.7)

1
2 EA;O (m'U)

In order to make use of this fact, we again need to divide the random walk in pieces,
like in Step 3 in Section 3.3.2. To this end, we again first identify (% *8S), € M with
a tuple

~n,m,1 ~n,m,m
( )ET(%*S)HOMX.'.XT(%*S) M.

v[m_lnj7 7v[m_1nj nm
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However, this time we need to be careful how we transport these vectors to T, M.
Indeed, we wish to do this in such a way that

1
(vn’m’l ...,U[L’m’mj> € B(v,ce®)™ = < * S) € B(Exp,,v,¢). (3.3.8)

-1 -1
|m=1n]’ m~ln n

The key to making the correct choice is given by Proposition 3.4.10, which gives us
control over how far geodesics can spread in a short time when starting in different
points of the manifold. This result shows us how to choose the parallel transport
based on the vector v, so that the curvature has only little effect. Essentially, one
first transports a vector to an associated point on the geodesic with speed v which
connects xg and x. After that, one transports the vector along this geodesic to xg.
More precisely, we do the following:

1. Consider the geodesic (t) = Exp, (tv) and for i = 0,...,m define the points
y; = 7(£). Note that yo = 0.

2. For every ¢ = 0,...,m and every x € M, choose a geodesic of minimal length
connecting y; and x and define 7, to be parallel transport along this geodesic.
3. Now define for i = 1,...,m the vector v”’"f’llnj € T,,M by

|m

Un,m,i _ ,7_—1 7_—1 ﬁn,m,i
[m=1n] YoUi "y (5 #S)n;_, Im~in]

Now, given G € M open, x € G and v € Expgolm, by (3.3.8) we have

P ((i ‘ S)n e G) > B (o el ) € B, es?)™)

Using this, an approach similar to the one used to obtain (3.3.7), also using that
the increments are independent and identically distributed, gives us that

liminfllogP ((1 *S> € G>
n—sw n n n

1

> liminf — log P ((U[Ln’:?’llnj, . ,U(;’:szj) € B(v, 052)’")
n— N
> —A7, (v)

which is as desired.

3.4. Some geometric results

This section focuses on geometric results needed for the proof of Cramér’s theorem
for geodesic random walks as sketched in Section 3.3. We obtain a Taylor expan-
sion for the inverse Riemannian exponential map and estimate the residual term.
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Furthermore, we bound the difference between the differential of the Riemannian
exponential map and parallel transport. This heavily relies on the theory of Jacobi
fields, which have been introduced in Section 3.1.2. We also show how far geodesics
can spread in a short time interval when starting in different points on the mani-
fold. We conclude this section by proving that convex functionals are minimized by
geodesics.

3.4.1. Taylor expansion of the inverse Riemannian exponential
map
The Riemannian exponential map Exp, : T,M — M is a local diffeomorphism
around 0. More precisely, it is a diffeomorphism between B(0,¢(x)) < T, M and
Exp, (B(0,¢(x))). Now suppose ~(t) is a curve in Exp,(B(0,¢(z))). There exists
a unique curve w(t) in B(0,t(x)) < T, M such that Exp,w(t) = v(¢). Our aim is
to find a Taylor expansion for w(t) around ¢ = 0. Although this seems to be folk-
lore, we also find a precise estimate of the residual term of the Taylor approximation.

Before we can do this, we first need two lemmas that will help us control the er-
ror term in the first order Taylor polynomial for the inverse of the Riemannian
exponential map.

Lemma 3.4.1. Let K < M be compact and for any v € K, let K, < T, M be
compact. Assume the Riemannian exponential map Exp, is defined on K, for all
x € K. Assume furthermore there exists a C > 0 such that K, < B(0,C) for any
xe K. Then

sup sup |d(Exp, )| <
zeK veK,

Proof. Because the sets K, are uniformly bounded and K is compact, it follows
that :
K :={(z,v)eTM| ze K,ve K.}

is compact. By assumption, K is contained in the domain U ¢ T'M of the Rieman-
nian exponential map.

Let w: TM — M be the canonical projection and define the vertical tangent bundle
TVYTM < TTM as the kernel of dr : TTM — TM. Furthermore, define

D :={(v,w)e TM x TM| n(v) = w(w)} <« TM x TM.

Then TVTM is isomorphic to D via the isomorphism ¢ : D — TV TM given by

d
t(v,w) = Tl v + tw.
t=0

Now consider the set
BYK :={(v,w)e D|ve K,|w|, <1} =< D ~T"VTM.

Since K is compact, so is BV K.
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Now, for Exp : U - M x M we have dExp : TU — TM x TM given by

dExp((z, v))(w) = (0, d(Exp,),w),

where ¢(v,w) = (v,w). From this it follows that the map ((z,v), w) — |d(Exp,),w],
is continuous on D, and as a consequence it is bounded on BY K. This implies that

sup sup sup |d(Exp, )ywly < o0,
zeK veEKy weT, M,|w|,<1

from which the claim follows, since

sup |d(Exp, )ywly = [d(Exp,)ulg-

weTy M,|w|y<1
O

As long as one restricts to a set where the inverse of the Riemannian exponential
map is well-defined, one obtains in a similar way a bound for the differential of the
inverse Riemannian exponential map.

Lemma 3.4.2. Let K < M be compact and for any x € K, let K, < B(0,1(x)) <
T, M be compact. Assume that there exists a constant C > 0 such that K, < B(0,C)
for any x € K. Then

sup sup |d(Expz);1| < 0.
rzeK veK,

Remark 3.4.3. When we take K = {zo} in Lemma 3.4.2, the statement simplifies as
follows: If K < B(0,¢(x)) is compact, then

sup |d(Exp,, ), | < .
veK

We are now in a position to find a first order Taylor expansion of the inverse Rie-
mannian exponential map and control the error term appropriately.

Proposition 3.4.4. Fiz v € M and let K < B(0,1(x0)) be compact. Define
K= Exp,, K and let v € K and v e T,M. Consider the geodesic 7y, : [0,T] — M
defined by 'yv( ) = Exp,(tv), where T is such that the image of 7y, is contained in
K. Restrict Exp,, to K and set w(t) = Expg;o1 (Ww(t)) € K © TyuM. Then there
exists a constant C' > 0 such that

[w(t) = w(0) = td(ExDq, )y 0) (V) lg(wo) < CJ0]3 ()

for allt € [0,T]. Here, the constant C' only depends on the compact set K (and the
dimension of M ).

Proof. Let {eq,...,eq} be an orthonormal basis of T,, M and consider the associated
normal coordinates around zo. Since K < B(0,¢(z¢)), these normal coordinates are
defined in a neighbourhood of K.
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Writing v¥(¢) for the coordinates of 7, (), we have that w(t) = v5(t)e. Further-
more, by the chain rule we have

(0) = A(Expy )5k (36(0)) = d(Expy, )l (0):
As a consequence, we find that
|w(t) — w(0) — td(ExPy,) o) (V)lg(ao) = Iw(t) — w(0) — t(0)] g(z0)

Now, by Taylor’s theorem we have for all k = 1,...,d that

1
[ () = 75 (0) = t5(0)] < itQWk(ft,kM

for some & 1, € (0, ).
Because 7, is a geodesic, its coordinates satisfy the geodesic equations

i (8) + 35 (077 (DT (7 (1)) = 0.
In particular, we find that
A (O] < 175 (6)7 (T3 (3 (D).

Now observe that (z,v) — v*0/T'};(y,(t)) is continuous, and therefore bounded on
the compact set

{(z,0) e TM| z € K, |v|y(z) = 1}.
In particular, this implies that there exists a constant C' > 0 such that
[0 T (3 ()] < Clofj
for every k = 1,...,d. Using this, we obtain that

Ao ()] < Cl ()] = Clolj,

where we used that v, is a geodesic with 4, (0) = v.
Combining everything, we find that

d
w(t) = w(0) — td(Expy,) (o) (V) lg(zo) < Z $(0) = #35(0)] < dOE[0] g

as desired. O
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3.4.2. Differential of the Riemannian exponential map and par-
allel transport

Next, we wish to understand the relation between the differential of the Riemannian

exponential map and parallel transport. Before we can make the appropriate com-

parison, we first need a version of Taylor’s theorem suitable for vector fields along

a curve on a manifold.

Proposition 3.4.5 (Taylor’s theorem). Let vy be a curve in M and v a vector field
along . Define Dyv(t) := Vyv(t) and DY as the k-th covariant derivative in this
way. Fixn € N. For every t > 0 there exists & € (0,t) such that

n tk A tk?+1
=y D L Df*
2 FTOn0 100 + Gy e D ().

. _ -1
Proof. Consider the map f(t) = T (O

smooth, by Taylor’s theorem, given n € N and ¢ > 0, there exists & € (0,t) such
that

v(t), mapping into T, ) M. Because f is

1) = 2R ) 4+ —— p+D ey
f(®) ,; (/O + Gy )
Let us compute the derivatives of f. Note that
iy e JEHR) — ()
F#) = Jim I
—1 —1
i O ) T 0,00
h—0 h
— Lk T yem Ot +R) —v(D)
= Ty o) 1 h
= o Pev(®)-

Using induction, one can show that
f(k)(t) = T,y_(})).y(t)va(t)

for all kK € N. But then we find that
—1 - tk k tk+1 —1
0V (t) = pay PO+ aimone P "o(&).

Applying 7, (0),(¢) to both sides and observing that ¢ > &; gives the desired result. [

We are now able to compare the differential of the Riemannian exponential map
and parallel transport. The Taylor series of the differential of the exponential map
may be found in e.g [98, Appendix A]. The error term for finite Taylor polynomials
seems to belong to folklore, but we insert a proof here for the reader’s convenience.
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Proposition 3.4.6. Let xg € M and take w,u € T, M. Consider the geodesic
Yo ¢ [0,1] — M given by v (t) = Exp, (tw). For every t € [0,1] there ewists
& € (0,t) such that

d(Expy, )i ()

1 . .
o (07w (U T+ itTVw(gt)’Yw(t)R’Yw(gt)(d(EXpIO)Etw(ftu)? Y (€8)) Yoo (&)

Proof. Consider the vector field J(t) = d(Exp,, )t (tu) along v, (t). It follows from
Proposition 3.1.4 that J(t) is a Jacobi field along ~(¢) with J(0) = 0 and J(0) = w.

By the Jacobi equation (3.1.2), the second derivative is given by
D?J(t) = _R'yw (t) (J<t)7 ;Yw (t))’)/w (t)
Therefore, by Proposition 3.4.5 we find there exists some & € (0,t) such that

1

J(t) = tT’yw (0)yw (1)U — 57,‘27'%” (&) Yw (t)R’Yw (&) (d(Epro)ftw (ftu)v ;Yw (gt))’}/w (gt)

The result now follows after dividing by ¢. 0

This proposition allows us to obtain the following estimate.

Corollary 3.4.7. Fiz xo € M and let w € B(0,t(xg)) < Ty, M. Define the geodesic
Yo ¢ [0,1] — M by v(t) = Exp,, (tw). There exists a constant C > 0 only
depending on some compact set containing v, such that

[A(EXP, (1) = T 070 (1)Ul (1)) < Clitlga) @15

forallwe T, M.
Proof. By Proposition 3.4.6 there exists £ € (0,1) such that
A(Expg, Juw () = T, )7, (1)U
= T (R O (B, (€, 0 (€) Vi €)-

Now taking norms on both sides, we first observe that the norm of the Riemann
curvature endomorphism is bounded on compact sets, because it is continuous (in
coordinates the norm can be expressed as a continuous functions of the coefficients).
Furthermore, by Lemma 3.4.1 we have that w — |d(Exp,, )| is bounded on compact
sets. We thus obtain constants C7,Cy > 0, only depending on some compact set
containing the curve =, such that

[ d(Expgy )w () = Ty (0)7 (1) Ul (v (1))
1 . .
< 5100 (dExPg Jew (§u): F () (g @)
< ChlA(BxXD,, )ew (§0)|g(y. ) [0 () 2 c6))

2

< C1Csulg(me)|wl? s,y

Here, in the last line we used that £ < 1 and the fact that ~,, is a geodesic. O
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The result in the latter corollary can also be used to compare the inverse of the
differential of the exponential map to the inverse of parallel transport, which itself
is parallel transport, but in the opposite direction.

Corollary 3.4.8. Let xg € M and fix w e B(0,:(zg)) < Ty M. Define the geodesic
Yo+ [0,1] = M by vu(t) = Exp,, (tw). Then there exists a constant C > 0 only
depending on some compact set containing ~v.,, such that

-1 -1 2
|AExPs ) (W) = T 01, (1) Ulg (1) S Clttlgir (1) [W]g(a0)
for allueT, M.
Proof. Fix u € T, )M and consider d(Exsz);lu € Ty,M. By Corollary 3.4.7,
there exists a constant C' > 0 only depending on a compact set containing -y,, such
that
|u - T“/w(O)'yw(l)d(Eprg);1u|g(’yw(1)) < C|d(Epr0);1u|g(zo)|w|§($0)

Because parallel transport is an isometry, the left hand side is equal to

|T'Yw(1)’)’w(0)u - d(EXpwo);luL‘](’YW(l)) :

For the right hand side, we observe that by Lemma 3.4.2 there exists a constant
C' > 0, only depending on some compact set containing -,, such that

|AEXD,, ) tlg(ae) < Clulgia, @)
Putting everything together, we find

T (17 (@8 = AEXDG, ) Ul gy, (1)) < CClul g, () [W0]5 1)

as desired. O

3.4.3. Spreading of geodesics

We conclude this section with a result on how far geodesics, possibly starting in
different points, can spread in a given amount of time. To shed some light on the
upcoming result, we first consider the Euclidean case. For this, let v(¢) = v(0)+t%(0)
and ¢(t) = ¢(0) + to(t) be two straight lines. Then

() = ¢ = [7(0) = $(0)[* + 2t3(0) — $(0),7(0) — $(0)) + £2[(t) — $(1) .

It turns out that in a Riemannian manifold, this formula is analogous up to first
order. The curvature terms show up in the second order term. Before we prove this,
we first need a lemma.

Lemma 3.4.9. Let K ¢ M be compact and fit L > 0. Let 0 < r < «(K). Let

¢:[0,T] - M and v : [0,T] — M be two geodesics contained in K. Assume that
d(9(0),7(0)) < 5 and |¢(0)],|¥(0)| < L. Then there exists a to > 0, only depending
on K, L and r, such that for all 0 < t <ty we have

d(o(t),y(t)) <.
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Proof. Because d : M x M — R is continuous, and K x K is compact, d(-,) is
uniformly Continuous on K x K. We can thus pick ¢ > 0 such that |d(z,y) —
d(z’,y')| < L, whenever d(z,z") < e and d(y,y') <e

Now obberve that d(¢(t ),(b( )) < t|¢(0)] < tL and likewise d(v(t),~(0)

)
Hence, if we take tg < eL™, then for all 0 < ¢ < ¢y we have d(¢(t), $(0)) <
d((t),7(0)) < e. By the ChOlce of ¢, it follows that

< tL.
e and

Since d(¢(0),7(0)) < i, the above then implies that d(¢(t),v(t)) < r as desired. [

Proposition 3.4.10. Let K ¢ M be compact and fir L > 0. Let 0 < r < (K)
and fix to > 0 as in Lemma 3.4.9. Let ¢ : [0,t9] — M and v : [0,t0] — M be two
geodesics in K such that d(v(0),¢(0)) < § and |6(0)],15(0)| < L. Finally, let K be
a compact set containing all geodesics of minimal length between points in K. Then
for all 0 < t <ty we have

d(y(t), ¢(t))*
< d(7(0), $(0))® + 2647} 5 0y ¥(0) = (0), Exp 5y 7(0)) + £ C(15(0)] + |$(0)]),
where the constant C' > 0 only depends on K, L and r.
Proof. Define f(t) = d(v(t), #(t))?. By the choice of ¢y, Lemma 3.4.9 gives us that
d((t),7(t)) <7 < u(K)

for every 0 < ¢ < tg. This implies that ¢(t) and «(t) may be joined by a unique
geodesic of minimal length. Moreover, by restricting Exp, we have f(t) = |Exp;(1t)'y(t) 2.
Using this, we can compute

d _
£/ = S Bl (o)
= 2<V¢(t)EXp¢_>(1t)’7(t)a EXp;017(t)>'
Now define the variation of curves I": [0, %] x [0,1] — M by
L(t,s) = Equs(t)(SEXp,;(lt)’Y(t))-

Then for each ¢, the curve s — I'(¢,s) is the geodesic of minimal length between
o(t) and (). Hence, I'([0,%0] x [0,1]) € K. Furthermore, because I is a variation
of geodesics, the vector field

Jt(S) = 5tf(t, S)

is a Jacobi field along the curve T'y(s) := I'(¢, s) for all 0 < ¢ < ¢p.
Now note that by the Symmetry Lemma (Lemma 3.1.3), we have

V40 Exp(1(t) = Did,T(t,0) = DyaiT(t,0) = J,(0).
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From this, we obtain
() = 2¢J(0), Exp 5 () = 2¢Ji(0), 0,T(t, 0)).
By Proposition 3.1.5 we find
F'(t) = 20J(0), 0,1 (¢,0))
= 2Ji(1), 050 (¢, 1)) — 2(J2(0), 85T'(¢,0))
= 2(3(1), —Exp,(yd(1)) — 2$(t), Exp ()
2<T (t)’y(t)’Y( ) fi)(t);EXpd)(t)’Y( )>

In particular, we have
F1(0) = 20754 - 0y 7(0) = 6(0), Expy 5, 7(0)).

By Taylor’s theorem, we find that

d(v(t), 6(t))?

1
< A0(0),600))* + 26701 (0) = 60) Expo 2O + 57 s 7€)

We now turn to estimating the residual term. For this, we compute f”(t) as follows:

S0 = S0, ~Bxp, ) 0(1)) — SO0, Bxply (1)

2
— (1), V(0 Bxpo #(8)) — (D(1), V300 Expyhy v(D))
= (1), 80(1, 1)) — ((1), T'(£,0))
= G(1), (1)) = (1), i (0)).

Here we used that V; t)¢( ) = Viu¥(t) = 0, since ¢ and ~y are geodesics. It follows
that

%lf”(t)l < A1 )]+ [6)]17:0)] = [1(0)[[J(1)] + [$(0)]|-]e(0)],

where we again used that 7 and ¢ are geodesics. It follows that we are done once
we can bound |J¢(0)| and |J;(1)|. For this, we first obtain a more specific expression
for the Jacobi field J;. To this end, we define for every 0 < ¢ < ¢y the vector fields

Ji(s) = d(EXp¢(t))sasF(t,O)(Sjtl(o))

and .
J2(s) = A(Exp., (1)) —sa,r(t,1) (57 (0)),

where

1
J}(0) = d(Expy, ))EXP¢<m(t> Y(t) € TyyM
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and likewise

JR0) = A(Bxp,))g) 1 B € Ty M.

Exp(, 6(t)

It follows from Proposition 3.1.4 that J} and J7 are Jacobi fields along T';. Note
that J}(0) = J2(0) = 0 and J} (1) = §(t) and J?(1) = ¢(t). Because J; is the unique
Jacobi field along I'; with J;(0) = ¢(t) and Jy(1) = 4(t), it follows that

Ji(s) = JH(s) + JE(1 — s).

Using the above decomposition, we show how to bound |J;(0)|. The bound for
|J:(1)| may be obtained similarly. By the triangle inequality, we have

17:(0)] < | 0)] + |2 (1).
Note that

| jtl ) = |d(EXP¢(t) )Eip;;tﬂ(tﬂ(t) | < ‘d(EXPd;(t) )

IO

Exp

Therefore, by Lemma 3.4.2 there exists a constant C' > 0 only depending on K and
r (since |Exp;(1t)'y(t)\ = d(¢(t),~(t)) < r) such that

74 (0)] < ClA(1)] = CIH(0)].
For the other term, it follows from Proposition 3.1.6 that
2] < LI O)] + up 1R (£ (5), 0T (1 8) 0T (0, 5)
se
< Clo(0)] + |0, (1, 0)]* sup | Ry, ()| J7(5)]
s€[0,1]
< Cl(0)| + Cd(v(1), $(t)* sup |T7(s)]
s€[0,1]
< Clp(0)] + Cr® sup |J7(s)]-

s€[0,1]

Here we used in the second line again Lemma 3.4.2 as above, together with the
fact that the curves I';(s) are geodesics. Furthemore, we used that the curvature is
continuous, and hence bounded on compact sets, so that C only depends on K, since
the variation T is contained in K. In the last line, we used that d(v(t), ¢(t)) < r for
all 0 <t <ty by choice of tg.

Finally, we have for any s € [0, 1]
| (5)] = |A(ExD, (1)) —so.re,1) (57 (0))]

< S|d(EXp7(t))—s('95F(t,1)||j152<0))|
< C'g(0)],
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where in the last line we used Lemma 3.4.1. Collecting everything, there exists a
constant C' > 0, only depending on K and r, such that
| JE(1)] < C$(0)].
Putting everything together, we find that
[J(0)] < T 0)] + [J2(1)] < C(3(0)] + 6(0)])
for some C' > 0 only depending on K and 7. Obtaining a similar bound for |.J;(1)]

now proves the claim. O

3.4.4. Minimizing trajectories for convex functionals

In this section we generalize the result that if F': RV — R is convex, the integral

I() = f F3(1)) dt

considered for curves with v(0) = z and (1) = y is minimized by the straight line
connecting x and y.

In the context of Riemannian geometry, this concept arises naturally when mini-
mizing the Riemannian distance between points x,y € M. Indeed, the distance is
given by (see Section 2.2)

ite? =i { [ o

:[0,1] = M,~(0) = z,v(1) = y,y piecewise smooth} .

It can be shown that the optimal trajectories for the distance between x and y are
geodesics, see e.g. [69, Chapter 6]. Note that in this case, we consider the integral
of the function F' : TM — R given by F(z,v) = |v|§(m). For every z € M, the map
v +— F(x,v) is strictly convex. Furthermore, F' is invariant under parallel transport
in the sense that for all z,y € M and v € T, M we have F(z,v) = F(y, Tzyv). The
next result states that these two conditions on F' are in general sufficient to conclude
that geodesics are minimizing trajectories for the integral of F.

Proposition 3.4.11. Let F : TM — R be a smooth function satisfying the following
properties:

1. For every x € M, the map F(x,-) : T, M — R is strictly convez.
2. For every x,y € M and smooth curve v connecting x and y, we have
F(z,v) = F(y, Tay;y0)
for allve T, M.

Define the functional I by

I(y) = j Fly(6),4(8)) dt.
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Then for any x,y € M we have

inf{I(y)|y:[0,1] > M,~(0) = x,v(1) = y,v piecewise smooth}
= inf{I(y)|y:[0,1] = M,~(0) = z,~v(1) = y,v geodesic}
= inf{F(v)|v € Exp, "y}.

Before we get to the proof, we first need a lemma.

Lemma 3.4.12. Let F be as in Proposition 8.4.11. Fixx,y € M and let~:[0,1] —
M be any curve with v(0) = x and (1) = y. Denote by 74, parallel transport from
Ty M to TyM along ~y. For every x € M, define F, : T,M — R by F,(v) := F(x,v).
Then for any v € T, M we have

TayVFg(v) = VFy(Tyv).

Proof. By the consistency property 2 of F' we have F, = F, o 7,,. Applying the
chain rule, we find

dF,(v) = d(Fy 0 Tay)(v) = dFy(Tayv) 0 dTpy(v) = dF, (Toyv) © Tay.

Here we used in the final step that 7., is linear. But then we find for every w € T, M
that

(VI (), w) = dFy (v)(w) = dFy (T2 v) (Tayw)
= (VFy(Tayv), Tayw) = (Tya VEy (T2yv), w).

This implies that VF,(v) = 7y VF,(Tzyv), from which the desired equality follows
by applying 7.y. O

We now turn to the proof of Proposition 3.4.11. The proof is similar to the vari-
ational approach in proving that geodesics are optimal trajectories for the length
functional, see e.g. [69, Chapter 6]. For the notation from the calculus of variations,
we refer to Section 3.1.1.

Proof of Proposition 3.4.11. Fix x,y € M and let v : [0,1] —» M be a curve with
v(0) = z and y(1) = y. Let I : (—&,e) —> M be a variation of v with I'(s,0) = =

and I'(s,1) = y for all s € (—e,¢). If v minimizes I, then

d

— I'(s,-)) =0.

R CR)
On the other hand, we have

f ), 0:I'(s, 1)) dt.

Hence, we need to compute

d

SR (T(5,0),00(5.1).
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Note that for every s € (—e, ) we have

F(F(Svt)aatr(sat)) = F('y(t) T (s,t)T Ot)at ( ))

Using this, we compute

SR, 1,0 (1) = S PO, 7o d(5,1)

d
= <VF7(t) (Tr(s,r (0,00 (s, 1)) dSTF(s,t)F(O,t)atF(Sat)>'

Now
d T (s+h,t)0(0,4) Ot L (8 + Iy t) — Trgs oyr(0,4) 0L (5, 1)
£Tr(s,t)r(0,t)atr( )_ hg}) [+ OT0.1) L SLL ik
TF(S+}L,t)F(S,t)atF(s + ha t) - atF(S7 t)
= TD(s,0)[(0,¢) }%1 L 5

= Tr(s,0r(0,t) Ds 0L (5, 1).

Combining the above equations, we find

d

gF( (5,1), 0 1( ={VE, ) (Trs,or0.6 0L (5,1)) , Tr(s, 600, Ds 0L (5, 1) )
= (VFr(s4) (0:L(s,1)) , D0, (s, ) )

= <VFF(5,t) (ﬁtr(s, t)) 5 Dtasf(s, t)> .

Here, the one but last line follows from Lemma 3.4.12. The last line follows from
the Symmetry lemma (Lemma 3.1.3).

Now define the variational vector field V' (¢) of T by V(¢) = 9,I'(0,¢). Then for s = 0
we obtain

4
dsls=0

F(D(5,8), (s, 1)) = (V) (4(1)), Vs V(1)) -

Collecting everything, we obtain

d
SR AARLACD)

s=0
- | (TE0 G0 T Vi) @

= [ TR0V 0) ~ (T VEo G0, V0D at

1
~ (VB (V) = TP GO V) = | (Vs V(0. V(0) d
- J;) <V"y(t)vay(t) (V(t))? V(t>> dt,
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because V(0) = V(1) = 0, since I'(s,0) = z and I'(s,1) =y for all s € (—¢,¢).

Now pick ¢ : [0,1] — R smooth with ¢(0) = ¢(1) = 0 and ¢(t) > 0,t € (0,1).
Consider the vector field V() = @(t)V5) V) (¥(t)). Constructing I' with this
variational vector field, we obtain

1
0= _ J D)V V Ey oy (3(0)] dt

from which it follows that
Vi) VE ) (3(t)) = 0
for all ¢ € [0,1]. We thus have that VF, ) (¥(t)) is parallel along (), i.e.

Ty70) VE 1) (1(1)) = VE,(0)(7(0)).
On the other hand, by Lemma 3.4.12 we have

Ty ()y(0) VE (1) (V(E)) = V' 0) (Ty(1)(0) ¥ (1))

Because F, gy is strictly convex, its derivative is injective, so that

VE, 0 (1(0)) = VE0) (Ty(07(0)F(£))
implies that
Y(0) = Ty ()7 (0) ¥(1)-
As this holds for all ¢ € [0, 1], we conclude that « is a geodesic. O

3.5. Proof of Cramér’s theorem for geodesic random
walks

In this section we provide a proof of Cramér’s theorem for geodesic random walks
with independent and identically distributed increments, which are bounded and
have expectation 0. The proof relies on an analysis of the geometric properties of
a geodesic random walk. To prove the theorem, we follow the steps as discussed in
Section 3.3. We provide the details and show how we use the geometric results from
Section 3.4. For completeness, let us recall the statement of the theorem.

Theorem 3.5.1 (Cramér’s theorem for Riemannian manifolds). Let (M, g) be a
complete Riemannian manifold. Fix xo € M and let {py}zenms be a collection of
measures such that p, € P(T,M) for all z € M. For everyn > 1, let {(% = 8);};50
be a %-rescaled geodesic random walk started at xo with independent increments
{X7}j=1, compatible with {g}eers. Let {(% % S)ntnszo be the associated empiri-
cal average process started at xg. Assume the increments are bounded and have
expectation 0. Assume furthermore that the collection {u.}zens satisfies the consis-
tency property in Definition 3.2.7. Then {(% * S)ptnso satisfies the large deviation
principle in M with good rate function

Iv(z) = inf{A% (v)|v e Exp,, 'z} (3.5.1)
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In Section 3.5.1 we prove the upper bound of the large deviation principle for
{(£ % 8)p}tn=1 in M, while in Section 3.5.2 we prove the lower bound. More
specifically, Theorem 3.5.1 follows immediately from Proposition 3.5.8 together with
Proposition 3.5.10.

However, before we can prove the upper and lower bound of the large deviation
principle for {(£ % &), }n>1, we first need some general results and estimates. From
here on, we fix » > 0 to be the uniform bound on the increments of the random
walk. By the triangle inequality, we find

k
1 1 k
d<(*$) ,xo)<ZX,?|<r<r
n k n = n

for all 0 < k < n. Therefore, for every n = 0 and 1 < k < n we have

n

(1*S>keB(:r0,r)—:K.

By completeness of M, K is compact since it is closed and bounded.
Now consider the process Z,, in T,,, M given by

li xv
n S#S) k-1 k'

Here, the parallel transport 7, 148)5 is considered along the piecewise geodesic
path traced out by the geodesic random walk. From Cramér’s theorem for vector
spaces it follows that {Z,, },>0 satisfies the large deviation principle in T, M, which
we will show in the following proposition.

Proposition 3.5.2. Let the assumptions of Theorem 3.5.1 be satisfied. For every

n =0, define Z, = %Zgﬂgf(%*s)kilxg € TyyM. Let Ay, (N) = log E(eMX1) be
the log moment generating function of the increments. Then {Z,}n>0 Satisfies the
large deviation principle in T, M with good rate function

I(v) = A3, (v) := sup {(A0) = Agy (M)}

€lzg

Proof. Define V)" = Xi € Ty, M. We compute for any A e Ty, M

))

<)\’T;1(l*s) vy
=K ., e 05 *¥S)k—1 M(%*S)k,1<dv)

1
o (5 #8) k-

E(€<>"Y"n>) =E (E <6<A7Tw0(i*5)k—1xg>
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[ )
Ty M

Here we used in the second line that 7';01( 148 is measurable with respect to Fi_1,

together with the fact that the increments are independent (see Definition 3.2.3). In
the third line we applied Proposition 3.2.9, using that the increments are identically
distributed. It follows that Y, is distributed according to pig,.

As a consequence, the result follows from Cramér’s theorem (Theorem 2.1.10) once
we show that Y, and Y;" are independent whenever k # [. To this end, assume
without loss of generality that [ < k. Then for measurable sets A, B < T,,,M we
find in a similar way as above that

P(Y," € A,Y € B)
=E(I(Y;" € AE(I(Y}" € B)[Fk-1))

-E I(Yl"eA)j
T,

(L %8),_1
=E (I(Y}” € A)J I(veB) ,umg(dv))
Tug

E(I(Y;" € A)E(I(Y] € B))
B(Y;" € A)B(Y}" € B),

Ny I <T;01(%*S)k_11} € B) (L 8), (dv)

M

where I denotes the indicator function. Above, we used in the one but last line
that Y;" is distributed according to piz,. We conclude that the Y;” and Y are
independent. O

Remark 3.5.3. Note that in the proof of Proposition 3.5.2 we did not use along which
path we performed the parallel transport Tw_ol(l* S r’ only that it was measurable
with respect to Fi_1. Therefore, the result holds for any choice of parallel transport,

as long as it is measurable with respect to Fj_1.

Proposition 3.5.2 suggests we should try to map the sequence {(% # S)ptn=o from
M to T,,M in such a way that it will be close to the sequence {Z,},>0.

To this end, recall that if we assume that r < ¢(z), then for all n and all0 < k < n

we can uniquely define
n -1 1
vy € Exp, — %S c Ty M
n k

with [v}| < ¢(20), because d((2 * 8)k, o) < 7 < t(z0).

As explained in Step 2 of Section 3.3.2, we have the following estimate. The first term
of the upper bound in (3.5.2) follows from replacing v!, with a sum of differentials
of the Riemannian exponential map, while the second term follows from replacing

these differentials with parallel transport.
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Proposition 3.5.4. Let the assumptions of Theorem 3.5.1 be satisfied. Addition-
ally, let r be the uniform bound of the increments and assume that r < 1(xg). Then
there exists a constant C' > 0 such that

1 s l
'Ull — ﬁ 2 T 1n . X]? < C; + 072; (352)

for allm and all 1 <1 < n.

Proof. Recall that for all n and all 0 < k£ < n we have that (Yll xS is in the compact
set K = B(zq,r). This implies that

vy € B(0,r) € T,y M

for all n and all 0 < k£ < n. But then it follows from Proposition 3.4.4 that for every
0 < k < n there exists a constant Cj, > 0 only depending on the norms of vy}, v},
and X' such that

1
'U]?+1 — (Uk + d(EXpr) 1L1Xk+1>‘ < Ckﬁ (353)

Because each of the norms [v}}|, [vf, ;| and | X}'| are bounded by r, we conclude that
we can take Cy = C independent of k.

Turning to the proof of the statement, by the triangle inequality we have

1
n 1 1 n
v n 2 Tmo(%*s)k—le
k=1
1< 1
S E Z d(EprO)_nl Xk E Z‘ EXp/Io)_"l Xk - 96( *S) - X]? ’
k=1 k=1

We estimate both terms separately.
For the first term, we write v;* as the telescoping sum

l

off = D (0 —viy)-

k=1
Using this, we obtain
14 l
-1
Uln o E Z d(Eszo 1 Z h ’U]?_l o d(EXpr)U? 1Xk|
k=1
<ol ,
n2

where the last line follows from the estimate in (3.5.3).
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For the other term, observe that by Corollary 3.4.8, there exists a constant C' > 0
only depending on the compact set B(0,r) and r, such that

X < Clogy?

-1
‘d(Eszo) n Xk - x( *S)n_1

But then we find
1< 1 ¢
—1 —1 n n 2
- Z (Expg,)pr  Xi — Teo(L#8)p_1 Xil < Cﬁ Z ey
k1 =1

2
<CT 73,
n

where in the last line we used that [vf_ | < rf=2 <rl forany 1 <k <. O

One might hope to combine Propositions 3.5.2 and 3.5.4 to prove that {v"},>0
satisfies in T,,M the large deviation principle. Unfortunately, the upper bound
found in Proposition 3.5.4 gives an unwanted contribution on the exponential scale.
Indeed, taking [ = n, we find that the upper bound in (3.5.2) is O(1), which results
in the fact that we get stuck with a constant as explained in Step 1 of Section 3.3.2.
In an attempt to reduce this term in the upper bound, we cut up the random walk
in finitely many pieces and analyse the pieces separately.

To this end, recall that

k
1 1 k
d{|-=*8 <= ) XP < =
(<7’l* >k7x0> nl=211| k| nr

Now observe that ¢(B(xg,7)) > 0, because B(z,r) is compact (see (3.1.1) for the
n(B(@o,r)) then
2r ’

definition of the injectivity radius of a set). Therefore, if k <

d ((1 ; s)k wo) < @ < o(B(zo,1)). (3.5.4)

n

Now let m € N such that m > %. For 0 <1< m— 1 we define n;, = [|[m~1n|
v(B(xo,r

and n,, = n. By (3.54), for every 0 <l <m —1and 1 < k < nj41 —n; we can
uniquely define

1
5" e Bxp(l, — xS < T(1ps), M (3.5.5)
( )"l n nl+k n l

n(B(zo,7))
2r

with |5 < (£ %8)y,), because nyp1 —ny < nm~t < . Finally, we set

n,m,l -1 ~nml
v, =T, 2o( *S)nl €Ty, M,

where parallel transport 7 is taken along the piecewise geodesic path through

1
xo(%*S)n,
the points (% * S)nla' . (% * S)"’Ll—l :
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Alongside this division of the random walk into pieces, we define a map ¥, :
(TypoM)™ — M to identify the tuple (v} ...,vf’m’m) with (1 % 8),, just

|m~—In]’ m~1n|
like we used the Riemannian exponential map to identify v and (% x S)p before.
Essentially, W, is an m time recursive application of the Riemannian exponential
map.
More precisely, let (vi,...,vn) € (Tp,M)™ be given and define z; = Exp, (v1).
Now, suppose 1, ..., z; are given. Denote by 7,,,, parallel transport along the con-
structed piecewise geodesic path via x1,...,2;,-1. Then we define 9,41 = Ty, Vit1
and set x;41 = Exp,, (0;11). Finally, we define W, (vy,...,vn) = Ty,. In particular,
we have for every x € M and v € Exp;()lx that (Lv,...,Lv) e U 1z, Tosee this, ob-
serve that the path that W, constructs is precisely the geodesic v,(t) = Exp,, (tv),
because the speed of a geodesic is parallel along the geodesic. Furthermore, the map
¥, is continuous as a composition of continuous maps.
Remark 3.5.5. Strictly speaking, if we divide the random walk into m pieces as
above, for the last piece we can only guarantee that it has at most |[m~in| + m
increments, since n need not be divisible by m. Additionally, this implies that
/. (vﬁﬁ’llnj, . ,vﬁ;j’f’fzj) is only equal to (1 « S)n when n is divisible by m. How-
ever, for every m € N it holds that

n,m,1 n,m,m 1 _ 1
d <\Ilm(v[mlnJ7 . ,v[m,lnj), <n s S>n> =0 (n) .

Since in the proofs to follow we always first let n tend to infinity before m, this
has no influence on the results and arguments. Therefore, to avoid unnecessarily
complicated notation and reasoning, we proceed with the above.

3.5.1. Upper bound of the large deviation principle for the
sequence {(% *S)ptns0
In this section we prove the large deviation upper bound for {(% % S),},>0. Before

n
we can do this, we first need some preliminary results.

Proposition 3.5.6 (Upper bound for E(e™*vn)). Let the assumptions of Theorem
3.5.1 be satisfied. Additionally, let v be the uniform bound of the increments and
assume that r < t(xg). Then there exists a constanct C > 0 such that for all n and
alll<l<n ,

]E(en<,\,vf>) < eln_l|)\|CE|A|Cr2l3n_2MxU(/\)l

for all X\e T, M. Here, My, (\) = ST.TOM Ay (dv).

Proof. By Proposition 3.5.4 and the Cauchy-Schwarz inequality, there exists a con-
stant C' > 0 such that

l l
n 1 -1 n n 1 -1 n
</\’vl >7 n kZl<>\’Two(%*$)k71Xk> < |/\‘ b= n kZ:l Two(%*S)klek

! , 13
< Al + C]AIr .
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But then we can estimate
E(en<)\,vl">) —]E( Thor A a g XD A= Shes AT x;;>)

(Ot OB ( Ziar AT s, Xk>>.

As shown in the proof of Proposition 3.5.2, for every 1 < k < n We have that

X! is distributed accodring to 4, and is independent of T X 7

-1
Tao(L%8)k 1 ( *8)1_

for any [ 9& k. Consequentely, we find that

where the last step follows from Proposition 3.2.9. O

Using Proposition 3.5.6, we obtain the following inequality, which is key in deriving
the large deviation upper bound for {(% * &), }nxo-

Proposition 3.5.7. Let the assumptions of Theorem 3.5.1 be satisfied. Denote by
r the uniform bound on the increments of the geodesic random walk. Then for any

m €N such that m > —22— and any closed F c (T, M)™ we have
(B(zo,7))
n,m,1 n,m,m
hgljol;p n IOg]P (( |_’m*1nj7 s 7U|_TYL’17LJ) € F)
S- lnf sup .. Z {<)\Z7 mv’t> Axo( ) m720|/\i\7‘2} .

(Ulw-»”m)eF(Al,..,)\m)e( M)'nL

Here, C is a constant depending on the curvature of the compact set B(0,r) and the
bound r.

Proof. We first prove the upper bound for compact sets, so let I' < (T,,,M)™ be
compact. Following the proof of Cramér’s theorem (see e.g. [29, 56]) for the vector
space (T, M)™, we have

1
lim bup IOgIP ((Uﬁ:lilnja A ,Uﬁ;tm,fZJ) € F)

n—ao

< - inf sup {ZO\“ vy — hm sup logIE ( n 2 e T n1>) } .
M)™

(V150m)EL (Ao A )E(Tg Pt

Recall that for 0 < i < m — 1 we write n; = ilm~!n| and n,, = n. By Proposition

3.5.4 (which we may apply, because m is chosen large enough) there exists a C > 0
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such that for any 1 < ¢ < m we have

~n,m,i l i -1 X" < C[m—an —|—C 2lm_1nJ3
Um=1n] = T(Ls8)p,_ (28) k| S n2 L.
k=n;_1+1
5 1
<C— +Cr —.
But then we also have that
1 o
n,m,ti —1 —1
vlm_an - ETxU(%*S)M—l Z T(%*S)nq‘,—l(%*s)ka = Ci + CT (3 5. 6)

=n;_1+1

because parallel transport is an isometry.
Now define

Uz

yn =1 Z TS XPeT,, M.
g $D(%*S)ni71 (%*3)7”71(%*5)]6 k o

k=n;—1+

Using (3.5.6), it follows from the Cauchy-Schwarz inequality and the triangle in-

equality that
1 5 1\ &
<nm r m3> Z [Ail

i=1

m

- & S| <€

i=1

As a consequence, we find that

m My _ ’ _
E (E”Zml@wvmlnﬁ) < eOm T I N CrPm T n ST N (ezzzloi,m) .

Now note that, like in the proof of Proposition 3.5.2, we can show that for i # j the
random variables ¥;" and Y are independent. Therefore, we have that

E (S 0a) < TTE (e2440)
i=1
Moreover, again following the proof of Proposition 3.5.2, one can show that
E (eX77) = My ()17,
Combining everything, we find that

1 m LMy
lim sup — log (.e” Zq,_1<>\”v[m1”J>>

n—oo N

<limsup{n?i|/\i|+ i >\|+

n—0o0

,1Jm

Azo(/\i)}

1=1
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or? & 1 &
= ﬁ; |l + E;Axo(/\z)

Putting everything together, we obtain

n,m,1 n,m
lim sup — logIF’(( lm_lny...,v[m_lnj) EF)

n—o0

< — inf sup Z {<)‘zavz> m- :Eo( ) m_30r2‘)‘i|} :

(W150m)EL (A y o A )E (T M)™

This concludes the proof of the upper bound for compact sets.
To extend the upper bound to all closed sets, one should simply notice that

(v(::f’llnj, e ,’U[L m mJ) € B(0, r)

almost %urely, where r is the uniform bound of the increments. Since M is complete,
B(0,r) is compact, so that the sequence is exponentially tight. O

It now remains to transfer the upper bound in Proposition 3.5.7 for the process
in (T, M)™ related to {( = S)n}nZO to the upper bound of the large deviation
principle for {(% * S)n}nzo- With all preparations done, the only thing that remains
to be shown, is that the upper bound has the desired form.

Proposition 3.5.8. Let the assumptions of Theorem 3.5.1 be satisfied. Then for
any FF c M closed we have

1 1
lim sup — log P (< *S) € F> < — inf Iy (x),
n—oo N n . zeF
where
In(z) = inf{A¥ (v)v € Exp,'z}.

Proof. Let F < M be closed and pick m € N such that m > %, where r
L zo,T
denotes the uniform bound of the increments. Let U, : (T,,M)™ — M be the

recursive application of the Riemannian exponential map defined just above Section
3.5.1. Because VU, is continuous, we have that W1 F < (T, M)™ is closed. Hence,
by Proposition 3.5.7 we find that

1
lim sup — log]P <<f * 8) € F)
n—oo n n

1
< limsup — logP (< mml v"’m"m) € \P;1F>

—1 ) ) —1
"o [m n| |m~—1n]|

< - inf su — Z {, muy — Mgy (Ni) — m™2Cr2 N[}

(V15e00m)EU R F (Mg, )e( o M)ym M=
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Now observe that for every A € T,) M we have |A\| < |A\|? + 1. Plugging this into the
above estimate, keeping in mind the minus sign in front, we find that

1 1
limsupflogIF’((f*S) EF)
n—oo N n n

1 m
£ — - inf sup — O, muy — Mgy (Ns) —m 202 N 2.
m? (V1,0 Vm)EC L F (Ao A )E(Tig M)™ T ; { ’ }

We now focus on the infimum in the above expression. The necessity of replacing

|A| with |[A|?, and making the upper bound slightly worse, will become clear when
we try to calculate this infimum further.

First, consider the map A, : T, M — R defined by
1
AWAA)::AMAA)+;EECrﬂAF.

and denote by A¥ its Legendre transform. Then

1 & 1 &
sup — i, mu) — gy (i) — m 2072 N} = = Y A¥ (mwy).
thwwmm;« )= Aay(N) [xil} m; (mv;)

The latter may be interpreted as
1
[ AsGmoa
0

(i—1)

m

where ~,, is piecewise geodesic on intervals of the form [ 7%] with speed mo;,

where U; = T, Vi

O'Ym( u;,l)
Now note that since A, is differentiable and convex, we find that A, is differentiable

and strictly convex. Furthermore, we have for every u € T, M that

m@=sw{@@ﬂ%m—$wm@

ATy

1
< sup {</\,u>—m20r2|/\2}

ATy M

< 00.

Here we used that A, is non-negative, because the expectation of p, is 0. We
conclude that A% is everywhere finite. Note that this does not contradict the fact
that the rate function might be infinite, since A¥ merely provides a lower bound
of the rate function. Because A}, is everywhere finite, it follows from Lemma 3.8.1
that A% is strictly convex and differentiable.

The above shows that we can apply Proposition 3.4.11, giving us that minimizing
trajectories for the functional

fmwwt
0
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are geodesics. Because for every x € F and every v € Exp;[)lz we have that
(Lo,...,Lv)e ¥, 'F, we find that

m

) 1
— inf sup —
(V150 0m)ET L F (A1 A ) €(Tig M)™ T

Z {<)\i7 mvi> — Axo ()\z)} — m720r2|/\i\2}
i=1
=— inf sup  {(\,0) — Ay (N) = m 202 |A?}.
veExpLy F AeTpy M
Now note that

lim  sup {(\ ) — Agy(A) — m2Cr?| A2}

M= NeTyy M

= sup lim {\v)— Ay (N) —m2C0r? A%} (3.5.7)

AETyy M M

sup {<)‘7 U> - Afﬂo ()‘)} )

ATy M

because A, (\) = (A, v)—Ay, (A)—m~2C7?|\|? is increasing in m for every \ € T}, M.
Furthermore, we have

0 = Ay (V) = m 2072 I\ = O\ 0) — 1| A — m2Cr2 |\,
because the support of ., is contained in B(0,r). Furthermore, one may compute

that if |v| > 7, then

2
_ m
sup {(\,v) —r[A| —m 2Or? AP} = W(M —r)% (3.5.8)

€Ty,
Now write
S - c
Exp, ' F = (Exp;()lF ~ B(0, 2r)) o (Exp;;F ~ B(0, 2r) ) .

Note that by (3.5.8), we find that

lim inf sup  {(\,v) — Agy(A) — m2Cr? A2}
ML yeBxp, ) FAB(0,2r) AeTogM
> lim inf sup  {(\,v) —r[A| = m2Cr?|Al*}
m—%0 vEEXp;OIFr\B(O,QT)C ATy M
2
> 2

wlLl—r>noo 4Cr? "

:@7

where we used in the one but last line that |v| = 2r. Also, because |v| = 2r > r, we
have

sup {\ vy — Az, (N} = oo,
AET, o M

so that
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lim inf sup {<)\7 U> _ Axo(/\) _ m720r2|)\|2}
m—o0 'UEEXp;OIFﬁWC AeTypq M

- inf sup  {(A,v) = Az (M)}
veExp;OIFch AT o M

For the other part, because Exp;()lF n B(0,2r) is compact, it follows from (3.5.7)
that

lim inf sup  {(\,v) — Agy(N) — m2Cr? A2}
M0 yeExp,y FnB(0,2r) AeTyy M

= inf sup { vy — Az, (V)}.
veExpyy FnB(0,2r) AeTy M

Collecting everything, we find that

1 1
HmsuplogP((*S) eF)
n—ooo N n n

2
< lim (% — inf sup {<)\,U> — Ay N) — m_207“2|)\|2}>

m—0 vEExXpLy F AT,y M

= — lim inf sup  {(\,v) — Ay (A) — m2Cr? A2}
M=% yeBxp,y FAB(0,2r) ATy M

= — inf sup  {(A vy —Agzy(N)}
veExpL g F AeTpy M

g (o)
which concludes the proof. O

3.5.2. Lower bound of the large deviation principle for {(% #
S)n}nz0

In this section we prove the large deviation lower bound for {(+ *8),}n=0. In order

to do this, we need a refinement of Proposition 3.5.2, which may be proven in a

similar way.

Proposition 3.5.9. Let the assumptions of Theorem 3.5.1 be satisfied. Let m € N
—1

and set Z;" = %Z};Zl ! T;)l(%*s)k_le?. Finally, define Ay, (\) = log E(eMX1).

Then {Z"}n>1 satisfies in Ty M the large deviation principle with good rate function

Ln(v) = — A% (o),

“m
where A%, (v) = super, ar{Qv) — Asy (V).

We are now able to prove the large deviation lower bound for {(£ * S); }n>o.
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Proposition 3.5.10. Let the assumptions of Theorem 3.5.1 be satisfied. Then for
any G < M open,

zeG

liminfllogP ((1 *S) € G) > — inf Ty (x),
n n

where Ipg is as in (3.5.1).

Proof. Tt suffices to show that

hmlnf logP <<1 *S) € G) > —Iy(z)
n—w n n "

for every z € G.

So fix x € G and pick v € Expx z. Because G is open, there exists an € > 0 such

that B(z,e) < G. Let m € N such that m > L(B(iiTT)) where 7 is the uniform bound
05

on the increments of the geodesic random walk.

We again need to identify the geodesic random walk with a tuple in (T,,M)™
However, this time the parallel transport back to T, M is carried out by first trans-
porting to a well-chosen point on the geodesic v,(t) = Exp,, (tv) and then to xo
along this geodesic.

More precisely, we define a map U, 5, ¢ (T, M)™ — M that allows us to identify
the random variable (1 * S),, € M with a vector of random variables in (T wo M)™.
To this end, define for 0 < i < m the points y; = Exp, (;-v). For 1 <i < m we de-
fine 7.y, as parallel transport along the geodesic Exp, (tv). Furthermore, for every
z € M and every 0 < ¢ < m—1, we choose a geodesic 7y, of minimum length and de-

note by 7,,, parallel transport along this geodesic. We now define Uy, , ,(v1,- .., Um)
as follows. Define z; = Exp,, 0( v1) and if z; is defined, we set ¥j41 = Ty, Twoy, Vi
and define ;1 = Expzi(y}lvzﬂ) Finally, we set \I/,wm,(z;l7 CyUm) = Ty

Now note that by the triangle inequality, we have

m
d 3317330 Z |U]| Z |Uj|
mi3

for any 1 < i < m. Therefore, if (v1,...,v,) € B(v,1)™, then we have |v;| < |v]+1,
so that
d(zi, z0) < |v|+1

for any 1 < i < m. Because also d(z,y;) < =|v| < |[v], we find that z;,y; €
B(zg, |v|+ 1) for all 1 < < m.
Writing = |v| 4+ 1, we will show that there exists a constant mg € N such that for

all m = mg we have
(V1, -, 0m) € B(v,e2/(87)™ = WUy 2o (v1, ..., 0m) € Bz, €), (3.5.9)

whenever € > 0 is small enough.
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To this end, let K < M be a compact set, such that all geodesics of minimal length
between points x,y € B(zo,n) are contained in K. Because K is compact, its
injectivity radius ¢(K) is strictly positive.

Fix 0 < § < «(K). We first show that for ¢ small enough and m large enough we
have

o =1, i
i) < — 5.1
(@i, y:)” < 5~ + —5C (3.5.10)

for 1 < i < m. Here, C > 0 is some constant only depending on K and §. We
proceed by induction.

First consider the case i = 1. By taking m large enough, we can apply Proposition
3.4.10 to obtain a constant C' > 0 (depending only on K and §) such that

1 1 1
d(x1,y1)* =d (Expw0 (vl) , Exp,, (v)) < —C.
m m m

2

Now suppose that d(z;,y;)? < %E + #C. Then in particular we have

62

1
d(xiayi)2 < 5 + %07

which can be made smaller than g by taking e sufficiently small and m sufficiently
large. In that case, we may again apply Proposition 3.4.10, so that for the same
constant C > 0 as above, we have

1 1
d(xi+layi+l)2 =d (EXpasi (mTyﬂiTwoyivi+1) ’EXpyi (mTwaiU)>

1 _ 1
< d(xi,y)? + 2E<Tx0yivi+1 — Ty Us Expyilxi> + WC

i—1 i 1 . 1
< o 52 + WC + 25|T$Oyivi+1 - TJJOZM’UHEXpyi $l| + WC’
i—1, i+1_ 2
= %6 + m2 C + E|’U7, — ’U|d(.’£z,yl)

Now, observe that d(z;,y;) < 2n since z;,y; € B(zg,n). Using this, together with
the induction hypothesis and the fact that |v; — v| < %, we find
i1, i+1 1, 2 5, i+l

€ C+—e"=—¢e"+ C
2m m2 2m 2m m2

d(zi,y;)? <

as desired.
Now taking ¢ = m in (3.5.10), we obtain

g2 1
d msy Im 2 < & "
(@m,ym)” < 5 + O
whenever (v1,...,v,,) € B(v,e%/(8n))™. It follows that if we take mo > 2§, then

we obtain for m > mg that

d(\Ilm’;,c,U(vl,...,vm),:lc)2 = d(gc,mym)2 < % + —=c
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as desired.

Fixing mo and C' as above, let m = mg be large enough so that we can define

1
~n,m,l —
oy € Exp(%l*s)nl ((n * 3) +k> CTirss), M
ny

like in (3.5.5). Different from before, we now define the vectors

nml _ _—1 -1 ~n,m,l
Uk - 7-"voynl Tynl(%*s)nl vk € TIOM’ (3511)

using the parallel transport procedure used in the definition of the map ¥, 5 ..
As a consequence, by construction we obtain

1
o (175l ) = (- +8)
@0 \ Vlm—1n) Yim—1n| " .

Using this, together with the implication in (3.5.9), we find

]P’((l*8> EG)ZP(<1*8> GB(CL‘,E))
n n n n
>P ((v%’lﬁlj, o vﬁ;l’ﬁ’l’zj) € B(u,gQ/(Sn))m) .

Now define for 1 < 7 < m the random variables

Uz

V=1l ! oo Xy e To M
g ToYn; 1 "yn,  (2%S)n,_, (2#8)n; 1 (£%8)k_1 k Zo

k=n;,_1+1

-1
where the parallel transport T(L4S)n, | (258)is
of the geodesic random walk. The sum is then transported from Tiay S)n;lM to
T., M as in the definition of vZ’m’l in (3.5.11).

In the same way as we obtained (3.5.6) in the proof of Proposition 3.5.7, we find
that there exists a constant C' > 0 such that

is carried out along the trajectory

nm,l _ yn
|m~—1n| Y;

~ 1 ~ 1
<C— +C7’2—3.
nm m

Hence, we can take m large enough such that almost surely we have

n,m,1 . )/1“ i
16n

Vi <

But then we find that if Y* € B(v,&2/(167)), then vﬁ;lnf’llnj € B(v,e%/(8n)). This
implies that
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P ((vﬂ;’lﬁ”, o ,v[j;;z’gj) e B(v, 52/(8n))m)
>P((Y)",....Y,") e B(v,e?/(16n))™) .

Now note that, like in the proof of Proposition 3.5.2, we can show that the random
variables Y;" and Y} are independent and identically distributed for ¢ # j, so that

P((Y",...,Y") € B(v,e2/(160))™) = ﬁp Y;" € B(v,£2/(16n)))

i=

1
P (YI" € B(v,€2/(1677)))m

Furthermore, by Proposition 3.5.9 we have

lim inf l1og1£1> (Y{" € B(v,e?/(167))) = EERV (v).
m

X
n—o 1 0

Combining everything, we find that

hmlnf log P ((1 *S) € G> mhmmf log]P’(Y1 € B(v,£%/(161)))
n n

n—w n

> —A% (v).

Since this holds for all v € Expgolsc, we find that

| 1 :
hmmflogIP’<<n*S>neG>>— inf A} (v) = —Iu(2),

n—w n veExp;()l:c

which concludes the proof. O

3.6. Concentration inequalities

Concentration inequalities are concerned with the problem of where the mass of a
given probability measure is concentrated, see e.g. [67]. In this section we derive
Gaussian concentration inequalities for geodesic random walks with bounded incre-
ments. In contrast to the large deviation principle which only holds asymptotically,
Gaussian concentration inequalities provide exponential estimates for every n large
enough. However, these are only estimates for probabilities of deviating from the
expected value, while the large deviation principle gives us the asymptotic behaviour
of the probability of any event.

We prove the Gaussian concentration inequalities for geodesic random walks by
applying the Azuma-Hoeffding inequality (see e.g. [2]) to a suitable supermartingale.
This supermartingale is obtained by using Proposition 3.4.10, as we will show in the
following proposition.

Proposition 3.6.1. Let (M, g) be a complete Riemannian manifold. Fiz xqg € M
and let {u}eens be a collection of measures such that p, € P(T, M) for all x € M.
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Fixn > 1 and let {(% #*S)iti=1 be a %—rescaled geodesic random walk started at
xo with independent increments {X}’}jzl, compatible with {{iz}zenr. Assume the
increments are bounded. Assume furthermore that the collection {jiy}zenr satisfies
the consistency property in Definition 3.2.7. Define the curve E, : [0,n] — M by

t
n

Bult) = B, (LE(XD)).

Then there exists a constant C > 0 only depending on the bound of the increments,

such that
1 2k
Mk—d<<*8> 7E(/f)) ——QC
n & n

is o super-martingale up to time n with respect to the filtration {F] }o<k<n given by
K =o(X{ .., X}

Proof. Because the increments are bounded and are identically distributed, they are
uniformly bounded. Writing r > 0 for this bound, we have

k

1 1 kr
d —+S| , < — X' < —<
<<n* )k 550) n2| /'] " r

=1

for any 0 < k < n. From this it follows that up to time n, the rescaled geodesic
random walk is almost surely contained in the compact set K = B(xg,r), which
does not depend on n. Therefore, by Proposition 3.4.10 there exists a constant
C > 0 such that

d((i*S)kﬂ,E(lH—l))Q—d((;*S>k,E(k))2

1

1
-1 n n -1
< _25 <TE(k)(:L*S)ka+1 - TIOE(k)E(Xl )7 Exp(i*s)kE(k)> + EC (361)

From the independence of the increments, together with the fact that (% xSy is
measurable with respect to F, it follows that

-1 n ny _ —1 n
]E(TE(k)(%*S)nXkH']:k) - TE(k)(%*S),,LE(Xk-&-l)-

Since the increments are identically distributed, it follows from Proposition 3.2.8
that their expectations are invariant under parallel transport. This implies that

Tg(lk)(%*g)nE(XIZ-l) = on(k)E(X{Z)'

Collecting everything, we obtain that

E <<T§(1k)(i*s)kxgﬂ — oo m ) E(XD), Exp(_;*s)kE(k)>']—'£> - 0.
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Combined with the estimate in (3.6.1), this implies that

E (d <<i *S>k+l,E(k+ 1))2 f,:) <d <<; *S)k,E(k)>2 + %c (3.6.2)

Now define the process

e a((Les) o0) - o

Using the estimate in (3.6.2), we find

1 2 k41 1
E(Mgi1|Fr) < d (< * 3) ,xo) ——5C+ —5C =M,
n k n n

showing that M}, is a super-martingale. O

Remark 3.6.2. In the case of Euclidean space, one can actually obtain a martingale
by taking C' = E(| X1]?).

We are now able to derive Gaussian concentration inequalities for (1 % S),,.

Proposition 3.6.3. Let (M,g) be a complete Riemannian manifold. Fix xo € M
and let {11z }wers be a collection of measures such that p, € P(T, M) for all x € M.
For every n = 1, let {(£ = 8);};51 be a L-rescaled geodesic random walk started
at v with independent increments {X7'};>1, compatible with {1, }zenr. Assume the
increments are bounded. Assume furthermore that the collection {uy}zen satisfies
the consistency property in Definition 3.2.7. Define for every n = 1 the curve
E,:[0,n] > M by

Eu) = B, ((LECXD)).

Then there exists a constant L > 0 such that for every € > 0 there exists a N € N
such that for allm = N and k =1,...,n we have

P (d ((1 . s) ,En(k)) > a> <emEme
n k

The constant L can be chosen to only depend on the bound of the increments.

Proof. By Proposition 3.6.1, there exists a constant C' > 0 only depending on the
bound of the increments, such that for every n

1 2k
M =d (( *3> ,En(k:)> ~—C
n k n

is a super-martingale up to time n.
Note that M} = 0. Furthermore,

| M2y — M|
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d((i *S)kﬂ En(k+ 1))2 —d ((i *S)k,En(k)>2
_ 'd((i *s>k+1 En(k+ 1)) _d <(711 *S)k,En(k)>
d <(711 *S)k+1’E”(k+ 1)) +d(<711 *S>k,En(k))‘ + %C.

Writing r for the bound of the increments, the triangle inequality (via zg) gives us

that
‘d <(i *s)k+1 Bk + 1)) +d ((; *S>k ,En(kz))‘ <4r.

Again applying the triangle inequality, we also obtain that

((rs),, mter ) =a((Ges), mw)
<le((ies),,, m0)-a((5os), 20)
4 ‘d <(711 *8)k+1,En(k+ 1)> d( ;*s>k+l ,En(k)>‘

1 1
< -|xn ZIE(XT
—|XE ]+ BT

1
+—C

<
< ’I’L2

X

X

2r
< —.
n

Collecting everything, we find that

8r2

1 1
M7 — M| < -t —C < L—

n? n
for some L > 0.
By the Azuma-Hoefdding inequality (see e.g. [2]) we obtain

1 2k L 2o
P(d((*5> ,En(k)) —2021)) <e iz’
n k n

for every k =1,...,n.
Now fix € > 0 and take N large enough such that %C < % foralln > N. In
particular, this implies %C’ < % forall k =1,...,n.

But then we find for n > N that

(1((2s) ) -2)
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which is the desired estimate. Because L depends only on the constants r and C, it
may be chosen as claimed. O

Remark 3.6.4. Note that the curve E,, defined in Propositions 3.6.1 and 3.6.3 only
depends on n via a rescaling in time. More precisely, define the curve F : [0,1] > M
by
t

B(6) = B, (LB )
Since the increments are identically distributed, we have E(X7) = E(X]) for all n.
This shows that E,(t) = E (£). In particular, this shows that the image E, ([0, n])
is the same curve for every n > 1.
Remark 3.6.5. Because we assume the increments of the random walk are bounded,
Proposition 3.6.3 is only interesting for small €. In Euclidean space we can actually
improve the concentration inequality by having 2 in the exponential rather than £*.
To obtain this, one utilizes the additive structure of Euclidean space, which lacks in
the Riemannian setting.

3.7. Concluding remarks

We conclude this chapter by discussing possible extensions of the results obtained
in this chapter.

First of all, in Cramér’s theorem for geodesic random walks we assume the incre-
ments are bounded and have expectation 0. The use of the boundedness of the
increments is two-fold. Firstly, it assures that the rescaled geodesic random walks
remain almost surely in some compact subset of the manifold. As a consequence,
the exponential tightness of the sequence {(% # S)ptn>0 is immediate. In the Eu-
clidean setting, the exponential tightness follows from the fact that the moment
generating function of the increments is everywhere finite. It should be possible to
obtain exponential tightness in the Riemannian setting with a similar argument.
Secondly, we use the fact that the random walk remains in a compact set to be
able to cut the random walk into pieces, each of which we can then pull-back to
a tangent space and use Cramér’s theorem there. However, this containment in a
compact set need not be almost sure, but it should occur with very high probability.
The finiteness of moment generating functions should also allow us to construct such
sets, possibly growing with n in an appropriate manner. All in all, there is reason
to believe that the boundedness assumption can be replaced with an assumption on
the moment generating functions of the measures p,.

Overcoming the assumption that the increments need to be centered is part of an-
other possible extension, namely to geodesic random walks with drift. To obtain
such random walks, we take a (deterministic) vector field V. If we then sample an
increment according to the distribution p, on T, M, we add V(x). The drift we
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have added to the random walk is then formed by the flow of the vector field V.
If we start with a geodesic random walk with independent, identically distributed
increments, and add a (deterministic) drift, it is expected that one can again prove
a large deviation principle.

Finally, we remark that the estimate in Proposition 3.5.4 is one of the most im-
portant ingredients of the proof of Theorem 3.5.1. Indeed, it allows us in some
sense to connect large deviations for {(% % S)ptnso iIn M to large deviations for
the sums {2 >, T;c_ol(%*s)k,ng}"ZO in the tangent space T,,M. Therefore, by
. . . 1 n —1
making appropriate assumptions on the sequence {- >, Txo(%*s)king}ngo, for
example in the spirit of the Gartner-Ellis theorem (Theorem 2.1.12), we can obtain
more general results than Cramér’s theorem for geodesic random walks in a similar

way.

3.8. Appendix: Some convex analysis

In this appendix we collect a result from convex analysis. Although this is probably
well-known, we include it for the sake of being self-contained.

Lemma 3.8.1. Let V be a vector space, and let F: V — R be strictly convex and
differentiable. Then its Legendre transform F* is strictly convex and differentiable
on the interior of its domain DY .

Proof. The differentiability of F* follows from [82][Theorem 26.3].

For the strict convexity, we first prove that for each v € D}, there exists a A} e V
such that

F¥v) = A% 0) = F(A))-

Indeed, suppose this is not the case. Because F*(v) < o0, we can find a sequence
A, such that

F*(v) = nli_Iféo<)‘”’v> — F(A\p)-

Because the map A — (A, v) — F,()\) is continuous, the sequence J\,, cannot contain
a convergent subsequence, else the limit of this subsequence would serve as A¥. We
conclude that lim,_,« [A\,| = 0.

But then there exists a w € V such that lim,_,(\,, w) = . To see this, sup-

pose such a w does not exist. Denoting by eq,...,eq a basis of V, we must have
that (A,,e;» is a bounded sequence for all ¢ = 1,...,d. But then, by taking sub-
sequences, we find (A, e;) converges for all i = 1,...,d, which contradicts the fact

that lim,,_, [Ay| = 0.
Now consider v + ew € V' and let A, be the sequence found above. We have that

F*(v+ew) = lingo<)\mv +ewy—F(A\,) = F*(v) + ¢ liHéOO\n, w) = 0.
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We conclude that v + ew ¢ Dp« for any € > 0, which contradicts the assumption
that v € D

We are now ready to prove that F* is strictly convex on D%.. To this end, fix
v,w € Dy, v # w and t € (0,1) and assume that

F*(tv + (1 — t)w) = tF*(v) + (1 — t) F*(w).
Now let A# be such that
F*(tv + (1 — tw) = (v + (1 — t)w, N\ ) — F(A]).
We find that
LF*(0) + (1= ) F*(w) = t((AF,v) = F(A)) + (1 = (A, w) — F(A)).

But then we find that

F*(v) =, \f) = F(X)
and

F*(w) = (w, A} — FON).

Now, because F' is everywhere differentiable, it must be that VF(Af) = v and
VF(Af) = w, which contradicts the assumption that v # w. We conclude that F'*
is strictly convex on Dy.. O



Large deviations for random
walks in Lie groups

In this chapter we study random walks in Lie groups. More precisely, we are in-
terested in the large deviations for rescaled random walks, in a similar sense as in
Chapter 3. The results in this chapter seem very similar, but as we will argue in
Section 4.2.1, the random walks we study in Lie groups cannot always be considered
as geodesic random walks. The main reason for this is that the Lie group exponen-
tial map does not necessarily coincide with the Riemannian exponential map. The
results we present in this chapter are based on:

Rik Versendaal. “Large deviations for random walks on Lie groups”. In: Preprint;
ArXiv: 1909.05065 (2019). ArXiv: 1909.05065.

Since the middle of the previous century, the study of random matrices has received
a lot of attention. Of particular interest is the limiting behaviour of products of
random matrices. This finds its applications for example in the study of disordered
spin systems (see e.g. [27]), where the associated partition function is a product
of transfer matrices, which are random because of the disorder. Certain physical
quantities of the system are obtained by a limiting procedure, which in the case of
disorder, is replaced by a law of large numbers or central limit theorem. Another
application can be found in studying solutions to difference equations. One can for
example think about the Schrédinger equation on a one-dimensional lattice with
random vector potentials, see e.g. [14].

The limiting behaviour of products of random matrices was first studied in [11]
and further developed in (among others) [42]. In these works, one takes a sequence
{M,}n>1 of matrix valued random variables and studies the product

Sn =My M,.
In order to say anything about the limiting behaviour of the random variable S,
we take a matrix norm and consider the sequence of real-valued random variables
given by log ||S,||. Tt is then shown that under mild conditions we have

1
lim —log||S,|| =
n—o n

105
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almost surely, which is the analogue of the law of large numbers. The constant = is
referred to as the upper Lyapunov exponent. Furthermore, in [66] (see also [14]) it
is shown that under additional assumptions, log ||S,,|| also satisfies the central limit
theorem, i.e.,
log |[S,|| = nvy
vn

converges in distribution to a Gaussian random variable. The same work also verifies
the large deviation properties of the sequence {log ||S,||}rn>1 of random variables,
where z is some vector.

It is possible to go beyond matrix groups, and study products of elements of a
general Lie group. For a random sequence {g,}n>1 in a Lie group G, using the
group operation, we can define the product

Sp =9192 " Gn-

We will refer to this as a random walk in the Lie group G.

In order to study limit theorems like the law of large numbers and central limit
theorem, we can no longer use a norm, since GG is not necessarily a normed space.
Instead, we can equip G with a left-invariant Riemannian metric with associated
Riemannian distance d and study the real-valued random variables d(S,, ), where
e is the identity element of the group G. It is shown in [48] that if G is locally
compact, there exists a v = 0 such that almost surely

1
lim —d(Sy,e) = 1.

n—oo N
Furthermore, the central limit theorem, i.e., the convergence of

d(Sp,e) —yn
A/n

in distribution to a normal distribution, is studied in [91].

Another approach to study limit theorems, which we will be considering here, is
not to transfer the problem to a real-valued setting, but to find a suitable way of
rescaling the random walk in the Lie group G itself. For this, we slightly modify the
definition of a random walk. Let g denote the Lie algebra of G, and let {X,,},>1 be
a sequence of random variables in g. We define the random walk in G as

S, =exp(Xy) - - exp(X,),

where exp : g — G denotes the exponential map. Because g is a vector space, we
can rescale the sequence {X,},>1, allowing us to define the rescaled random walk

by
1 1
o, = exp <X1> - exp (Xn> .
n n
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However, from the Baker-Campbell-Hausdorff formula it follows after a formal com-

putation that
1 n
n— — X, +0(1 R
o, = exp (n ; ( ))

which one obtains by counting the number of commutators. Therefore, it is not
obvious how to use known results regarding the limiting behaviour of %Z?zl X; in
order to study the limiting behaviour of o;'. To overcome this problem, instead of
simply rescaling the elements g by %, one uses so-called dilations D 1:g—gas done
in [15, 10, 44, 76]. The idea is to decompose an element Y € gas Y = st
Y; is an i-th order commutator, meaning it is of the form [Y;',[--- [V~ 1 Y]],
where none of the Yij are commutators. We call a Lie algebra nilpotent if there is
some [ € N such that all commutators of order [ vanish. In that case, Y may be
written as a finite sum Y = 22:1 Y; and we define the dilation D%Y of Y by

Y;, where

So essentially, we dilate the elements of g in such a way that the problematic parts,
being the (higher order) commutators, are scaled away in the limit by multiplying
those by higher powers of % Now the Baker-Campbell-Hausdorff formula will give
us after a formal computation that

L 1 « 1
gexp (D%Xl) = exp (n;lXi—F(’) (n)) .

This makes it at least more viable that in the limit this product should indeed
behave like exp (£ Y | X;). It is shown in [44, 76] that the law of large numbers
is satisfied: if {X,},>1 are independent, identically distributed with E(X;) = 0
and with finite moment generating function in a neighbourhood of the origin, then
almost surely

nh_r)réogexp (D%Xi) =0.
The large deviations for the sequence
{H exp (DLXi) } (4.0.1)
i=1 n=0

are studied in [10]. The proof uses path-space large deviations, first transferring the
problem to R? to use Mogulskii’s theorem, followed by the contraction principle to
get the large deviations for the end-point of the random walk.

However, if G admits a bi-invariant metric (which implies that its Lie algebra g
is reductive, see e.g. [60]), the processes S, and o] are special cases of geodesic
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random walks as defined in [58]. The large deviations for these have been studied in
Chapter 3. Therefore, if G admits a bi-invariant metric, Theorem 3.3.1 applies to the
sequence {0"},>1, so that the sequence satisfies in G the large deviation principle.
Moreover, the corresponding rate function coincides with the rate function for the
sequence of random variables in (4.0.1), where the higher order commutators are
scaled away.

This raises the question whether the sequence {07 },>1 also satisfies a large deviation
principle when G does not necessarily admit a bi-invariant metric. This would cover
the result for all (connected, finite-dimensional) Lie groups. Following the approach
in Chapter 3, we will show that under some assumptions on the sequence {X,}n>1,
this is indeed the case. More precisely, we will prove that if {X,,},,>1 is a sequence of
bounded, independent and identically distributed g-valued random variables, with
E(X;) = 0 and everywhere finite moment generating function, then the sequence
{ol"} =0 satisfies in G the large deviation principle with rate function I given by

I(g) = inf {E A*(5(2)) dt‘w e AC([0,1]; G),7(0) = e,¥(1) = g} :

Here, A(\) = log E(e2X1?) denotes the log moment generating function, and A* its
Legendre transform given by

A*(X) = S)\l;}; {NX) =AM}

This chapter is organised as follows. First, in Section 4.1 we introduce some theory
on Lie groups and Lie algebras and fix the notation we use in what follows. With
the notation fixed, we define in Section 4.2 the random walks in Lie groups we will
be studying, and discuss their relation to geodesic random walks. In Section 4.3 we
state our main theorem and give a sketch of its proof. Additionally, we discuss an
example by considering the stochastic group. Section 4.4 is devoted to important
estimates following from the Baker-Campbell-Hausdorff formula. Finally, we use
these estimates to prove our main theorem in Section 4.5.

4.1. Lie groups and Lie algebras

In this section we collect the necessary notation and theory on Lie groups and Lie
algebras. For more details, we refer to [21, 60, 68, 99] for general Lie group theory
and to [51] for a treatment of matrix Lie groups.

Let G be a finite-dimensional Lie group, i.e., a finite dimensional group with a
smooth manifold structure such that the group operations of multiplication and in-
version are smooth. We write e for the identity element of G. The Lie algebra g of
G is defined as the tangent space T.G at the identity.

Next, we want to equip g with a Lie bracket [-,-], which is a map from g x g into g
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which is bilinear, skew-symmetric and satisfies the Jacobi identity:
(X, [V, Z]] + [V, [Z2, X]] + [Z,[X. Y]] = 0

for all X,Y,Z € g. In order to construct such a Lie bracket, we need a different
interpretation of the Lie algebra g.

To this end, we denote by L, : G — G left multiplication with g. A vector field V
on G is called left-invariant if for all g, h € G we have dLy(h)(V(h)) = V(gh).

For every X € g, we can define a left-invariant vector field X on G by setting
X% (g) = dLy(e)(X). (4.1.1)

This is a vector space isomorphism between the Lie algebra g and the set of left-
invariant vector fields over G. Indeed, its inverse is given by the evaluation of the
vector field at the identity e. Therefore, the Lie algebra g of G may be identified
with the set of left-invariant vector fields over GG. This set forms a Lie algebra under
the Lie bracket [V,W] = VW — WV. Using this, we define the Lie bracket [X,Y]
for X,Y e g by [X,Y] := [XL,YE](e).

The above procedure also shows us that for every g € G we can identify the tangent
space T, M with g via the isomorphism dL4(e) : g — T, M. Whenever we consider
a tangent vector X € T, M as element of g or vice versa, we have this identification
in mind.

4.1.1. Exponential map

We now define an important map that allows us to map elements of the Lie algebra
to the Lie group. For this, first observe that for every X € g, there exists a curve
vx : R — G satisfying v7x(0) = e and

Yx () = X" (vx (1)) (4.1.2)

In particular, 9x(0) = X. The fact that the curve vx exists for all time can be seen
as follows: Suppose vx exists on [—¢,e]|. For ¢y € [—¢,¢], define ¢ : [—¢,¢] —» G
given by ¢(t) = vx(to)yx(t). Since

G(t) = ALy (10) (7x (1)) (7 (1)),

it follows from the left-invariance of X that ¢ again satisfies (4.1.2), with ¢(0) =
v(to). Repeating this procedure, we can construct a solution for all time.

Using such curves, we make the following definition.

Definition 4.1.1. The exponential map is a map exp : g — G given by
exp(X) = 7x (1),

where vx is the curve satisfying (4.1.2) with vx(0) = e.
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For every X € g we have

dexp(0)(X) = % | ep(x) = X

so that dexp(0) = I. Therefore, by the inverse function theorem, there exists an
r > 0 such that exp is a homeomorphism from B(0,r) onto its image. The inverse
of the exponential map is referred to as the logarithm map, and is denoted by log.
We have the following proposition.

Proposition 4.1.2. For every r > 0 such that exp is a homeomorphism on B(0,r),
there exists an € > 0 such that log is well-defined on B(e,e) and for all g € B(e,¢)
we have |log(g)| < r.

Proof. Because exp is a homeomorphism on B(0,r), it is an open map, and hence
exp(B(0,r)) contains some open ball B(e,e). Because exp(B(0,r)) is closed, it
must be that B(e,e) < exp(B(0,7)) so that log is well defined on B(e,e) and
log(B(e,e)) < B(0,r) as desired. O

4.1.2. Riemannian metric

For reasons that will become clear later, we equip g with an inner product {-, -». This
induces on g a norm | - | given by |X| = 1/(X, X). Because g is finite-dimensional,
all norms are equivalent, and hence, our results will not depend on the choice of
inner product. For more details regarding the Riemmanian structure of Lie groups,
we refer to e.g. [73].

The inner product on g may be extended to a Riemannian metric on G. For this, we
use the fact that T,M may be identified with g via the isomorphism dL,(e). With
this identification in mind, we define an inner product on T;G by setting

(X,Y)g = <dLg(€)71Xa dLg(6)71Y>

for X,Y € TyM. The assumption that the group operations are smooth implies that
this defines a Riemannian metric on G. By construction this Riemannian metric is
left-invariant, i.e., for all g, h € G and for all X,Y € T;G we have

(dLn(9)X,dLi(9)Y dng = (X, Y )q.

This also shows that dL,(g) : T,G — T},G is an isometry for all g,h € G. In par-
ticular, the identification dL,(e) : g — T,G of T,G with the Lie algebra g is an
isometry. Therefore, if we consider X € TyG as element in g, its norm can also be
taken as element of g.

To the Riemannian metric we can associate a Riemannian distance d : G x G — R
given by the usual formula (see Section 2.2):

1
d(g,h) = inf {f |5 ()] dt"y : [0,1] — G piecewise smooth, v(0) = g,7(1) = h} .
0
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Because the Riemannian metric is left-invariant, it follows that for all f, g, h € G we
have

d(g,h) = d(fg, fh).

This shows that the distance between elements of G is preserved under left-multiplication.

4.2. Random walks in Lie groups

In this section we introduce random walks in a general (connected) Lie group G.
We will explain how these random walks relate to geodesic random walks defined
in Chapter 3, and argue that the two notions only coincide when we equip the Lie
group with a bi-invariant metric.

We start by defining a random walk in a Lie group G. To this end, let {X,,},>1 be
a sequence of g-valued random variables. We define the random walk S,, € G with
increments {X,},>1 by

Sp = exp(X1) exp(Xa) - - - exp(Xy). (4.2.1)

Furthermore, we define the rescaled random walk by

1 1 1
o) = exp (nXl) exp <nX2) e exp (an> . (4.2.2)

4.2.1. Relation to geodesic random walks

In order to relate the random walk defined in (4.2.1) to the concept of a geodesic
random walk in Chapter 3, we need to argue how one-parameter subgroups of the
form ~(t) = gexp(tX) can be interpreted as geodesics. To this end, we need some
additional theory from Lie groups.

Definition 4.2.1. Let V be a connection on a Lie group G. V is said to be left-
invariant if for any two left-invariant vector fields X* and Y (see (4.1.1)) with
X,Y € g we have that Vx.Y" is also left-invariant.

Among the left-invariant connections, there are special connections for which the
one-parameter subgroups form geodesics.

Definition 4.2.2. A Cartan connection on a Lie group G is a left-invariant con-
nection satisfying the property that the subgroup v(t) = exp(tX) is a geodesic for
every X € g.

One question that arises, is whether such connections always exist. This is indeed

the case, as the following result from [73] states.

Proposition 4.2.3. For any Lie group G there exists a unique symmetric Cartan
connection V given by

1
VYl = X Y]E (4.2.3)
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forany X,Y € g.

By definition, a random walk on G is a geodesic random walk when we equip G with
a Cartan connection. Unfortunately, the Cartan connection given in Proposition
4.2.3 is in general not compatible with the Riemannian metric. It can be shown
that the connection in (4.2.3) is compatible with the metric if and only if the metric
is bi-invariant, see e.g. [70, 80, 73]. In this case, the exponential map exp : g — G
coincides with the Riemannian exponential map.
We will now connect the result of Theorem 4.3.1 to the result in Theorem 3.3.1. For
this, let p be a probability measure g. We need to find a collection of probability
measures {ftg}geq With s, a measure on T, M, such that if we identify an increment
X € g as element of T,M, then X has distribution py. Because we identify the
tangent space Ty M with the Lie algebra g via the map d.L, (€)1, the measure g 18
given by

g = podLy(e)t. (4.2.4)

From this definition, it immediately follows that the collection {ig}geq is left-
invariant, in the sense that

figh = pun © dLg(h) ™"

for all g,h e G.

In order for the random walk to have identically distributed increments in the sense
of Definition 3.2.7, the collection of measures {j4}g4ec has to be invariant under
parallel transport. In the case of a bi-invariant metric, it can be shown that parallel
transport along a geodesic of the form ~(t) = exp(tX) is given by (see e.g. [70, 55])

T’y(O)’y(t);’yY = chxp(tX/Q) (exp(tX/Q)) (dchp(tX/Q) (6) (Y))

Here, R, : G — G denotes right-multiplication, i.e., Rgh = hg. Therefore, in order
for the collection of measures {i4}4ec to be invariant under parallel transport, one
also needs that the collection is right-invariant, meaning that

Hhg = Hh © ng<h)_17

for all g, h € G. Since the metric is bi-invariant, a sufficient condition for this is that
1 only depends on the norm of X € g. Another example is when the Lie algebra is
abelian, in which case left- and right-multiplication coincide. However, in that case

the random walk o] reduces to
= exp < Z X; )

in which case Theorem 4.3.1 immediately follows from Cramér’s theorem (Theorem
2.1.10), together with the contraction principle (Theorem 2.1.6).

Collecting everything, we see that the random walk in (4.2.1) only coincides with
the notion of a geodesic random walk with independent, identically distributed
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increments as in Chapter 3, when the metric on G is bi-invariant, and the collection
{1tg}gec defined in (4.2.4) is right-invariant. In that case, although the proof might
be somewhat simpler due to the extra group structure, the results in this chapter
do not add anything over the results in Chapter 3. The novelty of the work in
this chapter is in the case when either of those conditions is not satisfied. Most
importantly, the result is new when no bi-invariant metric exists, in which case
the random walk in (4.2.1) cannot be interpreted as a geodesic random walk with
respect to some Riemannian metric.

4.3. Main theorem, sketch of the proof and an ex-
ample

With all the notation fixed, we are ready to state the main theorem that we are
going to prove. Because the proof consists of a number of steps, we also provide a
sketch of the proof so that the main steps are clear. The precise proof will be given
in Section 4.5. We conclude this section by showing how the main theorem can be
applied if we consider the Lie group of stochastic matrices.

4.3.1. Statement of the main theorem

Let G be a Lie group with Lie algebra g equipped with an inner product {:,-). Let
{Xn}n=1 be a sequence of independent, identically distributed random variables in
the Lie algebra g and denote by o) the rescaled random walk as in (4.2.2). We
are going to prove that under some assumptions on the increments {X,},>1, the
sequence {o"},>1 satisfies a large deviation principle in G.

Along with the large deviation principle for {o7'},>1, we need to identify the corre-
sponding rate function. If G admits a bi-invariant metric, it follows from Theorem
3.3.1 that the rate function is given by

I(g) = inf{A* ()| exp(X) = g}.
Here, A()) is the log moment generating function of an increment, given by
A(A) :=logE (e<)"X1>) ,
while A* denotes its Legendre transform, defined as

A*(X) = sup {0, ) — A}

Obtaining this form of the rate function relies on the fact that if we minimize
Sé A*(¥(t))dt over curves with fixed endpoints, the minimum is attained by a
geodesic. However, if G does not admit a bi-invariant metric, curves of the form
v(t) = exp(tX) are no longer necessarily geodesics (when taking the exponential
map in the terminology of Lie groups and Lie algebra’s). As a consequence, we can
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do no better than the expression

I(g) = inf {Ll A*(5(1)) dt‘”x e AC([0,1]; G),7(0) = e,¥(1) = g} :

We now collect everything and give the statement of the theorem.

Theorem 4.3.1 (Cramér’s theorem for Lie groups). Let G be a Lie group and g
its associated Lie algebra, equipped with an inner product {-,-). Let {X,}n>1 be a
sequence of random variables in g and denote by o] the associated rescaled random
walk as in (4.2.2). Assume the increments { X, }n>1 are independent, identically dis-
tributed and bounded. Assume furthermore that the log moment generating function
A(N) = log E(eMX12) s everywhere finite. Then the sequence {07 },>0 satisfies the
large deviation principle in G with good rate function

1
Iu(g) = inf { [ a6 dt‘v e AC([0,1];G),7(0) = e,y(1) = g} 3

Some remarks on optimal trajectories for the rate function

In this section, we make some remarks about the optimal trajectories for the rate
function in (4.3.1). Comparing to the setting of geodesic random walks in Chapter
3, one might expect that optimal trajectories are of the form ~(t) = exp(tX) for
some X € g. It turns out this is true in specific cases, but not in general.

Indeed, recall that we equipped the Lie group G with a left-invariant Riemannian
metric, to which we may associate a Levi-Civita connection. Now suppose that
A*(X) is given as A*(X) = F(|X|) for some convex function F. It then follows
from Proposition 3.4.11 that the optimal trajectories are geodesics with respect
to the Levi-Civita connection. These geodesics are of the form v(t) = exp(tX),
precisely when the Levi-Civita connection is a Cartan connection. As discussed in
Section 4.2, the latter is true precisely when the Riemannian metric is bi-invariant.
Therefore, if A*(X) only depends on the norm of X, then optimal trajectories for the
rate function in (4.3.1) are of the form v(¢) = exp(tX) if the metric is bi-invariant.
Note that in this case the random walk in (4.2.2) is a geodesic random walk as
treated in Chapter 3.

However, if the Riemannian metric is only left-invariant, the Lie group structure
still allows us to give a simpler expression for the rate function, given that A*(X) is
a function of the norm of X. Indeed, geodesics for a left-invariant metric on a Lie
group satisfy a special equation, namely the Euler-Arnold equation, see e.g. [7, 17].

4.3.2. Sketch of the proof of Theorem 4.3.1

Since the proof of Theorem 4.3.1 is rather long, we first provide a sketch. The de-
tailed proof is given in Section 4.5. The proof is inspired by the proof of Theorem
3.3.1, and therefore, we will follow similar steps as explained in Section 3.3. Like in
the proof of Cramér’s theorem in Euclidean space (Theorem 2.1.10), we prove the
upper and lower bound of the large deviation principle separately.
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By Cramér’s theorem for vector spaces, the sequence {% >, Xi}ns1 of empirical
averages satisfies the large deviation principle in g with good rate function I(X) =
A*(X). This, together with the contraction principle (Theorem 2.1.6), implies that

the sequence {%,},>1 given by
= exp ( Z X; )

satisfies the large deviation principle in G with good rate function
Ia(g) = nf{A* (X)|exp(X) = g}.

Unfortunately, the Baker-Campbell-Hausdorff formula shows us that in general, X,
and o), do not coincide. More precisely, given that the random walk stays close
enough to the identity e so that logarithms are well-defined, the integral version of
the Baker-Campbell-Hausdorff formula (see Theorem 4.4.1) gives us that

1S (0 adiogor )
log (o n;( f e X; (4.3.2)

Here, the operator ad is as defined in (4.4.1) and o7 is the point of the random walk

after ¢ steps, i.e.,
1 1
e (1) o (L)
n n

However, we would 1ike to understand the difference between log(c”) and 1 Z:’ 1 X
For this, we compare = 3" | X; to the expression found in (4.3. 2) for log( ). We
prove (see Prop051t10n 4.4.2) that there exists constants C|og(, )] such that

U adieg(or ) X _x
01 ¢ Mesrp |

where C\, is a constant, decreasing in a and such that lim,_,o C,, = 0.

< Cliog(or i1 Xil,

Using the triangle inequality and the smoothness of the logarithm, one can show
that |log(o}')| < B, where B is the uniform bound on the increments. As a
consequence, C| log(om )| S Cp for all i =1,...,n. If we now collect everything, we

find
log(o % Z

Because B is fixed, this upper bound unfortunately does not show us that log(o?)
and %Z?:l X, will get arbitrarily close if n tends to infinity. The key will be to
decrease the constant C'z B in an appropriate way.

< CpB. (4.3.3)

To do this, we split the random walk into finitely many, say m, pieces, each consisting
of [m™'n| increments. It turns out that this also takes care of the problem that the
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logarithms we use are not necessarily well-defined. More precisely, for m € N we

define the indices n; = jlm=n| for j =0,...,m—1 and set n,,, = n. We can prove
(see (4.5.2) and (4.5.3)) that if B is the uniform bound on the increments, then for
every j=1,...,mand ¢ =1,...,n; —n;j_; we have

1 i 1
d(e, (O'Zj_l) U;Lj_l+i) = d(aﬁ_j_ﬂaﬁ_j_lﬂ) < ﬁB < EB'
Here, the first equality follows from the left-invariance of the metric d. This shows
that if m € N is large enough, then log((aﬁj_l)*laﬁjiﬁi) is well-defined for every
j=1,...,mandeveryi=1,...,n;—n;_1. In particular, one may show in a similar
spirit as (4.3.3), that

log((op, )7 lon) == > Xn_4 (4.3.4)

Now let us define Y[:;T{ij = log((oy;,_)~'op) € g for j = 1,...,m. By the above

n;
construction, we have

ol = exp (Y”’m’l ) .- -exp (Y”’m’m) =V, (Y”’T{:LJ, e, Y”’m’m) ,

|m~1n]| |m~1n]| |m |m~1n]|
where ¥,, : g¢”* — G is the continuous function given by
U (21, .., @) = exp(z1) -+ - exp(xm,).

Using this, we can prove the upper and lower bound for the large deviation principle
for {o]*},,>1, which we explain in the upcoming two sections.

Upper bound of the large deviation principle for {o]'},>1.

In this section we sketch the proof of the upper bound of the large deviation principle
for {ol'}n>1. For F c G closed and every m € N large enough, we have that
ULF < g™ is closed and

P(c" € F) = P ((Y””"’l Ylf,;’f;;;]) e \IJ;}F) . (4.3.5)

[m=1n]?" ">
m - - .
Because g™ is a vector space, we can use a similar argument as in the proof of

Cramér’s theorem for the Euclidean setting (see e.g. [29, 56]), to obtain for I' g™
compact that

1
lim sup — log P ((YH’T’:LJ’ e YZ;T;Z]) € F)

1 nd . n,m,1 n,m,m
< — inf sup {O\, xy — limsup — log E <e Aty ’Ylman»)} .

zel Aeg™ n—owo N

By exponential tightness, this bound also holds for all F' c g™ closed.
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Now one can use (4.3.4) to prove that
E <en<)‘ (Y[:Lm lnj "YS,JTI’ZLJ») < ecm*IB|A|Bm71E (6"</\a(ZIn’n ----- Z::{m») \

where

Because the increments {X,,},>1 are independent, identically distributed, the ran-
dom variables Z1"™, ..., Z"™ are also independent and identically distributed with

E(enMZ1) = B(eAX0)lm ™'l Therefore, we find that

B (M) = M) M (),
Collecting everything, we find that

lim sup — - logIP’(a eF)

n—o0

<— inf sup {O\ xy— —ZA mlB)\|Bl}
m m

zeW, ' F Aegm a

= — inf Zsup{O\ ma;y — A\) — Cpo15|A| B} .
zeV,'F —1 Aeg

Finally, by letting m tend to infinity, apart from some technical difficulties, one
obtains

lim sup — log]P(a eF)< mf Ic(9),

n—oo 1 geG

as desired.

Lower bound of the large deviation principle for {o7},>1.

To prove the lower bound of the large deviation principle for {o7},>1, we first
observe that it is sufficient to show for every U < G open and every g € U that

—00 N

1 1
liminf —logP(o) € U) = —J A*(Y(¢)) ddt
n 0

for all v e AC([0,1]; G) with v(0) = e and v(1) = ¢
To do this, we fix v € AC([0, 1]; G) with v(0) = e and v(1) = g and define for m € N

the vectors
- i—1\"" (i
yi =log v —| (=) ]|€9
m m

Note that ., ((y7",...,ym)) = g, where ¥,,, : g™ — G is as in (4.3.5). In order to
continue, we need to know a bit more about the continuity properties of ¥,,,. More
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precisely, we will prove (see Proposition 4.5.7) that there exists a constant C' > 0

such that for € > 0 and m € N large enough, we have that if

(T1,...,2m) € 1_[ B(y™, (Cm)~te),
i=1

then
V(21 2m)) € B(Wm((y1"- - ym)), ) = Blg,e).
Now note that in general, contrary to the Euclidean case, we have
1\ ) i
log (*y <Z) ol (Z)> # J A(t) dt.
m m i—1

We will show that under the condition that % is bounded (see Proposition 4.5.8)

1

i

)

we have
-1\ (i "
log(v({—) vl=)]—| y®d<
m m i1
where lim,,_, o Ly, = 0. In particular, if we set
S R IOL

then for m large enough we have B(§™, (2Cm)~1le) = B(y™,(Cm)~1e). We con-
clude that if .

(o1, o) € [ [ BGE, 2Cm) o),

i=1
then U, ((z1,...,2m)) € B(g,¢).

Because U is open, there exists an € > 0 such that B(e,g) < U. Using the above

continuity property, we find that
x B(g, (20m) "))

P(o]r € U)
>P ((Y{;T;;J, - Ylj;;i”*nmj) e B(§, (20m) " te) x --
Now using (4.3.4) and the fact that lim,, o C,,-15 = 0, we have for m large enough
that
n] nj—1
V=g L Xesw) < 20m)” 5

x B(gnm, (2C’m)*1s))

But then we find that
) € B, (20m)7e) x -+

Ynmm

n,m,1
P (Y- Yy
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i=1

H ( JZ:J Xy, +i € B(gj", (2Cm)~ 5/2)).

P ((TIL ; Xi, ... % ; 7 Xnmm-) e[ [B@" (20m)‘16/2)>

By Cramér’s theorem for random walks in Euclidean space (Theorem 2.1.10), we
find

1 nj—n;_1 1
hmlnf logP (n 2 Xn;_y+i € B(yj, (Cm)15)> > —EA*(my;”)
i=1

n—w n

Therefore, if we collect everything, we obtain

n—0o0

1 m
lim mf — log P(o, e U) - Z (mg;")

Finally, the convexity of A* together with Jensen’s inequality implies that

L& %/ ~m I [ %/ B ! %/
E;A (mg! KZJ,,, A (fy(t))dt—fo A*((1)) dt.

From this, we conclude

1
lim inf — log P(o eU) = J A*(H(t)) dt,

n—0o0 0

which finishes the proof.

4.3.3. Example: Products of transition matrices

We conclude this section by discussing an example. In this example, we aim to
study the limiting behaviour of products of transition matrices on a finite dimen-
sional state space. For this, we use the stochastic group and its Lie algebra, see e.g.
[47, 79]. For theory regarding matrix Lie groups, see e.g. [51].

We define the set of transition matrices 7 (d,R) on d states by
T(d,R)={PeM(d,R)|P1=1,P; >0for 1 <i,j<d}

Here, M(d,R) denotes the set of all d x d-matrices, and 1 is the vector of all ones.
Because we will be working with groups, we need inverses to be well-defined. We
therefore consider the subset Sy (d,R) of invertible matrices in 7 (d,R), i.e

S+(d,R) = {P e T(d,R)| det(P) # 0}.

Note that S, (d,R) is closed under matrix multiplication. Indeed, if P and @ have
non-negative entries, then so does PQ. Furthermore, if P1 = 1 and Q1 = 1 then
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PQ1 = P1 = 1. Finally, if P and @ are invertible, then so is PQ. However, inverses
of elements in S; (d,R) need not have only non-negative entries. It turns out that
the smallest group containing S, (d,R) is given by

S(d,R) = {P e M(d,R)|det(P) # 0, P1 = 1}.
This group is called the stochastic group. It is in fact a Lie group. Because we are

dealing with matrix Lie groups, this follows from the observation that if P, — P
element wise, and P,1 = 1 for all n, then also P1 = 1.

The Lie algebra associated to S(d,R) is given by
s5(d,R) = {A e M(d,R)|A1 = 0}.

Indeed, if A € M(d,R) is such that A1 = 0, then

0 tnAnfl
exp(tA)l =1+ ( > Al =1.

|
el n:

This shows that exp(tA) € S(d,R) for all ¢, implying that
{Ae M(d,R)|A1 =0} c s5(d,R).

Conversely, if exp(tA)1 = 1 for all ¢ € R, then

d
Al = o exp(tA)1 =0,
so that

s5(d,R) c {Ae M(d,R)|A1 = 0}.

In order to consider random walks in the Lie group S(d, R) which only use invertible
transition matrices, i.e., elements from S, (d,R), we need to find a subset of s(d, R)
which is mapped by the exponential map into S4(d,R). To this end, consider the
set

5. (d,R) = {Aes(d,R)|A;; = 0 whenever ¢ # j}.

We will prove that for all A € s, (d,R) we have exp(A) € S;(d,R). It suffices to
prove that exp(A) has nonnegative entries. To show this, we fix k¥ = max®_, |A;]|.
Then the matrix B = A + kI has nonnegative entries, from which it follows, using
the Taylor series expression, that exp(B) has nonnegative entries. Because A and I
commute, we have

exp(B) = exp(A) exp(kI) = ¥ exp(A),

so that exp(A) = e Fexp(B). The latter now has nonnegative entries because
e~* > 0 and exp(B) has nonnegative entries.
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If we now take a measure p on s(d,R) supported in s, (d,R), then the random
walk S, associated to an independent, identically distributed sequence {X,},>1
will remain in S; (R, d). This random walk may be thought of as the (random)
n-step transition matrix of a Markov process with state space Q = {1,...,d}.
From an increment A € s.(d,R) of such a random walk, we can deduce some
qualitative behaviour of the random walk. Indeed, for a state ¢ € {1,...,d} we
have that the larger |A;;|, the more mass remains at site ¢ after that iteration. The
remainder of the mass at state ¢ is then distributed over the states j # ¢ according
to the relative size of the A;;.

A concrete example

To get a better understanding of these random walks in S(d,R) and their limiting
behaviour, we do the calculations for a specific example. For this, we take d = 2
and «a, 8 > 0. Consider the matrices

—a « 0 0
=5 0) w5 %)
Let {X,,}n>1 be a sequence of independent, identically distributed random variables
with

One may compute the exponentials of the matrices A and B to find

1 _ 67%0‘ 1—67%0‘ 1 _ 1 0
b (nA) B ( 0 1 ’ P EB T\ 1-—ewf e w ’

Intuitively, this process chooses one of the states uniformly at random and then
distributes the mass at that state over the two states according to some parameter.
Additionally, one sees that if n tends to infinity, the mass that is passed between
states becomes exponentially small.

Now consider the rescaled random walk

1 1
o = exp <X1> -+ exp (Xn> .
n n

By Theorem 4.3.1, the sequence {o7},>1 satisfies in S(2,R) the large deviation
principle. In order to obtain an explicit expression for the rate function, we need
to equip $(2,R) with an inner product. For this, we will use the Frobenius inner

product given by
2

<A, B> = TI‘(ATB) = Z AUBZJ
i,j=1

With this inner product, the log moment generating function A : §(2,R) — R of X;

is given by \ \ 1 ,
—A1 1 _ L o2ax; 4 128N,
A(( Ne A )) log(2e +2e )



122 4. LARGE DEVIATIONS FOR RANDOM WALKS IN LIE GROUPS
Let us compute A* : 5(2,R) — R, i.e., we want to compute

A* (( T )) sup (N 2y — A(N)
T2 —2 Aes(2,R)

1 1
sup 2A\1z1 + 2Xex0 — log ( e2ar + = 26)\2> )
A1,A2€R 2 2

Here we used that every A € (2, R) may be characterized by two elements A1, Ay € R.

By taking Ay = 0 and letting [A1] tend to infinity, we see that A* is infinite whenever
21 ¢ [0, ). In a similar way one can show that A* is infinite if x5 ¢ [0, 8].

Next, we show that A* is also infinite if axs + Sx1 # af. To see this, take A1, Ao
such that al; — B2 = aff. Writing everything in terms of Ao, we find that

_ 1 1
A* T T > 2\ 2)\ 1 2a)\1 2L‘3)\2
(< 2 2 121 + 2A2x9 — lOg 2 + = 2

=21 (,6 + fz)\2> + 2Xoxo — log (2 2622 ( aB + 1))
_o(B L as
=2 axl—l—xg—ﬁ Ao + 2z — log 5(6 +1) .

By letting |A\z| tend to infinity, we see that if we maximize the above over Ay € R,
it will only be finite when

é$1+$2*5:0’
o

which is equivalent to
Bx1 + axe = af.

Let us now compute the finite values of A*. To this end, first consider the case
z1 € (0,) and x2 € (0, 8) with Sz1 + axs = af. Let us define

1 1
F(\1, A2) = 2\ 21 + 2\oxs — log <2 2ok 4 = 5 2“2) .

Computing the gradient, and equating to 0, we find for the critical points of F' that

T — & 20()\1
L™ g2aXi 1 g2BXe
and
Ty = e2Prz

e2aX1 1 26Xz

Using that Sz, + axs = af, we find that the above set of equations is solved by

1
AT = % log(Bz1), AS = % log(azxs).
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It follows that
® —I1 1 _ %y k
A (( IQ 7‘%2 >) _F( 17)\2)
~ log(fa1 ) + + log(awa)as — log ( 2 a1 + -
= — 10, Xr1)x — 108l T2 )9 — 10, — P —QX
a g 1)T1 3 g 2)T2 g 5T T 5 a2

= élog(ﬂxl)xl + %10g(0&$2)$2 —log <;a6> ,

where in the final step we used again that Sz + axs = af.
Now, in the case that 21 = 0 and zo = 8 we have

0 O 1 1
A* << )> = sup su {2)\ —lo (62‘”\1 + 625)‘2>}
ﬁ _/8 )\26%)\16% 2ﬂ g 2 2
1
= sup {2)\26 — log (62[”\2>}
A2€R 2

=log(2).

(7 5)) e

Now, the rate function for the large deviation principle for {c7},>1 is given by

Likewise, we also have

*

A

I(M) = inf {fo A*(ﬂ'y(t))dt’fy e AC([0,1];S(2,R)),~v(0) = I,~(1) = M} .

To get a more specific expression, we calculate the rate function further in the case
where oo = 5. Let v € AC([0,1]; S(2,R)) with (0) = I. Then we can write

[ 1T=m(t)  m(@)
”(’“‘)‘( 7 (t) 1—72<t>>’

so that 0 0
. () N )
t) = . X eT,nS(2,R).
0= (T ) ) emesem)
Now recall that we may identify T,;)S(2,R) with s(2,R) using the map dL;(lt) =
dL)-1. Because S(2,R) is a matrix Lie group, we have

AL y-1(X) = (1) 7' X.

Therefore, as element of 5(2,R), the curve tangent to ~y is given by

ALy (-1 (F) = (1) "HH()

1 < (I =@)nt) —n®)i2(t) (1=

- - t £)31(t) + () ¥2(t) )
L—y(t) =7(t) \ (L=m()%20) + 12050 -0 -n() )

)Y2(t) = v2(t) Y1 (t)
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Now, in order for
1
j A* (v (84 (8) dt
0

to be finite, we need to have

(1 —=2(8)31(t) + 71(t)72(t) n a(l —71()72(t) + ()N (@)
L—m(t) —2(t) L—m(t) —72(t)

because, as we have seen above, only then A*(y(t)714(t)) < co. Since a = B, after
some calculations, the above may be rewritten as

1) +%2(t) = a(l = (1 (t) +12(0)-

If we now write ¥ (t) = 1 (¢)+72(¢), the previous equality gives a differential equation
for 1, namely

B

= af,

(1) = a(1 = u(t),
with ¢(0) = 41(0) 4+ ~2(0) = 0. The solution to this equation is given by
P(t) =1—e
In particular, this implies that
Y1(1) +72(1) = ¢(1) =1 -

From this, we deduce that I(M) is only finite for matrices satisfying Mis + Moy =
1 —e . Now, if M is such a matrix, the convexity of A* together with Jensen’s
inequality, implies that

1nf{f A*(y dt"y e AC([0,1]; S(2,R)),v(0) = I,~(1) = M}

is attained when taking v (t) = cyp(t) and va (¢t) = (1 — ¢)9(t). Since we need that
(1) = Mya, we take

Mo Mo _
* t 1 at ,
7 ( Moot M (t) = = )
in which case M
*0 21 —at
) = T (1= ).

Using the expression for A* we derived above, one obtains after some computations

that
O R (M

alM —o
_a2M1210g(1 12 )_Mu_oze 12
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M- —* M- 1
+ a2M21 10g (la 2j ) — M21 — u — IOg <Oé2)
e—o —_ e

M
= o®> M, log (1a 1_2a) + o® My, log (1
— e _

1
+ (1 —a)e ™ —log <2a2> -1

if Mg+ My =1 — e~ 2. Otherwise, we have I(M) = o0.

4.4. Some estimation results from Lie group theory

In this section we use the integral version of the Baker-Campbell-Hausdorff for-
mula to derive a key estimate we need for proving Theorem 4.3.1. Essentially, we
will show that for XY € g small enough, we can bound the difference between
log(exp(X)exp(Y)) and X + Y. These results are likely to be known to experts,
however, we did not find a version in which the estimates are quantified precisely
enough for our purposes. Estimates which are closely related, and obtained using a
similar approach may be found in e.g. [46, Section 3].

4.4.1. Baker-Campbell-Hausdorff formula

Before we can state the Baker-Campbell-Hausdorff formula, we first need to intro-
duce some linear operators on g.

For every X € g, we define the adjoint map adx : g — g by
adx(Y) :=[X,Y]. (4.4.1)

Because the map (X,Y) — adxY is smooth, it follows that ||adx || depends contin-
uously on X. In particular, this implies that

sup |ladx|] < oo
XeK

for all K c g compact. Additionally, it also gives us that
ladx]| = [Jadol| = 0. (1.4.2)

lim
X—0

Because adx is a bounded operator, we can define the operator e/dx by

O im,gm
etadx _ Z t adX
m!

m=0
Similarly, for f(z) = 1_572 = 70701:0 %zm we define the operator
I — e—adx 0 (_1>m
= flady) = d’y
adX f(a X) mz=:0( +1)!a X
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From this series representation, we find that

I — 7adX

-

e}
lladx | _ e
< aXH_l
§ ST

Now, by (4.4.2) the upper bound goes to 0 if X — 0. This implies that if |X| is
small enough, then
I — e*adx
adx

is invertible, with inverse given by

adX a
m = g(e dX) (443)

where g(z) = leof(lz) =1+Yr_ %(z —1)™for |z —1| < 1.

With all relevant operators defined, we can state the integral form of the Baker-
Campbell-Hausdorff formula, see e.g. [51, 92].

Theorem 4.4.1 (Baker-Campbell-Hausdorft). There exists an r > 0 such that for
all X,Y € g with | X|,|Y| < r we have that log(exp(X) exp(tY)) is well-defined for
allt € [0,1] and is given by

log(exp(X) exp(tY)) = X + (ft g(eMdx gsadr ) ds) Y,

(1m+1

where g(z) = % =1+, m(

z—=1)™ for|z—1| < 1.

We will use this formula to deduce approximations for the logarithm of a product
of exponentials.

4.4.2. Logarithm of a product of exponentials

In this section we aim to control the difference
[log(exp(X)exp(Y)) — X — Y|

for X and Y small enough. We do this using the Baker-Campbell-Hausdorff formula.
We have the following proposition.

Proposition 4.4.2. There exists an v > 0 such that for every X € g with | X| <r
there exists a constant Cx > 0 such that

|log(exp(X) exp(Y)) — X = V| < Cx[Y|

for all Y| < r. Moreover, the constants Cx may be chosen to only depend on |X|
and such that limx_,o Cx = 0.



4.4. SOME ESTIMATION RESULTS FROM LIE GROUP THEORY 127

Proof. By Theorem 4.4.1 there exists an r > 0 such that for X, Y € g with | X|, |Y| <
r we have

log(exp(X)exp(Y)) =X +Y + (L Z m((;zlzinl)(eadxesady —nm ds> Yy,

From this, it follows that

eadxesady _ I)m d8> Y

1
‘[ Z m(m+1)|| adx sady IHm 1‘( adx mdy_ )Y|d8

Because adyY = 0, we find that

dm— 1
ey Y 4 Z S N ¢
m!

m=1

so that
(ex et — Y| = [(edx — DY < [Jedx — TJ]|Y] < (el - 1]y,

Here, the latter follows from

o
Headx _ I|| < Z ||adX'Hm = elladx|l _ 1
m:

Now define Z(t) = log(exp(X)exp(tY')). Then

eadx esady — eadz(s)7

see e.g. [51, Chapter 5] or [92, Chapter 2]. From this we deduce

Headxesady - I|| < eHadZ(S)H -1

By (4.4.2), we find r" > 0 such that ||adz|| < % whenever |Z(s)| < r’. By
Proposition 4.1.2, there is " > 0 such that latter holds whenever d(e, exp(Z(s))) <

r”.

Now we have

—~
o
@
»
E’L
~ >
~
@
i
=)
o
~
)~<
Nt

d
< d(e,exp(X)) + d{exp(X), exp(X) exp(tY )
d(e,exp(X)) + d(e, exp(tY))

X
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where we used the triangle inequality and left-invariance of the metric. The last
step follows by noticing that if v(¢) = exp(tX), then

1
d(e, exp(X)) < f ()] de = [X].

Therefore, if [X|,[¥] < 4, then d(e,exp(Z(5))) < 7" so that [Jad | < 52 for
all s € (0,1). But then ||eadxesc‘d” —I|| €£+2—1 <1, and hence

f " 1 |eadxesady _ I||m—1|(€adxesady _ I)Y|d8

m

271)777, 1
elladxll _ 1)y d

0 m—1
2—1
< [ladx|| _ Y

e 3 0=

m=1

We may thus take

0 \/5 _ 1)m—1
O = (lladxll _qy 5 (V2=D™
x = (e )mZ=1 m(m + 1) -
Because lim| x|, [[adx || = 0, it follows that limx .o Cx = 0, and that Cx may be
chosen to depend only on |X]. O

We conclude this section with the following result, which shows a Lipschitz-like
estimate for the logarithm of a product of two exponentials.

Proposition 4.4.3. There exist constants v > 0 and C > 0 such that for all
X,Y € g with | X|,|Y| < r we have

| log(exp(X) exp(=Y))| < C|X — Y|

Proof. Following the same reasoning as in the proof of Proposition 4.4.2, there exists
an r > 0 such that

1 (I _ 6adxeftady)m
log(exp(X) exp(=Y)) = X —Y — ( > ) dt>

whenever | X|, Y] < r
As before, we have e %4vY = Y and similarly e*4X X = X. As a consequence, we
can write

(I — etdxetadv)y — (] — e2dx)y = (] — e2dx) (Y — X),
from which it follows that

|(I _ eadxe—tady)my| < HI_ eadxe—tadYHm—lHI _ eadxmy _ X|
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By similar reasoning as in the proof of Proposition 4.4.2, after possibly shrinking 7,
there exist constants C,C' > 0 such that |X|,|Y| <r 1mphes that

1 % (I_eadxeftady)m
‘(L mZ::1 m(m + 1) dt>Y

By the triangle inequality we then find that

< C||I — ey = X| < C|X - Y.

| log(exp(X) exp(=Y))| < (C + 1)|X — Y|

as desired. O

4.5. Proof of Theorem 4.3.1

As explained in Section 4.3.2, we prove the upper bound and lower bound for the
large deviation principle of {o7},>0 separately. More precisely, Theorem 4.3.1 fol-
lows immediately from Propositions 4.5.3 and 4.5.9. Before we get to either of these,
we first need two general results, which we use in both the proof of the upper and
lower bound.

First of all, define for every n € N and every 1 < k < n the random variable

1 1
Of = €xp (nX1> - - exp (nXk) € G,

i.e., the point of the rescaled random walk after k increments. Finally, we set o = e,
the identity element of G. We have the following estimate.

Proposition 4.5.1. Let the assumptions of Theorem 4.3.1 be satisfied. Then for
every m large enough, there exists a constant C,, > 0 such that for all 1 < k <
[m~1n|, log(o}) is well-defined and

1 1
og O—k m——-
m

Moreover, the constants Cy, may be chosen so that lim,, .o Cp, = 0.

S\H

Proof. First note that by the triangle inequality we have for any n and 1 < k < n

that
k
Uka Z zv O;— 1

Considering the curve v;(t) = o ; exp(tX;) in G, we obtain

1

no 1
d(o?, o 1) < f Bu(0)] dt = -1,
O n
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Hence, if we write B for the uniform bound on the increments, we find

k

(o} e) < - B. (4.5.1)
But then we have for 1 < k < [m~!n| that
|m~1n| 1
d(oy; < B < —B. 4.5.2
o< lp L (45.2)

Thus if we choose m large enough, we can assure that o} is sufficiently close to e
for k =1,...,|m™n], so that log(c}) is well-defined for 1 < k < |[m™!n|.

Turning to the proof of the estimate, first note that we may write

so that

1
log (07') — log (0],) — %X,; .

By Proposition 4.1.2, for every r > 0 there exists an € > 0 such that d(e,g) <
implies that | log(g)| < r. Therefore, it follows from (4.5.2) that for 1 < k < |m~ 1nJ
|log(o})| can be made arbitrarily small by taking m large enough. Furthermore,
because |X;| < B, we find that 1X; becomes small for large n. Hence, for m
and n large enough we can apply Proposition 4.4.2 to obtain constants C), with
lim,,, o Cy, = 0 such that

1 1
log (o) — log (0?71) < CmE|Xi‘ < C,,—B.

Combining everything, we find that

1k k
log (o7) ﬁ; ;

Here we used that k < [m~'n| and absorbed the constant B into Cy,. O

k
Cmn— < Cpy
n

1
o

3\>~

In general we do not have that log(o}) exists in g for all n and all 1 < k < n.
Therefore, in order to be able to use some identification of the random walk with a
process in the Lie algebra, we need to make sure we can actually use the logarithm
map.

To this end, notice that in the previous proof we have seen in (4.5.2) that d(o}}, e) <
%B for 1 < k < |m~!n|, where B is the uniform bound on the increments. With
this estimate in mind, the idea is now to split the random walk into m pieces, each

consisting of (approximately) |m~'n| increments. More precisely, we define the
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indices n, = I|m~1n| for [ = 0,...,m — 1 and set n,, = n. Because the metric is
left-invariant, it follows similarly to (4.5.2) that

d(€7 (U;,?%l_l)_lo-’gl_1+k) = d(o-;lLl 170-21 1+k> EB (453)
forevery l=1,...,m and every k = 1,...,n; — n;_1. This implies that for m large

enough we can define

n,m,l
Yk log (( 'n,l 1) 10’21 1+k7> g

foreveryl=1,....mand k=1,...,n; —ny_1.
Note that

1 1
(021_1) 10’:111 1+k — = exp (nXTLl_1+1) c - €Xp (nX’nz_1+kJ> 9

Yk b log (eXp (anll+1) > Y (anll+k)> : (454)

For every m, this allows us to define a random vector

so that

(Vi v ) e g (4.5.5)
By (4.5.4), we have that Y[z’_llnj, cee, Y[”T:L_"fnj are independent and identically dis-

tributed random variables in g, because the X, are independent and identically
distributed by assumption.

4.5.1. Proof of the upper bound for the large deviation prin-
ciple of {07},>0

As explained in Section 4.3.2, we prove the upper bound for the large deviation

principle of {0"},>0 by transferring the problem to the Lie algebra and obtain

suitable estimates there using a similar approach as in the Euclidean case. We start

with the following result.

Proposition 4.5.2. Let the assumptions of Theorem 4.3.1 be satisfied. Let m € N
be large enough so that the random vector
n,m,1 n,m,m m
(Y[mflnj’ ) Y[m—lnj) €9
in (4.5.5) is well-defined. Then there exists a constant C,, > 0 such that for every
F c g™ closed we have

lim sup — log P ( (Y”

|m—1
n—o0

o Y”mm)eF>

[m=1n|

< - stupK)\ ma;) — AN) — Cr| A}

(11-,--~7 i—1 A\€g
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Here, A(\) = logE(e**1). Moreover, the constants C,, may be chosen such that
lim,, o Cp, = 0.

Proof. Following the proof of Cramér’s theorem for the vector space g™ (see e.g.
[29, 56]), we have for any I" € g™ compact that

lim sup — log]P’((Y["m:W.. Y"mm)ef)

< - inf sup {Z</\“xl> hmbup logE( LAY nJ>>}

(1 4eeesm )ET (A1yeeAm)es™ |21

However, as mentioned above, the fact that the X; are independent and identically
distributed, together with (4.5.4), shows that Yl" Tll e ,Y&C";nmj are independent
and identically distributed. Hence

() e ().

By Proposition 4.5.1, there exist constants C),, > 0 with lim,,, ,, C,, = 0 such that
lm~'n]

n,m,1 1

Y oy X;| <C,,

1
|m~1n]| n “ m’

Using the Cauchy-Schwarz inequality, this gives us that

E( Y an>> < E( st “J<Ai,xj>> (MG

—1
e”MHCmm_lE <e</\ixX1>)lm . .

Hence
E e AP NI o ARV D
lim sup — logE tm™in] Z lim sup — log E lm=tn]
n—oo i=1 n—oo

{A |Con— + —log]E <6<AL=X1>)}

{Cm\)\i| +logE <e</\i’X1>)} .

\
3= ”MS
I

@
Il
—

Collecting everything, we find that

llnm_?;clp - logIP’ ((Yﬁnm :-LJ Y[:an Zj) € F)
< - inf sup — 2 {<)\Z,mzz> logE ( <>\1,X1>) _ Cm|/\i|}

(:El ..... ZI,’m)EF ()\1 _____ Am )Egnz m i=1
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__ inf stup{@mx» AR = CALL-

(1,..) zm )eT 1169

To extend this upper bound to all closed sets, note that the boundedness of the in-

crements of the random walk implies that Y[:lnml :L | is bounded, and hence remains in

a compact subset of g. Because Y{TLV’LTI’:L I Y[" mlnj are independent and identically

distributed, we can conclude from this that (Y&Tll ) Y["’m’nj) is exponentially
tight in g". From this it follows that the upper bound actually holds for all closed
sets, which completes the proof. O

With the preparations done, we can now turn to the proof of the upper bound of
the large deviation principle for {o7},>1. The main work goes into proving that we
actually obtain the desired form of the upper bound.

Proposition 4.5.3. Let the assumptions of Theorem 4.3.1 be satisfied. Then for
any F < G closed we have

lim sup — logIP’(cr e F) < —inf Ig(g),

n—oo N geF
where I is the good rate function given by (4.3.1).

Proof. Let F' < G be closed. Choose m € N large enough so that the random vector

(Yn,m,l s Yn,m,m) c gm

lm~Tn]’ lm=Tn]
defined in (4.5.5) is well-defined. Let ¥, : g™ — G be the map given by
\I}m(xla s ,.’Em) = eXp(xl) o ~exp(:rm).

Because ¥, is a composition of continuous functions, it is itself continuous. Fur-
thermore, observe that by construction

n,m,1 nmmy\ _ n
U (YEhy o YN = o

This implies that

P(o" € F) =P ((YI:ZT;;J, N .,Yl’;;lngnmj) € \p;le) :

where W' F is closed, because F is closed and ¥,, is continuous. By Proposition

4.5.2 we then find that

lim sup — log]P’(U eF)
n

n—o0

< — inf Z buP {\mz) — A(N) — Cmv‘nv

(z1,... z,,L)G\IJ_lFm —1 AEg
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where lim,,, o C), = 0.
The final step is now to let m tend to infinity, and show that we obtain the desired
upper bound. For this, we need to show that

— lim inf 2 sup {ymay — AX) = C M|} < — inf Ig(g).
geF

ML (g2 )eW F T Aeg

To this end, let € > 0 be arbitrary. Because lim,, .o, C,, = 0, we can find mg € N
such that m > mg implies that C,, < e. In that case, we have

_ inf — Z Sup {Omay — AN) — Cr | A}
(z1,esm )€V F — eg
< - inf — > sup{{\,mx;y — AN) —e|A
(z1,..., T )EV ) 1pm 121 Aeg {< > ) | |}
= — lnf i A*(mxz)

(Z1,esm ) EUF T i1

where A.(A) = A(X) + €|A| and A denotes its Legendre transform.

Now note that . )
Y Azma) = [ ArGo)ar
mi3a 0

where 7 : [0,1] — G is given by 7(0) = e and

0o (S)em((5)m). e[524]

for i = 1,...,m. Furthermore, note that v(1) = U,,(21,...,Zm).
Using this, we find that

- inf — ¥ A¥(ma;
in FmE (max;)

(.’L‘l,...,xm)E\Pm i=1

< —inf{ f 1 A:wu))dt\v e AC([0,1]; @), (0) = e,7(1) = g}.

It remains to consider the limit ¢ — 0. To this end, first suppose that I (g) < co.
By the goodness of the rate function Z( So AX(#(t)) dt, the sets

_ HJ: AF((1) dt < 2IG(9)}

are compact. Furthermore, we have C., < C. whenever ¢’ < ¢. Because lower-
semicontinuous functions attain their minimum on compact sets, we have a sequence
7. such that

f A (5. (1)) dt — me A (5 dt‘veAC([O 11: ), 7(0) = e, 7(1) =g7}
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=:1..

Because the sequence C. is decreasing, for € small enough, the sequence . is con-
tained in a compact set, and hence, upon passing to subsequences, we may assume
that 7. converges with limit v. But then we find for every § > 0 that

1
liminf I. — lim inff A*(5. (1)) dt
e—0 e—0 0

1
> liminf [ A} (F(¢))dt
e—0 0

> | astamyar

As this holds for all § > 0, by taking the limit § — 0 we find that

1
liminf I, > f A*(Y(¥))dt = I(g).
E—> 0

Because also I. < Ig(g) for every € > 0, we find that lim. o I. = I¢(g) as desired.

Now consider the case that I¢(g) = 0. Suppose that I. does not go to oo. Then
liminf._,g I < oo. Upon passing to subsequences, suppose that lim._,qI. = I.
Following a similar reasoning as above, we find a sequence . converging to v which
we can use to show that

Ig(g) < liminf I, < oo,

e—0
which is a contradiction. We conclude that lim._,¢ I. = 0.
Collecting everything, we have that

i |t {j ALGO)dtly: 0.1] = Gr(0) = e.(1) = 9.7 € AC | = Tala)

e—0 0

so that 1
limsup — logP(o) € F) < — inf Is(g)

n—oo N ge

as desired. ]

4.5.2. Proof of the lower bound for the large deviation princi-
ple of {07},>0

Before we get to the proof of the lower bound for the large deviation principle of

{o7} >0, we first need to study more carefully the continuity properties of the maps

U, : g™ — G given by

Ui (21, - ) = exp(a1) - - €xp ().

Before we can do this, we first need some technical lemmas.
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Lemma 4.5.4. Let K < G be compact. Denote by ®, : G — G conjugation by g,
i.e., Pgh = ghg™t. Then

sup [|da, (e)]| < o-.

geK

Proof. Consider the map ® : G x G — G given by ®(g,h) := ®sh. Because
®(g,h) = Ryg-1Lgyh, the map @ is smooth. Now note that

d®y(e)(X) = d®(g, €)(0, X)
Because @ is smooth, the latter is continuous in ¢ and hence

sup [d®y(e) X | <
geK

for all X € g. But then it follows from the uniform boundedness principle that also

sup |d®,(e)|| < oo
geK

as desired. O

Lemma 4.5.5. For every X € g and g,h € G we have
|[d®,(h)(dLn(e)(X))] = [dPy(e)(X)].
Proof. Since dLg; (®4h) is an isometry, we have
APy (h)(dLn(e)(X))] = |dLg), (Pgh)(dPy(h)(dLn(e)(X)))].
By the chain rule
AL, (gh)(d®g(h)(dLn(e)(X))) = d(Lg,), © B 0 Ln)(e)(X).

Now, consider v(t) = exp(tX). Then v(0) = e and 4(0) = X, which gives us that

_ d _
d(Lgyy 0 @40 Lp)(e)(X) = T (Lg,p © g o Ln)(exp(tX))
t=0
d -1 _—1 —1
= —| gh g ghexp(tX)g
dt],_g
_d exp(tX)g~!
T t=09 p g
=d®,(e)(X).

Combining all the equalities, we find that
|[d®g(h)(dLn(e)(X))| = |d®y(e)(X)]

as desired. |
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Lemma 4.5.6. For every X € g and g € G we have
(e, 4 exp(X)) < [dd,(e)X],
where ®4 denotes conjugation with g.

Proof. Consider the curve v(t) = ®gexp(tX). By definition of the Riemannian
distance, we have

e, e0(0) < [ i)
By the chain rule, we have that
Y(t) = d®g(exp(tX))(dLexp(ex) (€)(X))-
By Lemma 4.5.5 we have
AP (exp(tX)) (d Lexp(ex) (€)(X))| = |dPg(e)(X)]-

Combining everything, we find that
1
dle. By exp(X)) < [ 148,(0)(X)]dt = 48, (0) (X))

which concludes the proof. 0

We can now prove the following continuity property of the maps ¥,,.

Proposition 4.5.7. For every r > 0, there exists a constant C > 0 such that for
all e > 0 and m € N large enough we have that if

(x].? MR xm) € B(yl? C_lg) Koo B(ym’ 0_15)7

then
U@y, ooy 2m) € B(Un (Y1, -+ s Ym ), €)
whenever |x;|, |y;| <

r
m’

Proof. By the triangle inequality and left-invariance of the metric, we have

d(\Ijm(I'h DRI zm)a \I/m(yh e ayTn))
=d(VUm-1(T2,. .., 2m),exp(—21) exp(Y1)Vrm—1(Y2, - - -, Ym))
< d(\I/mfl(x% s 7$m), \I’mfl(y% s 7ym))

+d(Vm—1(y2,- -, Ym), exp(—21) exp(y1)Vrn—1(y2, - - -, Ym))
= d(\IIm—l(x% e 7xm)7 \I’m—l(y% - 7ym))
+d(e,Urm—1(y2,- -, Ym) " exp(—21) exp(y1)Vim—1(Y2, - - -, Ym))-

Now if m is large enough, then for z1,y; with |z1|,[y1| < %, we have that

log(exp(—z1) exp(y1))
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is well-defined. Furthermore, by Proposition 4.4.3 there exists a constant C' such
that

[ log(exp(—z1) exp(y1))| < Cla1 — w1l
If we now write ®, for conjugation with g, it follows from Lemma 4.5.6 that
(e, Vo1 (Y2, -, Ym) " exp(—z1) exp(y1) Cm—1(Y2, - - Ym))

< APy, (ya,....ym)-2 ()| log(exp(—1) exp(y1))]
< Olld@y,, , (yo,....ym)— (E)[lT1 — 1]

Because ¥z, . .., Ym € B(0,rm™1), in the same way as we obtained (4.5.1), we find
that

|\Ilm—1(y2a s 7y7n)| < B Z |y7,| < BT'
=2

Since Lie groups are complete as Riemannian manifold, the set B(e, Br) < G is
compact. Combining everything and applying Lemma 4.5.4, there exists a constant
C > 0 such that

1d®g,,, , (yo,...pm) -1 (€I < C.
Collecting everything, and absorbing the constants into one, we find that

d(ea \Ilmfl(y27 cee 7ym)_1 exp(_xl) exp(yl)\:[lmfl(y27 v 7ym)) < C|{E1 - yl‘

for some C' > 0. We conclude that

AV (1, Tm)s Y (Y15 - - - Ym))
<dWrm-1(21,- 5 Tm), Y1 (Y1, - Ym)) + Clozr — w1

Iterating this procedure, we find that
AW (21, ), (Y1, Ym)) < C Y s — il
i=1

It thus follows that if
(z1,...,2m) € B(y1, (C’m)_la) X -+ X B(Ym, (Cm)_ls)7

then

AU (z1, o Zm)s U (Y1, -« Ym)) < C (C’m)*le =g,

s

Il
it

K2

which proves the claim. O

We need one more result, which allows us to partition absolutely continuous curves
in G in an appropriate way.
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Proposition 4.5.8. Lety € AC([0,1]; G) be arbitrary. Assume thaty € L*([0,1],g).
Then for each m large enough, the vectors

o (4 (51 () ) =5

are well-defined for i = 1,...,m. Furthermore, there exist constants L., with
lim,, o0 Ly, = 0 such that

log (v (Z_ml>1 gt <;)) - f: y(t) dt

Proof. First of all, because « is continuous and [0, 1] is compact, it is actually
uniformly continuous. Therefore, we can take m € N large enough, so that for

i=1,...,m the vectors
. -1
i—1
log <7 () 7(T)> €g
m

are well-defined for r e [, L]

’m

1.
< Lin—|Hlee-
m

Now consider the function f; ,, : [%, i] — g given by

fim(r) = log (’Y (Z_ml>1 ’y(r)) : (4.5.6)

i—1\"" ,
i) = dllog (7 (%) w«)) (),
where again we used the identification of T’ ,yG with g. Using this, we obtain
. ~1 ) , .
1—1 i 1 1—1
log (7 () gl <)> fim () — fim ( )
m m m m

L (r)dr

i,m

Then

With this expression at hand, we estimate

log (7 (iml>17 (;)) - Jj y(r)dt

|9(r)| dr (4.5.7)
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<l J,, dlog( (i‘nf)_lvm)—f

It follows from (4.4.3) that (see also [51, Chapter 5] or [92, Chapter 2])

. —1 0 k+1
s (W (lml> ) Z k: + 1) (eadfivm(r) - I)k

dr.

Here, fim(r) is as defined in (4.5.6). From this it follows that

() )

o0
1 llady, .. ol k
< fimell )7 4.5.8
kzl k(k + 1) (e ) (458)

Now, fix € > 0. By Proposition 4.1.2 there exists a § > 0 such that d(e,g) < §
implies that |log(g)| < e. Since « is uniformly continuous on [0, 1], we can choose
m large enough so that for every i = 1,...,m it holds that d(y(=2),y(r)) < 6
for all r € [*=1, L]. Using left-invariance of the Riemannian distance, we find that
d(e,y(=1)1y(r)) < d forall r € [=1, L] and all i = 1,...,m. But then we have

forall i =1,...,m and all r € [}, =] that

log (7 (7)17(7'))
log <v <im1)_17(r)) ‘ =0.

adlog(v(iml)lv(r))” =0

Recalling the definition of f; ,,,(r) in (4.5.6), this in turn implies that the upper
bound in (4.5.8) tends to 0 if m goes to infinity, independent of 7. We can thus find
constants L,, with lim,,_, L,, = 0 such that

dlog (v <Z_ml) B v(ﬂ) -1

If we plug this into (4.5.7), we find

<e.

We conclude that

lim sup sup
m—00 1$i<m T'G[ i ]

7m

With (4.4.2) in mind, it follows that

lim sup sup
TP ASism el L 1

<Lm

foralli=1,...,m and all r € [*

. m 1.
<1l |, Lmdr = L[l

m

-1
)
A
m

e (52 (2)) Lo

as desired. |
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With the final preparations done, we can prove the lower bound of the large deviation
principle for {o]*},>1.

Proposition 4.5.9. Let the assumptions of Theorem 4.3.1 be satisfied. Then for
every U ¢ G open we have

1
el n >
h,?ilcf.}f . logP(o] € U) ;Ielzg Ic(9),

where I is the good rate function given by (4.3.1).

Proof. Let U < G be open. Fix g € U and a curve v € AC([0,1]; G) with v(0) = e
and y(1) = g. We will show that

1
liminf © log P ((1 *$> e U) > —J A*(4(8)) dt.
n n

n—o N 0

If Sé A*(%(t))dt = oo, the above is certainly true. Hence, suppose S(l) A*(Y())dt <
0. Because A is the log-moment generating function of a bounded random variable,
it follows A* is finite only on a bounded set, referred to as its domain. Therefore,
because Sé A*(%(t)) dt < oo, it must be that 4(¢) is in the domain of A* for almost
all t. But then we have that |||] < 0.

By the same reasoning as in the proof of Proposition 4.5.8, we can take m € N large
enough, so that we can define for ¢ = 1,...,m the vectors

e (2) () o

Let ¥,, : ¢ — G be again the map given by
U(21, ..., Tm) = exp(z1) - - - exp(zm),

so that g = U, (y7", ..., ym).
Because U is open, there exists an € > 0 such that B(g,e) < U. By Proposition
4.5.7, for m large enough, there exists a constant C' > 0 independent of m, such
that if

(x1,...,2m) € By, (Cm)~te) x -+« x B(y™, (Cm) e,
then U, (21,...,2m) € B(g,&).
Now define for i = 1,...,m the vectors

i

i | s

m

By Proposition 4.5.8, for every m large enough there exists a constant L,, such that
fori=1,...,m we have

1.
lyi" — ;| < ngllvl\oo
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and lim,, o Ly, = 0. It follows that B(g™, (2Cm)~te) = B(y™, (Cm)~te) for m
large enough. We conclude that if
(z1,...,2m) € BT, (2Cm) ) x --- x B(§™, (2C'm)'e),
then U, (x1,...,2,) € B(g,¢).
Now, let (Y"’T{l Ly m) be again as in (4.5.5), so that

|m=—1in|?" |m—1

U (Vi Y ) = o

Using the above, we have

P(UﬁEU)}P((Yan;J’,. Y["mm) nByl,QCm) )>

_ ﬁp (ylgj" L e B, (QCm)_15)>

i=1
= HIP’ (Y{:ﬂm ilJ € B(g!", (QCm)_la)) :
i=1
Here we used again the fact that Y[" Tlnj, . Y[" o nmj are independent and identi-

cally distributed, which follows from the fact that the sequence {X,},>1 is inde-
pendent, identically distributed, together with expression (4.5.4).

Continuing, it follows from Proposition 4.5.1 that
1L 1
n m,1
[m*lnj H Z E’
where lim,,, . C,, = 0. As a consequence, for m large enough we have

Ynml

|m=1n|

:\'—'

lm™tn] c
DXl < (2Cm)_1§.
j=

1

In that case we find that
lm ™ 'n|

IF’(}/'lnTlljeB(y?7(2Cm)_1a))> 1 21 Xj € B(g;", (2Cm)~"e/2)

By Cramér’s theorem for vector spaces (Theorem 2.1.10), it follows that the sequence

—1
{1 Zyjl "l x j }n=0 satisfies the large deviation principle in g with good rate function
In(z) = LA*(ma). Hence, we obtain that

- - nm,l ~m —1
lim inf — LiogP (o7 € 1) Zlennilgrolfnlog}P’( ol e B, (20m) 5))
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1

|m™ n|

3

i=1 j=1

3

= —ILn(3")

= _72‘/\* myz

We are done once we show that

-
Il
—

1
—zﬁm% < | At

By the convexity of A* and Jensen’s inequality, we have

A*(mg;m) _ A* <m J\.m dt) mJ‘m

m

From this it follows that

m i 1
—EAMW < [ aGea = | A,

which concludes the proof.
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Z hﬁlo%f - log P Z X; e B(§", (20m) " 'e/2)






Path-space large deviations
in Riemannian manifolds

This chapter focusses on path space large deviation results in Riemannian mani-
folds. We prove the analogue of Mogulskii’s theorem (Theorem 2.1.13), i.e., path
space large deviations for trajectories of geodesic random walks as defined in Chap-
ter 3. The only difference is that in this chapter, we consider the moment generating
function of an increment as function on the cotangent space, see Section 5.1. It turns
out this is more natural in light of our method for proving the result. Furthermore,
we provide two novel approaches to obtain the generalization of Schilder’s theorem
(Theorem 2.1.14) for Riemannian Brownian motion with small variance. The results
presented in this chapter are based on:

Richard C. Kraaij, Frank Redig, and Rik Versendaal. “Classical large deviation the-
orems on complete Riemannian manifolds”. In: Stochastic Process. Appl. 129.11
(2019), pp. 4294-4334. 1sSN: 0304-4149. por: 10.1016/j.spa.2018.11.019. URL:
https://doi.org/10.1016/j.spa.2018.11.019.

As explained in Section 2.1.2, Mogulskii’s theorem is the natural path space large
deviations result accompanying Cramér’s theorem. More precisely, given a sequence
{Xn}n>1 of independent, identically distributed random variables, Moguslkii’s the-
orem provides the large deviation principle for the trajectories {S,(-)}n>1 given by

To obtain an analogue of Mogulskii’s theorem for Riemannian manifolds, we make
use of geodesic random walks (see Chapter 3), which extend the notion of a random
walk to Riemannian manifolds. For every n > 1, let {(1 * S);};>1 be a L-rescaled
geodesic random walk started in zo with increments {X}'},>1 as in Definition 3.2.6.
If the increments are independent and identically distributed in the sense of Defini-
tions 3.2.3 and 3.2.7, Theorem 3.3.1 gives the large deviation principle in M for the
sequence {(+ #8),}n>1. For the associated path space large deviations, we consider
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Zn(t) = (i ) s) "

Under the same conditions on the increments as in Theorem 3.3.1 (apart from the in-
crements being centered), we obtain the large deviation principle for the trajectories
{Z.()}n>1. The precise statement is given in Theorem 5.1.1.

the random trajectories

Contrary to the analogue of Moguslkii’s theorem for Riemannian manifolds, the
analogue of Schilder’s theorem for Riemannian Brownian motion has been consid-
ered before, see e.g. [9, 41]. In this chapter, we provide two novel approaches in
obtaining this result. These approaches are interesting in their own right, and find
applications beyond Schilder’s theorem.

To prove the analogues of Mogulskii’s and Schilder’s theorem for Riemannian man-
ifolds, we make use of a general approach for studying large deviations for Markov
processes introduced by Feng and Kurtz in [39]. This approach relies on the conver-
gence of non-linear semigroups and viscosity solutions to Hamilton-Jacobi equations.
Since the details of this approach are beyond the scope of this work, we only collect
the relevant results from Section 7 in [63].

For Schilder’s theorem, we also discuss a second approach using embeddings of
manifolds into Euclidean space. This is particularly useful when the process being
studied is the solution of a stochastic differential equation. As explained in Section
2.4.2, Stratonovich stochastic differential equations behave well under diffeomor-
phisms. Therefore, using the embedding allows us to transfer the problem from the
manifold to the Euclidean setting, in which we can apply Freidlin-Wentzell theory
(see Section 2.1.3). The importance of this approach lies in Chapter 7, where we
extend the result further to time-evolving Riemannian manifolds.

This chapter is organized as follows. In Section 5.1 we give the precise statements
of the analogues of Mogulskii’s and Schilder’s theorem for Riemannian manifolds.
In Section 5.2 we collect the important results from the Feng-Kurtz approach to
studying large deviations for Markov processes. Section 5.3 is devoted to showing
how these results can be applied to prove Theorem 5.1.1 and 5.1.3. Finally, in
Section 5.4 we show how we can use embeddings to provide a different proof of
Schilder’s theorem for Riemannian Brownian motion.

5.1. Main results

In this section we state the analogues of Mogulskii’s and Schilder’s theorem for Rie-
mannian manifolds. Furthermore, we touch on the relations between Mogulskii’s
theorem to Cramér’s theorem (Theorem 3.3.1). Finally, we work out an example to
show the relations between all three theorems in the case when we consider geodesic
random walks with normally distributed increments.
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In the Euclidean case, the rate function in Mogulskii’s theorem is given by

IW%_F@www»w,veA%ammR% 5.1.1)

o0, otherwise.

Here, A()\) = log E(e¢MX12) is the log-moment generating function of the increments,
and
A*(v) = sup {(A,v) = A(N)}
AERE
is its Legendre transform.

However, in the Riemannian setting, the distribution of an increments depends
on the position of the geodesic random walk in M. More precisely, we have a
collection of measures {piz}zerr With p, € P(T, M), where P(T,, M) denotes the set
of probability measures on T, M. We thus have for every z € M a log-moment
generating function A, : T;* M — R given by

Ao = log | eV ()
w M

with Legendre transform given by

Aj(v) = sup {{v,\) = Az (M)}

ATy M

Here, (v, A\) denotes the pairing of the cotangent vector A with the tangent vector
v. We sometimes also denote this as A(v). Observe that in Chapter 3 we defined
the log-moment generating function A, as function on T, M, rather than T;*M.
However, these functions are essentially the same if we identify T M with T, M
using the Riemannian metric. More precisely, abusing notation and writing A, for
both functions, we have that

A(\) = A (\F) (5.1.2)
for all X € T* M. Here A\# is the unique tangent vector such that
Av) = O, v)

for all v € T, M denotes the tangent vector associated to A via the inner product,
see Section 2.2.3.

For a curve v : [0,1] — M, we have that ¥(t) € T',4) M. Therefore, the appropriate
analogue of the rate function in (5.1.1) is given by

§o A% (3(D) dt, e ACy,([0,1]; M)
0, otherwise.

We have the following theorem.
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Theorem 5.1.1 (Mogulskii’s theorem for Riemannian manifolds). Let (M,g) be
a complete Riemannian manifold. Fix xo € M and let {u,}zem be a collection of
measures such that p, € P(T,M) for all z € M. For everyn =1, let {(% +S);},50
be a %-rescaled geodesic random walk started at xo with independent increments
{X;-‘}j;l, compatible with {py}zenr. Define the random trajectories

1

Zn(t) = <n . s) »

for t € [0,1]. Assume the collection {1:}eens satisfies the consistency property in
Definition 3.2.7. Finally, assume the increments are bounded. Then {Z,(-)}n>1
satisfies the large deviation principle in L*([0,1]; M) with good rate function

So (t) ))dt, e ACy, ([0, 1]; M)
a0

Im(y) = { (5.1.3)

, otherwise.

It is interesting to observe how Theorem 5.1.1 relates to Cramér’s theorem (Theorem
3.3.1). Since evaluation in the end-point of a trajectory is continuous, it follows from
the contraction principle (Theorem 2.1.6) that Mogulskii’s theorem implies the large
deviations for the sequence {(% #* S)ptn>1. Furthermore, this shows that the rate
function is given by

Tute) = nt { [ 42,60 ey € AC, (0.1 40, 2(1) = ).

For every = € M, we have that A, is convex, and hence, so is A%. Furthermore,
by Proposition 3.2.9 we have that the maps {A;}.ensr are invariant under parallel
transport, and hence, so are the maps {A%*},cps. As a consequence, apart from
some technicalities, it follows from Proposition 3.4.11 that the optimal trajectories
for T () are given by geodesics. This shows that we obtain the desired rate function
as stated in Theorem 3.3.1. Let us illustrate this connection with an example.

Example 5.1.2. Let (M, g) be a compact Riemannian manifold. Let {u,}.ens be
the collection of standard normal distributions as defined in Example 3.2.11. There
it was shown that these measures satisfy the consistency property as in Definition
3.2.7. Furthermore, we have that A,(A\) = %\)\E] from which it follows that

A (v) = Blol2,.
For every n > 1, let {(+ * S);};>1 be a t-rescaled geodesic random walk with
increments compatible with the measures {jy }zepr. By Cramér’s theorem (Theorem

3.3.1), the sequence {(% # S)p}n>1 satisfies the large deviation principle with good
rate function

(x)’

) 1
Iy (z) = inf {2|v|io

Exp, v = :17} .

Note that |v|gs,) is the length of the geodesic 7, : [0,1] — M given by 7,(t) =
Exp,, (tv). Since we take the infimum over all possible v, we also consider the



5.1. MAIN RESULTS 149

geodesic of minimal length between z¢ and = and hence
Ing(2) = d(z, 20)2.

Furthermore, by Mogulskii’s theorem (Theorem 5.1.1), we find that the process
Zn(t) = L« 8, satisfies the large deviation principle in L ([0, 1], M) with good

rate function }
() = 2 3o VDG 4 Hay ([0, 1] M),
© otherwise.

As explained, by the contraction principle, we also have that

Tua(e) = inf {3 [ DBy dtfr € Ao, (0.11:20), (1) = .

By Jensen’s inequality and the definition of the Riemannian distance, the right-hand
side is indeed equal to d(z, z¢)?.

In Section 2.1.3 we discussed that if we take the increments of a random walk to
be standard normal, we can use Mogulskii’s theorem to obtain the large deviations
for the {ﬁW()}n;l, where W (t) is a standard Brownian motion. It is not clear
if a similar approach works in the Riemannian setting. Indeed, the increments of
Brownian motion are no longer normally distributed (in the sense of Example 3.2.11)
with the desired parameters due to curvature.

However, Varadhan ([93]) showed that the short-time asymptotics of the heat kernel
on a Riemannian manifold are given by

d?(z,y)
R

%irr(l)tlogpM(a:,y,t) =— (5.1.4)
This suggests that for short times, the ‘increments’ of Riemannian Brownian motion
are almost normally distributed. With the computations in Example 5.1.2 in mind,
it turns out that this provides the correct intuition.

Theorem 5.1.3 (Schilder’s theorem for Riemannian Brownian motion). Let (M, g)
be a complete Riemannian manifold. Assume furthermore that (M, g) is stochasti-
cally complete. Let xg € M and let X (t) be a Riemannian Brownian motion and
with X (0) = xo almost surely. Define for every n > 1 the process X, (t) := X (L).
Then the sequence {X,, () }n>1 satisfies the large deviation principle in C([0,1]; M)
with good rate function

S5 OB ) At v HE ([0, 1:00),

(5.1.5)
Q0

Ipm(y) =
™) { , otherwise.

Remark 5.1.4. The short-time asymptotics of the heat kernel as in (5.1.4) can be used
in the Euclidean case to prove the large deviation principle for processes generated
by a weighted Laplacian. However, in general, these conditions are not satisfied by
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a Riemannian metric. Nonetheless, similarly as done in the proof of Lemma 3.1
in [93], one can use (5.1.4) to obtain the large deviations for the finite dimensional
distributions of Brownian paths once Gaussian bounds for the heat kernel for a
general (stochastically complete) Riemannian manifold are established (see e.g. [6]).
Using Proposition 3.7 in [63] (which replaces Lemma 3.2 in [93]), one can follow
the argument in proving Theorem 3.3 in [93] to obtain the large deviations upper
bound in Schilder’s theorem. For the lower bound, one can exactly mimic the proof
of Lemma 3.4 in [93]. We show that all assumptions, apart from the stochastic
completeness may be dropped, see Theorem 5.1.3.

5.2. Large deviations via Hamilton-Jacobi equations

In this section we explain the steps of the approach introduced in [39] to study
large deviations for Markov processes. This approach is based on convergence of
non-linear semigroups and solving Hamilton-Jacobi equations in viscosity sense. For
general theory on viscosity solution for Hamilton-Jacobi equations we refer to [26].
For an extensive treatment of the relation to large deviations in the Euclidean case,
apart from [39], we also refer to the Appendix in [22]. In [63], this approach has
been adapted to the setting of Riemannian manifolds. Here, we state some of the
results from Section 7 in [63] that we need in order to prove Theorems 5.1.1 and
5.1.3.

5.2.1. Comparison principle for Hamilton-Jacobi equations

Let H : D(H) < Cy(M) — Cy(M) be an operator. For h € Cp(M) and A > 0,
consider the Hamilton-Jacobi equation

f—AHf=h (5.2.1)
We want to solve (5.2.1) in the viscosity sense. We have the following definition.

Definition 5.2.1. A function u is a viscosity subsolution of equation (5.2.1) if u is
bounded, upper semi-continuous and if for every f € D(H) there exists a sequence
x, € M such that

lim u(z,) — f(zn) = sup{u(z) — f(x)},

n—o0 T

and

lim w(x,) — AH f(x,) — h(z,) < 0.

n—aoo

A function v is a viscosity supersolution of equation (5.2.1) if v is bounded, lower
semi-continuous and if for every f € D(H) there exists a sequence x,, € M such that

nlgrolov(xn) - f(xn) = H;f{v(x) - f(IC)},
and

lim v(zy,) — AH f(zp) — h(z,) = 0.

n—ao0



5.2. LARGE DEVIATIONS VIA HAMILTON-JACOBI EQUATIONS 151

A function u is a viscosity solution of equation (5.2.1) if it is both a viscosity sub-
and supersolution.

Definition 5.2.2. We say that (5.2.1) satisfies the comparison principle if for a
subsolution u and supersolution v we have u < v.

Note that if the comparison principle is satisfied, then a viscosity solution is unique.

From now on we assume that the Hamiltonian H has a special form. More precisely,
it should be possible to represent H by a map on the cotangent bundle.

Assumption 5.2.3. The operator H : D(H) < Cy(M) — Cy(M) satisfies CL (M) <
D(H) < Cy,(M) n C1(M) and can be represented as

Hf(x) = H(z,df(x)),

where H : T*M — R is continuous and for each x € M the map p — H(x,p) from
T*M to R is conver.

We now wish to state a sufficient condition for the comparison principle. The
idea is that we want to use a subsolution u and supersolution v as test functions
in Definition 5.2.1, and so obtain conditions on the map H evaluated in du and
dv in order to conclude that v < v. This is explained in detail in [63, Section
7.2]. However, this approach relies on the fact that u and v are test functions,
and that there exist points z, yo such that u(xg) — v(xg) = sup,{u(z) — v(x)} and
v(yo) — u(yo) = infy{v(y) — u(y)}. The first issue can be resolved by penalizing by
a distance function, in this case the Riemannian distance. The second problem is
taken care of by restricting to compact sets. For this we use what we call a compact
containment function.

Definition 5.2.4. A function T : M — R is a good containment function for H if
it satisfies the following:

1. T = 0 and there exists a point xg such that Y (xg) = 0,
2. Y is twice continuously differentiable,

3. for every ¢ = 0, the set {x € M | T(z) < ¢} is compact,
4. we have sup, H(z,dY(z)) < .

Using the Riemannian distance to penalize and a good compact containment func-
tion, we obtain the following sufficient condition on H for the comparison principle.

Proposition 5.2.5. Let H be an operator satisfying Assumption 5.2.3. Fix A > 0,
h e Cy(M) and consider u and v a sub- and super-solution to f — AH f = h. Let T
be a good containment function. Moreover, for every o,e > 0 let 2., Yo, € M be
such that
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u(xoéi) v(yae) o 5 € £
— = — — ~d"(TaerYo,e) — 7T (@ae) — 7——=T(Ya
1—¢ 1+ 2 (Tae: Yac) 1—¢ (zac) l+e (o)

~ oup {“(” IO R T WL I S T<y>}.

syeM (1 —€ 1+4+e 2

Suppose that

e e a9

h?l_,l(l)lfharglol.}f {7‘[ (xa,g, gdd (s y@z,e)@ﬂué))
o

—H <ya,ev *§dd2(xa,€7 ')(ya,a))} < 0. (5'2'2)

Then u < v, i.e. the Hamilton-Jacobi equation f—AH f = h satisfies the comparison
principle.

Remark 5.2.6. Although the square of the Riemannian distance is not everywhere
smooth, this is not a problem in Proposition 5.2.5. The squared Riemannian distance
is smooth at points which are inside each others injectivity radius. Now, by Lemma
7.6 in [63], it follows that {zq. e, Ya,c|e > 0} is contained in a compact set for every
¢ > 0. Furthermore, we have that lim, .o d(Za,e, Ya,e) = 0 for all € > 0. Since the
injectivity radius of compact sets is strictly positive (Proposition 2.2.6), we thus find
that for o large enough, the points z, . and y, . are within each others injectivity
radius.

5.2.2. Compact containment and the large deviation principle
To connect the Hamilton-Jacobi equation to the large deviation principle, we intro-
duce some additional concepts. First of all, we denote the Skorokhod space of cadlag
paths by D([0,1]; M), see [37, Section 3.5]. Furthermore, we introduce a notion of
operator convergence for which we consider bounded and uniform convergence on
compact sets (buc). We define this next.

Definition 5.2.7. Let {f,}n>1 be a sequence in Cy(M) and let f € Cp(M). We say
that f,, converges to f boundedly, and uniformly on compacts, denoted by LIM,, f, =
f, if the following are satisfied:

1. sup,, [|fal < o0,

2. For all K € M compact,
lim sup £, (x) — f(x)| = 0.

n—=0 pe K

We now define our notions of operator convergence.

Definition 5.2.8. For every n = 1, let B, : D(B,) < Cy(M) — Cy(M) be an
operator. The extended limit ex — lim,,_,o, By, is defined by the collection (f,g) €
Cyp(M) x Cp(M) such that there exist a sequence {fn}n=1 with f, € D(By,) and such
that

LITLanzfv LIMannzg
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An operator (B,D(B)) is said to be contained in ex — lim, o B, if the graph
{(f,Bf)|feD(B)} of B is a subset of ex — LIM,, B,,.

Before we get to any results relating Hamilton-Jacobi equations to large deviation
principles, we first need to define the operators that we will be considering.

Assumption 5.2.9. Depending on whether we consider Markov processes in con-
tinuous time or discrete time, we consider the following:

Continuous time case Assume that for each n = 1, we have a linear operator
Ap € Cp(M) x Cy(M) and existence and uniqueness holds for the D([0,1], M)
martingale problem for (An, ) for each initial distribution p € P(M). Letting
Ry € P(D([0,1], M)) be the solution to the martingale problem for (An,dy),
the mapping y — R} is measurable for the weak topology on P(D([0, 1], M)).
Let X,, be the solution to the martingale problem for A, and set

1
H,f ==e A, et e D(A,).
n

Discrete time case Assume for each n = 1 we have a transition operator T, :
Cy(M) — Cy(M) for a Markov chain. For each n, let X,, be a discrete-time
Markov chain with transition operator T, :

E [f(Xa(t)| Xa(0) = 2] = T} ().

Set
H,f =loge ™ T,e".

Suppose that we have an operator H : D(H) < Cy(M) — Cy(M) with D(H) =
CP(M) and H < ex — LIM H,, which satisfies Assumption 5.2.3. Finally, assume
that the map H : T*M — R is continuously differentiable.

The following result is concerned with the limiting behaviour of the probability of
sequence of processes to stay in compact sets. It is Proposition 7.15 in [63].

Proposition 5.2.10. Suppose Assumption 5.2.9 is satisfied and assume that T
is a good containment function for H. Then the sequence {X,}n>1 satisfies the
exponential compact containment condition: for every T > 0 and a > 0, there
exists a compact set Ko v < M such that

1
limsup —logP[X,,(t) ¢ Ko 1 for somet <T| < —a.

n—oo N

We conclude with the result giving us conditions for the large deviation principle
to hold for a sequence of Markov processes with generators satisfying Assumption
5.2.9.

Theorem 5.2.11. Consider the setting of Assumption 5.2.9. We have the following:
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(a) Suppose that Y is a good containment function for H. Then the processes
{Xn}n=1 are exponentially tight in D([0, 1], M).

(b) In addition to the assumption in (a), suppose that for each X > 0 and h € Cy,(M)
the comparison principle is satisfied for f — AHf = h. Then the sequence
{Xn}nz1 satisfies the large deviation principle in D([0,1]; M) with good rate
function I given by

I(y) = {gawsws))ds if € AC([0,1]; M),

otherwise.
where L : TM — [0, 0] is the Legendre transform of H given by

L(z,v) = sup {(v,p) —H(z,p)}.

peT¥ M

5.3. Classical large deviations in Riemannian mani-
folds via the Feng-Kurtz formalism

In this section we prove Theorems 5.1.1 and 5.1.3 using the Feng-Kurtz approach
discussed in Section 5.2. Before doing so we construct a good containment function
that we will use for both proofs.

5.3.1. Good containment function

In order to use Theorem 5.2.11 to prove the analogues for Mogulskii’s and Schilder’s
theorem for Riemannian manifolds, we need a good containment function. We
construct one containment function that will suffice for both proofs. We use the
following proposition, which essentially follows from the fact that the function r(z) =
d(x,xz0) is 1-Lipschitz.

Proposition 5.3.1. Let (M,g) be a complete Riemannian manifold. Fix xo € M
and define r(z) := d(x,xq). There exists a smooth function f € C*(M) such that
[lf =7 <1 and |df| < 2.

Consider the function f as in the above proposition and set
Y (x) = log(1 + f2(z)). (5.3.1)

Lemma 5.3.2. Let {i;}zens be a collection of measures such that p, € P(T,M)
for allx € M. Assume that {ji;}zenm satisfies the consistency property in Definition
3.2.7. Let H be given by

H(z,p) = logf e 1y (dv). (5.3.2)
T M

Then Y given in (5.3.1) is a good containment function for H.
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Proof. Clearly T >0, T(zp) =0 and Y € C*(M).
Now fix ¢ = 0. By the continuity of T, the set {z € M | T(z) < ¢} is closed. Further-
more, the set is bounded since Y(x) < ¢ implies that d(z, zg) < 14++/e¢ — 1. Because
M is a complete, finite dimensional manifold, it follows that {x € M | Y(x) < ¢} is
compact.
Now consider the Hamiltonian H in (5.3.2). Note that for all x € M\{zo},
2f(x)
dY(z) = ————d .
(@) = o s df@)

This implies that |[dY(x)| < |df(z)| < 2, where the latter holds by choice of f. But
then

e dT@)y, (dv) < log JT Ny eAvlo) . (dw) =: €, < o0,

H(z,dY(x)) = 1ogJ

T M

where C, is finite because we assume the log moment generating function of p,, is
everywhere finite. By the consistency property (as in Definition 3.2.7), C, actually
does not depend on z. We conclude that sup,.,; H(z,dY(x)) < oo. O

5.3.2. Proof of Mogulskii’s Theorem, Theorem 5.1.1

In this section we prove the analogue of Mogulskii’s theorem for rescaled geodesic
random walks. Before we can get to the proof, we first need the following result.

Proposition 5.3.3. Let z,y € M and assume that d(x,y) < u(x). Then for all
veT,M we have

dde(za y) (v) = 2<'Y(1)7 U>g(y)a

where v : [0,1] — M is the unique geodesic of minimal length connecting x and y.
Moreover, we have
Tuyded®(z,y) = —dyd*(z,y).

Proof. For a path h:[0,1] - M, define the Lagrangian

L(h(t)) = Ch(t), h(t)gny) = |h(t)|3(h(t))

and the action

Observe that for x,y € M we have
d*(x,y) = inf{S(h)|h(0) = z, k(1) = y, h piecewise smooth}.

Since d(z,y) < t(x), there is an optimal path + : [0,1] — M for S, the geodesic of
minimal length connecting = and y. Note that the differential of the action in the
starting point equals the momentum of the optimal path v in 0. For this we refer
to [69, Chapter 6] or [77, Chapter 5] for an approach using variational calculus and
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to [8, Chapter 3] for the physical intuition. In coordinates one finds that the j-th
component of this momentum equals

oL
ohi (t)

bj

k
(v(8) =2 D] 9 (YDA () = 2(5(1))}-
i=1

Here, v € T*M denotes the unique cotangent vector defined by v°(w) = (v, w) for
all w e T, M, see also Section 2.2.3.

We thus find that d,d?(z,y) = 2(5(0))’, where v is the geodesic of minimum length
connecting x and y. In particular, this implies that for every v € T, M we have
dod?(z,y)(v) = 2{0,3(0))g (). Defining v~ (t) := (1 —¢), v~ is the geodesic of min-
imum length connecting y and x. We obtain d,d?(z,y) = 2(37(0))" = —2(¥(1))".
Noticing that 4(1) is the parallel transport of 4(0) now proves the claim. O

We are now set to prove Mogulskii’s theorem for geodesic random walks.

Proof of Theorem 5.1.1. We verify the conditions for Theorem 5.2.11.

Step 1: We start by calculating H,, and its limit H. From Remark 3.2.5 it follows
that for every n > 1 the sequence {% * Sk }r>1 18 a Markov chain with transition
operator given by

1 1 _
T.f(x) =FE (f ( * Sk+1> ' * S = x) = J f(Exp, (n™'v)) e (dv).
n n T, M
Using this, for every n > 1 we can compute the Hamiltonian

H, f(z) = loge ™ T,e"/ () = logf Ny e”(f(exf’w(”_lv)*f(gﬂ))px (dv).

We first establish that sup,, ||Hy f|| < c0. By the mean value theorem there exists a
t € (0,n~1) such that

n(f(expx (nilv) - f(l')) = df(Epr (tv))(TzExpw(tv)rU)'

In particular, we find
[n(f (expy (n™ o) — f(2))] < |ldf[loo|v]g(a)-

For f e CX (M) we have ||df]||en < 00, and by the consistency property from Defini-
tion 3.2.7 for {y }zenr we have

H,f(z) < logf

elldfllelvlo y (dv) = logJ edeHoclvlg(zomzo (dv) :=C < oo,

Ty M

z0

where the upper bound is finite, because A, is everywhere finite. Similarly, we find

H,f(x) > 1ogf e~ l1dfllclvl (o) =: ¢ > —o0.
Tog M
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We conclude that sup,, ||H, f|| < .
Furthermore, by a similar argument, we find for f € CP(M) that

n—0o0

Hf(z):= lim H,f(z) =log fT . e @ (dv)

uniformly in z, so that we can take D(H) = C®(M). Note that indeed H has the
form Hf(x) = H(x,df(x)) for a continuous map H : T*M — R that is convex in
the second coordinate. Here, the convexity follows from Holder’s inequality. This
implies that Assumption 5.2.3 is satisfied and H is given by

H(z,p) = logf e<”’p>ym(dv) = A, (p).

=M

Step 2: By Lemma 5.3.2 we have a good containment function Y.

Step 3: Fix A > 0 and h € C,(M). We verify the comparison principle for f —A\H f =
h by an application of Proposition 5.2.5. Let x4, Yq,. be as in Proposition 5.2.5.
We establish (5.2.2).

Fix ¢ > 0. By Lemma 7.6 in [63] there is a compact set K < M such that
{Za,e, Yol > 0} is contained in K. Since K¢ is compact, it follows from Propo-
sition 2.2.6 that there exists a ¢ > 0 such that «(K¢) > § > 0. Now for =,y € K¢
with d(z,y) < 0 we find

H (2, SAd* () @) =

Here 7., denotes parallel transport along the unique geodesic of minimal length
connecting x and y. The second equality follows from proposition 3.2.9 with the
identification in (5.1.2) in mind and the third from Proposition 5.3.3. We thus find
for zo.e, Ya,e With d(a e, Ya,e) < I that

H (Tae: 5 (A0 hoe)) @a0)) = H (Yares =5 (A8 (@are ) (o) ) = 0.

Therefore, by Proposition 5.2.5 we find that H satisfies the comparison principle.

Since the collection of measures {, } e satisfies the consistency property as in Def-
inition 3.2.7, it follows from Proposition 3.2.9 (with the identification as in (5.1.2)
in mind) that H(z,p) = Ayy(Tea,p) for all x € M and p € TFM. This shows
that H is continuously differentiable. Hence, Theorem 5.2.11 implies that the se-
quence {Z, }n>1 satisfies in D([0, 1], M) the large deviation principle with good rate
function given by (5.1.3). Since the random variables {Z,,},>1 are almost surely in
D([0,1]; M) and D([0,1]; M) is closed in L ([0, 1]; M), the large deviation principle
also holds in L*([0, 1]; M) with the same rate function. O



158 5. PATH-SPACE LARGE DEVIATIONS IN RIEMANNIAN MANIFOLDS

5.3.3. Proof of Schilder’s Theorem, Theorem 5.1.3

In this section we prove Schilder’s theorem for Riemannian Brownian motion based
on Theorem 5.2.11. The proof is similar as the proof of Theorem 5.1.1.

Proof of Theorem 5.1.3. Let us verify the conditions for Theorem 5.2.11. We cal-
culate H,, and limit H. The process X (¢) solves the martingale problem for the
operator %AM and therefore, X, (t) is generated by %AM. For f € CP(M), we
find

1 - 1
an: 7€_nijM€nf

n 2n
1 1

— _p—nfonf_ 2

= e nlen 2(AMf+n|df|g(m))
1 1

= %AMf+§|df|g(3:)'

Let H < Cy(M) x Cy(M) be the operator with D(H) = CZ(M) and given by
H = 314f[5)
for f e CP(M):
It follows that for all f € C* (M),
lim ||Hyf—Hf|| =0,
n—0o0

implying that H < ex — lim,,_,o H,,. Note that Hf(x) = H(xz,df(z)) for H :
T*M — R of the form H(x,p) = %|p|§($).

Now consider the collection {;}zens of normal distributions as defined in Example
3.2.11. As shown in the example, this collection satisfies the consistency property
in Definition 3.2.7. Furthermore, keeping the identification in (5.1.2) in mind, the
example also shows that

1
logJ e<”’p>,u1 dv :prT = H(z,p).
() = Sl = W p)

As a consequence, by Lemma 5.3.2 we have a good containment function Y. Fur-
thermore, it follows from the proof of Theorem 5.1.1 that for A > 0 and h € Cy (M),
the Hamilton-Jacobi equation satisfies the comparison principle.

Finally, note that H is continuously differentiable. Therefore, by Theorem 5.2.11,
the sequence {X,},>1 satisfies in D([0,1], M) the large deviation principle with
good rate function given by (5.1.5). Since {X,,},>1 lies almost surely in C([0, 1]; M)
and the topology of D([0,1], M) restricted to C([0,1], M) reduces to the uniform
topology, the same large deviation principle holds in C([0, 1], M). O

5.4. A proof of Schilder’s theorem via embeddings

In this section we provide an alternative proof of Schilder’s theorem for Riemannian
Brownian motion on M (Theorem 5.1.3). This approach is relevant for the extension
of Theorem 5.1.3 to the time-inhomogeneous case which we consider in Chapter 7.
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The proof relies on lifting the Riemannian Brownian motion to the orthonormal
frame bundle OM. This lift is a diffusion on OM driven by a Euclidean Brownian
motion. We then embed OM into some Euclidean space and use Freidlin-Wentzell
theory to obtain the large deviations for the embedded process. By the contraction
principle, we then obtain the large deviations for the process on OM, from which
the large deviations for the rescaled Riemannian Brownian motion follow (also by
the contraction principle). We refer to Section 2.3 for the terminology of frame
bundles and horizontal lifts.

Freidlin-Wentzell theory for Stratonovich diffusions

As explained in Section 2.4, in manifolds we work with Stratonovich stochastic
differential equations. Therefore, if we want to carry out the above procedure, we
need to adapt Freidlin-Wentzell theory to the setting of Stratonovich stochastic
differential equations. We have the following result.

Theorem 5.4.1 (Freidlin-Wentzell, Stratonovich version). Let W; be an R'-valued
standard Brownian motion. Let b : R¥ — R¥ and o : R¥ — RF*! be bounded,
Lipschitz continuous functions with Do also Lipschitz continuous. Fiz y € R* and
assume that for any n = 1 the process Y;* satisfies the Stratonovich stochastic dif-
ferential equation
n n 1 n

with Y§* = y. Then the sequence {Y™},>1 satisfies the large deviation principle in
C([0, 1]; R*) with good rate function I given by

I(7) = inf{;JO ¢(t>2dt’so € Hy ([0, 1]; RY),

t t

ww=y+f

0

bos) ds + |

0

sOENHE s (542
Proof. By Theorem 2.4.3, equation (5.4.1) is equivalent to the Ito stochastic differ-
ential equation

l
1
AV = b)Yt + oo 3 Doy (V) (V) e+ —=o(V) W,
j=1

1
—0c
A/n
where o1, ...,0; denote the columns of o.

Now suppose that Yt” satisfies the It6 stochastic differential equation

~ S 1 ~
dYy" = b(Y/") dt + %U(}/tn) dWs
with )70" = y. By Theorem 2.1.15, we find that Yt” satisfies in C([0,1]; R¥) the
large deviation principle with good rate function I as in (5.4.2). To complete the

proof, it suffices to show that the sequences {Y"},>1 and {Y"},>1 are exponentially
equivalent in C([0,1]; R¥).
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Consider the joint law of Y and )70” and the following system of stochastic differ-
ential equations

Ay = b(Y") dt + o5 3, Doy(Y{) o (V) dt + J=o(Y") AW,
dYy" = 0(Y,") dt + oo (Y,") AW,
dZp = b(Yy") dt + o (Y)") dWs,

with Y = Y = Z§ = y.
First note that

A(Zr - Y = —— 2 Do;(Y;")o;(Y;") dt.
Because ¢ and Do are bounded, we can find a constant C > 0 such that
1
|Z¢ =Y < C— (5.4.3)
n

for all t € [0, 1].
Furthermore, we have

AT — Z0) = (V) — b(Y))dt + %wd@”) —o(Y) AW,

If we write B for the Lipschitz constant of b and use the estimate in (5.4.3), we find
that

(V") = b(Y")| < BIY;" - ¥,"|
B(Y" = 2" + |27 = Y"))
B

V(Y = 20+ |2 - Y)Y

NN

N

~ 1 1/2
<B\/§<1§"—Z§‘2+02n2) .

A similar estimate holds with o instead of b. But then it follows from Lemma 5.6.18
in [29] that for 6 > 0 we have

2
lim sup — logP( sup |Y," — Z'| = ) < limsup K + log (CQC> = —.

n—ow N 0<t<1 n—o + n262

This shows that that the sequences {Y"},>1 and {Z"},>, are exponentially equiva-
lent in C([0, 1]; R¥). Furthermore, it follows from (5.4.3) that the sequences {Y"},,>1
and {Z"},>1 are also exponentially equivalent in C([0,1]; R¥). We conclude that
the sequences {Y"},,>1 and {Y"},,>; are exponentially equivalent in C([0, 1];R¥) as
desired. O
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Proof of Theorem 5.1.3 using embeddings

The proof we present here is an adaptation of the proof given in Section 6 of [63].
Before we give the proof, let us first provide a short overview.

Define X{* = X,; with X; a Riemannian Brownian motion. Observe that the
horizontal lift U* of X" satisfies the stochastic differential equation

AU = H;(U") o AW, (5.4.4)

with Uy = up € Oy, M. Here, W = ﬁWt with W, an R¥-valued standard Brown-
ian motion. Using Whitney’s embedding theorem, we can embed OM smoothly into
a Euclidean space RY and push-forward equation (5.4.4), making use of proposition
2.4.9 to relate the solutions. This results in a stochastic differential equation on RY
driven by a FEuclidean Brownian motion, the solution of which remains inside the
embedding of the manifold.

In order to obtain the large deviation principle, we first restrict the vector fields
in equation (5.4.4) to a compact set using bump functions. This assures that the
diffusion matrix of the pushed-forward equation in RY is smooth with compact
support. This in turn allows us to apply Freidlin-Wentzell theory in Euclidean
space, giving us the large deviation principle in C([0,1];RY). By the contraction
principle, this also gives us a large deviation principle for {U"},>; in C([0,1]; OM)
and hence also for {X, },>1 in C([0,T]; M), at least if we restrict to some compact
set. We remove this restriction by letting the compact set grow and using a compact
containment argument (Proposition 5.2.10). Let us provide the details.

Proof of Theorem 5.1.83 using embeddings. Fix uy € Oy, M and for every n > 1, let
U{* be the solution of 4
AU = H;(U}) o dW,™"

with U = ug. Here, W;" = —= with W; a standard R*-valued Brownian motion.
It follows from the proof of this theorem given in Section 5.3.3 that we can apply
Proposition 5.2.10 to obtain for every a > 0 a compact set K, < M such that

1
lim sup - log P(X}* ¢ K, for some t € [0,1]) < —a.

n—o0

The sets can be chosen to be increasing and such that |, Ko = M.
Let vo : M — R be a smooth function with ¢, = 1 on K, and with compact
support. We extend ¢, to OM by defining it to be constant on fibers. Abusing
notation, we call this extension ¢, as well. Consider the process U;"® in OM
satisfying A

AU = oo H;y(U;"Y) o dW,™" (5.4.5)
with Uon,a = Ug.
By Whitney’s embedding theorem there exists an N € N and a smooth embedding ¢ :
OM — R¥. We push (5.4.5) forward to t(OM) to obtain the stochastic differential

equation 4
AV = L (pa H) (V) 0 AW (5.4.6)
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with V5" = t(up).

Because ¢, has compact support in M, the continuity of ¢ implies that the vector
fields ¢4 (¢ H;) have compact support. Since ((OM) is closed in RV, they can be
extended to smooth, compactly support vector fields on RY, which we denote by

L*ml) This gives us the following stochastic differential equation on RV:

AV =t Hi) (V") 0 AW

with ‘70”’“ = t(ug). Since the diffusion matrix is smooth with compact support, it
follows from Theorem 5.4.1 that {V"™%},~; satisfies the large deviation principle in
C([0,1]; RY) with good rate function

1
) =t {5 [ a0k at | g € ([0, 1R,
F(0) = o), f(8) = ' (Oa(eali(F1)}

Since f(0) = t(up) € L(OM), the existence of such a g as in the rate function implies

that f([0,1]) € «(OM), because the vector fields L*mz) are tangent to ((OM)
at points of ((OM). For this, a similar proof (but adjusted to the deterministic
case) as that of [57, Proposition 1.2.8] can be used. Hence, I3y is infinite outside
C([0,1];.(OM)). Since the latter is a closed subset of C([0,1];RY) (as t(OM) is
closed in RY), we conclude that {V}, o }n>1 satisfies the large deviation principle in
C([0,1]; :(OM)), where the rate function Ifonry is simply the restriction of Igy.

Now observe that as ¢ is diffeomorphism, by Proposition 2.4.9 we have that +(U;"®)
solves (5.4.6) with initial value ¢(ug) if and only if U"® solves (5.4.5) with initial
value ug. Therefore, by the contraction principle (Theorem 2.1.6) we find that
{U™*},,>1 satisfies the large deviation principle in C([0,1]; OM) with good rate
function given by

IS (h) = L(OM)(L oh)

1 L
= inf {QJ ‘g(t)h%&k de ‘ ge Hé([07 1]aRk)v Lo h‘(O) = L(’LLO),
0
d i
(oM @) = 3" )es(patls)(oh(t)) -
Now observe that since ¢ is a smooth embedding, we have

Lo R)E) = 5 (B (a0 h(1)
if and only if . ‘
h(t) = 6 (1) pu ) (h(1).

But then we can rewrite the rate function 1§,, as
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Tas(h) = inf {5 [ a0 at | g (0.1,
B(O) = w0, h(t) = §'(6)(aH) (1))}

Now, if there exists a g € HL([0,1];RF) such that A(t) = §i(t)(waH;)(h(t)), then
h(t) is horizontal for every ¢ € [0,1]. This implies that h is a horizontal curve. It
follows that I§,,(h) can only be finite if h is a horizontal curve in OM.

Now define X;"* = «w(U,”"). By the continuity of 7, the contraction principle
(Theorem 2.1.6) implies that {X™“},>; satisfies the large deviation principle in
C([0,1]; M) with good rate function I{;(f) given by

15(f) = it {18,,(f) | f € C(0,1]: OM) with m(f) = f .

We now show how to simplify this expression when f([0,1]) € K,. As discussed
above, IgM(f) can only be finite if f is horizontal with f(0) = u. This implies that
it suffices to consider the horizontal lift Ay of f. Furthermore, since f([0,1]) € K,
we have that ¢, (f(¢)) = 1 for all ¢ € [0,1]. Therefore, to compute I3,,(hs), we
need to consider the unique curve g : [0,1] — R* such that izf (t) = g*(t)H; (h(t)).
In particular, g is the anti-development of f via the frame ug. From this it follows
that

1
) =3 | oo

where g is the anti-development of f. Furthermore, we have that g(t) = h;l(t) f(t)
for every t € [0,1]. Using that hy(t) is an orthonormal frame and thus an isometry,
we find that

9Ol = B7 (O F Olrx = £ ()]s

This shows that, at least for f such that f([0,1]) < K,, the rate function I, is
given by

1) =3 | 1F0Ra

Finally, we show how to remove the restriction to compact sets. For this, let 7™
be the exit time of X' from K,. Observe that by definition of X;"* we have that
X and X, agree up to time T™.

Let us first prove the upper bound of the large deviation principle for {X"},,>1. For
this, let FF < C([0,1]; M) be closed. Then

+P(X" € FIT™™ < 1)P(T™* < 1)
X"e F, T > 1) +P(T™* <1)

X e F,T™ > 1) + P(T™ < 1)

X" e FnC([0,1]; Ky)) + P(T™ < 1).
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Using this, we find for every a > 0 that

1
limsup — logP(X" € F)
n

n—0o0

1
< limsup —logP(X"™* e F n C([0,1]; Ko) + P(T™ < 1)
n

n—0
1 1
= max {lim sup — logP(X™* € F n C([0,1]; K,,),limsup —P(T™* < 1)}
n—oo N n—oo N
I]%[(f)a —Oé}

< max{— ]10211; I (f), —a}.

< max{— inf
feFnC([0,1];Ka)

Here, the last line follows from the fact that on C([0,1]; K, ), the rate function I§,
coincides with I;. Letting a tend to infinity proves the upper bound.

It remains to prove the lower bound. Let G < C([0, 1]; M) be open. Fix g € G and
take § > 0 such that B(g,d) € G. Furthermore, since the sets K, are increasing with
U, Ko = M, there exists an o > 0 such that g([0,1]) is contained in the interior
of K,. By possibly shrinking §, we then have for all h € B(g,d) that h([0,1]) is
contained in the interior of K,. From this it follows that

P(X™ € B(g,0)) = P(X™% € B(g,0)).

Indeed, by continuity, X™* and X" can only be different if X™ hits the boundary of
K. However, since h([0,1]) is contained in the interior of K,for every h € B(g,d),
this does not occur.

Using this, we find that

1 1
liminf —logP(X" € G) > liminf — log P(X™ € B(g,d))

n—w n n—w N
1
= lim inf — log P(X™* € B(g,0))
n—w n
> —Ii(9)
=—Im(9)-

Here, the third line follows from the large deviation principle for {X™%},>1, while
the last line follows from the fact that I (g) = In(g) for g € C([0,1]; M) with
9([0,1]) € K,. As the above holds for all g € G, this proves the lower bound.

Finally, to see that Ijs is a good rate function, note that Ip; = inf, I§; and that
the I, are good rate functions. O

Remark 5.4.2. If the Ricci curvature is bounded from below, we can replace the
compact containment argument by a more explicit estimate of the exit probability
P(T™* < 1). More precisely, one can use [63, Proposition 3.7] to obtain that

1 (kLn_17%a2)2
P(T™* <1) <2 2" o7 .
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Here k is the dimension of the manifold and L is the lower bound on the Ricci
curvature.

Remark 5.4.3. In a similar way as done in the final step of the above proof, one
can also show that the large deviation principle holds for {U™},,>1 and not only for
{U™*},,>1. Indeed, since horizontal lifts are unique, the fact that X/ and X;"*
agree up to time 7™ implies that U}* and U;"® agree up to time T™.

To prove the upper bound, let F < C([0,1]; OM) be closed. A similar estimate as
above shows that

P(U" € F) < P(U* € F ~ C([0,1]; OK,)) + P(T™* < 1).

Here,
OK, ={ue OM|ru e Ka}.

Noticing that Ioa(h) = I, (h) whenever h([0,1]) € OK,, a similar argument as
above proves that

1
limsup ~log P(U}" € F) < — inf Tonr(h).
€

n—oo N

For the lower bound, let G < C([0,1]; OM) be open. Fix g € G and ¢ > 0 such that
B(g,d) < G. Note that there exists an a > 0 such that for all h € B(g,d) it holds
that 7h([0,1]) € K, where we possibly have to shrink ¢. By a similar argument as
in the proof above, we obtain also the lower bound.

5.5. Concluding remarks

We conclude this chapter by discussing some directions in which the results from
this chapter may be extended.

First of all, the discussion of the conditions of Cramér’s theorem for geodesic ran-
dom walks (Theorem 3.3.1) in Section 3.7 are also relevant for Mogulskii’s theorem
(Theorem 5.1.1). As for Cramér’s theorem, it is expected to be possible to replace
the boundedness of the increments with an assumption on their moment generating
function.

Another interesting problem to consider is that of deducing Mogulskii’s theorem for
geodesic random walks from Cramér’s theorem. It should be possible to follow a
similar approach as in the proof of Mogulskii’s theorem given in Section 5.1 of [29].
This gives two main difficulties. First of all, in comparison to Lemma 5.1.7 in [29],
we need to show that the piecewise geodesic approximation of the geodesic random
walk is exponentially tight in C'([0,1]; M). Second, we also need to show that the
rate function obtained from the projective limit theorem has the desired form, see
Lemma 5.1.6 in [29].

Furthermore, as already mentioned in Section 5.1, there is also reason to believe
that Schilder’s theorem for Riemannian Brownian motion can be obtained from
Mogulskii’s theorem. The only problem is that the ‘increments’ of Riemannian
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Brownian motion are only asymptotically normal. Therefore, the main obstacle is to
prove that a piecewise geodesic approximation with normal increments of a rescaled
Riemannian Brownian approximates it well-enough on the exponential scale.

Finally, we can also consider Freidlin-Wentzell theory for diffusions on manifolds
driven by a Euclidean Brownian motion. More precisely, we can consider processes
X™ on M satisfying

X7 = b(X7)dt + %Vi(Xt") o AW,

This might even be pushed further, and consider stochastic differential equations
driven by a Riemannian Brownian motion. We refer to [36] for the definition of
such equations. For the case where the driving Brownian motion is Euclidean,
both approaches we discussed in this chapter are suitable for studying the large
deviations for {X™},>1. In particular, the approach using embedding can be applied
immediately without having to lift the process to the frame bundle, as in the case
for Riemannian Brownian motion.
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Large deviations for
time-inhomogeneous
processes

In this chapter we temporarily leave the geometric setting and aim to extend the
classical results in large deviation theory into another direction. More precisely, we
study the large deviation behaviour of random walks in Euclidean space with time-
inhomogeneous increments. Furthermore, we also look at a time-inhomogeneous
Schilder-type theorem by considering the process generated by a weighted Lapla-
cian, where the weight depends on time. The main purpose of these results is to
get a first look into large deviations for time-inhomogeneous processes and serve
as a starting point for considering also time-inhomogeneous processes in a geomet-
ric setting. A first step in this direction is taken in Chapter 7, where we consider
Schilder’s theorem for Riemannian Brownian motion in a time-evolving Riemannian
manifold.

This chapter is organized as follows. We first prove the large deviation principle for
rescaled random walks with time-inhomogeneous increments in Section 6.1. This
gives us the analogue of Cramér’s theorem. It turns out that under suitable as-
sumptions, this is a direct consequence of the Gértner-Ellis theorem.

Next, in Section 6.2 we obtain the path space large deviations for random walks
with time-dependent increments by following a similar approach as in the homoge-
neous case. Indeed, following the approach in [29, Section 5.1], we obtain the large
deviations via the projective limit theorem of Dawson and Gértner. However, to
prove that the rate function takes on the desired form requires slightly more work
than in the homogeneous case.

We conclude this chapter by considering an inhomogeneous Schilder-type theorem
in Section 6.3. Since the process we consider for this is Gaussian, the result is a
special case of Theorem 3.4.5 in [30]. However, we provide an alternative proof
by showing how to obtain this result from the path space large deviations for
time-inhomogeneous random walks. Furthermore, this result serves as a connec-
tion between this chapter and the next one, where we treat Schilder’s theorem for

169
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Riemannian Brownian motion in an evolving Riemannian manifold.

6.1. Large deviations for time-inhomogeneous ran-
dom walks

Consider a collection {Mt}te[o,l] of probability measures on R%. Using this, we con-
struct a time-inhomogeneous random walk. For every n € N, we define n indepen-
dent random variables X7, ..., X, where X" is distributed according to p:. Next,

we consider the rescaled random walk
1 n
Ty = — X, 6.1.1
DI (6.1.1)

We refer to the sequence {Z,, },>1 as the time-inhomogeneous random walk associated
to {pt}iero,1-

For a collection {,ut}te[o,l] of probability measures on R?, we denote by A, the log-
moment generating function of uy, i.e.,

A:(N) = log J

ey (da).
Rd

Using the Gartner-Ellis theorem, we obtain the following time-inhomogeneous ver-
sion of Cramér’s theorem.

Theorem 6.1.1. Let {1 }1e[0,1] be a collection of probability measures on R?. For
every n € N, let Z, be the random variable defined in (6.1.1). Assume that A¢(N\)
is finite for all A\ € R? and t € [0,1]. Furthermore, assume that the map t — Ay()\)

is continuous for every A € R%. Finally, assume that the map \ — Sé A(N)dt is
differentiable. Then the sequence {Zy,}n>1 satisfies the large deviation principle in
R? with good rate function

I(z) = sup {<)\,x>— L A dt}. (6.1.2)

AeRd

Proof. We start with the following computation

1 13 n
—logE (e”<’\’Z">> =— Z logE (e<)"Zi >)
n n

=1
1 n
= ; As(N).

Since t — A¢(\) is continuous, we find that

1 1
A(N) := lim —logE (e"<A’Z">) = J A(N) dt.

n—o N 0
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Since A(M) is differentiable by assumption, the Gértner-Ellis theorem (Theorem
2.1.12) implies that {Z,,},>1 satisfies the large deviation principle in R? with good
rate function given by

I(z) = A*(2) — sup {<)\ ) — J-At dt}

AeR4
O
Remark 6.1.2. For the rate function I in (6.1.2) we have the upper bound
0 [ i
where A} is the Legendre transform of A4, i.e.,
Af () = sup {(\, z) — A(N)}-

AeR?

However, in general, equality need not hold. As an example, one can take d

=1
and consider s = N(0,1+¢). Indeed, in this case, A;(\) = 1(1+¢)A? and Af(z) =
ﬁx? Furthermore, we find that

1

r Ay(N)dt = [ixz(l +t)2] = %)\2

0 0
from which we can compute that
3 1
I(x) =su )\x—)\Q}=x2.
() = sup { i 3

On the other hand,
1

f A¥(x —[ T 10g(1+t)] = %10g(2)x2

0
We conclude that

1 1 !
I(z) = 527 < § log(2)2” = L AF(a) dt.

6.2. Large deviations for trajectories of time-inhomogeneous
random walks

We now turn to the path space large deviation result accompanying Theorem 6.1.1.
To this end, let Z,(t) be the trajectories associated to the random variables in

(6.1.1), i.e
1 [nt]
== X 6.2.1
- ; i (6.2.1)

for t € [0,1]. Our aim is to prove the following theorem.
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Theorem 6.2.1. Let {1 }se[0,1] be a collection of probability measures on R¢. For
every n € N and t € [0,1], let Z,(t) be the random wvariable defined in (6.2.1).
Assume that Ay(\) < oo for all A € R? and t € [0,1]. Assume furthermore that the
map (t,\) — A(N) is continuous. Also assume that for every r € [0,1], the map
A — Sg A:(N) dt is differentiable. Then the sequence {Z,(-)}n>1 satisfies the large

deviation principle in L* ([0, 1];R?) with good rate function given by

Ity) = {sé AF((D) dt, € ACH([0,1];RY),

) (6.2.2)
0, otherwise.

To prove Theorem 6.2.1, we follow the approach taken in [29, Section 5.1]. We first
establish a variety of preparatory results, from which Theorem 6.2.1 will follow.
Before we get to these results, we first need to make some more definitions. We
define the space X by

X ={f:[0,1] > R*| f(0) =0}, (6.2.3)

equipped with the topology of pointwise convergence, i.e., the product topology.
Furthermore, let Z,, be the piecewise linear approximation of Z,, i.e.,

Zn(t) = Zn(t) + (t - lnntj) D (i (6.2.4)
for ¢ € [0, 1].

We start by showing that the large deviations for {Z,(-)}n>1 are the same as for the
piecewise linear approximations {Z,(-)},>1. Before we can do this, we first need a
technical lemma.

Lemma 6.2.2. Let {ji}c0,1] be a collection of probability measures. Assume that
A:(\) < o0 for all X € R and t € [0,1]. Assume furthermore that t — Ay()\) is
continuous for every A € R?. Then

sup E,, (eO"X') <

te[0,1]
for every a > 0.
Proof. Since A;()) is continuous in ¢, so is E,,, (e<)"X>). Hence, the compactness of
[0,1] implies that

sup E,, <e<)"X>> < © (6.2.5)
te[0,1]

for all A e R%.
Furthermore, we have that

d
E,, <6a|X|> <E, (H eaxz)
i=1
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1
I\ d
<TTE,. (ead\X1|)

—

i=1

1

(B (€5) +B,, (e

::]&

<
1

.
I

Here, the second line follows from Holder’s inequality. Using this, we find that

te[0,1] te0,1] te[0,1]

d d
a5 () < T s B (050 4 s (000 ) e
i=1

where the latter is finite by considering the vectors A\; = tade; in (6.2.5), with
e1,...,eq the standard basis of R?. O

We can now prove that the sequences {Z,(-)}n=1 and {Z,,(-)}n>1 are exponentially
equivalent.

Proposition 6.2.3. Let the assumptions of Theorem 6.2.1 be satisfied. For ev-
eryn =1 and t € [0,1], let Z,(t) and Z,(t) be the random variables defined in
(6.2.1) and (6.2.4) respectively. Then the sequences {Zn()n=1 and {Z,(-)}n=1 are
exponential equivalent in L ([0, 1];R9).

Proof. Note that |Z,(t) — Z,(t)| < |X wij+1| for every t € [0,1), while Z,(1) —

Z,(1) = 0. Using this, together with the union bound and Markov’s inequality, we
find that

P ( sup |Z,(t) — Z,(t)| > 6) ZIP’ | X7 =
i=1

te[0,1]
< e nd Z E <€)\|X,'i"\)

e—)\né Z i

where
My()\) =E,, (elel) .

This implies that
te[0,1] te0,1]

P < sup |Zn(t) — Zn(t)| > 5) <ne 0 sup M;(\),

where the upper bound is finite by Lemma 6.2.2. It follows that

%logP ( sup |Zn(t) — Zn(t)| > 6) —A6 + — logn + = - log ( sup Mt()\)> ,

te[0,1] te[0,1]
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from which we obtain

lim sup 1 logP < sup |Zn(t) — Zn(t)| > 5) < — M.

n—ow N tel0,1]
The claim follows by considering the limit A — oo. O

Next, we show that the piecewise linear approximations {Z,(-)}n>1 satisfy the
large deviation principle in X. For this, we first use Cramér’s theorem for time-
inhomogeneous random walks (Theorem 6.1.1) to prove the large deviation princi-
ple for the finite dimensional distributions. We then obtain the path space large
deviations by using the projective limit theorem of Dawson-Gértner (see [28] and
also [29, Theorem 4.6.1]). The most work goes into proving that the rate function
has the desired form.

Proposition 6.2.4. Let the assumptions of Theorem 6.2.1 be satisfied. For every
n =1 andte[0,1], let Z,(t) be the random variable defined in (6.2.4). Finally,
let X be the space defined in (6.2.3). Then {Z,(-)}n=1 satisfies the large deviation
principle in X with good rate function given by (6.2.2).

As mentioned above, before we can prove this, we first have to prove the large
deviation principle for the finite-dimensional distributions.

Proposition 6.2.5. Let the assumptions of Theorem 6.2.1 be satisfied. For ev-
eryn =1 and t € [0,1], let Z,(t) be the random variable defined in (6.2.1). Fi-
nally, let 0 = tg < t1 < -+ < tp < 1 be a partition of [0,1]. Then the sequence
{(Zn(t1), Zn(ta), ..., Zn(tr)ns1 satisfies the large deviation principle in (RY)* with
good rate function

ti—1

I(xy,...,2x) = Z sup {O\,xl —x_1)— l Ar(N) dL‘}7

where xg = 0.

Proof. Following the proof of Theorem 6.1.1, we find that for s < r, the sequence
{Z(r) — Z,,(8)}n=1 satisfies in R? the large deviation principle with rate function

Io)(2) = sup {</\,x>— J A dt}.

AeR4
Here, one uses that A — Sz A+(N) dt is differentiable, which follows from the assump-
tion that for every 7, the map A+ {i A¢()) dt is differentiable.
Now, since the increments of Z,(-) are independent, we find that {(Z,(t1), Z,(t2) —
Zn(t1),y .oy Zn(ty) — Zn(tp—1))}n=1 satisfies in (RY)* the large deviation principle
with rate function

k
It17~--7tk (‘Tlv s 793k) = Z Itlflutl (xl)
=1
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Applying the contraction principle, we find that {(Z,(t1), Zn(t2),..., Zn(tk)}n>1
satisfies in (R?)* the large deviation principle with good rate function

Iz, k) = Iy g (@1, 0 — 1,00, T — Ti—1)

k 0
= > sup {</\,sz —X_1) — At(N) dt}

as desired. 0

In order to prove that the rate function given by the projective limit theorem of
Dawson-Gértner is of the desired form, we need the following technical lemma.

Lemma 6.2.6. Let the assumptions of Theorem 6.2.1 be satisfied. Define Ay = Ag
fort <0and Ay = Ay fort >1. Let H: (Nu {0}) x R x R x R — R be given by

s+%
H(k A\ 2, 5) = O\, 2) — kj T AN dt,

S

and set
H(oo, A\, x,8) =\ x) — As(N).

Then H is continuous as function of four variables.
Proof. Let (kn, An,Zn, sn) — (k, A, 2,8). We show that

Um H(kn, A\n, X, sn) = H(k, A x, 8).

n—0o0

Since the inner product is continuous, we have
lim O,y )y = O\ ).
n—oo

For the other term, we consider two cases. First assume that k < c0. Then there
exists and N such that k, = k for all n > N. Since (t,\) — A;()) is continuous, it
is bounded on compact sets and hence, we find by dominated convergence that

Snt i s+
Jim MO\ df — f AN dt.

n—0o0

Sn s

Now consider the case k = 0. Since (¢, A) — A¢()) is continuous, by the mean value
theorem, there exists for every n € N a &, € (sp, sn, + ,%) such that

s,ﬂrﬁ
kn J At(>‘n) dt = Aén O\n)

Sn
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Because s,, — s and 1% — 0, we find that lim, . &, = s. Again using the continuity
of (t,A) — A4(N), we conclude that

n—0o0

s,L+,T”
lim knf A(An)dt = lim Ag, (An) = As(N)
n—oo Sn
as desired. O
We are now able to prove Proposition 6.2.4.

Proof of Proposition 6.2.4. By combining Propositions 6.2.3 and 6.2.5, we find that
{(Zn(t1), ..., Zn(tr)}n=1 satisfies in (R?)* the large deviation principle with rate
function

t;
Itl,...,tk (xlv Z sup {<>\ x, — xl—1> _J At(A) dt} .
ti—1

—1 MeRd

Following the proof of [29, Lemma 5.1.6], the projective limit theorem of Dawson-
Gartner ([29, Theorem 4.6.1]) implies that {Z,(-)},>1 satisfies in X the large devi-
ation principle with good rate function given by

Ix(7) = sup Ty (0(E2)5 5 v (1)

O=to<ti<---<tp<1
k

s Zsup{<x\ V() = A(t1) J AN dt}
O=to<t1<--<tp=1;_7 AeRd

Here, in the last line we can take t;, = 1, since the functions involved are nonnegative.

We are done once we show that Iy = I, where I is as in (6.2.2). We first prove that
Iy < I. If v is not absolutely continuous, then I(y) = 00 and certainly Ix(y) < I(y).
If ~ is absolutely continuous, then

Z sup {<A A1) = A(t11)) f A dt}

—1 MeRd

—Esup <A7 ) — A(N)dt

=1 AeRd t—

2 j sup {0 4(1)) — AV} dt

-1 AeRd

- f AZG(0)) dt
=1(v)

For the reverse inequality, first consider the case where v is absolutely continuous.
For k € N, define the points t; = % Then

Ix(v) = 253@ {<A,v (i) — <lkl)> - f(ll/kl)/k Ay(N) dt}
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i nm (1 (1) - (5[ aovaef.

Now define for s < r the function

1

r—Ss

Fs 7(A) =

)

f At ()‘) dt7
together with its Legendre transform

Fo(a) = sup {Az) = For (M)}

With this notation, we can write the above estimate as

Ixv(y) = ;;F;ﬁki (k [7 (li) — (121)]) . (6.2.6)

Now define the function

[kti{»l
Gk(t) = Fh |kt]+1 <kf ’Y(U) du> ,
ok

Lkt]
E

and set Gi(1) = Gy, (%) Then the inequality in (6.2.6) may be rewritten as

Ix(v) = JO G (t) dt.

‘We will show that
liminf G (t) = Af (3(t)).

k—o0

To this end, consider the function H : (N U {o0}) x RY x RY x R — R as in Lemma
6.2.6 and define the function H* : (N U {o0}) x R? x R — R by

H*(k,z,5) = sup H(k,\, x,s).
AeRd

Because H is continuous by Lemma 6.2.6, it follows that H* is lower-semicontinuous.
Now note that

|kt]+1

Gh(t) = H* <kkﬁj i) du,UZJ> .

Since H* is lower-semicontinuous, we find that

k—o0 k—o0 %

|kt]+1
Letl+t
liminf G(t) > H* (oc, lim inf k:f A(u) du, t)

= H*(OO,’.}/(t), t)
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= sup {\,F(1)) — A(N)}

AeR4
= A7 (3(1)).
Here, the second line follows from the Lebesgue differentiation theorem, because
i e L\ (], 1]; ).
It now follows from Fatou’s lemma that

1
Iy hmmff Gr(t J lim inf G (¢) dt f AF(y(t)) dt,
0

k—o0 k—o0 0

which shows that Ix(v) = I(y) whenever v is absolutely continuous.

It remains to prove that if v is not absolutely continuous, then Iy (y) = o0. Since
7 is not absolutely continuous, given § > 0, we can find a sequence {0 < ¢} < s} <
CS ) < Sk S 1} of partitions, such that

k(n)

TLIETOIOZ(SI —t') =0,

=1

while
k(n)

> st =) = 6.
=1

For these partitions we have

k(n)

Lx(y) = ), sup {O,’Y(S?)W(t?» ) At(/\)}-

=1 AeRd t;L

Indeed, this follows from the fact that for every n > 1 and every 1 <[ < k(n) we

have that
tl+1
sup < A\ () — (1) — J =0
AeR4

by considering A = 0.

If we now consider \; = p% whenever y(s]') — (¢]') # 0, we find that

k(n)

Lx(v) > )] {0177(87) =) — ) At()\z)}

=1 t

>p Z [v(st') = (&) = l sup At()\)] D (s —tp).
=1

0<t<1,|A\|=p
Now, because (¢, A) — A4()) is continuous, we have that supg<;<i |zj—, At(A) < 0.
Therefore, we find that

k(n) k(n)
Ix() > tmswp (9 Y b(st) - (tm—l sup At<A>]Z<s7—t7>

=1 0<t<L,|A[=p =1
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= pd.
Since p > 0 is arbitrary, the result follows by letting p tend to infinity. O

We have now shown that {Z,(-)},>1 satisfies the large deviation principle in X. In
order to prove that the large deviation principle also holds in the supremum norm
topology, we need to prove that {Z,(-)}n>1 is exponentially tight in Cy([0, 1]; R?).

Proposition 6.2.7. Let the assumptions of Theorem 6.2.1 be satisfied. For every
n =1 andtel[0,1], let Z,(t) be the random variable defined in (6.2.4). Then the
sequence {Z,(-)}n=1 is exponentially tight in Co([0,1]; R9).

Proof. If X is and R%valued random variable with distribution s, then we write
e,; for the distribution of X7, the j-th coordinate of X. Furthermore, we denote
by A¢; the log moment generating function of the distribution g ;.

Now, given a > 0 and n > 1, consider the sets

K, = {’ye AC([0,1];RY) |y

—OJ‘A[ntJ '}/t dtSa}

for j = 1,...,d. Furthermore, define the sets

0
- U K7
n=1
and set
d
=) K2
j=1

Then
B(Zu() ¢ Ka) < duiaxP(Z, () ¢ K3).

dZ,(t) _
dt Xf’LﬂtJ+

P(Zn() # K3) <P(Za() ¢ K, )

Furthermore, since , almost everywhere, we find that

for every j = 1,...,d and every n > 1. Estimating further, we have

1 e SYL AT, ()
IP’(nZA’{‘TLlJ(Xl’])>a>=IP’< T* >e5>

SYIL AT, (X))
< efnéaE < Tl i )
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n SA* (XM
_ 1—1 1
= e o HE (e o .
I=1

Here, the second line follows from Markov’s inequality and the last line from the
independence of the increments.

Now, since Xl"’j has distribution i1 i it follows from [29, Lemma 5.1.14] that for

6 < 1 we have _
1-6

Combining everything, we find that

2
hmsup logIP’ ( Z A X”’J ) > a) < —da + log <1_6> ,

n—o0

from which we conclude that

. . 1 IS *# n,j —
(}L{réollnmj;pﬁlogp <nZAl;1,j(Xl )>a | =—own.

Since

it follows that

lim limsupP(Z,(-) ¢ Ko) = —0.

a—=0 pow
It remains to show that K, is relatively compact. Since K, = ﬂ?=1 K7 it is suffi-
cient to show that K7 is compact for arbitrary j. By the Arzela-Ascoli theorem, it
suffices to show that K7 is bounded and equicontinuous. We first prove equiconti-
nuity of K7, since boundedness will be a consequence of one of the estimates.

Let v e KJ, be arbitrary. Then there exists an n > 1 such that

J A"‘MJ (3(t)) dt < .

First, let Tl s <r < +. By Jensen’s inequality, we have

z
n

b, (12229) [ 00

1 T .
| At G a

r—S
«

<

S

)
T—S

where in the last line we used that fact that A}, is nonnegative for all ¢ € [0, 1].
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Now, since

Afj(x) =sup {dz — A j(N)},
AeR
by considering A = M or A = —M, we find that
Af’j(x) > M|z| — max{A; (M), A ;(—M)}

for all M > 0. Using this, we have

[y(r) = (s)]
(f AL, () dt+ (= s)max{A%j( ), Alnld(—M)}) . (6.2.7)
If we simply have that 0 < s < r < 1, we find by the triangle inequality that
() = ~(s)]
[nr]
() 8 () ()b ()]

I=|ns|+1

Now, we wish to find a choice for M, such that we can estimate the second term in
(6.2.7) independent of I. For this, we need to show that for any 6 > 0, there exist
M;(6) > 0 satistying lims_,o M;(d) = o0 and such that

| =

AgOGO) < 5 Au(-M(6) <

for all ¢ € [0,1]. To this end, note that (¢, \) — A, ;(\) is continuous, and hence,

is lower-semicontinuous. As a consequence, the sets {A; < %} are closed, and
increasing to R. From this it follows that we can find a sequence M;(d) with
lims_,o M;(6) = oo and such that

A;(M;(6)) < Aj(=M;(0)) <

1
6 b
Since A¢ ; < Aj, the sequence has the desired properties.

Now, given r > s with r — s < §, using the sequence M;(§) constructed above, we
find that

[v(r) = ()]
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[nr]
+ )

P() el 2 PR Gl b= (5)

N

N

(6.2.8)

Here, in the last line we used the fact that v € K, , and the fact that r — s <.
Now, since lims_,o M;(d) = o0, given ¢ > 0, we can choose § > 0 independent of v
such that % < ¢, in which case |r — s| < § implies that |y(r) — v(s)| < e. This
proves the equicontinuity of K.

To prove the boundedness of K, we can take s = 0 and § = 1 in (6.2.8), giving us

that
a+1

M;(1)

(@] = () =2(0)] <

Here, we used that v(0) = 0. We find that ||v]]0 < % for all v € K4, hence K,
is bounded. ' O

With all the preparations done, we can prove Theorem 6.2.1.

Proof of Theorem 6.2.1. By Proposition 6.2.4 we find that the sequence {Z,,(-)}n>1
satisfies the large deviation principle in X with good rate function I as in (6.2.2).
Now observe that the rate function I is infinite outside Cy([0,1];R?). Further-
more, for every n, Z,(-) is almost surely contained in Cy([0,1]; R%). Therefore, by
Lemma 4.1.5 in [29] we find that {Z,(-)},>1 satisfies the large deviation principle
in Cy([0,1]; RY) with the topology of pointwise convergence. Because the sequence
{Z(-)}n=1 is exponentially tight in Cy([0,1];RY) with the supremum norm topol-
ogy by Proposition 6.2.7, we can strengthen the large deviation principle to this
space. Since Co([0,1];R?) is closed in L ([0, 1]; R?), we conclude that {Z,(-)}n>1
satisfies in L®([0, 1];R?) the large deviation principle with rate function I. Fi-
nally, by Proposition 6.2.3, {Z,,(-)}n>1 is exponentially equivalent in L* ([0, 1]; R)
t0 {Zn(-)}n>1. From this we conclude that {Z,(-)},>1 satisfies in L= ([0, 1]; R%) the
large deviation principle with rate function I as desired. O
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6.3. Inhomogeneous Schilder-type theorem

In [93], Schilder’s theorem is extended to hold also for processes generated by
weighted Laplacians, i.e., operators of the form

1 d
A= > Gijoio;

4,j=1

for some positive definite matrix G. One can view this process as a Riemannian
Brownian motion when we equip R? with the inner product (v,w)q = (v, G"1w).
In this section we prove the time-inhomogeneous analogue of this.

To this end, consider a collection {G/(t)}e[0,1] of symmetric, positive definite matri-
ces depending continuously on ¢. Define the operators

for t € [0,1]. We say a process W(t) is generated by the time-dependent operator
Ay if for every f e C*(R?) we have that

t

FOV (1)) — FW(0) — j A f(W(s)) ds

0

is a martingale. A continuous process W (-) generated by A; with W(0) = 0 is called
a G(t)-Brownian motion on R?. Such a process exists, since we can take

W(t) = L VG@® dB(b),

where B(-) is a standard R%valued Brownian motion. From this observation we
obtain the following property of a G(t)-Brownian motion.

Proposition 6.3.1. Let {G(t)}c[0,1] be a collection of symmetric, positive definite
matrices depending continuously on t. Let W (-) be a G(t)-Brownian motion and
let {Fs}sero] be its natural filtration. Then for every s < r, W(r) — W(s) is
independent of Fs and has a multivariate normal distribution with mean 0 and
convariance matriz Cs , = SZ G(t)dt.

Now define for every n > 1 the process W, (t) := ﬁW(t), where W (t) is a G(t)-
Brownian motion. We show that the large deviations for {W,(-)},>1 may be ob-
tained from Theorem 6.2.1. Before we get to the theorem, we remark that Propo-
sition 6.3.1 shows that {WW,(-)}n>1 is a sequence of Gaussian processes with small
covariance operators. Therefore, the result obtained in Theorem 6.3.2 is a special
case of [30, Theorem 3.4.5], which in turn is a generalization of the results in [33].
Their proof is based on the observation that W, (-) can be written as the empirical
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average of independent copies of W (-). The result then follows from Cramér’s the-
orem for Banach spaces, see e.g. [32, 30, 29]. For our method, we do not require
this representation as empirical averages. Additionally, our approach is general in
that it shows how to use random walk approximations to study large deviations for
continuous-time processes in the setting of time-inhomogeneous processes.

We now state a time-inhomogeneous variant of Schilder’s theorem in R? and prove it
using Mogulskii’s theorem for time-inhomogeneous random walks (Theorem 6.2.1).

Theorem 6.3.2. Let {G(t)}4e[0,1] be a collection of positive definite matrices, such
that t — G(t) is Lipschitz. Let W(t) be a G(t)-Brownian motion and define for
every n = 1 the process Wy (t) = ﬁW(t) Then {W,(-)}n>1 satisfies the large

deviation principle in Co([0,1];RY) with good rate function

IW>={;$«%wwu»&a»du 7€ ACo ([0, 1]: RY) 63.)

0, otherwise.

Remark 6.3.3. If we define the inner products (v, w)c(y) = (v, G~ (t)w), the rate
function in (6.3.1) may be written as

|
16) = 5 | I o

whenever v € ACy([0, 1]; R?).

Before we get to the proof of Theorem 6.3.2, we first need some preliminary results.

Proposition 6.3.4. Let {G(t)}c[0,1] be a collection of symmetric, positive definite
matrices depending continuously on t. Let W (t) be a G(t)-Brownian motion and
define for every n = 1 the process Wy, (t) := %W(t) Furthermore, set

n

W (t) = W (l”n”> (6.3.2)

for everyn =1 and t € [0,1]. Then {W,(-)}n>1 and {Wn()},l?l are exponentially
equivalent in L* ([0, 1]; R?).

Proof. First of all, note that by the union of events bound we have

d
~ ~ 0
P( sup [W,(t) —Wy(t)| =0 <EIP’ sup [WL(t) - Wit = —=].
<te[0,1]| ) )l > i1 <t5[0,1]| () )l Ad

Furthermore, for every [ = 1,...,d we have

sup [Wi(t) = Wh(t)| = sup  sup

te[0,1] 0<i<n—1 ge[i itl]

n’ n

n

W) —w! (’)‘
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This implies that

P sup [W(t) — Wl( Z]P’ sup
te[0,1] te[4, 1]

n’ n

W) — Wi (l)’ > 5) .
n d
Now, it follows from Doob’s inequality (see e.g. [37]) that
i 5
P sup Wét—Wé()‘ —=
(te[fl,qtl] ( ) n \/E

< 2]P>< sup @”)‘(lel(f)—wfl(%)) > enAédé)
te[

7]
i) - W, (%) has a mul-
i+l
tivariate normal distribution with mean 0 and covariance matrix %S Lt G(t)de

Therefore, we ﬁnd that Wl (ZH) — Wl (i) has a normal distribution with mean 0

\%

1
- B A(WE(
< 9o~ QE( nA(

for A > 0. From Proposition 6.3.1 it follows that W, (

and variance S Gll t)dt. From this it follows that

i+1

JWA(E)) 2 T

E (enA(W}L(ij’ll

Now, since ¢ — G(t) is continuous, it is bounded on [0, 1]. Therefore, there exists a
constant C' > 0 such that for all ¢ € [0,1] and all [ = 1,...,d we have Gy(t) < C.
Using this bound, we find that

E (e”)‘(W’lL(

L)) < eb0¥

Putting all estimates together, we obtain

~ ., ,
P sup |Wn(t) — Wn(t)| = 5 < 2nd67n)\6d 2 6%6')‘ '
te[0,1]

From this, it follows that for every A > 0 we have

1 ~
limsup — logP | sup |[W,(t) = W,(t)|=4d] < —
n—co N te[0,1]

Letting A tend to infinity now proves the claim. O

The piecewise constant process defined in (6.3.2) can be written as

lntJ

Zl,
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where by Proposition 6.3.1, X" follows a multivariate normal distribution with mean

0 and covariance matrix ngil G(t)dt. In order to apply Theorem 6.2.1, we need

to find a collection {,ut}te[o’l]nof probability measures, such that X is distributed
according to pi—1. Unfortunately, in our case, the distributions will also depend
on n. However,nfor n large, the covariance matrix of X' can be approximated by
G (%) This inspires the following proposition.

Proposition 6.3.5. Let the assumptions of Theorem 6.3.2 be satisfied. For every
n =1, let Wy, (+) be the process as defined in (6.3.2). Let {1:}1e[0,1] be the collection
of measures given by py = N'(0,G(t)). Denote by

|nt]

— Z Y
=1

the time-inhomogeneous random walk associated to the collection {,ut}te[o,l] as de-
fined in (6.2.1). Then (W, ()ns1 and {Z()}n=1 are exponentially equivalent in

“([0,1];RY).

Proof. For every n > 1, let Y{*, ..., Y be independent, with Y;" distributed accord-

ing to pi—1. Define
. 1 N
" Q fofi-1\"*
X'=1|n Git)dt| G < ) Y.
i—1 n

Then X has a multivariate normal distribution with mean 0 and covariance matrix

nS t) dt. Therefore, 1 Zl"t X! equals W, (t) in distribution. Now note that
1 |nt] 1 |nt] 1 [nt] 1 &
SN X =Ny < =N XY < Xr—yn.
n P K3 n /;1 1 n ; | | n ; ‘ K3 1 |

Plugging in the definition of X, we can estimate further to find that

[nt [ntj

PR EING

:\H
1M=
N

Q
o,
~
N~
[N
Q
N
-~
3| |
—
——
|
[N
|
~
=
_3

N
SRS
0=
Q
VR
3|
—_
N——
|
ol

(nj G(t)dt)é -G <Z ; 1)2 [y,

-
Il
—
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Since G(t) is symmetric positive definite, we find that

1G(#®) 2] = |G|~ %.

Because t — G(t) is continuous and ||G(¢)|| > 0 for all ¢ € [0,1], there exists an
n > 0 such that ||G(t)|| = n for all ¢ € [0,1]. From this, we obtain the uniform

bound ]
G 2| < —.
IIG(@)~=]| 7

Furthermore, the continuity of t — G(t) also gives, by the mean value theorem, that
there exists a £ € (==, X) such that

n’n

’ G(t)dt = G(€).

i—1

Using this, together with the fact that ¢ — G(t) is Lipschitz, say with constant
L > 0, we find that

I Gwdt—G(%l)H=HG<€>—G(T>H

<tf-

<12,
n

where we used that £ € (Z 1 i'). Now, since the square root is Lipschitz on the set
of symmetric positive deﬁmte matrices with norm bounded away from 0, we find
that there exists a possibly different constant L > 0 such that

(nfn G(t)dt> —G(Z_1>2 Al [ G(t)dt—G(Z_l
7;1 n 7‘;1 n

Collecting everything, we find that

[ntj |nt]

I EEINGE

n

1
72 hed)
77 n2 i=1 '

But then we find that

(s

|nt] |nt]

Y-ty
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d n 5
<2 e (o= )
1 1 d n
<2 —nAén2d 2 L1 E Ay .
e l;; (e )

Here we used the union bound in the fourth line and Markov’s inequality in the last
line.
Since (¥;")" has a normal distribution with mean 0 and variance Gy (1), we find
that

E (6>\(}/in)l) _ e%/\2Gu(i;1) < 6%/\20

)

because ¢ — G(t) is bounded. Combining the above estimates, we find that

g

from which it follows that

|nt] |nt]

1 ~ 1

i=1

1 1
_ Sq-L-1 1y2
- 6) < 2nde nAonzd €2>\ C,

2 ¥

[nt]
1 1 - 1
lim sup — log P (‘ Z X' —=
n n =

[t
n—aoo n i=1 i

Ady/1
>0 < ——=.
) LVd

Considering the limit A — o0 now proves the claim. O

With all preparations done, we are ready to prove Theorem 6.3.2

Proof of Theorem 6.3.2. Define the measures pu; = N(0,G(t)) and let Z,(-) be the
associated time-inhomogenecous random walk as defined in (6.2.1). Note that for
every t € [0,1] and every A € R%, we have

A = 50 GO,

Since t — G(t) is continuous, it follows that (¢, A) — A¢(A) is continuous. Further-

more, we have
f AN dt = 1<)\, (J () dt) )\>,
0 2 0

which is differentiable with respect to A. Therefore, by Theorem 6.2.1, we have that
{Z(")}n=1 satisfies the large deviation principle in L®([0, 1]; R?) with good rate
function
1 .
AF(y(t))dt A 1]; R4
1) = {So FGD) Aty e ACH([0, 11:RY),

0, otherwise.
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We can compute

AZG(0) = sup {3 (0) - 5OV = 360,607 50

AeRd

It follows that the rate function reduces to

1(y) = {; foh (1), G()~H(0)ydt, 7 e ACo([0, 1] R),

0, otherwise.

Now, from Proposition 6.3.5 and 6.3.4 it follows that {Z,,(-)}n>1 and {W,,(-)}n>1 are
exponentially equivalent in L*([0,1];R%). Therefore, by Theorem 2.1.8 it follows
that {W,(-)},>1 satisfies the large deviation principle in L*([0,1];R¢) with the
same rate function I. Finally, noticing that for every n > 1, W, (-) is almost
surely contained in Cy([0, 1]; R?), together with the fact that the domain of the rate
function is contained in Cy([0,1];R?), the large deviation principle actually holds
in Cy([0,1];RY) as desired. O






Large deviations for
g(t)-Brownian motion

In this chapter we continue the study of large deviations for time-inhomogeneous
processes. We extend the results obtained in Section 6.3 to the setting of Riemannian
manifolds. More precisely, we study the large deviation behaviour of Riemannian
Brownian motion with small variance in evolving Riemannian manifolds. We follow
the approach taken in Section 5.4 by constructing time-dependent variants of the
horizontal lift and anti-development of curves. The results presented in this chapter
are based on:

Rik Versendaal. “Large deviations for Brownian motion in evolving Riemannian
manifolds”. In: Preprint; ArXiv: 2004.00358 (2020). ArXiv: 2004.00358

In the past decades, the study of evolving Riemannian manifolds has received a lot
of attention. The treatment of stochastic processes in this setting was initiated in
[5], where Brownian motion with respect to a collection of time-dependent metrics is
defined. The existence of this process is proven, and the gradient of the associated
heat-semigroup is studied when the metric evolves under the Ricci-flow. This is
further developed in [23]. More generally, in [49], the theory of martingales with
respect to a time-dependent connection is studied. Finally, the central limit problem
for geodesic random walks in this setting is considered in [64].

In [24], the so-called Onsager-Machlup functional is studied for elliptic diffusions
on manifolds with time-dependent metric. It is shown that the probability that a
Brownian motion deviates from a smooth curve by at most a distance % > ( decays
exponentially in n. More precisely, if X; is a Brownian motion with respect to a
time-dependent metric {g(¢)}o<t<1, and v : [0,1] — M is a smooth curve, it is
proven that for n large

P < sup di(X¢,7(t)) < 1)

0<t<1 n

2 Yo, 1 1

191


2004.00358
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Here, d; is the Riemannian distance associated to the metric g(¢) and Ry is the
scalar curvature of the metric g(t). Furthermore, Tr ;) (019(t)) denotes the trace of
the time-derivative 01g(t) with respect to the metric g(t). More precisely, it is the
trace of the linear map X + 01g(¢)(X,-)*. The result is an extension of the time-
homogeneous case, in which the term containing the derivative ¢, g(¢) is non-existent.

A result related to this is Schilder’s theorem, which is concerned with the large
deviations for Brownian paths with small variance. In Chapter 5 we discussed
Schilder’s theorem for Riemannian Brownian motion in a (stationary) Riemannian
manifold (M, g). More precisely, the result states that on the exponential scale we
have

1
n .
P (X"~ ) ~exp{—2f0 Iv(t)lﬁdt},

where X}' = X;,,—1 with X; a Riemannian Brownian motion. Our aim is to extend
this result to the context of a Riemannian manifold with a time-dependent metric.
For this, we follow the approach taken in Section 5.4, where we prove Schilder’s
theorem by lifting the process to the orthonormal frame bundle, and embedding
this into some Euclidean space in order to use Freidlin-Wentzell theory. To carry
out this procedure in the time-inhomogeneous case, we define an appropriate way
of lifting a Brownian motion with respect to a time-dependent metric to the frame
bundle over the manifold. Furthermore, we also adapt Freidlin-Wentzell theory to
the setting where the drift and diffusion constants are time-dependent. Finally, to
reduce to compact sets, we extend the compact containment argument from Propo-
sition 5.2.10 to Markov processes with time-dependent generators.

This chapter is organized as follows. In Section 7.1 we introduce the notion of a
Brownian motion with respect to a time-dependent metric and state the main result,
the analogue of Schilder’s theorem. Additionally, we sketch the approach to proving
this result. Section 7.2 is devoted to extending the notion of horizontal lift and
antidevelopment of curves to the time-inhomogeneous case. Finally, in Section 7.3
we provide all details of the proof of our main result.

7.1. Main result

Following [5, 23], we define Brownian motion with respect to a collection of metrics
{Q(t)}te[0,1]~ We state our main result concerning the large deviations for such
processes and give a sketch of its proof.

7.1.1. ¢g(t)-Brownian motion

Let M be a manifold, which in our case always means it is smooth, finite-dimensional
and second countable. Let G = {g(t)};e[0,1] be a collection of Riemannian metrics on
M, smoothly depending on ¢. We will interchangeably use G and {g(t) };c[0,1] to refer
to this collection of metrics. For x € M and v,w € T, M we write (v, w) for the
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inner product of v and w with respect to the metric g(t). Furthermore, we denote by
V! the Levi-Civita connection of g(t) and by A, the associated Laplace-Beltrami
operator.

We can now define a Brownian motion with respect to a collection of metrics
{9(t)}1e10,1]- We follow the definition in [23], which is equivalent to the definition in
[5].

Definition 7.1.1. Let M be a manifold and let {g(t)}e[0,1] be a collection of Rie-
mannian metrics on M, smoothly depending on t. A process X, is called a g(t)-
Brownian motion if it is continuous and if for all f € C*(M),

F0) = 10X0) = 5 | Adr() as

is a local martingale. In that case, we say that X; is generated by (the time-
dependent generator) AY,.

In general, a g(t)-Brownian motion only exists up to some explosion time e(X). In
the time-homogeneous setting we have that if the Ricci-curvature is bounded from
below, then e(X) is almost surely infinite, see Proposition 2.4.15. This result is
extended to the time-inhomogeneous setting in [65] by requiring that g(t) evolves
under a backwards super Ricci flow, i.e., g(t) satisfies

819(15) < Rng(t) .

In that case, g(t)-Brownian motion exists up to time T for every T > 0.

7.1.2. Statement of the main result

Next, we state the main result, which is the analogue of Schilder’s theorem for a g(t)-
Brownian motion. Before we do this, we first need to introduce a proper rescaling
of a g(t)-Brownian motion.

To motivate the rescaling, note that by Theorem 5.1.3, if X} is a Riemannian Brow-
nian motion, then

1
n .
P(X"~7)~ exp{—zj |’y(t)|3 dt},
0

where X}' = Xj,,-1. Since X is generated by %AM, a substitution yields that X}
is generated by ﬁA M-

In the time-inhomogeneous setting, we want the process X}* to evolve according to
a collection of metrics {g(t)}scf0,1]. Therefore, we have to consider X; as a g(nt)-
Brownian motion, i.e., X; is generated by %A}(/} In that case, substitution yields
that the process X is generated by ﬁA’X;”t = £ A%,. Our main result gives the
large deviations for {X"},>1.

Before we give the precise statement, let us relate the above construction to the
result in Section 6.3. Let W; be a G(t)-Brownian motion in R? in the sense of
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Section 6.3. This is a G(t)-Brownian motion in the sense of Definition 7.1.1 if we
equip R? with the time-dependent inner product

<Ua w>G(t) = <U7 Gil (t)w>
We have

t
we® = L /G(s)dB;,

where B, is a standard, R%valued Brownian motion. Similarly, a G(nt)-Brownian
motion is given by

Wt () — J\/ ns) dBs.

But then we find that

wo e f mdB_deBm =\}E£\/@d35=\/1%m

in distribution. Therefore, it follows from Theorem 6.3.2 that

1
(nt) _ .\ ~ P a2
P (W o 7) ~ exp{ 5 L 1Y ()G du} :

Our main theorem states that this happens in general. In order to write down the
rate function, we define the space

1
HY9([0,1]; M) = {7 :[0,1] — M"y is differentiable a.e. and J \"y(t)|3(t) dt < OO} .
0

We have the following theorem.

Theorem 7.1.2. Let M be a manifold and let {g(t)}ie0,1] be a collection of Rie-
mannian metrics on M, smoothly depending on t. Fix xo € M, and let X; be a
g(t)-Brownian motion with Xo = xg. Furthermore, for every n = 1, let X' be the
continuous process generated by ﬁA’}V[ with X§ = xo. Assume the processes X, and
X[ exist for all time t € [0,1]. Then {X™},>1 satisfies the large deviation principle
in C([0,1]; M) with good rate function In; given by

1.
1o Ja S @ty e HEG([0,1]; M),
m(y) = .

0 otherwise.

7.1.3. Sketch of the proof of Theorem 7.1.2

The proof of Theorem 7.1.2 follows the same lines as the proof of Theorem 5.1.3
given in Section 5.4 for the time-homogeneous case. The main work lies in defining
a good analogue of the concept of horizontal lift and anti-development in the time-
inhomogeneous setting. The detailed construction is given in Section 7.2.
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For X" we denote by U;* the horizontal lift with respect to {g(t)}e[o,1] to the frame
bundle FM. As explained in Section 7.2.4 (see also [23, 5]), this process satisfies
the Stratonovich stochastic differential equation

n,: 1 n n ©j n
AUy = Hi(t,U}') 0 dW;™" = 2(219(8))i(U'er, U'ey)V 7 (UF) dt. (7.1.1)

Here, W = ﬁWt with W, a standard, R%valued Brownian motion. Furthermore,

the vector fields H;(t,-) are the fundamental horizontal fields with respect to the
metric g(t) defined in (2.3.5) and V¥ is the canonical basis of vertical vector fields
over FM defined in (2.3.1). Finally, {ey,...,eq} denotes the standard basis of R%.
By embedding FM smoothly in some Euclidean space R, we can push-forward
equation (7.1.1) to RY to obtain a stochastic differential equation on RY with
a drift, and a diffusion of order ﬁ, see Proposition 2.4.9. This shows that, at
least if we restrict to compact sets, we can apply Freidlin-Wentzell theory for time-
inhomogeneous diffusions (Theorem 7.3.6) to get the large deviations for the em-
bedded process. By the contraction principle (see [29, Theorem 4.2.1], this can then
be transferred to the sequence {X"},>1. The relation between the derivative of a
curve in M and the derivative of its anti-development with respect to {g(t)}te[o,l]
in R? then assures that we obtain the correct rate function.

Finally, as shown in Section 7.3.1, we can use a general approach using Lyapunov
functions to show that the process X' remains in a compact set with high probabil-
ity. This, together with the result obtained when restricting to compact sets, allows
us to obtain the full result of Theorem 7.1.2.

7.2. Horizontal lift and anti-development

In this section we discuss how to define a horizontal lift with respect to a collection
{9(t)}1e[0,1] of Riemannian metrics on a manifold M. In order to do this, we need
a suitable definition of what we mean by horizontal curves and horizontal vectors.
For this, we need to incorporate time into our analysis. In order for the upcoming
constructions to make sense also for ¢ ¢ [0, 1], we set g(t) = g(0) for ¢ < 0 and
g(t) = g(1) for t > 1.

7.2.1. A time-dependent connection which is metric

Denote spacetime by M := R x M and let TM be its tangent bundle. For (¢,z) € M
we have T(; , )M = R@ T, M. We denote the basis tangent vector in the time-
direction by 0;.

Instead of considering the tangent bundle TM, we also want to view T'M as bundle
over M. More precisely, we define the bundle TM over M with fibres given by

TM(t,a:) = TfM

for all t € R and all z € M. A smooth section of T'M is called a time-dependent



196 7. LARGE DEVIATIONS FOR ¢(t)-BROWNIAN MOTION

vector field. We will often write Z(t) € I'(T'M) to stress that Z is a time-dependent
vector field on M.

To define the desired connection on 7'M, we first need to define what we mean by the
derivative of g(t) with respect to ¢. This is a 2-tensor d1g(t) : TM xTM — C*(M),
which in coordinates is given by

d19(t) (v, w) = 019ij (t)vi’wj,

where v = v'0;, w = w0 and g(t) = g;;(t)dz’ ® da’.
Furthermore, for Y € I'(T'M), we denote by (d19(t))(Y,-)** the vector field obtained

by ‘raising an index’ with respect to the metric g(¢). More precisely, it is the unique
vector field such that for all vector fields Z € T'(T'M) we have

(19, Z) = {(a19(t)) (Y, )7, Z)ga),

see also Section 2.2.3. Finally, recall that we denote by V! the Levi-Civita connec-
tion of the metric g(t).

Following the idea in [52, 53], see also Chapter 6 in [3], we equip the bundle TM
over M with a natural connection V : T'(TM) x I'(T M) — T'(TM) given by

Vo, Y(t) = 0,1 (t) + L(a19(6) (Y (1), ) #+, (7.2.1)

for X € T(TM) a vector field over M and Y (t) € T'(TM) a time-dependent vec-
tor field over M. By C®-linearity, this defines VY for all Z € T'(TM) and all
Y € I(TM). This connection is compatible with the collection {g(£)}:e[0,1] of Rie-
mannian metrics on M, as we will show in the following proposition.

{vxyu) VLY (1),

Proposition 7.2.1. The connection defined in (7.2.1) is metric in the following
sense: for all time-dependent vector fields X (t),Y (t) € T(TM) and Z € T(TM) we
have

ZCX (@), Y ())gry = V2 X([), Y (#))gy + (X (), VZY (#))g(r)
for all t e R.

Proof. Note that Z € I'(TM) can be written as Z(t,z) = c1(t,x)d1 + Z(t)(z) where
¢1 : M — R is a smooth function and Z(t) € I'(T'M) a time-dependent vector field
over M. Since V' is metric with respect to g(t), we have

Z(t)<X(t)’ Y(t)>g(t) = <Vt2(t)X(t) Y(t)>g(t) + <X(t) VZ(t)Y(t)> (t)
= (Va0 X([1), Y ())gr) + <X 1), Vzi)Y (£)g(t)-

For the derivative with respect to o1, if we write X (t) = X'(¢)d;, Y (t) = YI(t)0;
and g(t) = g;;(t)dz’ ® dz? in coordinates, we get

X (1), Y (1)g(ry = A1(X ()Y (£)gi5(t))
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= 01X ()Y (£)gi5 (1) + X' ()01Y7 (t)gi; () + X ()Y (1)01945(t)
= (01X (1), Y (t))g(t) + <{X(), 1Y (£))g(t) + (19()) (X (1), Y (1))
= (Va, X(1), Y (£))g() + (X (1), Vo, Y (£))g0)

Here, the last line follows by splitting (d1g(¢))(X(t), Y (¢)) in two, and raising one
index.

Finally, using that V is C®-linear in the first variable proves the claim. O

As a corollary, we obtain the derivative of the inner product between two time-
dependent vector fields along a curve in M.

Corollary 7.2.2. Let X(t),Y(t) e T(T'M) be time-dependent vector fields and let
v :10,1] = M be a curve. Then

%Q{(t, Y1), Y (6,7 1)Dgr)
= Vo, 140X ), Y () gy +<{X (1), Vo, +4)Y (£))gt)-

Proof. Consider the curve ¢ : [0,1] — M given by ¢(t) = (t,7(t)). From Proposition
7.2.1 it follows that

%<X(t,7(t)) Y (70
GNX (t,7(1), Y (£,7(1)) gt
= (Vi X (t,7(1), Y (t,7(t)) gty + (X #7(1), Vo Y (£, 7())g(r)
= Vo, 450X 1), Y (t))ge) + <X (1), Vo, 450)Y () g0)-

Here, the last line follows from the fact that $(t) = 01 + §(¢). O

Remark 7.2.3. If X (t) = X for some fixed vector field X € I'(T'M), then 0, X (t) = 0,
and we reduce to the setting in [23]. If we consider another stationary vector field
Y(t)=Y eT'(TM) and a curve v : [0,1] - M, we have

% X(y(@)), Y (v(£))g(ey = (Ar9())(X(v(1)), Y (7(2))) +

+ (Vi X (V1) Y (7(1) gy + (X (7(1), Vi Y (7(1))Dg0)-

Corollary 7.2.2 inspires us to define a notion of a time-dependent vector field being
parallel along a curve in M with respect to a collection {g(t)}c[o,1] of Riemannian
metrics. We have the following definition.

Definition 7.2.4. Let v : [0,1] — M be a curve. A time-dependent vector field
X (t) along vy is said to be parallel along y with respect to {g(t)}sefo,1] if it is parallel
along the curve (t,~v(t)) in M with respect to the connection V. More precisely, X (t)
is parallel along v if and only if for all t € [0,1] we have

Vo, 140X (H)(7(t) = 0.



198 7. LARGE DEVIATIONS FOR ¢(t)-BROWNIAN MOTION

Remark 7.2.5. If X (t) and Y (¢) are time-dependent vector fields which are parallel
along v with respect to {g(t)}:e[o,1], then by Corollary 7.2.2 we have

COX (A, Y (Ao = 0

This shows that the inner product between parallel vector fields is constant. In
particular, by taking Y (t) = X(t), we find that |X(t,7(t))|y¢) is constant.

7.2.2. Horizontal lift with respect to a family of metrics

In Section 2.3, a thorough explanation is given of the frame bundle and the hori-
zontal lift of curves and vectors to this frame bundle. It is also explained that these
notions extend to general principal bundles. The aim of this section is to extend
these notions to the time-dependent setting.

Instead of performing horizontal lift with respect to a fixed connection, we wish to
define the horizontal lift with respect to a time-dependent family of connections.
More precisely, we wish to define the horizontal lift with respect to the family of
Levi-Civita connections associated to the collection G = {g(t)}+e[0,1] of Riemannian
metrics on M. To do this, we use the parallel transport given in Definition 7.2.4.

Definition 7.2.6. Let v : [0,1] — M be a curve in M. A curve u(t) € FM is called
a horizontal lift of v with respect to {g(t)}iejo,1] if for all a € R? we have that u(t)a
is parallel along v with respect to {g(t)}se0,17, 4.¢., for all a € R¢ we have

Vosq(u(t)a) =0
for all t € [0,1].
If u(t) is the horizontal lift with respect to {g(t)}+c[0,1] of a curve 7, then by Corollary
7.2.2 we have for all a € R? that

d

ie., |u(t)algw = |u(0)alyq for all t € [0,1]. Therefore, if the initial frame u(0) :
R% — (T, 0)M, g(0)) is an isometry, then u(t) : R? — (T, )M, g(t)) is an isometry
for all t € [0,1].

We use this observation to show that the horizontal lift with respect to {g(t)}+efo,1
exists for all time, and is unique once an initial (orthonormal) frame is given. We
do this by showing that the horizontal lift defined in 7.2.6 is a special instance of a
horizontal lift from the manifold M = R x M to a principal fibre bundle over M. To
this end, consider the bundle O over M with fibres given by

O(tz) = {u: R > (T, M, g(t))|u isometry}, (7.2.3)

i.e., O(,q) consists of the orthonormal frames for T, M with respect to the metric
g(t). The bundle O is a principal bundle with structure group G = O(d), the
orthogonal group.
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Now, let v(t) be a curve in M with horizontal lift u(¢) as in Definition 7.2.6, such
that u(0) is an orthonormal frame for T, qyM with respect to g(0). From (7.2.2)
it follows that for all ¢ € [0,1], u(t) is orthonormal with respect to g(¢) and hence
u(t) € Oy for all t € [0,1]. If we now define o(t) = (t,7(t)) € M, then
H(t) = 01 + 4(¢). This implies that the curve u(t) can also be interpreted as the
horizontal lift of (t) with respect to the connection V as in (7.2.1) to the bundle O.
Because O is a principal bundle, it follows that a horizontal lift of ¢(t) = (¢,~v(t))
exists for all time ¢ € [0, 1] and is unique if the initial condition u(0) = uo € O(o (o))
is fixed. For this, we refer to Section 2.3. We conclude that the horizontal lift de-
fined in Definition 7.2.6 always exists and is unique if an initial orthonormal frame
with respect to ¢g(0) is given.

As explained in Section 2.3, if a horizontal lift for curves is defined, we can use this
to define the horizontal lift of tangent vectors. In particular, the horizontal lift of
curves in M to the bundle O with respect to the connection V in (7.2.1) allows us
to lift tangent vectors X € T(; ;)M to T'O. In what follows, we denote this lift by
X*.

Since we also have a notion of horizontal lifts of curves in M with respect to
{9(t)}te0,1], we can use this to define the horizontal lift of a tangent vector in
TM with respect to {g(t)}efo,1]-

Definition 7.2.7. Let X € T,M and u € Oy p). Let vy :[0,1] — M be a curve
with v(s) = p and 3(s) = X. Denote by u(t) the horizontal lift of v with respect to
G = {9(t)}te[o,1], satisfying u(s) = u. We define the horizontal lift of X via u with

respect to {g(t)}se[0,1] 0¥ X*9(u) = u(s).

Remark 7.2.8. If v is a curve in M, we can identify its horizontal lift with respect
to {g(t)}te0,17 With the horizontal lift of the curve ¢(t) = (¢,~(t)) in M with respect
to the connection V defined in (7.2.1). This implies that «(s) is the horizontal lift
of ¢(s) = 01 + 4(s) t0 Ty(s)O(s,(s)) via u(s). Therefore, we have that X*9(u) =
(01 + X)*(u).

Next, we relate the horizontal lift of X via u € O, ) with respect to {g(t)}e[0,1] to
the horizontal lift of X via u with respect to the metric g(s). Before we can do this,

we first need the following result, the proof of which is inspired by the proof of [23,
Proposition 1.2].

Proposition 7.2.9. Let u € O, ). Then the horizontal lift of 01 via u with respect
to the connection V in (7.2.1) is given by

0% (1) = — 5 (2rg(s) wer, ue; Vi ()

Here, {e1,...,ea} is the canonical basis of R and V;;(u) are the canonical vertical
basis vectors of V,F'M defined in (2.3.1).

Proof. Consider the curve n(t) = (s + t,p). Then 7n(0) = 0;. Let u(¢) be the
horizontal lift of n(t) with w(0) = u. Then 0§ (u) = 4(0). Since 7(t) = d1, we have
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for all @ € R that
Vo, (u(t)a) = 0,

which gives by (7.2.1) that
01(u(t)a) + %(619(5 + ) (u(t)a, )#=+t = 0. (7.2.4)

Since u(t) € F,M for all t, we have that (t) € V() F'M. As a consequence, we can
write

U(t) = cap(t,u(t))Vap(u(t)),
where V.3 are the canonical vertical basis vector fields defined in (2.3.1). Note that

u(t)a = evy(u(t)), where ev, : FM — TM denotes evaluation in a. From this it
follows that d; (u(t)a) = d(evy)(u(t))(u(t)). Furthermore, note that

d(eva)(u(t))(Vas(u(t)) = d(eva © Luw) ) (1) (Eagp)
d

ds|,_,

= u(t)(agea),

w(t)(I + sEqp)a

where we write a = ageg.
By linearity, we find for every ¢ = 1,...,d that

Furthermore, since 01 (u(t)e;) = —1(019(s +t))(u(t)e;, -)#=+ by (7.2.4), we have

1
Ouut)ei), ult)ejg(s+) = —5(019(s + 1)) (ult)es, u(t)e;)
for every j = 1,...,d. Now, the left hand side is given by

(@1 (u(t)er), ult)e;Dg(s+e) = Cailt, u(t)){u(t)ea, ult)e;)g(s 1)
= Cai(t, u(t)){ea; ;e

= Cji (t, U(t))

Here we used in the second line that u(t) is an isometry from R? to (T, M, g(s +1)).
Combining the two equalities above, we find for every 4,5 = 1,...,d that

csiltu(®)) = —3 (@190 + D) (u(t)er, u(t)ey).

Because d1g(s + t) is symmetric, it follows that ¢;; = ¢;;. Therefore, we can write

(1) =~ (2rg(s + 1)) (wlt)es, ult)es Vi (u(t)),
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so that )
o1 (u) = 0(0) = =5 (91g(s)) (uei, ue;) Vi (u),

where we used that «(0) = w. O

From Proposition 7.2.9 we deduce the relation between the horizontal lift of X €
T, M with respect to {g(t)}se[0,1] and with respect to the metric g(s) at a specific
time s € [0,1].

Corollary 7.2.10. For X € T,M and u € O, ) we have

X*9(u) = X* (u) — 5 (Org(s)) (uei, ue;)Vij (u),

1

2
where X*s(u) denotes the horizontal lift of X wvia u with respect to the metric g(s),
and the e; and V;; are as in Proposition 7.2.9.

Proof. From Remark 7.2.8 it follows that X*9(u) = (d; + X)*(u). Since it holds
that (01 + X)*(u) = 0 (u) + X*(u) (see e.g. [87]), it follows from Proposition 7.2.9
that we are done once we show that X*(u) = X*=(u). To see the latter, consider a
curve v : (—¢,e) — M with v(0) = p and 4(0) = X and define ¢ : (—e,e) - M by
©(t) = (s,7(t)). Then ¢(0) = (s,p) and ¢(0) = X. Let u(t) be the horizontal lift of
¢ with u(0) = u. Since $(t) = X, we have

Vi (u(t)a) =0

for every a € R?. This implies that u(t) is the horizontal lift of (¢) with respect
to V?, i.e., the Levi-Civita connection of g(s). It follows that X*(u) = X*=(u) as
desired. O

7.2.3. Development and anti-development of curves

In Section 2.3 we explained how we can use the notion of a horizontal lift to associate
to a curve in M a curve in R? and vice versa. In the time-inhomogeneous case we
take the same approach, but now using the horizontal lift with respect to {g(t)}+e[0,1]-

Definition 7.2.11. Let v :[0,1] — M be a curve in M and let u(t) be a horizontal
lift of v with respect to {g(t)}se[0,1]- We define the anti-development of v with
respect to {g(t)}ep0,1] as the curve w : [0,1] — R? given by

w(t) = J u(s)"14(s) ds. (7.2.5)

If we fix a frame u € O(g (o)) (see (7.2.3)), we can speak about the anti-development
of v via w with respect to {g(t)}te[o’l] since the horizontal lift with respect to
{9(t) }1e[0,1] satisfying u(0) = w is unique.
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If w(t) is the anti-development of (t) with respect to {g(t)}se[0,1] via the horizontal
lift w(t), then (7.2.5) implies that

which rewrites to

Y(t) = u(t)w(t).
Since both sides are elements of T, ;) M, we can consider their horizontal lifts with
respect to the metric g(t), which must be equal:

H(t,u(t))w(t) == (u(t)i ()™ = (¥(t)*™ (7.2.6)

Here H(t,u(t)) is as defined in (2.3.4) with respect to the Levi-Civita connection
V* of the metric g(t). Furthermore, since u(t) is the horizontal lift of v with respect
to {g(t)}se[0,1], we have that u(t) = 4(t)*9. Therefore, by applying Corollary 7.2.10
and using (7.2.6) we obtain

a(t) =4(t)*
= (¥(®)* - %(519(1?))(11(?5)62'»U(t)ej)V”(U(t))

= H(t, u(t))w(t) — 5 (0rg(t)) (u(t)es, u(t)e;) VY (u(t)).

1
2
We thus obtained a differential equation for the horizontal lift w with respect to
{9(t)}+e[0,1] in terms of the anti-development w. This shows how to invert the oper-
ation of taking the anti-development of a curve. We make the following definition.

Definition 7.2.12. Let w : [0,1] — R? be a curve in R? and fix ug € O ). Let
w:[0,1] - FM be the solution of
. o
at) = H(t,ut))i(t) = 5(19(t) (ult)ei, ut)e;)V* (u(t)) (7.2.7)
with uw(0) = wug, where H(t,u(t)) is as defined in (2.3.4) for the Levi-Civita connec-

tion V' of the metric g(t). Then the curve y(t) = wu(t) is called the development
of w onto M with respect to {g(t)}se[0,1]-

Sometimes, the curve u is referred to as the development of w, rather than the
projection of w onto M.

7.2.4. Horizontal lift of ¢(¢)-Brownian motion

In this section we explain how a g(t)-Brownian motion may be obtained by solving
a stochastic differential equation on F'M, and projecting the solution down to the
manifold. The approach is similar to time-homogeneous case, see Section 2.4.4.

Malliavin’s transfer principle (see e.g. [72]) suggests that constructions for manifold-
valued curves can be extended to manifold-valued processes by replacing differen-
tial equations by Stratonovich stochastic differential equations. This is because
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Stratonovich integrals satisfy the ordinary fundamental theorem of calculus. This
suggests that we can obtain a g(t)-Brownian motion as the development with respect
to {g(t) }sefo,1] of a standard Brownian motion in R?.

More precisely, we replace the curve w in (7.2.7) by a standard R%valued Brow-
nian motion W; and interpret the so obtained stochastic differential equation in
Stratonovich sense. In symbols this means that for xy € M fixed, we consider the
solution U, of the Stratonovich stochastic differential equation

dUt = Hi(t7 Ut) o thz — §(alg(t))”(UteZ, Utej)V” (Ut) dt, (728)

with Uy € Og,4,) (see (7.2.3)). Here, H;(t,u) are the canonical horizontal vector
fields with respect to the Levi-Civita connection V* of the metric g(¢) as defined in
(2.3.5). Furthermore, {ei,...,eq} denotes the standard basis of R? and V¥ is the
standard basis of vertical vectors, see (2.3.1). The following is [23, Proposition 1.4],
see also [5, Proposition 1.3].

Proposition 7.2.13. Let U; be the process on FM solving equation (7.2.8). Then
X = wU; is a g(t)-Brownian motion on M starting in xg € M.

7.3. Proof of Theorem 7.1.2 using embeddings

In this section we prove Theorem 7.1.2, the analogue of Schilder’s theorem for g(t)-
Brownian motion. Let us recall the statement of the theorem.

Theorem 7.3.1. Let M be a manifold and let {g(t)}ie[o,1] be a collection of Rie-
mannian metrics on M, smoothly depending on t. Fix xg € M, and let X; be a
g(t)-Brownian motion with Xo = xo. Furthermore, for every n > 1, let X[* be the
continuous process generated by ﬁA’}V[ with X = xo. Assume the processes X; and
X7 exist for all time t € [0,1]. Then {X"},>1 satisfies the large deviation principle
in C([0,1]; M) with good rate function In; given by
Lus(y) = {; §o (05t € H2 ([0, 1 00)
0 otherwise.

As we have seen in Proposition 7.2.13, the horizontal lift U; with respect to {g(t) }se[0,1]
of a g(t)-Brownian motion satisfies the Stratonovich stochastic differential equation

| ;)
dU; = H;(t,U;) o AW — i(alg(t))ij(Uteh Uie;)V¥ (Uy) dt,
with Uy = ug € O(g,z,), Where O(g 4,) is defined in (7.2.3). Similarly, if X! is a

g(nt)-Brownian motion, then its horizontal lift U} with respect to {9(nt)}refo,n—1]
satisfies

AU = Hi(nt, U7) 0 AW} — Z(019(nt))i; (07 e, U'e;) VY (T7) dt,
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with Ug = ug € O(0,20). Finally, the horizontal lift of X{* = X _, with respect to
{g9(nt)}1e[o,n—1] is given by U* = Ut’;_l. This process satisfies

dUtn = Hi(t, Utn) Oth T— 5(6tg(t))ij(Ut €, Ut ej)V J(Ut )dt, (731)

with Up = ug € Oq ). Here, W/* = Wy, = ﬁWt. As explained above Theorem
7.1.2, X' is the process generated by ﬁAﬁw that we are studying.

The stochastic differential equation for the horizontal lift of X} obtained in (7.3.1)
is an important tool for proving Theorem 7.1.2. However, before we can get to this,
we first need to make some preparations.

7.3.1. Compact containment

As part of the proof of Theorem 7.1.2, we need to show that the process X|* gen-
erated by ﬁAf\/f stays within a compact set with high enough probability when n
tends to infinity. In this section we adapt the general approach using Lyapunov
functions discussed in Section 5.2.2 to the time-inhomogeneous case.

Definition 7.3.2. Let H; : T*M — R be a collection of maps. We call a function
T : M — R a good containment function for the collection {H.}; if T is a good
containment function for H; for every t in the sense of Definition 5.2.4 and if
additionally we have

sup H(z,dY(x)) < oo.

t,x
In what follows, we use the notion of operator convergence defined in Defintion 5.2.8.
The following assumption is a (simplified) version of Assumption 5.2.9.

Assumption 7.3.3. For every n > 1, let AL, < Cy(M) x Cy(M) be the (time-
inhomogeneous) generator of a Markov process X,,. Assume that for every x € M,
the process X, started in x is right-continuous and exists for all t. Define the
operator

1
H! f = —e " Al enS, el e D(AL).
n

Suppose that for every t, there is an operator H' : D(H') < Cy(M) — Cy(M) with
D(H') = C*(M) and such that H* < ex — lim,,_,o, H.. Finally, assume that H*
can be written as H' f(x) = H'(z,df(x)) for some map H' : T*M — R.

The following is an extension of Proposition 5.2.10 to the time-homogeneous case.
The proof is a straightforward adaptation of the proof of Proposition A.15 in [22],
which is based on Lemma 4.22 in [39].

Proposition 7.3.4. Let Assumption 7.3.3 be satisfied and assume that X,,(0) = z €
M for alln = 1. Assume that Y is a good containment function for the collection
Hi. Assume furthermore that for every f € CP(M) and every n = 1 the map
t — HL f is continuous. Then for every a > 0, there exists a compact set K, < M
such that .

lim sup - logP (X, (t) ¢ K, for somete[0,1]) < —a.

n—o0
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Moreover, the sequence K, can be chosen to be increasing with |, Ko = M.

Remark 7.3.5. The continuous dependence of H, f on t in Proposition 7.3.4 is used
to assure that i HY, f(X,(t))dt exists. This is necessary to construct a local expo-
nential martingale used in the proof.

7.3.2. Freidlin-Wentzell theory for time-inhomogeneous diffu-
sions

For the proof of Theorem 7.1.2, we embed the frame bundle F'M into some Euclidean
space RV, Using this embedding, we push forward the stochastic differential equa-
tion in (7.3.1) to obtain a stochastic differential equation in RY. To obtain the
large deviations for such diffusions, we use Freidlin-Wentzell theory ([41]). Since
the stochastic differential equations has time-inhomogeneous coefficients, we have
to adapt the Freidlin-Wentzell theory to this setting. One can follow the line of
proof for Freidlin-Wentzell theory for time-homogeneous diffusions, i.e., by using
Euler approximations and making the drift and variance constant on small intervals
of time, see e.g. [29, Theorem 5.6.7].

Theorem 7.3.6. Let W, be a standard Brownian motion with values in R%. Let
b:[0,1] x RY - R and o : [0,1] x R? — R¥*? be bounded and Lipschitz. For every
n =1, let X[* be the process satisfying

n n 1 n
dXt = b(t,Xt )dt + %U(t,Xt )th,

with X = x9. Then {X"},>1 satisfies the large deviation principle in C([0,1]; R%)
with good rate function

1) = nt {5 [ 16600 arlo e £ (0,13,
0 =u+ [ s+ [ otaaeasf. @32

The same result also holds when we consider Stratonovich stochastic differential
equations instead of the Itd ones. Following the same reasoning as in the proof of
[63, Theorem 2.5], we have the following corollary.

Corollary 7.3.7. Let the assumptions of Theorem 7.5.6 be satisfied. Assume fur-
thermore that o has bounded derivative. For every n > 1, let X' be the process
satisfying the Stratonovich stochastic differential equation

n n 1 n
dXt = b(t,Xf )dt + %U(t,Xt ) o th,

with X§ = 9. Then {X"},>1 satisfies in C([0,1];R?) the large deviation principle
with good rate function I given in (7.3.2).
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7.3.3. Proof of Theorem 7.1.2

Before we prove Theorem 7.1.2, we first need some preliminary results. In the fol-
lowing proposition we prove that given a collection of metrics {g(t)}+e[0,1] depending
continuously on ¢, we can find another metric that dominates all of these metrics.

Proposition 7.3.8. Let {g(t)}ic[0,1] be a collection of Riemannian metrics on M,
depending smoothly on t. There exists a Riemannian metric § such that for all
x € M and all ve T,M we have

gt(U, U) < g(vv U)
for allt € [0,1].

Proof. Let {Up}nen be a countable collection of relatively compact charts covering
M. Furthermore, let {¢, }nen be a partition of unity for the collection {Up,}nen.
Writing G (z) for the matrix of coordinates of the metric g(¢) in a chart U,, we
have

9(0(w,0) = (G} ()0, GH (@) )
= (G} @Gy (@0)GE ()0, G} (@)Gy * (0)Gd (@) )

2
for all v € T,,M. Here, the Euclidean inner product has to be understood as the
Euclidean inner product of the vector of coefficients of v. Using the Cauchy-Schwarz
inequality, we find

2 2

et @[, = et @art @), s0wv. @33)

9(0)w0) < [0 @65 @)

1
Note that Gi(x) depends continuously on ¢ and z, and hence so does G? (x). Simi-
1
larly, G, ? (z) depends continuously on x. Since [0, 1] is compact and U, is relatively

compact, the continuity implies that HG% ()G, ? (x)]|2 is bounded on [0, 1] x U,,. If
we write L .
C= sup HGE (m)Ga§(w)H < o0,
te[0,1],zeU, 2

then we can define the Riemannian metric g,, on U,, by
Gn = CQ(O)

From (7.3.3) it follows that

gt(v,v) <7, (v,v)
for all v e T, M and all x € U,.
We now define on M the metric

[e¢]
g = Z (pngnm
n=1

which has the desired property by construction. O



7.3. PROOF OF THEOREM 7.1.2 USING EMBEDDINGS 207

Let us denote by d the Riemannian distance function associated to the metric g
from Proposition 7.3.8. Fix 29 € M and consider the radial function 7(z) = d(z, x).
Since 7 is not everywhere smooth, it is not suitable for constructing a good contain-
ment function as in Definition 7.3.2. However, since 7 is 1-Lipschitz (with respect
to the metric §), we can find a smooth function 7 with 7(xg) = 7(xg) = 0 and such
that ||7 — 7|| < 1 and |d7|g < 2, see also Proposition 5.3.1. Using this, we define T
by

Y(x) = log(1 + #(x)?). (7.3.4)

We now show that YT can be used as a good containment function for the operators
arising from the generator of a g(t)-Brownian motion.

Proposition 7.3.9. Assume M is complete and let {g(t)}e[0,1] be a collection of
Riemannian metrics on M, smoothly depending on t. For every t € [0,1], define
He: T*M — R by Hy(z,p) = %|p\§(t)(x). Let g be a metric as in Proposition 7.3.8
and define T as in (7.3.4). Then Y is a good containment function for the collection

{’Ht}te[o,l]'

Proof. Following the proof of Theorem 5.1.3 in Section 5.3.3, it follows from Lemma
5.3.2 that T is a good containment function for each H; individually. Hence, we are
done once we show that

sup Hq(z,dY (z)) < oo.

t,x

Observe that

so that
1Y (2) |50y < 2|dF(2)[5() < 4-

From this, it follows that
1 2 1 2
Hi(z,dY(z)) = §|dT($)\g(t)(m) < §|dT($)|§(z) <8
for all ¢ and x. Hence, we find that sup, , H(z,dY(x)) < oo. O

We can now show that X}* remains in compact sets with high enough probability.

Proposition 7.3.10. Let M be a complete manifold and let {g(t)}se0,1] be a collec-
tion of Riemannian metrics on M, smoothly depending on t. Assume that for every
n > 1, the continuous process X{* generated by %ASM exists for all t € [0,1]. Then
for every a = 0, there exists a compact set K, € M such that

1
limsup — logP (X' ¢ K, for somete [0,1]) < —a.
n

n—0oo0

Moreover, the sets K, can be chosen to be increasing with | J, Ko = M.
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Proof. We verify the conditions of Proposition 7.3.4. Let f € CP(M) and define

1,1,

Hhen 1 1 1 1
te__ — _—nf nf> t 2 _ At - 2
H,f= ne e 2(AMf +n|dflye) = QnAMer 2|df\g(t)-
Now define H' < Cy(M) x Cy(M) with domain D(H?) = C®(M) and H'f =
%\df@(t). Then for all f e CP (M) we have

ti ||H.f ~ H' ]| =0,

so that H < ex — lim,, .o H,. Furthermore, note that H!f(x) = H!(x,df(x)) for
Hi(z,p) = %|p|3(t)($). It follows that Assumption 7.3.3 is fulfilled, and by Propo-
sition 7.3.9, the function Y given in (7.3.4) is a good containment function for the
collection {H}e[0,1]- Since g(t) depends continuously on t, we find that ¢ — Hf

is continuous for every f € CP(M), so that the claim follows from Proposition
7.3.4. O

Finally, we also need the following technical lemma.

Lemma 7.3.11. Let M be a manifold, and let {g(t)}te[o’l] be a collection of metrics
on M, smoothly depending on t. For every t € [0,1] and x € M, define

Olrey = {u R — (T, M, g(t))|u isometry}.
Let K < M be compact. Then the set

U{Oualtel0.1), e K}

s a compact subset of FM.

Proof. Consider the bundle O over R x M with fibres O(; ;. For every (t,x) €
[0,1] x K, let Uz < [0,1] x M be open and relatively compact such that there

exists a smooth section u( ;) of O on U(t,z)- Since [0,1] x K is compact, we can
find finitely many (¢1,x1),..., (tx, xx) such that

k k

Ut a:) © UU(%M)'

i=1 i=1

[0,1] x K =

As a consequence, we have

k
U {O(t’z)‘t e[0,1],z € K} c U U {O(t7z)|t e[0,1],z € U(tl,xi)}
i=1

1=

Since

U {O(t’m)|t e[0,1],z € K}
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is closed, it suffices to show that

U {O(t71)|t €l0,1],ze U(ti,rq‘,)}
is compact for all: =1,... k.
For this, consider the map @, : [0,1] x U(ti,mi) x O(d) - FM given by
q)z(ta €, g) = U(ty,a;) (tv x)g

Then ®; is continuous as composition of continuous maps. Furthermore, we have
that

@l([O, 1] X U(ti,ri) X O(d)) = U {OtJ‘t € [O, 1],.13 € U(t“ml)} .
Since [0, 1] x U(t“wi) x O(d) is compact, the above, together with the continuity of

®, proves the claim. O

With all the preparations done, we are ready to prove Theorem 7.1.2. The proof is
similar to the one given in Section 5.4 for the time-homogeneous case. In order to
improve readability of certain equations in the upcoming proof, we define

(019(8))i3 (1) = O19(t) (s, ue) (7.3.5)
for i,5 =1,...d and u € FM, where {e1,...,eq} denotes the standard basis of R%.

Proof of Theorem 7.1.2. Let W, be a standard, R%valued Brownian motion and
define W} = ﬁ for every n > 1. Consider the process U;* in FM with Ug = ug €
0(0,24) and satisfying

AU = Hy(t, U)o AW — = (019(t))i; (UP)VI (U dt,

DN =

where we used the notation introduced in (7.3.5).

Now, let {K,}a>0 be an increasing sequence of compact sets with | J, Ko = M as
in Proposition 7.3.10. By Lemma 7.3.11 we have that

Ko = J{O(m|r € Kot € [0,1]} € FM

is compact.

Let wo : FM — R be a smooth function with compact support and ¢ =1 on K,.
Since F'M is locally compact, such a function exists. Consider the process U,”” in
FM given by

n,o n,o n,o n,i 1 n,o n,o 17 n,o
AU = o (U ") Hi(t, U)o dW™ — §<Poc(Ut )(019(1)) s (U)V(U) dt,

with Ugl’a = Uug.
By Whitney’s embedding theorem, there exists an N € N and a smooth embedding
t: FM — RN Tt follows from Proposition 2.4.9 that the RN -valued process Up"® :=
L(Up™) satisfies

d(u(U"))
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n,o n,o n,i 1 n,o i n,o
= a(U ) Hilt, (U)o AW = S0a(U) [(019())i V7] (U dt

n,o n,o n,t 1 n,o iq n,o
= a (U7 ) Hit, o(U) 0 AW = Soa(U )" [(219(0))iy VI ] (((Uf)) dt.

In terms of U;"®, this can be written as

A0 = oo (71O )F Hilt, O) 0 AWy

- %%(L”(UZ"“))L* [(219(t); VT (T)) dt.  (7.3.6)

Since ¢ and ™! are smooth, the vector fields
ot U)W H(8, U

and
1

3 2a T O [(01g(1); VI (0F)

are smooth and compactly supported inside «(FM). By putting them equal to zero
outside +(F M), we obtain smooth, compactly supported vector fields on RY. With
slight abuse of notation, we denote these vector fields by the same symbol. This
observation allows us to consider (7.3.6) as equation on RY. Since the drift and
diffusion are smooth and compactly supported, we can apply Corollary 7.3.7 to
obtain that {U"%},>; satisfies in C([0,1];RY) the large deviation principle with
good rate function fﬂ%N given by

1 g
20 ) = it { [ 16020 ath(0) = sun). 5(0) = gl GO A0 0
5ol O [V (0}

Now note that +(FM) is closed, and by construction it holds that U™ is almost
surely contained in C([0,1];«(FM)). Furthermore, suppose that v(0) € «(FM) and
that there exists a curve ¢ € H'([0,1]; R) such that

() = pale (4(0)e* Hi(t, 1 (£) ' (1) — %%(fl(v(t)))b* [(019()i; V7] (4(2))-
Then, since the vector fields
(0o 0 TP Hi(t, )

and

S (P o) [(019(0) V]

are tangent to ¢(F'M) at points of «(F'M), we find that y(t) € «(FM) for all t € [0,1]
so that v € C([0,1];¢(FM)). Therefore, if v ¢ C([0,1];¢(FM)), then no such
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¢ exists, and fﬂ‘gN (y) = o0. Tt now follows from [29, Lemma 4.1.5] that {U"%},>;

satisfies the large deviation principle in +(F M) with good rate function ffz FM) given

as the restriction of Iy to C([0, 1]; (FM)).
Since ¢ is a homeomorphism and U;"* = = (U/"®), the contraction principle

(Theorem 2.1.6) implies that {U™*}, >, satisfies the large deviation principle in
C([0,1]; FM) with good rate function I%,, given by

Ip(n) = iLOEFM)(l’ on)

1 .
= int{ [ 10 e dth0(0) = oo,

. S (Lom)(t) = wa(n(t) " Hilt, L(n(£))$'(t)

g alaO)* [0V (o) |

1 .
i {16020 1}n(0) = wa, 1(0) = a0 (1000
~ 5% [@u)V] (0)

Now, if we set X" := w(U;""), it follows from the continuity of the projection
m : FM — M and the contraction principle that {X™%},>, satisfies the large
deviation principle in C([0,1]; M) with good rate function I§; given by

I3(Q) = nf{ T35, ()| (n) = C}-

We show how to obtain the desired expression for I{;, at least when ¢ € C([0, 1]; K,,).
Consider such a curve ¢ and suppose that 7 : [0,1] — FM is such that mn = ¢
and I%,,(n) < co. Then n(0) = up, n (and hence also () is almost everywhere
differentiable and there exists a ¢ : [0,1] — R? such that

0(t) = ea(n(0) Hi(t,n(t)$' (t) — %%(n(t)) [(019()i; V7] (n(t))- (7.3.7)

Since 77(0) = ug € O(g,4,), the solution 7 of the equation

i(e) = il A0)3 (1) — 3 [@190)5V7] (1))

with 7(0) = uo satisfies 7(t) € O () for all t € [0,1]. Since ((t) € K,, we find
that 7j(t) € K, and hence o, (7i(t)) = 1 for all ¢ € [0,1]. But then 7j(t) is also the
solution of (7.3.7). We conclude that 7 is the unique horizontal lift with respect to
{9(t)}tefo,17 of ¢ with 1(0) = up. In that case, ¢ is the anti-development with respect
to {g(t)}1e[0,17 of ¢ (see Section 7.2.3), and we have

|6(8)]za = (S (E)re = ()] g(0)-

Therefore, if ¢ is contained in K, and almost everywhere differentiable, then the
rate function reduces to

1 .
10 = 5 | K ar
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If ¢ is not almost everywhere differentiable, the above argument shows that Ig,(¢) =
0.

Finally, to deduce the large deviations for {X"},>; from the large deviations for
{X™*},>1 is done in exactly the same way as in the proof of Theorem 5.1.3 given
in Section 5.4. O

7.4. Concluding remarks

We conclude this chapter by discussing some further directions which can be inves-
tigated which are related to the results in this chapter.

First of all, when comparing this chapter to Chapter 6, we have only extended the
result of the time-inhomogeneous Schilder-type theorem from Section 6.3 to the geo-
metric setting. It is natural to ask if the result concerning time-inhomogeneous ran-
dom walks can also be extended to time-inhomogeneous geodesic random walks. We
can use a similar approach as in Section 7.2 to define geodesics and parallel transport
with respect to a family of connections. This allows us to define time-inhomogeneous
geodesic random walks with indepedent, identically distributed increments in the
sense of Chapter 3. Furthermore, it also allows us to define a time-inhomogeneous
Riemannian exponential map. If it is possible to study this exponential map in a
similar way as done in Section 3.4, then one should be able to obtain the analogue
of Cramér’s theorem for time-inhomogeneous random walks.

Another direction we can think about, is to consider randomly evolving Riemannian
manifolds. In this case, we will not have a time-dependent Riemannian metric, but
we consider a random process in the space of Riemannian metrics. All the classical
large deviation theorems can then be studied in this setting. In this case, there are
two sources of randomness which can give rise to large deviations. The contribution
of both has to be understood, and it is interesting to see if both contribute on the
same scale, or if there occur different scales of large deviations.
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Summary

This thesis is concerned with large deviations for processes in Riemannian manifolds.
In particular, we study the extensions of large deviations for random walks and
Brownian motion to the geometric setting.

In the first chapters, we study large deviations for random walks in various geometric
settings. First, in Chapter 3 we consider geodesic random walks in Riemannian
manifolds. Since geodesic random walks are not simply sums of random variables, we
discuss a notion of independent, identically distributed increments for such random
walks. We then prove the large deviation principle for geodesic random walks with
independent, identically distributed increments which are bounded en centered. The
idea of the proof is to relate the large deviations for the geodesic random walk
to the large deviations for a random walk in a tangent space. Since the tangent
space is a vector space, these large deviations follow from the original Cramér’s
theorem. The desired comparison is made by carefully analyzing the geometric
properties of geodesic random walks, and in particular the short-time behaviour of
the Riemannian exponential map.

In Chapter 4 we study random walks in special Riemannian manifolds, namely Lie
groups. The additional group structure allows us to identify each tangent space
with the Lie algebra. This lets us define a random walk in a Lie group as prod-
uct of group elements which are the exponential of an element of the Lie algebra.
We explain that such random walks are geodesic random walks for the Levi-Civita
connection if and only if the Riemannian metric is bi-invariant. We then prove the
large deviation principle for such random walks. The proof follows similar steps as
the proof of the large deviation principle for geodesic random walks. However, the
estimates are obtained differently and make use of the Baker-Campbell-Hausdorff
formula, rather than properties of the Riemannian exponential map.

In chapter 5 we move on to path-space large deviations for processes in Rieman-
nian manifolds. In particular, we prove path-space large deviation principles for
geodesic random walks and Riemannian Brownian motion. Although the result for
Riemannian Brownian motion is already known, we provide two novel approaches
to obtain this result. We prove the path-space large deviation principle for geodesic
random walks via a general method to study large deviations for Markov processes.
This method relies on the convergence of non-linear semigroups and viscosity so-
lutions for Hamiltonian-Jacobi equations. Furthermore, we show how this method
can be used to study the large deviations for Riemannian Brownian motion. For the
latter, we also provide a proof by horizontally lifting the Brownian motion to the
frame bundle over the manifold. The horizontal lift satisfies a stochastic differential
equation driven by a Euclidean Brownian motion. To prove the large deviation prin-
ciple, we embed the frame bundle into Euclidean space, push-forward the stochastic
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differential equation and apply Freidlin-Wentzell theory. The large deviations for
Riemannian Brownian motion then follow from the contraction principle.

The final chapters are concerned with large deviations for time-inhomogeneous pro-
cesses, both in the Euclidean and geometric context. First, in Chapter 6 we restrict
to the Euclidean setting. We prove the large deviation principle for random walks
with time-inhomogeneous increments. Furthermore, we show how to obtain from
this the associated path-space large deviations. We conclude the chapter by study-
ing large deviations for a diffusion generated by a weighted Laplacian, where the
weights depend on time. Since such a diffusion is a Gaussian process, this result
is already known. However, we provide an alternative proof that shows how this
result can be obtained from the path-space large deviations for time-inhomogeneous
random walks. The results in this chapter serve as motivation for obtaining sim-
ilar results for time-inhomogeneous processes in a geometric setting. In the final
chapter, we initiate this direction.

More precisely, the final chapter, Chapter 7, is concerned with large deviations for
Riemannian Brownian motion in a time-evolving Riemannian manifold. For this,
we consider a manifold equipped with a Riemannian metric which depends on time.
First of all, we explain how to define Riemannian Brownian motion in this set-
ting. Then, to prove the large deviation principle, we follow the lifting approach
taken in Chapter 5. In order make this work, we define the notion of horizontal
lift to the frame bundle with respect to a time-dependent collection of connections.
By also considering the associated anti-development to Euclidean space, one ob-
tains a stochastic differential equation driven by a Euclidean Brownian motion for
the horizontally lifted process. By embedding into Euclidean space and applying
Freidlin-Wentzell theory (adapted to work for time-dependent drift and diffusion),
we obtain the large deviations for the embedded process. The contraction princi-
ple then gives us the large deviations for the Riemannian Brownian motion in the
evolving Riemannian manifold.



Samenvatting

Dit proefschrift behandelt grote afwijkingen voor processen in Riemannse manifolds.
In het bijzonder bestuderen we uitbreidingen van grote afwijkingen voor random
walks en Brownse beweging naar de meetkundige context.

In de eerste hoofdstukken bestuderen we de grote afwijkingen voor random walks
in verschillende meetkundige omgevingen. Allereerst behandelen we in Hoofdstuk 3
geodetische random walks in Riemannse manifolds. Aangezien geodetische random
walks niet simpelweg geschreven kunnen worden als som van kansvariabelen, bespre-
ken we een notie van onafhankelijk, identiek verdeelde incrementen voor dit soort
random walks. Vervolgens bewijzen we het grote afwijkingen principe voor geode-
tische random walks met onafhanlijk, identiek verdeelde incrementen die begrensd
en gecentreerd zijn. Het idee van het bewijs is om de grote afwijkingen voor de
geodetische random walk te relateren aan grote afwijkingen voor een random walk
in een raakruimte. Aangezien de raakruimte een vectorruimte is, volgen deze grote
afwijkingen uit de originele versie van Cramérs stelling. De gewenste vergelijking
wordt verkregen door een zorgvuldige analyse van de meetkundige eigenschappen
van geodetische random walks en in het bijzonder van het korte-tijd gedrag van de
Riemannse exponentiéle afbeelding.

In Hoofdstuk 4 bestuderen we random walks in speciale Riemannse manifolds, na-
melijk Lie groepen. De extra groepsstructuur zorgt ervoor dat we elke raakruimte
kunnen identificeren met de Lie algebra. Hierdoor kunnen we een random walk in
een Lie groep definiéren als product van groepselementen die het beeld zijn van een
element van de Lie algebra onder de exponentiéle afbeelding. We leggen uit dat dit
soort random walks geodetische random walks voor de Levi-Civita connectie zijn
dan en slechts dan als de Riemannse metriek bi-invariant is. Vervolgens bewijzen
we het grote afwijkingen principe voor dit soort random walks. Het bewijs is verge-
lijkbaar met het bewijs van het grote afwijkingen principe voor geodetische random
walks. Echter, de afschattingen worden op een andere manier verkregen en maken
gebruik van de Baker-Campbell-Hausdorff formule in plaats van eigenschappen van
de Riemannse exponentiéle afbeelding.

In Hoofdstuk 5 gaan we over naar padsgewijze grote afwijkingen voor processen in
Riemannse manifolds. In het bijzonder bewijzen we padsgewijze grote afwijkingen
principes voor geodetische random walks en Riemannse Brownse beweging. Hoewel
het resultaat voor Riemannse Brownse beweging reeds bekend is, geven wij twee
nieuwe aanpakken om dit resultaat te verkrijgen. We bewijzen het padsgewijze
grote afwijkingen principe voor geodetische random walks via een algemene me-
thode om grote afwijkingen voor Markovprocessen te bestuderen. Deze methode is
gebaseerd op de convergentie van niet-lineaire halfgroepen en viscositeitsoplossin-
gen voor Hamilton-Jacobi vergelijkingen. Verder laten we zien hoe deze methode
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gebruikt kan worden om de grote afwijkingen voor Riemannse Brownse beweging te
bestuderen. Voor laatstgenoemde geven we ook een bewijs door de Brownse bewe-
ging horizontaal te liften naar de frame bundel over de manifold. De horizontale lift
voldoet aan een stochastische differentiaalvergelijking gedreven door een Euclidische
Brownse beweging. Om het grote afwijkingen principe te bewijzen, embedden we
de frame bundel in een Euclidische ruimte, zetten we de stochastische differentiaal-
vergelijking over en passen we Freidlin-Wentzel theorie toe. De grote afwijkingen
voor Riemannse Brownse beweging volgen daarna uit het contractieprincipe.

De laatste hoodstukken gaan over grote afwijkingen voor tijdsinhomogene proces-
sen, zowel in een Euclidische als meetkundige context. Allereerst behandelen we in
Hoofdstuk 6 de Euclidische omgeving. We bewijzen het grote afwijkingen principe
voor random walks met tijdsinhomogene incrementen. Verder laten we zien hoe
hieruit de bijbehorende padsgewijze grote afwijkingen afgeleid kunnen worden. We
sluiten het hoofdstuk af met het bestuderen van grote afwijkingen voor diffusies ge-
genereerd door een gewogen Laplaciaan, waarbij de gewichten tijdsathankelijk zijn.
Sinds dit soort diffusies Gaussische processen zijn, is dit resultaat al bekend. Echter
geven wij een alternatief bewijs dat laat zien hoe dit resultaat volgt uit de padsge-
wijze grote afwijkingen voor tijdsinhomogene random walks. De resultaten in dit
hoofdstuk dienen als motivatie voor het verkrijgen van vergelijkbare resultaten voor
tijdsinhomogene processen in een meetkundige context. In het laatste hoofdstuk
zetten we de eerste stappen in deze richting.

Preciezer gezegd, het laatste hoofdstuk, Hoofdstuk 7, behandelt grote afwijkingen
voor Riemannse Brownse beweging in een evoluerende Riemannse manifold. Hier-
voor rusten we de manifold uit met een Riemannse metriek die afthangt van de tijd.
Allereerst leggen we uit hoe we in deze context een Riemannse Brownse beweging
kunnen definiéren. Daarna bestuderen we grote afwijkingen hiervoor, waarbij we
de aanpak volgen met de horizontale lift uit Hoofdstuk 5. Om dit te laten slagen,
definiéren we een notie van horizontale lift met betrekking tot een tijdsathankelijke
familie van connecties. Als we vervolgens ook de anti-ontwikkeling naar een Eucli-
dische ruimte beschouwen, verkrijgen we een stochastische differentiaalvergelijking
gedreven door een Euclidische Brownse beweging voor het horizontaal gelifte proces.
Door nu weer te embedden in een Euclidische ruimte en Freidlin-Wentzell theorie
(aangepast voor tijdsafhankelijke drift en diffusie) toe te passen, verkrijgen we de
grote afwijkingen voor het geémbedde proces. Het contractieprincipe geeft vervol-
gens de grote afwijkingen voor de Riemannse Brownse beweging in de evoluerende
Riemannse manifold.
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