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1
INTRODUCTION

In the era of the modern internet, we are witnessing the tremendous growth in the amount
of data that now streams from everywhere: phone communications; credit card transac-
tions; smart televisions; computers; infrastructure of smart cities; sensors installed in
cars, trains, buses, planes, etc. Additionally, there has been an explosion of data from
social networking and e-commerce websites. For example, Figure 1.1 shows the growth
of Facebook users during the period of 2004 and 2010. In 2013, Facebook recorded 1.1
billion users with an average growth of 1.5 percent monthly [3]. As of July 2014, Twitter
has more than 284 million monthly active users with 500 million Tweets everyday [4]. As
of May 2014, Amazon has 244 million customers and, on average, handles 0.5 million
transactions every second [5].

As more and more data is being accumulated, the data analysis becomes more chal-
lenging. Data analysis is the process to learn the meaning of the data. To understand
and show the meaning, the data is generally collected and displayed in the form of ta-
bles, bar charts, or line graphs. The process involves finding hidden patterns in the data,
such as similarities, trends and other relationships, and learning the meanings of these
patterns. Traditional solutions to analyze data are not efficient enough to process the
massive data set, which are generally in the order of terabytes (TB) or petabytes (PB) in
size. However, the analysis of this data is crucial due to the possible social and financial
gains from such analysis. For example, by analyzing historical data or the data on social
networks, mishaps such as criminal activities or suicides can be predicted and perhaps
prevented [6] [7]. Additionally, customer preferences can be understood by analyzing
massive e-commerce websites which can be then used to design future products. Based
on the shopping records of customers, new products can be recommended to the cus-
tomers that they may need or be interested in.

When it comes to managing massive data, big data is certainly one of the biggest buzz
words in the IT industry. In Big data technologies, massive amount of data (in the order
of Petabytes) is collected, stored and analyzed to fetch interesting hidden patterns and
insights from the data. Big data can deliver new business markets, and has social and
economical impacts, if such huge data is analyzed efficiently. Data analysis techniques

1
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Figure 1.1: Growth of Facebook users (millions) over time

include data mining, text analytics, statistics, machine learning, natural language pro-
cessing and predictive analytics,. Businesses can analyze their data to gain new insights
that can help them to make better and faster decisions. According to IBM, big data has
the following three major characteristics [8]:

• Variety: Big data is beyond structured data and includes semi-structured or un-
structured data of all all kinds, such as text, audio, video, images, log files, clicks,
and more.

• Volume: Big data always comes in huge size. Organizations are flooded with hun-
dreds of terabytes and petabytes of information.

• Velocity: Data sources such as social networks are continuously producing infor-
mation at an ever increasing rate. The data must be often analyzed in real time.

Unlike traditional technologies, Big data does not directly analyses the massive amount
of stored data, rather it breaks data into smaller and incremental pieces. Each of the data
pieces are analyzed separately and if needed, results from all the pieces are combined to
get the analysis of entire dataset. Due to the large size of the data, the big data analysis
is not suitable for traditional Online Transaction Processing (OLTP) or traditional SQL
analysis tools.

Performance of OLTP and SQL tools depend on how well the hard disks are perform-
ing. Over the years, storage space of hard disks have significantly increased. However,
the rate at which data can be read or written hasn’t increased in step. Nowadays, 1 TB
disks are standard, but the access rate of the disk is still only around 100 MBps. At that
rate, reading all the data off the disk would consume more than two and a half hours.
This access rate is too slow to satisfy today’s IT demands. The obvious solution is to re-
duce the response time by reading from multiple disks together in parallel. If 100 disks
are working in parallel and each is storing 1/100th of the data, then 1 TB data can be read
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in less than two minutes. In practice, storing 1/100th of a data set per disk is a waste of
resources. All 100 disks should be filled completely, and there should be a shared access
of them. As a result, big data organizations are turning to a new class of distributed com-
puting technologies such as Hadoop [9]. Hadoop is an open source software framework
that enables the processing of enormous amount of data sets across clustered systems.
Hadoop provides a reliable shared storage on commodity hardware, and an analysis sys-
tem. The storage is provided by the Hadoop Distributed File System (HDFS) [10] and
the analysis is provided by MapReduce [11], a software framework for processing large
amounts of data. If data is spread across multiple drives, then it’s critical to solve the
hardware failure issues. Hadoop simply solves this problem by replicating copies of data
on multiple machines. If a machine dies then the data stored in the machine can still be
accessed from the replicated copies.

Various big data companies use Hadoop to store and analyze their data [12]. Twitter
uses Hadoop to store and analyze Tweets, log files, and many other types of data gen-
erated across Twitter. Yahoo uses Hadoop to facilitate research for Ad Systems and Web
Search. Hadoop is used by Facebook to store copies of internal log and data sources and
uses it as a source for reporting, analytics and machine learning. eBay is using Hadoop
for search optimization and research. These companies require enormous amounts of
disk space to store massive data produced by various sources. Therefore, they have to
assemble huge numbers of machines into their Hadoop clusters. For example, eBay has
a 532-machine Hadoop cluster, with 4256 cores and around 5.3 PB space. Facebook has
two major Hadoop clusters. The first one is a 1100-machine cluster with 8800 cores and
about 12 PB space. The second is a 300-machine cluster with 2400 cores and about 3
PB raw storage. At Yahoo, more than 40000 machines are running Hadoop and the their
biggest cluster has 4500 machines. These cluster sizes keep increasing as new data is
being generated continuously.

The cluster size is mainly determined by the amount of storage required. Many big
data industries experience a very high ingest rate of data. The more data are coming
into the system, the more machines are needed. Let’s consider a hypothetical example
to illustrate the growth of Hadoop clusters. Let’s assume a company receives 1 TB of new
data flows in every day. A growth plan of cluster size can be designed to estimate many
machines are needed to store the total amount of data. The cluster growth is projected
for a few possible scenarios. For instance, data shown in Figure 1.2 represents a typical
plan for flat growth, 5 percent monthly growth, and 10 percent monthly growth.

Figure 1.3 shows how the cluster would grow for the cluster setup shown in Figure 1.2.
According to the analysis, if 1 TB is coming in every day, then in one year, the cluster
size might increase by 6600 machines, despite 0 percent increment in cluster growth per
month. With 10 percent cluster growth per month, and 1 TB data coming in everyday,
the cluster size might increase by 10000 in a year. For an extreme case, if the incoming
data rate is 3 TB per and the cluster is growing by 10 percent per month, the cluster size
might grow by 33000 machines. All these possibilities represent practical cases for many
organizations. Therefore, we assume that the cluster size is increasing very fast.

As the sizes of Hadoop clusters grow, the need for a Cluster Management System
(CMS) becomes tantamount. CMS is a software tool that provides an abstract view of
the performance of a cluster so that energy, resources and floor space can be used effi-
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Table 4-2. Sample cluster growth plan based on storage

Average daily ingest rate 1 TB  

Replication factor 3 (copies of
each block)

 

Daily raw consumption 3 TB Ingest × replication

Node raw storage 24 TB 12 × 2 TB SATA II HDD

MapReduce temp space reserve 25% For intermediate MapReduce data

Node-usable raw storage 18 TB Node raw storage – MapReduce reserve

1 year (flat growth) 61 nodesa Ingest × replication × 365 / node raw storage

1 year (5% growth per monthb) 81 nodesa  

1 year (10% growth per month) 109 nodesa  
a Rounded to the nearest whole machine.
b To simplify, we treat the result of the daily ingest multiplied by 365, divided by 12, as one month. Growth is compounded each month.

In Table 4-2, we assume 12 × 2 TB hard drives per node, but we could have just as easily
used half the number of drives per node and doubled the number of machines. This is
how we can adjust the ratio of resources such as the number of CPU cores to hard drive
spindles. This leads to the realization that we could purchase machines that are half as
powerful and simply buy twice as many. The trade-off, though, is that doing so would
require significantly more power, cooling, rack space, and network port density. For
these reasons, it’s usually preferable to purchase reasonably dense machines without
falling outside the normal boundaries of what is considered commodity hardware.

Figure 4-2. Cluster size growth projection for various scenarios (18 TB usable/node)
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Figure 1.2: Sample cluster growth plan based on storage.
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Figure 1.3: Cluster size growth projection for various scenarios.
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Figure 1.4: Various steps in CMS process. Cluster machines are observed, and their performance is analyzed.
Based on the analysis, actions are taken to get the best performance from the cluster.

ciently. CMS software enables administrators to collect, store and analyze data related to
performance, resource usage, power and cooling in real time. Generally, CMS software
tools, including Nagios [13] and Ganglia [14], produce visualization of data, such as CPU
usage, I/O activities, memory usage, and network traffic activities. Visualization of this
data can be used by administrators to determine when maintenance is required or when
extra capacity needs to be added to clusters.

In general, as shown in Figure 1.4, the CMS is a loop, consisting of multiple building
blocks [15]. As shown in the figure, the primary CMS building blocks include, See, Decide,
and Act. The data is generally collected from different machines of the clusters. The
data constitutes resource, power consumption and temperature metrics of machines in
the clusters. Collecting data and validating whether the data is useful or not are part
of the building block See. The useful collected cluster metrics are analyzed to identify
the current state of the cluster. In our work, we interpret the state of the cluster as the
performance level of the cluster. The CMS tool also provides consoles to visualize the
data, and this visualization is used by administrators to monitor the performance of the
cluster. Based on the state of the cluster, plans are generated to run various applications
on the cluster. Such analyses and plan generation steps are classified as Decide. As part
of the Act, according to the generated plans, the applications are executed on the cluster.

CMS is one of primary functions of Data Center Infrastructure Management (DCIM).
DCIM is a software tool designed to improve the performance and efficiency of IT infras-
tructures to enhance the business values. DCIM assists administrators by performing the
following operations:

• DCIM provides an integrated view of all the physical assets of the data center in-
frastructure.
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Figure 1.5: 451 Research Market Monitor: Datacenter Infrastructure Management Systems [1].

• DCIM automates the time-consuming, manual process of commissioning new
equipment.

• Automation of capacity planning, and forecasting what kind resources will be needed
in the future, is taken care by DCIM.

• DCIM technology reduces the energy consumption and energy costs.

• No matter how radically and rapidly IT demands are changing, DCIM must satisfy
all those growing IT requirements.

Due to the potential large revenues from DCIM, there has been a tremendous interest
from vendors, investors and researchers in making DCIMs more efficient. Figure 1.6
shows the projected growth of DCIM.

Based on a recent survey [1], the DCIM market is $321 million in revenue. It is ex-
pected that DCIM sales will grow at 44 percent Compound Annual Growth Rate (CAGR)
to reach $1.8 billion in aggregate revenue in 2016.

As the interest is growing in the development of DCIM, it is critical to develop effi-
cient CMS to maintain the cluster assets. For example, for distributed computing, IBM
has designed a CMS tool for their AIX (Advanced Interactive eXecutive) operating sys-
tem to maintain the cluster with lower cost [16]. The CMS is included with the IBM AIX
V6.1 operating system, eases the process of cluster administration, by providing a single
point-of-control tool to administer the cluster. Recently, CMS tools for Hadoop are gain-
ing some attention. Pepperdata has received more than $20 million funding to manage
and monitor Hadoop clusters [17]. The Pepperdata CMS tool monitors and controls the
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Figure 1.6: Throughput improvement provided by the Pepperdata tool.

resource usage of applications on machines and provides 30 to 50 percent more through-
put [18].

Despite the potential revenues from CMS systems, the technology is still in its in-
fancy. CMSs have challenges to further improve availability, utilization, and efficiency,
given the increasing cost and demands. These challenges can be addressed by devel-
oping more efficient resource management and monitoring units in CMS. The job of
the resource management unit is to exploit the available resources most efficiently and
maximize the performance of the applications running on the cluster. The monitoring
unit monitors the performance of every machine in the cluster. If machines have per-
formance problems, the monitoring unit captures the anomalous behavior of those ma-
chines. In later sections, we demonstrate that impact of resource management and mon-
itoring on businesses in the case of general distributed systems. The same kind of impact
can be observed if we improve resource management and monitoring for Hadoop. Fig-
ure [18] shows the throughput improvements using the Pepperdata CMS with resource
management and monitoring of the cluster

1.1. RESOURCE MANAGEMENT
Modern clusters run multiple applications on the machines in parallel to efficiently uti-
lize the cluster. Generally, the resources of a server, including CPU, memory, storage,
and network bandwidth are shared among multiple applications. The main challenges
of resource management are learning the resource required by various applications, and
efficiently assigning these applications to machines. Providing fewer resources than re-
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Figure 1.7: CPU Utilization of IBM cluster before and after assigning resources based on demand.

quired can slow down or completely prevent an application from successful completion.
On the other hand, if more resources are reserved for an application than actually re-
quired, the resources might remain underutilized. A suboptimal resource management
plan will severely reduce the performance of data centers.

To study the impact of better resource management on the performance of data, we
present multiple examples where the cluster of performance is improved in terms of
resource utilization with better resource management.

EXAMPLE 1:
IBM’s virtualization platform provides programmatic interfaces that enables policy based
automation [19]. Using analytics to model current and future demand on a client’s server
resources, IBM is able to automate workload placement, quadruple server utilization
(shown in Figure 1.7) and reduce the number of servers by five times, with $4 million in
savings estimated the very first year.

EXAMPLE 2:
To measure the efficiency of Amazon EC2 cluster, the CPU utilization is measured using
30 probing instances (each runs on a separate physical machine) for a whole week [20].
Figure 1.8 shows the CPU utilization of the cluster when the resources are assigned with-
out considering the nature of the workloads. Figure 1.9 shows the CPU utilization when
the resources are assigned based on workloads. Overall, the average CPU utilization is
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Figure 1.8: CPU Utilization of EC2 cluster before assigning resources based on demand.

not as high as it is expected. The average CPU utilization in EC2 over the entire week
is 7.3 percent, which is lower than the maximum utilization of an internal data center.
At one virtualized data center, the average utilization is 26 percent, which is more than
three times higher than the average utilization of EC2 [20].

The lower CPU utilization is a result of the limitation of EC2; that is, EC2 fixes the
CPU allocation for any instance. Even if the host has unused CPU capacity, EC2 would
not distribute those free CPU cycles to other instances. Such kind of static allocation is
necessary, because Amazon is a public cloud provider. A public cloud provider needs to
make sure that virtual instances are isolated from each other, so that one user does not
consume all the CPU resources. However, due to such allocation, cluster has to suffer
lower CPU utilization. To increase the utilization, all instances running on a physical
machine should use CPU at the same time, however, this does not happen very often.

Amazon has many number of customers; thus, there is a possibility to get higher
CPU utilization. Figure 1.9 shows the busiest physical machines. It appears that a few
instances on these machines are running CPU hungry batch jobs. Two or three instances
get busy around same time on Monday, and therefore, the CPU utilization increases sig-
nificantly However, such kind of busy behavior is occurred only for a few hours in the
week, hence, the average CPU utilization is only 16.9 percent. It must be noted that the
busiest machine has a lower CPU utilization than the utilization (26 percent) of an inter-
nal data center.

These measurements show that a public cloud such as Amazon EC2 does not effi-
ciently utilize its resources. It suggests that there is a need for better resource manage-
ment tools to use the clusters more efficiently.
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Figure 1.9: CPU Utilization of EC2 cluster after assigning resources based on demand.

1.2. FAULTS
Enterprises invest a great deal of resources to ensure that mission-critical applications
run efficiently on data centers. However, such investments do not always give the ex-
pected results. Despite the advanced infrastructures, software and hardware faults are
still common in many IT organizations. Such faults might shutdown the business for
days.

In September 2010, Virgin Blue airline’s check-in and online booking systems crashed.
On September 26, as hardware failure happened in Virgin Blue’s internet booking and
reservation IT infrastructure. Virgin Blue business was severely affected by this outage
for almost 11 days, and around 50,000 passengers and 400 flights were affected by this
outage. Figure 1.10 shows customers waiting for Virgin America flights following a sys-
tem disruption.

To understand the nature of faults in data centers, we present a data set [21] col-
lected during 1995-2005 at Los Alamos National Laboratory (LANL). The data records all
the faults that occurred in the 9-year period, and were responsible for application or ma-
chine failure. The data contains faults such as, software faults, hardware faults, operator
error and environmental issues (e.g. power outages). The data is gathered from 22 high-
performance computing systems, that include 4,750 machines and 24,101 processors.

The LANL data provides the classification of the root cause of failure into various
faults, such as software, hardware, human, environment, and unknown. Figure 1.11
shows the frequency of the root cause classes. More than 50 percent of faults are hard-
ware related problems, and around 20 percent of faults are because of software.

There can be multiple reasons for data center failures. Failures can be due to both
software and hardware issues. Google’s cluster management unit tries to run its data
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Figure 1.10: Passengers waiting for Virgin America flights at an airport.
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Figure 1. The breakdown of failures by root cause. Each bar shows the breakdown for the systems of one

particular hardware platform and the right-most bar shows aggregate statistics across all LANL systems.

trend. We also briefly discuss our efforts to make publicly available much of these data sets in aComputer

Failure Data Repository (CFDR) to be hosted by USENIX. With the increasing importance of frequent

failures during petascale application execution, we assert that computer application designers need ready

access to raw data describing how computer failures have occurred on existing machines.

2. Data sources

2.1. Node outages in HPC clusters

The primary data set we obtained was collected during 1995–2005 at Los Alamos National Laboratory

(LANL) and covers 22 high-performance computing systems, including a total of 4,750 machines and

24,101 processors. 18 of the systems are SMP-based clusters with 2 to 4 processors per node, comprising

a total of 4,672 nodes and 15,101 processors. The four remaining clusters consist of NUMA boxes with

128 to 256 processors each, adding up to a total of 78 nodes and 9,000 processors. The data contain

an entry for any failure that occurred during the 9- year time period and that resulted in an application

interruption or a node outage. The data covers all aspects of system failures: software failures, hardware

failures, failures due to operator error, network failures, and failures due to environmental problems (e.g.

power outages). For each failure, the data includes start time and end time, the system and node affected,

as well as categorized root cause information. To the best of our knowledge, this is the largest failure data

set studied in the literature to date, both in terms of the time-period it spans, and the number of systems

and processors it covers, and the first to be publicly available to researchers (see [2] for raw data). In

Section 3, we provide a few of our results from analyzing this data [30].

2.2. Storage failures

Our interest in large-scale cluster failure originates in the key role of high bandwidth storage in

checkpoint/restart strategies for application fault tolerance [11]. We are part of a larger effort, the DOE

SciDAC-II Petascale Data Storage Institute, chartered to anticipate and explore the challenges of storage

systems for petascale computing [4]. Although storage failures are often masked from interrupting

applications by RAID technology [24], reconstructing a failed disk can impact storage performance

noticeably and if too many failures occur, storage system recovery tools can take days to bring a large

filesystem back online, perhaps without all of its user’s precious data. Moreover, disks have traditionally

been viewed as perhaps the least reliable hardware component, due to the mechanical aspects of a disk.

We have been able to obtain four data sets (referred to as HPC1 – HPC4) describing disk drive failures

occurring at HPC sites and three data sets (referred to as COM1 – COM3) collected at a large internet

service provider. The data sets vary in duration from 1 month to 5 years and cover a total of more than

100,000 hard drives from four different vendors, and include SCSI, fibre-channel and SATA disk drives.

We provide a few of our results from analyzing the data in Section 4. For more detailed results see [31].

2

Figure 1.11: The breakdown of failures at LANL by root cause. Each bar shows the breakdown for the systems
of one particular hardware platform.
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Figure 1.12: Unplanned IT downtime per minute.

centers flawlessly with high utilization. However, it encounters many kinds of hardware
failures. At Google [22], the rate of uncorrectable DRAM errors per machine per year is
more than 1 percent. The failure rate of the disk drives is 2 to 10 percent.

1.3. MANUAL REPAIR COST

One of the key problems in date center operations is to manually monitor and diagnose
machine problems and faults. Sometimes faults are very difficult to diagnose, and there-
fore IT engineers invest a great deal of their time in finding those faults. Investing human
hours to repair machine problems might significantly increase the data center opera-
tional cost. Figure 1.12 shows the estimated per-minutes costs of unplanned downtime
in an IT organization. A study [23] illustrates a setup of 120 machines, each with a Mean
Time To Failure (MTTF) of 500 minutes, and the repair staff average is 20 minutes to fix
the system. To maintain the performance of the system up to 96 percent throughput, a
staff of 10 IT engineers is needed. Extrapolating this setup to 50000 servers, each with
an MTTF of 50000 minutes, a staff of more than 40 IT engineers is needed to achieve the
same throughput. A staff of more than 40 IT engineers is needed. The average wage of an
IT engineer is $44.85 per hour, which translates to $93,267 per year by counting 40 hours
per week times 52 weeks per year. Therefore, the entire staff will IT cost around $3.3 mil-
lion per year just to fix the errors so the data center can perform at a certain throughput.
Generally, machines are not operational while the problems are being diagnosed. The
time to fix problems can be defined as the downtime of the system. Such downtown will
have an additional impact on a businesses that are running on those data centers.

On average, between $84,000 and $108,000 (US) lost is reported for every hour of
IT system downtime, according to estimates from studies and surveys performed by IT
industry analyst firms [24]. Moreover, financial services, telecommunications, manufac-
turing and energy industries lose their revenue even at a higher rate during downtime.
For the average recovery time of 134 minutes, the average costs were $680,000, for a data
center outage.
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1.4. RESEARCH GOALS
In this chapter, we have observed that an efficient CMS tool is vital for achieving the best
results from Hadoop clusters. An efficient tool may improve the revenue and produc-
tivity of the cluster. The task of implementing such an efficient CMS becomes challeng-
ing because the workload conditions and the machine characteristics are continuously
changing. Therefore, in this thesis our primary goal is the following:

“Implement a CMS tool for Hadoop to achieve the optimal performance
from the clusters where the cluster states are continuously changing.”

In order to accomplish the above goal, we set the following sub-goals in designing an
automatic high throughput CMS system:

1. Automatic Resource Management: The CMS system should automatically assign
workloads to machines such that the resource utilization is optimal and the ap-
plications can run efficiently. In the case of changing applications, the system
should autonomously change its workload assignment to achieve the optimal per-
formance.

2. Self Adaption: Due to degradation or faults, the performance of machines can
change over the time. Rather than using manually fixing the performance prob-
lems, the CMS should be self-adaptive to automatically identify the faults or degra-
dations in machines. In order to make resource manager adaptive to these changes
in real time, these changes should be communicated to the resource manager.

3. Minimize Downtime: To minimize the downtime, the cluster’s production should
not stop while doing the resource management and identifying performance prob-
lems in machines. Therefore, there should be minimum human involvement in
the CMS, and the cluster should be at the maximum production level.

In this thesis, we use the word "optimal" for scheduling policy, resource usage, and
performance. A scheduling policy is optimal when it maximizes an objective function.
Resource utilization is optimal when overall resource utilization of each cluster host is
at the best possible level. Performance can be defined in terms of a certain objection;
optimality means maximizing that objective function.

1.5. PROPOSED CMS DESIGN
To accomplish the above goals, in this section, we present the design of our CMS tool.
The objective of our CMS design is to maximize the performance of Hadoop clusters;
however, while designing the CMS we make sure that the design can be easily extended
to any other distributed computing platform.

Performance of a cluster mainly depends on the performance of every machine in
the cluster and how applications are scheduled on machines. To achieve the best pos-
sible production from a cluster, the available resources need to be exploited efficiently.
The decision on how to use resources, which workload and how much workload to as-
sign on which machine, is made by the scheduler. Scheduler enables us to achieve the
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Figure 1.13: The proposed design of CMS system

first sub-goal, Automatic Resource Management. Therefore, the scheduler is very impor-
tant component of our CMS design. In our design, scheduler is the unit that take cares
of resource management of the cluster. The other important component in our design is
the cluster state estimator (CSE). The CSE keeps learning the state of the cluster, in terms
of the performance of each machine in the cluster. The conceptual design of CMS, which
incorporates the scheduler and CSE is shown in Figure 1.13. We can achieve the second
sub-goal, Self Adaption, by efficiently implementing CSE.

In this work, we design a self-adaptive agent for CMS which performs scheduling
and monitors the performance of the clusters. According to our design, workloads are
submitted to the scheduler, which distributes the workloads to different machines. In
principle, the scheduler assigns workloads to machines that maximize a certain objec-
tive function. In our case, we choose the performance of the cluster as our objective
function. In our design, we assume that each workload has a certain kind of character-
ization and different kinds of workloads are concurrently submitted to the cluster. The
performance of a workload depends on the characterization of the workloads and the
current state of the cluster. To monitor the performance of the cluster and to generate
the optimal scheduling decision, the current belief about the cluster state is estimated.
To achieve the third sub-goal, Minimize Downtime, the performance of actual workload
is analyzed in the real time to estimate the cluster state. Along with the scheduling, the
output of the cluster state estimation is used to identify the performance problems in the
cluster. In our design, we provide an automated solution to diagnose performance prob-
lems. Additionally, we also provide the monitoring data that can be used by the cluster
administrators to identify the problems. In next section, we provide our contributions
as part of the implementation of the proposed CMS design.
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1.6. CONTRIBUTIONS
In this thesis, we address the challenges of Hadoop CMS design with the following con-
tributions:

1. We provide an online framework to learn the resource usage of incoming work-
loads. The different workloads have different resource characterization, because
the resource usage of a workload depends on the functionalities of the workloads.
To implement an efficient resource manager, the resource usage of the workloads
must be known. In practice, this information is not provided in advance; therefore,
they must be learnt. An efficient resource managers helps us in achieving the first
sub-goal that we described earlier.

2. We present the design of the scheduler to achieve the first sub-goal. To implement
a scheduler, an objective function needs to be defined. The job of the scheduler
is to optimize the objective function. We define and provide the analytical for-
mulation of various objective functions. Each objective function formulates the
performance of the cluster under different scenarios. Our objective function is for-
mulated in terms of resource usage of workloads and the performance of cluster
machines.

3. We propose an online tool to learn the performance of every machine in the clus-
ter. The performance of a machine is also seen as the state of the machine. The
machine states are continuously estimated to monitor the performance of the
cluster in real time. This monitoring tool derived as part of this contribution helps
us in achieving the second sub-goal.

4. To keep the production at a higher level, the scheduling and learning of various
parameters is performed in real time. Our CMS does not stop the production to
perform any of its task. Getting non stop production from a cluster where ma-
chines are failing dynamically, helps us in achieving the third sub-goal.

5. Many distributed frameworks assume that the underlying infrastructure is homo-
geneous, meaning that machines are identical to each other in terms of their per-
formance. However, this assumption is not true in practice. Machines in the clus-
ter are collected from different generations, and therefore the cluster naturally be-
comes heterogeneous. Additionally, the performance of machines degrade over
time, and the performance of different machines will degrade differently. There-
fore, as part of our contribution, we make sure that our CMS works for both homo-
geneous and heterogeneous clusters. In other words, we achieve all the sub-goals
for both homogeneous and heterogenous clusters.

1.7. THESIS ORGANIZATION
The contributions mentioned in the previous section are described in six chapters of
this thesis. Chapter 2 provides a brief description of various frameworks in distributed
computing, and subsequently provides a detailed description of Hadoop and its various
components. The chapter also describes related work in the field of resource manage-
ment and monitoring of Hadoop clusters. In Chapter 3, we propose our online approach
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to learn resource usage of applications. In the chapter, we also introduce a performance
model. In Chapter 3, we also introduce a scheduler to assign workloads in heterogeneous
cluster. In this chapter, we use the performance model derived in Chapter 3. In Chapter
4, we start with the shortcomings of the scheduler derived in Chapter 4. Subsequently,
we introduce a new scheduler that eliminates all the shortcomings of the scheduler de-
rived in Chapter 4. In Chapter 5, we provide our approach to monitor and diagnose the
performance problems in heterogeneous Hadoop clusters. In Chapter 6, we provide a
scheduling framework, which is inspired from the Pervasive Diagnosis approach [25]. Fi-
nally, in Chapter 8, we draw conclusions and present recommendations for future work.

1.8. PAPERS
As part of this thesis, we published the following papers that summarize the work de-
scribed in various chapters of the thesis.

1. Chapter 3 and 4 are based on the following:
Shekhar Gupta, Christian Fritz, Bob Price, Roger Hoover, Johan de Kleer and Cees
Witteveen. ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop
Clusters. In Proceedings of theUSENIX: 10th International Conference on Auto-
nomic Computing (ICAC-2013). SanJose, CA, USA, June 26 - 28, 2013

2. Chapter 3 and 4 are based on the following:
Shekhar Gupta. An Optimal Task Assignment Policy and Performance Diagnosis
Strategy for Heterogeneous Hadoop Cluster. In the Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence (AAAI 2013). Bellevue, Washing-
ton, USA, July 14-18, 2013

3. Chapter 5 is based on the following:
Shekhar Gupta, Christian Fritz, Bob Price, Johan de Kleer and Cees Witteveen.
Continuous State Estimation for Heterogeneous Hadoop Clusters. In Proceedings
24th Int’l Workshop on the Principles of Diagnosis (DX’13). Jerusalem, Israel, Octo-
ber 2013

4. Chapter 5 is also based on the following:
Shekhar Gupta, Christian Fritz, Johan de Kleer and Cees Witteveen. Diagnosing
Heterogeneous Hadoop Clusters. In Proceedings of the 23rd Int’l Workshop on the
Principles of Diagnosis (DX’12). Great Malvern, U.K, August 2012
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WORK

In the previous chapter, we mentioned the goals of this thesis that are related to the
performance improvement of big data infrastructure. In our work, we choose Hadoop
as our infrastructure to solve big data problems. Hadoop is widely used to store and
analyze massive amounts of data collected from various sources. The challenge of how
to store and analyze data in a distributed manner is not new. In the high-performance
computing community, there have been many distributed computing platforms. In the
following sections, we discuss other possible systems to solve big data problems and why
they are not frequently used.

2.1. RELATIONAL DATABASE MANAGEMENT SYSTEM
A database is used to store information in such a way that information can be easily
retrieved from it. In general, a relational database stores information in the form of table
with rows and columns [26]. Relational databases are not only relatively easy to create
and access, but also very easy to extend. They have become a common choice among
businesses to store and analyze information. A relational database management system
(RDBMS) is a framework that allows one to create, update, and administer a relational
database [26]. The most popular RDBMS programs use the Structured Query Language
(SQL) to access the database [27]. SQL statements are in the form of queries to retrieve
information from the database.

The SQL disk access patterns are dominated by seeks. Seeking is the process of mov-
ing a disk head to a desired location on the disk where the data resides [28]. In the
previous chapter, we discussed that the data transfer rate for disk is not improving fast
enough, and the seek time improvements are even slower than that of transfer rates.
Due to seek operations, reading from and writing to a large set of data takes longer than
it does to stream through it. This is because streaming uses the transfer rate to batch pro-
cessing, which speeds up access to the data. Therefore, an RDBMS is inherently slower
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than MapReduce to analyze massive amounts of data because MapReduce analyzes data
in a batch. Moreover, an RDBMS is suitable for datasets that are continuously updated,
whereas MapReduce is better suited to application where data is written once and read
many times. Another reason, why an RDBMS is not a good big data application is the
structure of data. An RDBMS operates on structured data, where data is organized in
the form of database tables or XML documents [28]. On the other hand, in the big data
world, the data arrives in the form of unstructured data such as plain text or images. An
RDBMS is not designed to work with unstructured data. On the other hand, MapReduce
works well on unstructured or semi-structured data.

Generally, a number of SQL queries are grouped together to accomplish a certain job.
To handle multiple jobs, SQL comes with a job scheduler, for example the Oracle sched-
uler [29], which is implemented by the procedures in the SQL package. The scheduler
allows enterprises to efficiently manage and plan these jobs. The scheduler handles the
execution of these jobs based on the business environment. When jobs are competing
for resources, the scheduler allocates resources to them based on the business need. The
business-oriented scheduling is implemented using following ways:

• Jobs that have similar characteristics are grouped together into job classes [30].
The scheduler controls the resource allocation to each class. This classification
ensures that critical jobs get higher priority and sufficient resources to complete.
For instance, if there is a critical project to load a data warehouse, then the sched-
uler may combine all the data warehousing jobs into one class and give priority to
it over other jobs by allocating most of the available resources to it.

• The scheduler further extends the prioritization of jobs to a next level by dynami-
cally changing the priority based on some criteria [30]. Over time, the definition of
a critical job may change, and the scheduler accommodates these changed priori-
ties among jobs over that time window. For instance, the extract, transfer, and load
(ETL) jobs can be considered as critical jobs during non peak hours but not as crit-
ical during the peak hours. Other business related jobs may need higher priority
during the peak hours. In these cases, the priority among the jobs can be changed
by dynamically changing the resource allocation of each class.

Scheduling based on priority is always useful for any kind of application, including
big data applications. The existing schedulers also take priorities into account while
making the scheduling decision. Scheduling only based on priority does not guarantee
optimal performance. Different priorities are assigned to the different users that use the
same cluster. In general, a user submits more than one application at a time. To achieve
the best performance, the scheduler should efficiently run all applications submitted by
one user. The monitoring tool provided SQL framework only monitors the success of
applications. This framework does not try to infer where the failures happened and why;
however, these inferences could be very useful to efficiently run the cluster in future.

2.2. GRID COMPUTING
Grid computing is the another branch of distributed computing, which has been used
used to process massive amount of data for years. A grid is defined as a collection of
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machines, resources, members, donors, clients, hosts, engines, and many other such
items [31]. They all contribute some amount of resources, such as CPU, storage and
memory to the grid as a whole. Some resources of the grid may be accessed by all users,
and access to some resources is restricted to some specific users.

The CPU is the most common resource shared by the processors of the machines
on the grid. The processors can vary in terms of speed, architecture, software platform,
memory and storage. Such sharing of CPU cycles enables the massive parallel CPU ca-
pacity to the grid, which is one of the most attractive features of the grid computing.

Storage is the second common resource shared by the machines on the grid. The grid
provides an interesting view of storage, which is also called a data grid [31]. The storage
in the grid is used in specific ways to increase capacity, performance and reliability of
data. Capacity is increased by using the storage on multiple machines with a shared file
system. A single file or database is distributed over multiple storage devises and ma-
chines. A single uniform name space is provided by a shared filed system. Because of
the uniform name space, it is easier for users to refer data in the grid, without worrying
about the exact location of the data. Many grid computing platforms use mountable file
systems, such as Network File System (NFS), Distributed File System (DFSTM), Andrew
File System (AFS), and General Parallel File System (GPFS).

Grid Computing communities have been working with large-scale data for many
years. They use APIs, such as Message Passing Interface (MPI) to implement frameworks
to process data. In principle, Grid Computing distributes the workloads across a cluster
of machines, which has a shared flie-system, hosted by a Storage Area Network (SAN).
Such approaches works well for compute intensive applications. It does not perform
well when machines need to access to larger amount of data, because the network band-
width becomes the bottleneck and machines become idle. On the other hand, Hadoop
uses a distributed file system, and computation is performed at the machine where data
is stored locally. This method avoids sending data over networks which might easily sat-
urate the network bandwidth. In terms of implementation, MPI programming is much
more difficult than developing a MapReduce program. MPI requires users to write low-
level C programs, which is far more challenging than writing high level MapReduce pro-
grams.

To increase the reliability in the grid, expensive hardware is needed. The hardware
is generally is consist of chips and redundant circuits, is contains logics to recover from
failure. Machines use hardware redundancy by duplicating processors so that if one pro-
cessors fails, other can be used. Power supplies and cooling systems are also duplicated.
All of these duplications build a reliable system, but at a very high cost.

Most grid computing platforms use some kind of scheduler to run incoming appli-
cations on machines. In the simplest scenarios, applications are assigned to machines
in a round-robin fashion. This scheduling policy is generally suboptimal, and there are
more advanced schedulers which maximize the performance of applications over the
grid. Some schedulers implement the scheduling policy based on a job priority sys-
tem. This is sometimes done by creating several job queues and assigning a different
priority to each queue. As soon as a machine becomes available, a job from the higher
priority queue is scheduled on the machine. Schedulers can also use other kinds of poli-
cies, which can be based on various kinds of constraints on jobs, users and resources A
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few schedulers also monitor the progress of scheduled applications. If the application
crashes due to a system or network failure, the scheduler would automatically resubmit
the application.

2.3. VOLUNTEER COMPUTING
Projects such as SETI@home [32], Search for Extra-Terrestrial Intelligence, run client
software on voluntarily donated CPU time from otherwise idle computers to analyze
astronomical data to find signs of life beyond Earth. The concept of donating idle com-
puter cycles by users all around the world to solve a common problem is known as vol-
unteer computing [33]. Most of the volunteer computing projects, including SETI@home
use the framework BOINC [34] for the implementation. Therefore, we will refer BOINC
as the volunteer computing framework.

In volunteer computing projects, the problem is divided into small chunks, which
are sent to computers around to the globe to analyze the problem. These chunks are
generally created by dividing a very large dataset into smaller sets. Each computer runs
a client provided by the project administrators. The client runs in the background and
waits for the computer to go idle. Once the computer is idle, the client starts receiving
small chunks from the main server and starts analyzing them. When the analysis is done,
the results are submitted back to the server, and the client starts working on another
chunk. The same process continues until the computer is idle.

Although BOINC seems a suitable framework to solve big data problems, there are
a number of limitations that make it unsuitable for big data. The SETI@home problem
is mainly CPU intensive, and the time taken by computers to process the data is much
higher than transferring the data from server to volunteer machines. In some cases, a
big data problem might not use the CPU very extensively, and then bandwidth limitation
would be a problem for SETI@home. BOINC runs a custom program on every computer
for different chunks of data, and making frequent changes to the custom program is not
easy. On the other hand, Hadoop provides the MapReduce framework, where users can
easily write their own programs and modify them.

There are many other projects like SETI@home that use BOINC as their framework.
A volunteer can attach their machines to any set of BOINC projects. The client main-
tains a queue of jobs, typically from different projects, and runs them on the volunteer
machines. On the machines, the jobs are executed based on the scheduling policy of lo-
cal operating system. The scheduler reports back the list of completed jobs and requests
the new jobs to finish. In the context of this work, we only focus on the client’s schedul-
ing policy. Weighted round robin is the baseline scheduling policy of the BOINC client.
Here weight is determined by how much resource are shared and projects are given time
in proportion of their resource share. On top of the weighted round robin, BOINC also
incorporates priorities for jobs. The priorities are decided based on the jobs’ deadline,
or whether the job needs CPU or Graphics Processor Unit (GPU). Generally, jobs that
require GPU are given higher priority.

Volunteer computing consists of machines that are diverse in terms of hardware and
software, reliability, availability, network connection, and other resource specific proper-
ties. In other words, rather than being stored in a sophisticated cluster environment, the
resources are distributed all over the globe. Unlike cluster settings, there is no guarantee
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about the reliability of resources. There are no monitoring tools to determine whether
machines are working normally or there are any failures. However, due to the fact that
volunteer computing has massive resources, it always runs jobs on multiple hosts to en-
sure the reliability. Therefore, fault resilience is an important challenge for volunteer
computing platforms such as BOINC.

BOINC also uses a similar reliability approach, know as replicated computing [35].
In replicated computing, each job is sent to multiple hosts to process. If the results ob-
tained from multiple hosts agree, they are assumed to be correct. Otherwise, more hosts
are issued and until results from a certain number of hosts is consistent.

Due to these challenges with the existing distributed system infrastructures, Hadoop
is widely accepted by the big data community. Therefore, in this thesis, we choose to
use Hadoop as our big data infrastructure. In the next section, we provide a detailed
overview of Hadoop architecture and its various components.

2.4. HADOOP
Hadoop is a free, JAVA-based platform for distributed computing that currently is the
de facto standard for storing and analyzing very large amounts of data. Instead of re-
lying on expensive, proprietary hardware and different systems to store and process
data, Hadoop allows distributed parallel processing of massive amounts of data across
cheap, industry-standard machines that both store and analyze the data, and can be
easily scaled. A Hadoop cluster consists of one master and many slave (tens to thou-
sands) machines. From any number of different sources, Hadoop can handle many
kinds of of data: structured, unstructured, logs, images, audio files, email, communica-
tions records. Even when different types of data have been stored in unrelated systems,
it can be dumped into the Hadoop clusters with no prior need for a schema. In other
words, there is no need to know what kind of queries will be made from data before the
data is stored. Hadoop lets us decide later, and time can reveal questions we never even
thought to ask. For example, let’s assume a Hadoop cluster is storing large amount of text
files. Different kinds of queries can be made from the text files, such as, counting total
number of words, computing frequencies of certain words or other statistical analysis.

While storing the text files, Hadoop doesn’t know what operations will be performed
on the data in the files. Once data is written, users write their own functions to process
the data. Hadoop has two primary components, HDFS for storage and MapReduce for
processing. The following sections briefly describe these components of Hadoop.

2.4.1. HDFS
Hadoop Distributed File System (HDFS) is an open-source implementation of the Google
filesystem [36], called HDFS in Hadoop, and Google’s MapReduce framework [11]. HDFS
is able to store tremendously large files across several machines and, using MapReduce,
process these files in a distributed fashion, moving the computation to the data, rather
than the other way round. Using Hadoop, we can run many applications on systems with
hundreds to thousands of machines which involves data in order of terabytes. HDFS is
implemented to enable fast data transfer among machines, and keep running system
uninterrupted under machine failures. The implementation reduces possibility catas-
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Figure 2.1: HDFS stores files in blocks of 64MB, and replicates these blocks on three cluster nodes each. For a
new job MapReduce then processes (maps) each block locally first, and then reduces all these partial results in
a central location on the cluster to generate the end result.

trophic system failures, in case of number of machines become dead.
Figure 2.1 depicts how Hadoop stores and processes data. When a data file is copied

into the system, it is divided up into blocks of sizes such as 64MB or 128 MB. Each block
is stored to more than one machines depending on the replication policy of the deployed
Hadoop cluster . The replication provides both fault-tolerance and performance (Figure
2.1(a)).

The loss of a single disk or machine does not destroy the file from the system and a
given block can be read from multiple machines, which improves the throughput. HDFS
provides data availability by continuously monitoring the machines in a cluster and the
blocks stored on those machines. Individual blocks include checksum. When a block is
read the checksum is verified, and if the block has been damaged, it will be automatically
restored from one of its replicas. If a machine fails, all the data that was stored in that
machine is copied to some other machine from the collection of replicas stored in other
machines. As a result, HDFS runs very efficiently on commodity hardware. It tolerates
and compensates for failures in the cluster.

2.4.2. MAPREDUCE
Once the data is loaded in HDFS, computational applications can be executed over this
data. New applications are submitted to the Master (Figure 2.1(b)), which is called Na-
meNode. The Master will schedule map and reduce tasks onto the DataNodes.

• A map task processes one block and generates a result for this block, which gets
written back to HDFS. Hadoop will schedule one map task for each block of the
data, and it will do so, generally speaking, by selecting one of the three DataNodes
that is storing a copy of that block to avoid moving large amounts of data over the
network.

• A reduce task takes all these intermediate results and combines them into one,
final result that forms the output of the computation.

Hadoop divides the input data into the fixed size pieces called splits. For each splits,
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Figure 2.2: Data flow in Map and Reduce tasks.

Hadoop creates a map task, and a user defined map function is executed for each split.
When a map function starts producing the output, it is not simply written to disk. The
process takes advantage of buffering writes in memory and does some presorting for
efficiency reasons. Because, data can be read at a faster rate from the memory, and if the
data is presorted, then the reducer can easily generated the sorted data. Figure 2.2 shows
the data flow in the map phase.

Map tasks write their output to circular memory buffer. As soon as the buffer is full,
the content of buffer is spilled to the disk. Data is first divided into partitions, before its
written to the disk. The partitions are used by reducers. Within each partition, data is
sorted by key, and in case of a combiner function, the sorted data is combined according
to the combiner function. In summary, mappers are either reading or writing data to the
disk or it’s processing the data as specified in map or combiner function.

To use Hadoop infrastructure, a programmer needs to write applications in the form
of Map and Reduce functions. The functions are used to implement the computation in
distributed manner, and they operate on the low level unit of text such as lines or words.
The MapReduce code is deployed on the each machine of the cluster. The format of data
can be specified in the code, and simple algorithms can be implemented. WordCount is a
classic example of MapReduce program, which is used to calculate the number of words
in a large file. The Map function calculates number of words per line of a file by breaking
lines into words using a tokenizer, and then by counting words. The reduce function
aggregates the number of words computed by each mapper to get the total number of
words in the file

2.4.3. DAEMONS
There are two main daemons in Hadoop that accepts jobs from users, run them on the
cluster, and make sure that jobs are successfully completing in the cluster. The two dae-
mons are jobtracker and tasktracker:

JOBTRACKER

The jobtracker is the master process, which is responsible for accepting jobs from users,
scheduling tasks on machines and monitoring the cluster. There is one jobtracker for
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every MapReduce cluster, which means if a the jobtracker dies then the overall clus-
ter fails. Jobtracker monitors the health of slave machines using the heartbeat protocol.
Each slave machine sends heartbeats to the jobtracker with a regular interval. The heart-
beat message also contains the available resources on machines to run map and reduce
tasks. The process of deciding which task will be executed on which machine is known
as task scheduling. If there are tasks that need to be completed and, through heartbeat
protocol, the scheduler learns that a machine has free resources, then tasks will be exe-
cuted on the machine. Hadoop comes with a few default schedulers. The description of
those schedulers is provided in the later part of this chapter.

TASKTRACKER

The second daemon, tasktracker, which runs on every slave machine, is responsible for
accepting tasks from jobtracker, executing those tasks, and reporting progress to job-
tracker periodically. The tasktracker keeps track of free and used resources on the ma-
chine. Resources on machines are quantified as the number of slots, which indicates the
number of parallel tasks. One slot executes one task. If a slot is running a task then it’s
classified as used; otherwise, it’s unused and free to accept tasks. A designated number
of slots are provided to map and reduce tasks. When a cluster starts, each tastracker is
configured with a fixed number of map and reduce slots. This configuration can not be
changed while running jobs on the cluster. When the cluster starts, all the slots are free.
Upon receiving a task assignment from the jobtracker, the tasktracker starts filling the
free tasks and marking them as used tasks. At a regular interval, the information about
free and used slots is sent back to the jobtracker with the heartbeat message. The job-
tracker uses this information to make its scheduling decision.

2.4.4. SCHEDULER
Jobtracker runs a scheduler to allocates resource to each application by distributing their
tasks on various machines. The scheduler allocates tasks on machines to optimize cer-
tain objective function such as capacity utilization or fairness. Hadoop scheduler only
does the scheduling, it does not monitor the status of tasks or applications. It also does
not restart a task if it is failed on a machine, due to software or hardware failure. Hadoop
scheduler is used a plug-in component. Examples of Hadoop schedulers are Capaci-
tyScheduler and FairScheduler:

CAPACITYSCHEDULER

The CapacityScheduler [37] allows sharing of a cluster among many users while giving
each user a guaranteed capacity in terms of cluster resources. The main idea behind the
scheduling policy is that the cluster resources are shared by various organizations who
provide funds to the cluster based on their computing requirements. This system gives
an additional benefit to the organizations in that they use any free capacity not being
used by others. In this way, the organizations gain more flexibility at a less price. Shar-
ing cluster capacity across organizations requires a strong support for multi-tenancy
since each organization is guaranteed a certain amount of capacity. The CapacitySched-
uler ensures that a single application or user or queue is not taking a disproportionate
amount of resources in the cluster. Also, the CapacityScheduler limits the initialized or
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pending applications submitted from a single user and queue to enable fairness and sta-
bility of the cluster.

FAIRSCHEDULER

Fair scheduling [38] is a policy that assigns applications to machines such that all appli-
cations, on average, get an equal share of cluster resources over time. Initially, when
there is a single application running, the application uses the entire cluster. Subse-
quently, when more applications are submitted, the resources that free up are allocated
to new applications, so that each application roughly gets an equal amount of cluster re-
sources. This allows the short application to finish in reasonable time while not starving
long-lived applications. Moreover, FairScheduler is a reasonable tool to share a cluster
among a number of users. Finally, FairScheduler works with application priorities—the
priorities determine what fraction of total resources should be allocated to which appli-
cation.

2.4.5. SHORTCOMINGS
Although Hadoop satisfies the requirements of big data problems, but the existing de-
sign has lots of room to improve the performance. The existing Hadoop design has the
following shortcomings:

HOMOGENEITY ASSUMPTION

Hadoop, as of the current version, does not take any performance differences between
the machines into account during the scheduling phase, but assumes a homogeneous
cluster. The current Hadoop version assumes that machines in the cluster are equally
fast with regard to CPU, disk I/O, RAM, and network bandwidth—the key-contributors
to task completion time. Due to the homogeneous assumption, the same number of
Map and Reduce slots are allocated on every machine.

IGNORING RESOURCE REQUIREMENTS

During the act of task scheduling, Hadoop does not take into account the actual resource
requirements of tasks. Tasks belonging to different applications might have different re-
source usage; however, Hadoop assumes that tasks have identical resource requirements
regardless of which application they belong to.

SUB-OPTIMAL PERFORMANCE

During the scheduling phase, Hadoop does not try to maximize any performance re-
lated metric. Hadoop uses a very naive scheduling policy, where it allocates a task to a
tasktracker which reports first with the heartbeat.

LIMITED FAULT TOLERANCE

Even though the fault tolerance feature of Hadoop is widely acknowledged, the technol-
ogy itself is still in its infancy. One of the problems that remains unsolved in the general
case is the detection of faults and performance issues in the cluster. A Hadoop cluster
may consist of hundreds to thousands of nodes and there can be various kinds of faults
in any of the nodes. One can distinguish two types of faults, hard faults and soft faults.
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Crashing a node, disk failure, or network failure can be seen as hard faults, resulting
in failing jobs. Soft faults on the other hand, appear in nodes still processing assigned
tasks successfully, but at a lower than usual rate. Limping hardware, unnecessary back-
ground processes, or poor task scheduling resulting in overloaded nodes can all lead to
soft faults. These faults create resource congestions such as CPU or I/O or network con-
gestion, resulting in slowdowns. Hadoop uses a heartbeat protocol to detect hard faults.
However, due to their dynamic behavior, detection of soft faults remains challenging.

SINGLE POINT FAILURE

With the current design of Hadoop, the jobtracker runs on a single machine. Administra-
tors try to run jobtracker on the most reliable machine, but no matter what, any machine
can die. If the jobtracker dies, then the entire cluster is down, which can severely harm
the productivity of clusters.

As we discussed above, Hadoop has many shortcomings, and the Hadoop commu-
nity experiences these challenges, especially as they relate to efficient scheduling and re-
source management. Additionally, due to the existing design of Hadoop, a team of Yahoo
engineers ran into a number of scalability problems, where they had a 4000-plus node
cluster. The team learnt that it is very difficult to run jobtracker on one machine because
it has multiple responsibilities, which significantly increases the resource requirement
of jobtracker. Further, upgrades and single point failure issues of the jobtracker are very
difficult to handle. The Hadoop community is well aware of all these issues and, there-
fore, created the next version Hadoop, which is known as YARN or “Yet Another Resource
Negotiator“ [39]. In the next section, we provide a detailed description of YARN. Subse-
quently, we also provide the related approaches that address the challenges of schedul-
ing and resource management of Hadoop.

2.5. YARN
YARN is the next generation compute and resource management framework in Hadoop.
YARN is a tool that decouples MapReduce’s resource management and scheduling capa-
bilities for the data processing, which extends Hadoop’s data processing capabilities and
a broader array of applications can be executed. For example, using YARN, interactive
queries and streaming data applications can be executed with MapReduce applications
on the same Hadoop cluster. In other words, YARN is not limited to MapReduce applica-
tions only, rather it provides a platform to other applications, such as Spark [40], Tez [41]
and Slider [42]. In this thesis, we limit ourselves to only MapReduce applications; there-
fore, we will not be discussing other applications in detail. Figure 2.3 illustrates the YARN
architecture.

To enhance Hadoop’s scalability, YARN divides two major components of JobTracker,
resource management and scheduling into two separate modules. The objective is to
have a global Resource Manager (RM) to allocate cluster resources to all applications,
per application Application Master (AM) that monitors performance of each application.
Scheduler is part of Resource Manager. The following sections describe the RM and AM
daemons:
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Figure 2.3: YARN architecture with resource manager and node manager [2].

2.5.1. RESOURCEMANAGER

The ResourceManager assigns cluster resources to all the applications in the system.
Each application negotiates resource with ResourceManager, which communicates with
cluster machines to provide resources to each machine. ResourceManager has three ma-
jor components, Scheduler, ApplicationManager, and NodeManager.

SCHEDULER

The YARN scheduler performs its scheduling function based the resource requirements
of the applications. That is done based on the abstract notion of a resource container,
which incorporates resource elements such as CPU and memory. Applications are di-
vided into tasks and in YARN, for every task the scheduler assigns a container on each
machine in the cluster. A container is the basic unit of processing capacity in YARN, and
is an encapsulation of resources. In the current version, containers only consider mem-
ory and CPU cores. YARN allows the administrator to specify the amount of memory
and number of CPU cores on each machine in the cluster and uses this information to
allocate containers on machines. Containers can be interpreted task slots, but unlike
slots, size of a container can be configured (in terms of memory and CPU cores). The
total number of containers is dependent on the total memory of a machine, which can
be determined by the following equation:

Total number of Containers = min

{
TotalMemory

ContainerMemorySize
, #Cores

}
(2.1)
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Here, ContainerMemorySize is the configured, fixed amount of memory (typically
1GB or 512MB) and 1 CPU core. The number of containers determine the total parallel
tasks executed by a machine. The scheduler has a policy plug-in module, which dis-
tribute cluster resources among various applications. Just like MapReduce, YARN uses
scheduling plug-in policies, CapacityScheduler and FairScheduler. The core idea of both
of these policies is the same as we described earlier.

APPLICATIONMANAGER

The role of ApplicationManager is to accept the submitted applications, create and ex-
ecute the first container as ApplicationMaster for each application. If an application
fails, then it restarts ApplicationMaster for the application. The per-application Appli-
cationMaster negotiates resource with ResourceManager for the corresponding applica-
tion and tracks the progress of containers.

NODEMANAGER

NodeManager runs on each cluster machine to execute containers from various applica-
tions. In addition to the status of containers, NodeManager also monitors the resource
usage such as CPU, disk and memory of those containers. NodeManager sends this
monitoring information back to ResourceManager. NodeManager is a replacement of
tasktracker in YARN.

2.6. YARN LIMITATIONS
YARN has emerged as one of the strongest tools to solve big data problems. YARN pro-
vides the scalability to Hadoop by decoupling scheduling and monitoring (Application-
Manager) units. YARN improves the resource management of Hadoop by implementing
dynamically sized containers. However, the business value of the existing YARN architec-
ture can be impacted significantly by a number of shortcomings, including abstraction
of heterogeneity, fixed container size, and non-optimal throughput.

ABSTRACTION OF HETEROGENEITY

YARN creates containers on each machine based on the total memory and the number
of CPU cores. If there are two machines with different memory size, then they will have
different numbers of containers. In other words, unlike Hadoop, YARN takes resource
heterogeneity into account, in the case of memory. However, YARN still does not con-
sider heterogeneity in other resource characteristics, such as CPU speed, IO and network
bandwidth. For example, let’s assume that two machines have the same memory and the
same number of cores, but the CPU speeds might differ significantly. In that case, run-
ning the same number of containers on both the machines might not be optimal.

FIXED CONTAINER SIZE

YARN creates containers of a fixed size, and the size is configured by administrators while
initiating the clusters. In the current implementation of YARN, the container size can-
not be changed while running applications. Each container runs one task, therefore, a
resource provided by one container can only be used by one container. However, tasks
belonging to different applications may have different resource requirements. Creating



2.6. YARN LIMITATIONS

2

29

1"G"

2"G"

3"G"

4"G"

5"G"

6"G"

7"G"

8"G"

9"G"

10"G"

By
te
s"

Mem"Cached" Mem"Used" Total"In?core"Mem"

11"G"

12"G"

Figure 2.4: Memory usage of a node in the cluster when running 12 Pi and 6 Sort tasks.

containers of fixed size might not utilize resources efficiently. Table 2.1 shows the re-
source requirements of map tasks from various Hadoop benchmark applications.

Application CPU
Time
(Sec)

RAM
(MB)

Disk
I/O
(MB)

Pi (1000 Samples) 10 230 5
Sort (120 GB) 10 280 250
WordCount ( 60 GB) 30 300 150
RandomWriter ( 120 GB) 20 140 1024
AggregateWordCount (
60 GB)

5 280 120

Table 2.1: Per task resource requirements of Hadoop benchmark applications

In the table, we can see differences of resource requirements. For example, Pi uses
230 MB of memory and Sort uses 280 MB. Creating containers of fixed size (500 MB or
1 GB), without considering the actual resource requirements might result in wasting re-
sources. To verify this hypothesis, we ran 12 tasks of Pi and 6 tasks of Sort on a node
with 12GB of RAM. Note that this is already more than the 12 containers that existing
schedulers would allocate.

Figure 2.4 shows the memory usage on that node. As can be seen, and not surpris-
ingly, running these 18 tasks in parallel does not cause a memory bottleneck. During
the entire execution of these two applications, the memory usage was sufficiently lower
than the total memory on the machine. This exercise proves that creating containers of
fixed size can severely under-utilize the available resources.

NON-OPTIMAL THROUGHPUT

In Equation 2.1, the number of containers are dependent on available CPU cores and
total memory. Limiting the number of containers by the number of cores avoids CPU
bottlenecks, which in turn increases the completion time of tasks. On the flip side, of
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Figure 2.5: Throughput of Pi for different number of parallel tasks.

course, running more tasks on a node, increases the number of completed tasks. This
leads to the classical trade-off in multi-processor scheduling of determining the optimal
number of concurrent processes to run. This number depends heavily on the relative
use of a CPU core by processes.

To demonstrate that it is not always clear a-priori how many concurrently executing
tasks maximizes throughput, we ran variations of Pi for varying numbers of containers
on nodes with 8 cores. As a proxy for throughput, which we formally define in Chapter 4,
we use the total number of map tasks finished per unit of time. Figure 2.5 shows the av-
erage values over all map tasks in the application. Maximal throughput is attained when
running 12 tasks in parallel. This is neither the number of cores, nor twice the amount—
as could be speculated due to hyper-threading. The hyper-threading enables multiple
(generally 2) logical cores on a single physical core. It is hence not straightforward to
correctly configure the container size in terms of CPU resources.

2.6.1. FAULT TOLERANCE

YARN has better resource management than Hadoop; however, the fault tolerance com-
ponent of YARN is still same as that of Hadoop. YARN uses the heartbeat protocol to
identify faulty machines and, therefore, it struggles detecting soft faults.

2.7. OTHER HADOOP IMPROVEMENTS
In previous sections, we mentioned numerous shortcomings with Hadoop and YARN.
Broadly, these challenges can be divided into Scheduling and Monitoring. In this sec-
tion, we investigate the contributions that have been made in the field of scheduling
and monitoring of Hadoop and other related distributed computing systems.

2.7.1. SCHEDULING

Researchers and engineers have shown great interest [43][44][45] in the space of schedul-
ing for MapReduce-based systems. However, most of the work has been done on the im-
provement of the slot-based architecture of Hadoop. Therefore, some of that work might
not be needed or useful to the container-based architecture.
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For the slot-based structure, many resource aware schedulers have been proposed,
which dynamically try to allocate resources (slots) to tasks. R AS [46], is a resource aware
scheduler that dynamically allocates Map and Reduce slots to improve the resource uti-
lization. R AS uses the application resource requirements to implement this allocation
policy. R AS generates a performance model of the incoming applications to predict the
task completion time under different scenarios. The model is generated by running the
applications in various scenarios. This kind of approach is impractical because as soon
as a job is submitted, it cannot be halted to generate a model. This will severely im-
pact the productivity of the cluster. Moreover, data locality is not addressed in the work.
Unused MapReduce slots are dynamically assigned to active Map or Reduce tasks to im-
prove the performance by dynamically providing fairness [47]. However, this work does
not apply to YARN because containers have no notion of Map or Reduce slots. Therefore,
a free container can be assigned to either Map or Reduce task. A similar work is proposed
to dynamically assign to passive (unused) slots to other tasks [48]. MROrchastration [49]
uses resource profile information to detect CPU and memory contention. MROrchastra-
tion detects contentions by comparing resource usage of tasks among various nodes and
provides them more resources. Google has recently published their cluster management
system called, Borg [50], which manages the execution of thousands of Google’s appli-
cations on tens of thousands of machines. Borg assumes a worst case resource require-
ment for all the production jobs (MapReduce jobs), and it only accepts a new production
job when there are enough resources to run that job. Whenever there are free resources
available, Borg runs batch jobs (MapReduce jobs). In the case of resource contention,
Borg only kills tasks from batch jobs to reduce the contention. This type of scheduling
policy enables Borg to achieve high resource utilization without sacrificing the perfor-
mance of production jobs. There is no study to analyze the performance of Borg when
it has to only run batch jobs. Additionally, Borg does not have a mechanism to learn the
resource requirements of jobs.

The Context Aware Scheduler for Hadoop (CASH) [51] assigns tasks to the nodes that
are most capable of satisfying the tasks’ resource requirements. Similar to our approach,
CASH learns resource capabilities and resource requirements to enable efficient schedul-
ing. CASH mainly assigns tasks to machines that satisfy the requirements most effi-
ciently. Machines are assumed different by considering their static resource configura-
tion. Unlike our work, they do not differentiate nodes in terms of real time load. Ma-
chines with different loads have different performance. Also, CASH derives resource
requirements in offline mode. Triple-queue is a dynamic scheduler that classifies jobs
based on their CPU and I/O requirements and puts them in different queues. How-
ever, these queues work independently in First Come First Serve (FCFS) manner. Re-
source utilization and throughput both can be improved if tasks from different queues
are mixed optimally. Dominant resource fairness (DRF) is a resource allocation policy
based on users’ resource requirements. DRF allocates resources to users to achieve the
maximum fairness.

Studies [52] [53] [54] show the negative impact of resource contention in multicore
systems. Therefore, in our approach we learn the performance model of every node to
maximize the throughput. The model characterizes the performance of a machine when
tasks from multiple applications start exploiting shared resources at the same time. The
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performance models [55] of MapReduce tasks are derived to optimize MapReduce work-
flow. These models have two major limitations. First, they do not consider the real time
load on nodes to predict the execution time. Second, they use many low level details
that might not be accessible during the execution of applications. Late scheduler [56]
predicts task finishing time to take a decision about speculative execution in a heteroge-
neous Hadoop cluster. This approach uses a heuristic that assumes that the progress rate
of tasks is constant in a Hadoop cluster. However, under the resource contention, the as-
sumption is no longer true. Therefore, in order to estimate the task execution time under
contention, a more sophisticated model is required. An abstraction of MapReduce is dis-
cussed [57] to improve the job completion time; however, it does not take into account
the actual resource requirements. [58] investigates scheduling issues in heterogeneous
clusters, however, they do not characterize Hadoop applications but rather propose a
scheduling strategy that speculatively executes tasks redundantly for tasks that are pro-
jected to run longer than any other.

Most of these scheduling approaches depend on the resource requirements of the in-
coming workload. Therefore, we also review a few approaches in the direction of learn-
ing the resource characterization of applications, including workload characterization.

WORKLOAD CHARACTERIZATION

In cloud computing, workload characterization has been studied extensively. For ex-
ample, [59] describes an approach to workload classification for more efficient schedul-
ing. However, rather than determining the workload characterization explicitly, it merely
clusters tasks with similar resource consumptions. In [60], the authors characterize work-
loads by identifying repeated patterns and finding groups of servers that frequently ex-
hibit correlated workload patterns. [61–63] describe workload characterization for Quality-
of-Service (QoS) prediction in web servers. Unlike these, in this paper we characterize
the cluster workload directly in terms of resource usage of jobs. We do this passively; that
is, without injecting code or adding monitoring to computational nodes. There has been
some research using machine learning for Hadoop task characterization. [64] studies an
unsupervised learning approach, producing clusters of similarly behaving jobs, but no
detailed resource requirements are learned. In terms of heterogeneous Hadoop clusters,
there has not been much work in the literature yet.

2.7.2. MONITORING

Kahuna [65] is a diagnosis approach that uses a simple peer similarity model to identify
faulty machines in a Hadoop cluster. Roughly, the idea underlying its approach is that
the same task should take approximately the same amount of time on each node in the
cluster. More precisely, the authors build histograms of the time each task of a job takes
on each machine. A node is identified as faulty when its histogram deviates from those of
the other nodes. The authors show that this approach can detect slowdowns caused by
various kinds of issues including CPU hogging, disk I/O hogging, and to a limited degree
network package loss. The authors also show that different workloads have different “di-
agnostic power” in the sense that certain issues are not uncovered by certain jobs. This
is consistent with our assumption of different job classes. The authors do not describe
whether Kahuna is able to detect what kind of fault may have occurred on a machine.
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Kahuna assumes that the cluster is homogeneous, meaning that tasks take roughly
the same amount of time across machines. However, unsurprisingly, on heterogeneous
clusters, the same task can take significantly longer or shorter depending on which ma-
chine is being used. Hence, diagnosis cannot be based on the assumption that the same
task should take equally long to execute on every node.

Many root cause analysis techniques use distributed monitoring tools that require
active human intervention to locate the fault [66]. Gangilia [14] is a well known dis-
tributed monitoring system, which is capable of handling large clusters and grids. X-
Trace [67] and Pinpoint [68] are tracing techniques to identify faults in distributed sys-
tems. [69] developed a visualization tool to aid humans in debugging performance re-
lated issues of Hadoop clusters. The tool uses the log analysis technique SALSA [70],
which uses the Hadoop log files and visualizes a state-machine based view of every
nodes’ behavior. Ganesha [71] is another diagnosis technique for Hadoop, which locates
faults in MapReduce systems by exploiting OS level metrics. [72] uses X-Trace to instru-
ment Hadoop systems to investigate Hadoop’s behavior under different situations and
tune its performance. All these tools, however, provide a visualization of resource met-
rics. Cluster administrators need to manually analyze these visualizations to locate the
problems. None of these tools provide an automatic diagnosis to identify performance
problems.

Automated performance diagnosis in service-based cloud infrastructures is also pos-
sible via the identification of components (software or hardware) that are involved in a
specific query response [73]. The violation of a specified Service Level Agreement (SLA),
i.e., expected response time, for one or more queries implies problems in one or more
components involved in processing these queries. The methodology is widely accepted
for many distributed systems. To a degree, Hadoop is using this approach as well as
described above, but since the processing time for MapReduce jobs depend on many
factors, including the size of the data, only very crude limits can be used as a cut-off.
The determination of a reasonable cut-off is further hindered on heterogeneous clus-
ters, where processing times can vary strongly between machines.

2.8. RESEARCH QUESTIONS
In this thesis, we address the above shortcomings of Hadoop, and propose methodolo-
gies to solve them. We formulate these shortcomings as a number of research questions,
and in each chapter of this thesis, we answer one of these questions. Following is the list
of the research questions that we discuss in the subsequent chapters:

• As we discussed, that the earlier versions of Hadoop assume heterogeneous clus-
ters, and therefore its schedulers do not work efficiently when the clusters are
heterogeneous. Schedulers assume that all the cluster machines are same, and
distribute workloads uniformly over the clusters. To implement a scheduler that
takes into account heterogeneity, the scheduler needs to know what is the capacity
of each machine, and what is the resource usage of each workload. In Chapter 3,
we address these issues by implementing a scheduler that learns the machine ca-
pabilities and workload resource profiles, and use them for making the scheduling
decisions.
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• YARN is the next version Hadoop that has the ability to work with heterogeneous
clusters. However, YARN can only differentiate machines in terms of CPU and
memory, it fails to consider disk I/O. Additionally, YARN schedulers do not con-
sider the real time loads on various resource of machines when assign workloads.
Such kind of scheduling results in lower cluster throughput. In Chapter 4, we im-
prove the YARN scheduling by proposing a resource aware scheduler that takes
CPU, memory, and disk I/O into account. In the chapter we formulate cluster
throughput in terms of various parameters, such as machine capabilities, resource
usage of workloads and the real time loads on machines. The proposed scheduler
tries to maximize the cluster throughput by selecting the values of these parame-
ters that maximize the throughput.

• Earlier versions of Hadoop and YARN both have a fault resilient feature, that can
only detect whether machines have are functioning or not. The existing fault re-
silient component fails to identify if machines are performing slower than the their
expected performance, and why they are performing slower. From the scheduling
point of view it is critical to know the real time performance state of machines.
Therefore, in Chapter 5, we propose a monitoring module for Hadoop clusters that
monitors resource specific performance of each machine. The proposed module
monitors slowdowns in resources, such CPU and disk I/O.

• In Chapter 6, we combine the scheduling module designed and Chapter 4, and
the monitoring module designed in Chapter 5. Goal of this chapter is to design a
scheduler that attains an optimal throughput in clusters where machines are fail-
ing or their performance is degrading.
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SCHEDULING IN HETEROGENEOUS

ENVIRONMENTS

Hadoop splits applications into various tasks whose execution is distributed over the
cluster. Every cluster machine processes a certain number of tasks to finish the appli-
cations. Tasks from various applications use different resources of the cluster. Critical
to the performance of a Hadoop cluster is the efficient utilization of available resources.
The decision on how to use resources; meaning which tasks to execute on which ma-
chine, is made by the scheduler.

As we discussed in Chapter 1, the scheduler is an important component of CMS de-
sign. We use the scheduler to accomplish the first research goal in the thesis, which
is the following: The CMS system should automatically assign workloads to machines
such that the resource utilization is as optimal as possible and the applications can be
executed efficiently. In case of changing applications, the system should autonomously
change its workload assignment to keep the performance at the best possible level.

In the case of Hadoop, the scheduler decides how many tasks should be executed
in parallel on every machine. This decision is critical for the performance of the overall
cluster. If machines are running many tasks in parallel, then they may be completing
many tasks together. However, running many tasks on machines can oversubscribe ma-
chines, which can slow down all the tasks individually. On the other hand, if machines
are running fewer tasks, then tasks may be completed at the faster rate but resources
might be underutilized. Therefore, the scheduler’s job is to find an optimal assignment,
meaning that it assigns as many as tasks possible on every machine without under- or
overutilizing resources.

The decisions are made by the scheduler to optimize certain performance metrics,
such as application completion time, task completion time, and throughput. Here, through-
put can be seen as either the number of applications completed in per unit of time or the
number of tasks completed in per unit of time. Resource utilization is another metric.

Existing Hadoop schedulers do not optimize any of these metrics. For example,
FairScheduler makes sure that cluster resources are evenly distributed among all the

35
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users and applications, and the Hadoop FIFOScheduler provides all the resources to the
application that is first submitted to the cluster. These schedulers fail to optimize the
performance of applications while executing them on the cluster. None of these sched-
ulers consider the resource usage of applications while making the scheduling decision.

Moreover, the earlier versions of Hadoop face a challenge; that is, the schedulers as-
sume homogeneous clusters. In practice, clusters may contain a heterogeneous mix of
machines. Distributed systems, such as Hadoop, consist of various kinds of software and
hardware that work together to execute the workloads. In this thesis, our goal is to op-
timize the performance of a cluster, and resource heterogeneity has a direct impact on
its performance. Therefore, in our work, we only consider hardware heterogeneity. How
machines can be different from each other in terms of CPU cores and speeds, memory
space and bandwidth, disk I/O speed, and machine aging is described in the following
points:

CPU CORES AND SPEEDS

As CPU technology evolves, it is likely that new-generation machines have more cores,
and each core is faster compared to previous generation machines. Additionally, dif-
ferent processors can have different micro-architectures that cannot be easily quanti-
fied. For instance, Atom processors have an in-order execution pipeline with a slower
floating-point unit, while Xeon processors have an out-of-order execution pipeline with
a faster floating-point unit. Moreover, a few machines can have special purpose hard-
ware, such as graphics-processing units (GPUs) to accelerate the performance of graph-
ical applications.

MEMORY SPACE AND BANDWIDTH

Machines may have varying amounts of free available physical memory. Performance
of applications vary depending on the memory available on machines. Capabilities of
memory subsystems might also be heterogeneous. Machines can have many combi-
nations of memory modules, such as DDR2 and DDR3, and memory controllers. The
memory bandwidth and access latency can also vary from machine to machine. These
different parameters impact the performance of applications and make clusters hetero-
geneous.

DISK I/O SPEED

Machines can have varying kinds of disks. Some machines have faster disks and some
have slower ones. Sometimes, files are read locally, and sometimes, files are read re-
motely from other machines, which makes disk-access time heterogeneous. Moreover,
the adoption of solid-state drives (SSDs) makes the performance of disk the more het-
erogeneous. Replicas stored on SSDs will be accessed faster than replicas stored HDDs.

MACHINE AGING

Apart from the different hardware capabilities of machines, a cluster of initially identi-
cal machines can also become heterogeneous. The performance of machines degrades
over time, and the degradation can be non-uniform among machines. Machines contain
many electrical components, and these components age over time. Other components,
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such as fans and heat sinks get clogged with dust, which reduce the efficiency and per-
formance of machines. Therefore, machines that were identical at the time of purchase
might have different performance after a certain amount of time.

To illustrate the argument that even homogeneous machines perform differently un-
der faults, we run an application on a homogeneous Hadoop cluster and measure the
task completion times on each machine. To simulate variety among the machines, we
run background processes on the machines’ CPU cores. If map tasks from one applica-
tion are operating on similar amounts of data, then on a homogeneous cluster, their task
completion times should be similar on each machine. Figure 3.1 illustrates that, even on
the homogeneous cluster, the tasks from the same applications take significantly longer
or shorter depending on what application is being executed.
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Figure 3.1: Average execution time of mapping tasks of the WordCount application on homogeneous machines
of the Hadoop cluster at PARC. Although the machines are identical in terms of their hardware specifications,
their performances are different due to aging and/or faults.

Whether a cluster is homogeneous or not is important because the creation of slots
on each machine depends on the nature of the cluster. The Hadoop scheduler creates
a certain number of slots on each machine. A slot is the smallest computation unit on
a machine. On each machine, a fixed number of slots are created by the administrator.
The maximum number of parallel tasks on a machine is equal to the number of slots on
the machine. Each slot executes one map task on the machine. Hadoop assumes a ho-
mogeneous cluster and allocates the same number of slots to every machine, regardless
of a machine’s actual capability. The number of slots is set by the cluster administrator
while starting the cluster, and this value cannot be changed when the cluster is in pro-
duction. Fixing the number of slots might result in over- or undersubscription of the
cluster resources.

In order to efficiently utilize the clusters’ resources, it is critical to create slots based
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on the application resource requirements and machine capabilities. First, for newly sub-
mitted applications, it is unknown what their actual runtime resource requirements are,
meaning what fraction of the available bandwidth of a resource of a task will utilize on
average (for example, the share of CPU time or disk I/O bandwidth). Second, even if
these resource requirements can be discovered, it is not immediately obvious which
combination of tasks running on a given machine would maximize the performance. For
example, it may happen that running a few CPU-intensive tasks with a few disk-intensive
tasks may improve the productivity of the cluster [74–76].

To overcome the limitations of existing schedulers in heterogenous environments,
we present the ThroughputScheduler. The proposed scheduler handles heterogeneity
by assigning tasks to machines based on the resources required by tasks and the re-
source capabilities provided by machines. The proposed scheduler actively exploits the
heterogeneity of a cluster to reduce the overall execution time of a collection of concur-
rently executing applications with varying resource requirements. To enable this type of
scheduling, the scheduler requires knowledge of the resource requirements of applica-
tions and the resource capabilities of servers, meaning their relative CPU and disk I/O
speeds. In our approach, we accomplish this goal without any additional input from the
user or the cluster administrator. The ThroughputScheduler derives machine capabili-
ties by running “probe” applications on the cluster nodes. These capabilities drift very
slowly in practice and can be evaluated at infrequent intervals, such as at cluster set-up
time. In contrast, each new application has a priori unknown resource requirements. We
therefore derive an online methodology to learn the resource requirements of incoming
applications.

The practicality of our solution relies on the structure of applications in Hadoop.
These applications are subdivided into tasks, often numbering in the thousands, which
are executed in parallel on different machines. Mapping tasks belonging to different ap-
plications can have very different resource requirements, while mapping tasks belong-
ing to the same application are very similar. This is true for the large majority of practical
mapping tasks, as Hadoop divides the data to be processed into evenly-sized blocks. For
a given application, we can therefore use online learning to learn a model of its resource
requirements from a small number of mapping tasks in an explore phase. We can then
exploit this model to optimize the allocation of the remaining tasks. As we will show, this
can result in a significant increase in throughput, and never reduce throughput, com-
pared to Hadoop’s baseline schedulers (FIFOScheduler and FairScheduler).

We focus on minimizing the overall time to completion of mapping tasks, which is
typically the primary driver of overall application completion time. In order to imple-
ment a scheduler that minimizes the task completion, we need an analytical model that
predicts the task completion time. In this chapter, we first present our static model,
which determines the task completion time in terms of the resource usage of tasks and
the resource capabilities of machines. Subsequently, we describe our approach to imple-
ment the ThroughputScheduler. In the description of ThroughputScheduler, we intro-
duce our online methodology to learn the task-resource profile and our offline approach
to estimate machine capabilities. Finally, we show empirically that ThroughputSched-
uler can reduce overall application execution time by up to 40 percent on a heteroge-
neous Hadoop cluster.
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Figure 3.2: Resource-oriented, abstract timeline of a map task.

3.1. STATIC MODEL
A static task model predicts the execution time of a task as a function of its resource usage
and the capabilities of the machine it is running on. As we observed before, Map tasks
work with one data input and compute continuously until they have finished. Map tasks,
therefore, have a simple execution pattern. Before presenting the model, we first intro-
duce the terminology that we will use in the model description. This model is derived
by analyzing the process behind the map tasks. Every task exploits a certain amount of
machine resources, such as CPU, disk I/O, memory, and network resources. The task re-
source requirements can be described by a vector, θi = [θi

1,θi
2, . . . ,θi

N ], where each com-
ponent represents the total requirement for an operation type (for example, the number
of instructions to process or bytes of I/O to read). Here, θi

k denotes how much of re-
source k is used by task i . Resource k can be either computation time, disk I/O, memory,
or network bandwidth. Similarly, the capabilities of the machines are described by a cor-

responding vector, κ j = [κ j
1,κ j

2, . . . ,κ j
N ], whose entires represent rates for processing the

respective operation type (for example, FLOPS or I/O per second). Here κ j
k is the capa-

bility of machine j for a resource, k. Resource capabilities are described in terms of their
CPU power, disk I/O, memory speed, and network bandwidth.

The task completion time is determined by the ability of the machine to supply the
needed resources. The task completion model could be very complicated due the com-
plex process of a realistic task execution. To keep the model simple, we assume that a
task exploits each resource exclusively and sequentially. In other words, only one re-
source at a time is used by a task. For instance, a task might be using either CPU cycles
or disk I/O, but it will not use both resources in parallel. Hence, we present a simplified
model (Equation 3.1) as a starting point for analysis. In our simplified model, the time
taken to finish task i on machine j , T i , j , is the sum of the task’s resource-specific needs,
divided by the machine-specific capabilities in terms of this resource:

T i , j =∑
k

θi
k

κ
j
k

+Ω j (3.1)

Here,Ω j is the overhead to start the task on the machine, j . The overhead of a machine
can be seen as the time to start JVM to run a task. We have observed that on a given

machine, all the applications impose that same amount of overhead. In this case,
θi

k

κ
j
k

determines the time taken by machine j to process resource k requirements of task i .
In the previous chapter, we discussed the execution pattern of map tasks, which illus-
trates how resources are being utilized while executing map tasks. Figure 3.2 provides an
abstract view of the map task execution in terms of usage of CPU cycles and disk I/O.

As illustrated in Figure 3.2, we further reduce this model to only two resources: CPU
time, denoted by c, and disk I/O, denoted by d . We can express this as a two-dimensional
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system with task-resource profile θi = [θi
c ,θi

d ] and machine capabilities κ j = [κ j
c ,κ j

d ].
Hence, the task duration model will be as follows:

T i , j = θi
c

κ
j
c

+ θi
d

κ
j
d

+Ω j (3.2)

3.2. THROUGHPUTSCHEDULER
In this section, we describe the design of the ThroughputScheduler [77] [78], which op-
timizes the assignment of tasks to machines. ThroughputScheduler is designed to op-
timally schedule tasks on heterogeneous Hadoop clusters. We choose task completion
as our performance metric, which ThroughputScheduler tries to minimize by optimally
scheduling tasks on machines. In the ThroughputScheduler implementation, we use
the static task-completion model to compute the task-completion time. Since Through-
putScheduler extends the Hadoop scheduler, it assumes that each machine has the same
number of slots. Every time a slot is available to run a task on a given machine the sched-
uler selects a task from an application whose resource requirements can be most effi-
ciently satisfied by the machine resources. This results in the faster processing of tasks
on machines. To implement this matchmaking, the scheduler uses the static model to
predict the task-completion time.

Unfortunately, these requirements and capabilities are not directly observable as
there is no simple way of translating machine hardware specifications and task pro-
gram code into resource parameters. We also assume that we do not have root access
on the cluster machines, therefore, resource requirements of tasks can not be directly
measured from the kernel. We take a learning-based approach, which starts with an ex-
plore phase, where parameters of tasks and machines are learned. This is followed by an
exploit phase, in which the parameters are used to allocate tasks to machines.

3.2.1. EXPLORE
We learn machine resource capabilities and task resource requirements separately. First,
we learn machine capabilities offline. In this chapter, we assume that machine capa-
bilities don’t change frequently, and therefore, we learn them once. Then using these
capabilities, we actively learn the resource requirements for applications online.

LEARNING MACHINE CAPABILITIES

We assume machine capabilities κ j ’s and overhead Ω j remain same for a certain dura-
tion time and can be estimated offline for that duration. The machine parameters are
estimated by executing probe applications. We determine them by choosing a unit map
task to define a baseline. The unit map task has an empty map function, and it does not
read from or write to HDFS.

The computation (θc ) and disk I/O task requirements (θd ) are both zero for the unit
map task; therefore, Equation 3.2 allows us to estimate Ω. Multiple executions are aver-
aged to create an accurate point estimate. Note that Ω includes some computation and
disk I/O that occur during start up.

One could imagine attempting to isolate the remaining parameters in the same fash-
ion, however, it is difficult to construct an application with zero computation or zero
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disk I/O. Instead, we construct applications with two different levels of resource usage
defined by a fixed ratio, η.

Let’s assume we aim to determine κc for a particular machine. First, we run an ap-
plication J 1 = 〈θc ,θd 〉 with a fixed disk requirement θd (J 1 might be an application that
simply reads an input file and processes the text in the file). For simplicity, in this sec-
tion, we are ignoring the superscript notation of θc and θd . We compute the average
execution time of this application on each machine. According to our task model, the
average mapping time for every machine, j , can be given as follows:

T 1, j = θc

κ
j
c

+ θd

κ
j
d

+Ω j (3.3)

Next, we run an application Jη, which reads the same input, but the processing is in-
creased by η times compared to J 1. The processing is increased by running the map
routine of application J 1 in a for loop. Therefore, the resource requirements of Jη can
be given as Jη = 〈ηθc ,θd 〉. The average mapping time for every machine can be given as
follows:

T η, j = ηθc

κ
j
c

+ θd

κ
j
d

+Ω j (3.4)

We solve for θd
κd

in Equation 3.3 and 3.4, and obtain the following ratio:

κ
j
c = θc (η−1)

T η, j −T 1, j
(3.5)

This equation gives us κ j
c in terms of a ratio. To make it absolute, we arbitrarily choose

one machine, j = 1, as the reference machine. We set κ1
c = 1 and κ1

d = 1 and then solve
Equation 3.5 for θc . Once we have the task requirements, θc in terms of the base units
for machine one, we can use this application requirement to solve for the machine ca-
pabilities on all the other machines. Similarly, we estimate κd .

Normally, in Hadoop, the output of map tasks goes to multiple reducers and may
be replicated on several machines. This would have the effect of introducing network
communication costs into the system. To avoid this conflation while learning machine
capabilities, we set the number of reducers to zero and set the replication factor to one.

We employ this learning approach to determine the resource capabilities of our five-
machine cluster at PARC. The cluster contains two classes of machines. Two of the ma-
chines (machine1 and machine2) are older machines and have 2 CPU cores. The re-
maining three machines (machine3, machine4, and machine5) are newer and have 8
CPU cores. Table 3.1 presents the machine capabilities estimated by our approach. Our
algorithm correctly discovers that there are two classes of machines, where newer ma-
chines are 7.5 times faster in terms of CPU capability and 2.5 times faster in terms of disk
capability.

LEARNING APPLICATION RESOURCE REQUIREMENTS

So far in this chapter, we reviewed that in order to implement efficient schedulers, it is
important to learn the resource requirements of applications submitted to the cluster.



3

42 3. SCHEDULING IN HETEROGENEOUS ENVIRONMENTS

Machine κc κd Ω

machine1 1 1 45
machine2 1 1 45
machine3 7.5 2.5 5.3
machine4 7.5 2.5 5.3
machine5 7.8 2.6 4.8

Table 3.1: Recorded machine capabilities and overhead.

Learning resource requirements can be helpful in other ways, too. For instance, if the
cluster administrators are planning to buy new machines to extend the cluster infras-
tructure, they can make their decision based on what kind of resources are mainly used
by applications. For example, if it is known that applications are mainly using the I/O re-
source of machines, then administrators should buy machines with better I/O capabili-
ties. Hadoop clusters typically execute a multitude of concurrent applications in paral-
lel. Task requirements, such as total computational load, disk I/O required and memory
footprint, can vary considerably depending on the exact algorithm and data the task en-
compasses. In practice, it is unreasonable to assume that specific resource requirements
are known in advance or expect a programmer to estimate and specify them. There-
fore, we need a learning approach to determine the application resource requirements
by determining resource requirements of tasks corresponding to the application.

When applications are running on machines, the application resource requirement
can be determined by measuring the resource usage of those machines. However, mak-
ing such measurements requires complete access (root access) over the cluster machines.
In many scenarios, obtaining this access is not practical. For example, in case of a public
cloud, generally root access is not given to most users. Even in the case of private clouds,
mainly in mid- or larged-sized industries or in universities, root access is not provided
to employees or students. Therefore, measuring resource usage from the OS kernel can
not always be performed. Hence, we need an approach to learn the resource require-
ments of applications that doesn’t require any special privileges over the cluster. Thanks
to the resource heterogeneity in the clusters, we can learn the resource requirements of
applications without any special privileges.

Every new application may have a varying resource requirement. Therefore, for every
new incoming application, the information about the resource usage of the application
needs to be learnt. However, using the offline learning approaches might severely affect
the cluster productivity. To maintain a certain production level, it is important to execute
the applications on the cluster as soon as they are submitted. Therefore, our learning
happens during application execution and hence without significant loss in productiv-
ity. We execute tasks from various applications on machines that are different in terms of
their capabilities, and we learn the resource requirements by observing how the perfor-
mance of tasks change from one machine to another. As the input, the learner uses the
time it takes to execute a certain task on a specific machine in the cluster. Example 3.2.1
describes how we use the resource heterogeneity to learn the application resource re-
quirements.

Example 3.2.1. Let’s assume two machines, M1 and M2, with different resource capa-
bilities. M1 has 4 CPU cores with the latest Pentium 4 and one HDD. M2 is a 4-core ma-
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chine, too, but has an old Pentium 1 and has multiple SSDs. In other words, M1 has faster
CPU than M2, and M2 has better disk bandwidth than M1. We assume that there is an
application, A, and its resource requirements are unknown. We execute tasks from the
application on machines M1 and M2. The average task completion time of tasks from the
application on M1 and M2 is denoted by T1 and T2, respectively. An observation where
T1 < T2 suggests that task is finished faster on the machine with faster CPU cores, and
better disk I/O does not reduce the task completion time. Therefore, it can be concluded
that application tasks use more CPU processing than disk I/O. An observation where T1 >
T2 would conclude vice-versa. This example demonstrates how resource heterogeneity
can be used to learn resource requirements of applications.

Example 3.2.1 describes our intuition behind the approach that we control the exe-
cution of tasks on machines in order to learn the resource requirements. The example
also shows that in order to infer the resource requirements from the task completion
time, there must be a relation between them. The static model derived in Equation 3.2
predicts the time a task will take to complete on a specific machine in the cluster, based
on its resource requirements and the machine’s capabilities. We treat the task comple-
tion time as the observation, and implement Bayesian updates to perform the actual
learning of application resource requirements.

One of the contributions of this chapter includes the derivation of an analytical,
closed form for the posterior distribution of the resource requirements in terms of the
task completed and machine capabilities. Machine capabilities are treated as point val-
ues, and an offline approach is used to determine those values. At the time samples are
observed, the posterior distributions are updated. Since our learning approach is online,
it is important to learn as fast as possible, such that tasks can be efficiently scheduled.
Therefore, while learning we control the generation of observations. In other words, we
control the execution of tasks during the learning phase. Every new observation tries to
minimize the variance of posterior distributions.

This kind of information gathering exercise is generally known as experimental de-
sign. An optimal experiment design will maximize the information gain regarding the
resource requirements after each experiment. The objective of each operation is to gen-
erate the most informative observations. In the next section, we provide a brief descrip-
tion of our experimental design approach. The experimental design results in a schedule
of servers to execute a task on that results in maximum information.

Experimental Design to Learn Resource Requirements: General Setup

Performing exhaustive experiments on a task would require more time than we would
save through our optimization process. Instead, we propose an active, learning-based
approach to determine the application requirements online during execution. Alterna-
tively, one could view this as an experimental design [79] [80] problem in which prior
knowledge about a phenomenon is used to select the next experiment, from a set of
possible experiments, in order to maximize expected utility. In our context, the set of
possible experiments corresponds to the set of machines a task could be executed on.
The outcome of executing task i on machine j with capability κ j is the measured exe-
cution time, T i , j . Map tasks from the same job run same function on similar amount of
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data, consequently, their execution time on a given machine will also be similar. There-
fore, we assume T i , j is a normally distributed random variable with a standard deviation
σ j . Here, we implicitly assume that every machine has different observation variance.
There will be a certain utility associated with learning this outcome. The utility of re-
fining task profiles can ultimately be measured by the increase in value (or reduction in
cost) of the schedules we can create with the more accurate profiles. This calculation,
however, is complex and time consuming. We therefore approximate the utility by using
the information gain about the task profile. The task requirements of application i are
completely characterized by a set of scalar parameters θi .

Our current state of information about requirements for task i is captured by a prob-
ability distribution, P (θi ). The observation model for the system (likelihood) gives the
relationship between observations and the task profile, p(T i , j | θi ,κ j ,σ j ). Here, σ j de-
notes the measurements noise in machine j . The posterior probability over task require-
ments represents our updated beliefs and can be calculated using Bayes’ theorem:

p(θi | T i , j ,κ j ,σ j ) = p(T i , j | θi ,κ j ,σ j )p(θi )∫
θi p(T i , j | θi ,κ j ,σ j )p(θi )dθi

(3.6)

The information gain between the prior distribution over task parameters and the pos-
terior distribution is measured by the Kullback-Leibler (KL) divergence:

DK L(p(θi | T i , j ,κ j ) ∥ p(θi )) =
∫
θi

p(θi | T i , j ,κ j ) · ln
p(θi | T i , j ,κ j )

p(θi )
dθi

To compute the expected information gain before running the actual experiment, we
compute the expected value of KL divergence:∫

Ti , j

p(T i , j | κ j )DK L(p(θi | T i , j ,κ j ) ∥ p(θi ))dT i , j (3.7)

Information theory tells us that the expected KL divergence (information gain) is simply
the mutual information between the observation and the task requirements, I (θi ;T i , j |
κ j ) ([81]), which can be expressed in terms of the entropy of the prior minus the entropy
of the posterior:

I (θi ;T i , j ,κ j ) = H(θi )−H(θi | T i j ,κ j ) (3.8)

The entropy can be expressed in terms of our model as follows:

H(θi ) =−
∫
θi

p(θi ) ln p(θi )dθi

H(θi | T i j ) (3.9)

= −
∫

T i , j
p(T i , j )

(∫
θi

p(θi | T i , j ,κ j ) ln p(θi | T i , j ,κ j )dθi
)

dT i , j
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Optimal Task Inference

Since new applications continually enter the system, we do not know their resource pro-
files a priori. In this work, we only consider the CPU cycles and disk I/O requirements
of applications, which are denoted by θc and θd . We do not have a functional form to
represent the probability distribution, p(θc ,θd ). The static model shown by Equation 3.2
suggests that θc and θd are linearly, negatively correlated to each other given an obser-
vation. Moreover, map tasks from a given job run same map function on similar amount
of data, hence, the resource requirements of these tasks will also be similar. We there-
fore assume the random variables describing these profiles, θc and θd , to follow a multi-
variate Gaussian distribution. The uncertainty about the requirements can therefore be
captured by a covariance matrix, Σθc ,θd

:

[θc ,θd ] ∼N ( [µθc ,µθd
],Σθc ,θd

) (3.10)

As we discussed eariler, T j , is normally distributed around the value predicted by the
task duration model given by Equation 3.2. The uncertainty is given by a standard devi-
ation, σ j , associated with the measurements in the machine:

T j ∼N

(
θc

κ
j
c

+ θd

κ
j
d

, σ j

)
(3.11)

We choose Gaussian distribution to represent the random variables because it has a
simple mathematical form. Using Gaussian distribution, the closed form of the posterior
distribution can be easily derived. The closed form solution enables us to implement
these calculations in Hadoop scheduler. In the absence of such closed form solution, a
sampling based logic could be implemented, however, using a sampler in the scheduler
will severely slow down the decision making process of the scheduler.

We assume that the machine capabilities, κ j
c and κ

j
d , are learned using the offline

approach described in the previous section. We treat them as point-valued constants.
For simplification, we do not use the overhead parameter, Ω j , in Equation 3.11. Rather,
we assume that the learned values ofΩ j have been already subtracted from T j .

Belief Updating

Given a prior belief about the requirements of a task, P (θ), and the observation of a task
execution time, T j , of the task on machine j , we can get an updated posterior task pro-
file distribution via Bayes’ rule (Equation 3.6). This requires a likelihood function to link
observations to parameters. For the bivariate CPU and disk I/O usage example, the like-
lihood has this form:

p(T j | θc ,θd ,κ j
c ,κ j

d ) = 1p
2πσ j

·exp

−
(
T j − θc

κ
j
c

− θd

κ
j
d

)2

2σ j 2 (3.12)

We assume that every machine has a different, but constant observation standard devi-
ation, σ j , that is learned along with the machine capabilities κ j . The likelihood is essen-
tially a noisy line in parameter space that describes all of the possible mixtures of CPU
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(a) Likelihood (b) Prior and Likelihood (c) Joint posterior (d) Joint posterior

Figure 3.3: Given an observed execution time, the likelihood function defines an uncertain line, representing
possible mixtures of computation and disk I/O that would explain the observation. The joint probability of
observations is a bivariate Gaussian.

and disk I/O usage profiles of the task that would explain the total observed execution
time, T j . A notional graphical example appears in Figure 3.3(a). Note that the density
has been truncated at the boundaries of the positive quadrant as resource requirements
cannot be negative.

We can get some insight into the form of the probability distribution function (PDF)
of likelihood by considering its contours; that is, the set of points at which it takes the
same value. To determine the shape of the contours, we use the following bivariate sec-
ond order polynomial functional form in terms of θc and θd :

a20θc
2 +a10θc +a11θcθd +a01θd +a02θd

2 +a00 = 0 (3.13)

The shape of the above expression can be inferred by computing the determinant,∆,
which is given as the following:

∆= a2
11 −4a20a02 (3.14)

The contour,h, of the likelihood function shown in Equation 3.12 is given by the fol-
lowing:

(
T j − θc

κ
j
c

− θd

κ
j
d

)2

σ j 2
= 1

σ j 2

(
θc

κ
j
c

)2

+
 θd

κ
j
d

2

−2T j θc

κ
j
c

−2T j θd

κ
j
d

+2
θc

κ
j
c

θd

κ
j
d

+T j 2

= h (3.15)

The determinant, ∆, of the above expression equals

∆= 1

σ j 4

(
2

κ
j
c

1

κ
j
d

)2

−4
1

κ
j
c

2

1

κ
j
d

2

= 0 (3.16)

Since the determinant is zero, the likelihood function is actually a (degenerate) parabola
(in fact, a line) rather than an ellipse. Therefore, the likelihood function does not repre-
sent a bivariate Gaussian distribution. We refer to this distribution as a Gaussian tube, as
it is uniform along the major axis and Gaussian across its minor axis (see Figure 3.3(a)).
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Intuitively, this is because after only one observation, there is no information to distin-
guish which of the resource requirements contributed how much to the time it took to
execute the task.

First Update

At the time of a Hadoop application submission, we do not get any internal information
about application. This means we do not have any prior belief about the requirements
of the application’s tasks. We assume an uninformative prior, therefore the posterior
distribution is just proportional to the likelihood:

p(θc ,θd | T j ,κ) = 1p
2πσ j

·exp

−
(

T j − θc

κ
j
c

− θd

κ
j
d

)2

2σ j 2
(3.17)

Similar to the likelihood function, the posterior is also the Gaussian tube in parameter
space. This implies that there is an infinite number of equally likely explanations for a
single observation—this can be thought of as a linear set of equations with two variables
but only one equation. We will get a line in space no matter which machine we run
the task on, so the results of the first update, by themselves, are not sufficient to guide
machine selection.

Second Update

For the second update, we have a prior distribution and likelihood function both in the
form of Gaussian tubes. These two are multiplied to obtain the density of the second
posterior update. Let the first experiment be on machine j with capability κ j , and let
the observed time be T j with variance σ j . Let the second experiment be on machine
k with capability κk , and let the observed time be T k with variance σk . The resulting
posterior distribution is as follows:

p(θc ,θd | T j ,T k ,κ j ,κk ) = 1

z
·exp−



(
T j − θc

κ
j
c

− θd

κ
j
d

)2

2σ j 2
+

(
T k − θc

κk
c
− θd

κk
d

)2

2 σk 2

 (3.18)

Here, z = 2πσ jσk . We verify that the posterior is bivariate Gaussian by expanding the
argument of the exponential in Equation 3.18 and collecting the θ terms (see Equation
3.19).

The determinant, ∆ of this contour equals

∆=− 1

(σ jσk )2

 1

κ
j
cκ

k
d

− 1

κ
j
dκ

k
c

2

(3.20)

When the determinant is negative, we have an ellipse [82, Chapter 10]. The determinant,

can only be non-negative if κ
j
c

κ
j
d

= κk
c

κk
d

, in which case the determinant is zero and the tubes
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Figure 3.4: Level sets of the posterior distribution.

are parallel. Hence, as long as we choose machines with different capability ratios κc
κd

,
the intersection is an ellipse, and the distribution is bivariate normal. In higher dimen-
sions, we can check the dot product of the normals of the planes representing possible
solutions to test for parallelism.

We can recover the mean (µθc ,θd
) and covariance matrix (Σθc ,θd

) of the bivariate Gaus-
sian distribution by identifying the origin and the rotation of the ellipse, as well as the
length of its major and minor axes. We can determine the coefficients of terms involv-
ing θc and θd in Equation 3.19 in terms of the simple coefficients anm shown in Equa-
tion 3.13.

A well known decomposition relation allows us to then read off the mean and the
inverse covariance matrix [83] as follows:

[
µθc
µθd

]
=

 a11a01−2a02a10
4a20a02−a2

11
a11a10−2a20a01

4a20a02−a2
11

 (3.21)

Σ−1
θcθd

=
[

a20
1
2 a11

1
2 a11 a02

]
(3.22)

Notice that the terms involving observation T j in the expanded form in Equation 3.19,
which were replaced by coefficients a10, a01 and a00 in Equation 3.13, do not appear
in the covariance matrix. The covariance matrix is therefore independent of the ob-
servations T j and T k . Therefore, the covariance matrix can be derived for a posterior
distribution without actually running tasks on the machines. This implies that we can
precompute the experimental schedule offline.

Third and Further Updates

For the third update, the prior will be a bivariate normal and the likelihood function a
Gaussian tube. The general form of a bivariate normal distribution is given the following:

p(θc ,θd ) = 1

2π
√|Σθ |

exp

(
−

(θ−µθ)TΣ−1
θ

(θ−µθ)

2

)

θ, µθ and Σθ can be calculated from Equation 3.21 and Equation 3.22:

θ =
[
θc

θd

]
, µθ =

[
µθc

µθd

]
and Σθ =

[
σ2
θc

ρσθcσθd

ρσθcσθd
σ2
θd

]
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Here, µθ is the vector of means µθc and µθd
. Σθ is the general form of covariance matrix,

which includes individual variances σθc and σθd
, and the correlation coefficient ρ. We

will use the same likelihood distribution as we used in Equation 3.12. Given the prior
and likelihood, the posterior can be derived as shown in Equation 3.23.

To determine the family of the above distribution, we substitute the mean vector and
covariance matrix and then derive the expanded form of the distribution, as shown in
Equation 3.24. As described in the previous section, one can show that the determinant
of the result is negative for machines with non-identical capability ratios, and that the
resulting family is a (elliptical) bivariate normal in that case. We have therefore reached
a state where we have a closed form that can be updated repeatedly.

p(θc ,θd | T j ,κ j ) = 1

(2π)
3
2 |Σθ |

1
2 σ j

exp


(
−1

2
(θ−µθ)TΣ−1

θ (θ−µθ)

)
−

(
T j − θc

κ
j
c

− θc

κ
j
c

)2

2σ j 2

(3.23)

Figure 3.5: General form of the joint distribution of Elliptical Gaussian with Gaussian Tube.

Mutual Information Computation

We have shown that we can compute a posterior distribution over task parameters given
observations of the execution time of a task on a machine. We must now consider the
machine on which to execute the task to maximize information gain. In the previous
section, we stated that the expected information gain for the next experiment can be
computed as the mutual information between the distribution of the task requirements,
θ, and the observed time sample T j . The mutual information is simply the difference in
entropy, which is determined by H(θ)−H(θ | T j ,κ j ) (cf. Equation 3.8).

The entropy of a multivariate Gaussian distribution is proportional to the determi-
nant of the covariance matrix ([81]). Therefore, the entropy of the prior is

H(θ) = ln2πe |Σθ |
2

(3.25)

where |Σθ | is the covariance of the prior. The entropy of the posterior, p(θ | T j ), is

−
∫
θ

p(θ | T j ,κ j ) ln p(θ | T j ,κ j )dθ =
ln2πe |Σθ|T j ,κ j |

2
(3.26)

Applying Equation 3.26 to the definition of conditional entropy (Equation 3.9) gives us

H(θ | T j ,κ j ) =
∫

T j
p(T j )

(
ln2πe |Σθ|T j ,κ j |

2

)
dT j (3.27)

where
∣∣Σθ|T j ,κ j

∣∣ denotes the determinant of the covariance matrix of the posterior dis-
tribution.
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Figure 3.6: Contour expression of the exponent term of the joint distribution shown in Equation 3.23

In Equation 3.22, we showed that the covariance matrix of the posterior distribution
is independent of observation T j and is therefore constant with respect to the integra-
tion in Equation 3.27. Then, all that remains in the integral is the prior, which integrates
to one. We are left with the covariance term:

H(θ | T j ,κ j ) = 1

2
ln2πe

∣∣Σθ|T j ,κ j

∣∣ (3.28)

First Experiment

We assume there is no prior knowledge about the task profile. The variance and entropy
of the prior distribution are therefore unbounded, as expressed in H(θ) = |Σθ| =∞. The
posterior distribution after the first update has a linear tubular form. The overall vari-
ance and entropy are therefore still undefined:

∣∣Σθ|T j ,κ j

∣∣ = H(θ | T j ,κ j ) = ∞. The in-

formation gain determined by H(θ)− H(θ | T j ,κ j ), is therefore undefined. Therefore,
the first observation, by itself, does not independently give us information about which
machine to run the task on first.

Second Experiment

After the second update, assuming that we have experimented on two machines, j and

k, whose ratios of capabilities ( κ
j
c

κ
j
d

,
κk

c

κk
d

) are distinct, the updated posterior follows a non-

degenerate bivariate Gaussian distribution. At the beginning of the second experiment,
the prior is still undefined and therefore, again, H(θ) =∞. Hence, the information gain
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determined by H(θ)− H(θ | T j ,T k ,κ j ,κk ) will be maximized by minimizing the condi-
tional entropy as provided by H(θ | T j ,T k ,κ j ,κk ). As shown in Equation 3.28, the en-
tropy is driven by the determinant of the covariance matrix. This determinant can be
derived using the inverse covariance matrix |Σ|−1:

|Σ| = 1

|Σ|−1 (3.29)

|Σ|−1 =−∆
4

(3.30)

From Equation 3.20, we can substitute in the expression for ∆:

H(θ|T j ,T k ,κ j ,κk ) = ln2πe(− 4

∆
)

= − ln


1

2πe

1

(σ jσk )2

 1

κ
j
cκ

k
d

− 1

κ
j
dκ

k
c

2

︸ ︷︷ ︸
squared term

 (3.31)

Therefore, we can minimize the posterior entropy, H(θ | T j ), by simply maximizing the
squared term in the discriminant in Equation 3.31. This term will be maximized when
the difference of fractions is maximized. The difference is maximized when one is large
and the other is small. Note that the denominator of each fraction consists of one term
from each machine, but with different dimensions. The pattern that maximizes this is to
maximize the difference between machines on each dimension (for example, one ma-
chine with a fast CPU and slow disk I/O, and another machine with a slow CPU and fast
disk I/O).

Third and Subsequent Experiments

We can express the total information gain of a series of experiments 1,2, . . . ,m as follows:

I (θ;T j 1
,T j 2

, . . . ,T j m
,κ)

=
m−1∑
k=0

H(θ|T j 1:k
,κ1:k )−H(θ|T j 1:k+1

,κ1:k+1)

= H(θ)−H(θ|T j 1:m
,κ1:m ) (3.32)

As shown, the series telescopes as internal terms cancel. To maximize the information
gain, we need to minimize the second term, which is the entropy of the posterior distri-
bution conditioned on all experiments.

We can evaluate this using a method similar to the previous section. We obtain the
entropy indirectly from the discriminant. The general form of the discriminant for three
or more observations has a regular form. The entropy of the posterior conditioned on all
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Application µθc µθd
|Σθcθd

| # of Tasks

Pi 24.00 6.30 0.0038 109
Random
Writer

27.26 234.62 0.0061 28

Grep 15.82 8.10 0.0038 90
WordCount
(1.5 GB)

43.50 22.50 0.00614 31

WordCount
(15 GB)

138.05 206.40 0.00615 32

J IO 5.60 96.46 0.0063 30

Table 3.2: Application resource profile measurements with variance and number of tasks executed

experiments has one term for each possible pairing of machines:

H(θ|T j 1:m
,κ1:m) = ln2πe(− 4

∆
) (3.33)

= − ln

[
1
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∑
j 6=k

1

(σ jσk )2

(
1

κ
j
cκ

k
d

− 1
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j
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)2]

This is going to be minimized when each of the squares is maximized. As in the previous
case, the squares will be maximized when the machines’ parameters in each pair are
most dissimilar. This result does not depend on the observations, so we can plan the
sequence of experiments before execution time.

We sample tasks until we get a determinant for the covariance matrix |Σθc ,θd
| < 0.007.

We empirically observed that for all applications, we get stable values of µθc and µθd
,

when determinant of covariance matrix is less than 0.007. Table 3.2 summarizes re-
source requirements learned by the online inference mechanism for some of the Hadoop
benchmark applications [84]. When we compare the ’Pi’ application, which calculates
digits of Pi, to RandomWriter, which writes bulk data, we see that the algorithm correctly
recovers the fact that Pi is compute intensive (large µθc ), whereas RandomWrite is disk
intensive (large µθd

). Other Hadoop applications show intermediate resource profiles as
expected. The J IO application will be described further in the experimental section. The
’# of Tasks’ column gives the number of tasks executed to reach the desired confidence.

3.2.2. EXPLOIT

Once the resource profile of an application is learned to sufficient accuracy, we switch
from explore to exploit. The native Hadoop scheduler sorts task-to-machine pairs ac-
cording to whether they are local (data for the task is available on the machine), on the
same rack, or remote. We introduce our routine based on our task requirements esti-
mation called “SelectBestapplication” to break ties within each of these tiers as shown in
Algorithm 3.2.1. If we have two local applications, we would run the one most compati-
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ble with the machine first.

Algorithm 3.2.1: THROUGHPUTSCHEDULER(Cluster,Request)

for each machine N ∈ Cluster

do



applicationsWithLocalTasks ← N.GETAPPLICATIONSLOCAL(Request)
applicationsWithRackTasks ← N.GETAPPLICATIONSRACK(Request)
applicationsWithOffSwitchTasks ← N.GETAPPLICATIONSOFFSWITCH(Request)
if Localapplications 6= NU LL

then
{

J ← SELECTBESTAPPLICATION(Localapplications,N)
ASSIGNTASKFORAPPLICATION(N,J)

else if Rackapplications 6= NU LL

then
{

J ← SELECTBESTAPPLICATION(Rackapplications,N)
ASSIGNTASKFORAPPLICATION(N,J)

else
{

J ← SELECTBESTAPPLICATION(OffSwitchapplications,N)
ASSIGNTASKFORAPPLICATION(N,J)

Algorithm 3.2.2: SELECTBESTAPPLICATION(machi neN ,Li sto f appli cati ons)

return (argminJ∈ListOfapplications
norm(θ J

c )
norm(κN

c )
+ norm(θ J

d )

norm(κN
d )

)

SelectBestapplication, shown in Algorithm 3.2.2, selects application J that minimizes
a score for task completion on machine N . However, rather than using absolute values of
θc , θd , κc and κd , we use the normalized value of these parameters to define the score.
While absolute values represent expected time of completion, which can be measured in
seconds, application selection based on these numbers would always favor short tasks
over longer ones and fast machines over slower ones. For example, consider machines
1 and 3 in Table 3.1. In this case, machine3 is almost 7.5 times faster than machine1 in
terms of CPU processing, but only 2.5 times faster in terms of disk I/O. Hence, intuitively,
disk intensive applications are better scheduled on machine1, since the relatively higher
CPU performance of machine3 is better used for CPU intensive applications (if there
are any). To account for this relativity of optimal resource matching, we normalize both
applications and machines to make their total requirements and capabilities sum to one
for each resource x (here, x ∈ {c,d}):

norm(θi
x ) =

µθi
x∑

k µθi
k

norm(κ j
x ) = κ

j
x∑

k κ
k
x

3.3. EXPERIMENTAL RESULTS
To evaluate the performance of ThroughputScheduler, we conducted experiments on a
five machine Hadoop cluster at PARC (see Table 3.1). The cluster contains two classes
to machines, newer and older. The newer machines are 7.5 times faster in terms of CPU
processing and 2.5 times faster in terms of disk I/O processing. All the experiments were
repeated multiple times, and in each run same results were obtained. Therefore, we
select results from one run to describe in the following subsections.
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3.3.1. EVALUATION ON HETEROGENEOUS APPLICATIONS

We evaluate the performance of ThroguhputScheduler on applications with various re-
source requirements. Since the Hadoop benchmarks do not contain highly I/O intensive
applications (cf. Table 3.2), we constructed our own I/O intensive Map-Reduce applica-
tion, J IO . J IO reads 1.5 GB from HDFS, and writes files totaling 15 GB back to HDFS. This
resembles the resource requirements of many expand-translate-load (ETL) applications
used in big data applications to pre-process data using Map-Reduce and to write HBase,
MongoDB, or other disk-backed databases. We learn J IO ’s resource profile using the ap-
plication learner described in the Explore section. The learned resource requirement
of J IO is listed in Table 3.2. To evaluate ThroughputScheduler on drastically heteroge-
neous application profiles, we run J IO along with the Hadoop benchmark Pi , which is a
CPU intensive application. We compare the performance of ThroughputScheduler with
FIFOScheduler and FairScheduler—for a single user, CapacityScheduler is no different
from FIFOScheduler.

3.3.2. APPLICATION COMPLETION TIME

We first compare the performance of the proposed scheduler in terms of overall appli-
cation completion time. In case of multiple applications, the overall application com-
pletion time is defined as the completion time of the application finishing last. In this
experiment, we study the effect of heterogeneity between application resource require-
ments, which we can quantify as the ratio of disk I/O to CPU requirement of an applica-

tion: h = θd
θc

. In order to vary this quantity, we vary the I/O load of J IO further by varying
the replication factor of the cluster—the higher the replication factor, the higher the I/O
load of an application. As we increase the replication factor, the job J IO will write more
number of data blocks on each machine. This impacts disk I/O intensive applications
more than other applications.
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Figure 3.7: Overall application completion time in minutes (Y axis) on heterogeneous machines at PARC for

different relative values of h = θd
θc

. Disk load θd is increased by increasing the replication number.

These results show that ThroughputScheduler performs better than FIFOScheduler
and FairScheduler in all cases. The relative performance increase of our scheduler in-
creases as the heterogeneity of the two applications increase, as simulated by an in-
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creased replication factor, which is up to 40 percent compared to FIFOScheduler, and up
to 20 percent compared to FairScheduler. Note that both the FairScheduler and Through-
putScheduler benefit from higher replication as they can better take advantage of data
locality. The improvements of ThroughputScheduler beyond FairScheduler are purely
due to our improved matching of applications to computational resources.

application FIFO Fair Throughput

Pi 9 sec 9 sec 6 sec
JIO 2 min 15 sec 2 min 2 min 10 sec

Table 3.3: Comparison of average mapping time.

To better understand the source of this speed-up, we considered the average map-
ping time for each application (throughput). Table 3.3 summarizes these results and pro-
vides the explanation for the speed-up. As shown in the table, our scheduler improves
the throughput of Pi by 33 percent, while maintaining the throughput of J IO compared
to the other schedulers. Since Pi has very many mapping tasks, these savings pay off for
the overall time to completion.

3.3.3. PERFORMANCE ON BENCHMARK APPLICATIONS
To estimate the performance of ThroughputScheduler on realistic workloads, we also
experimented with the existing Hadoop example applications. We ran the application
combinations of concurrent applications as shown in Table 3.4.

Comb1 Grep (15 GB) + Pi (1500 samples)
Comb2 WordCount (15 GB) + Pi (1500 samples)
Comb3 WordCount (15 GB) + Grep (15 GB)

Table 3.4: Application combination.

The performance comparison in terms of application completion time is presented
in Figure 3.8.

For these workloads, ThroughputScheduler performs better than either of the other
two in all cases. For Comb2, the application completion time is reduced by 30 percent
compared to FIFOScheduler. For Comb3, all three schedulers perform similarly because
both applications are CPU intensive (cf. Table 3.2).

Application Combination FIFO Fair Throughput

Comb1 210s 224s 214s
Comb2 440s 319s 310s
Comb3 225s 262s 214s

Table 3.5: Completion time of application combinations on a homogeneous cluster.

3.3.4. PERFORMANCE ON HOMOGENEOUS CLUSTER
We ran additional experiments on a set of homogeneous cluster machines to ensure such
a setup would not cause ThroughputScheduler to produce inferior performance. Results
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Figure 3.8: Application completion time in minutes (Y axis) of combinations of Hadoop example applications.

shown in Table 3.5 empirically demonstrate the effectiveness of ThroughputScheduler
on homogeneous clusters. The improved performance suggests that if application re-
source requirements and machine capabilities are taken into account, then there is room
for the performance improvement on homogeneous clusters as well.

3.4. SUMMARY
ThroughputScheduler represents a unique method of scheduling jobs on heterogeneous
Hadoop clusters using active learning. The framework learns both server capabilities
and job task parameters autonomously. The resulting model can be used to optimize al-
location of tasks to servers, and thereby, reduce overall execution time (and power con-
sumption). Initial results confirm that ThroughputScheduler performs better than the
default Hadoop schedulers for heterogeneous clusters and does not negatively impact
performance, even on homogeneous clusters.

In this chapter, apart from the optimal scheduling, we also provide an online ap-
proach to learn the application resource requirements by exploring heterogeneous clus-
ters. Our online learning approach constructs a schedule of task assignments to ma-
chines that maximizes information gain about the resource requirements of tasks. This
schedule depends only on the capability parameters of the available machines and can
hence be computed offline before any experiments or tasks are executed.

We have assumed that machine performance is stationary. If we allow machine per-
formance to be an estimated parameter, we could contemplate diagnosing suboptimal
performance issues using a similar model. This is particularly relevant for Hadoop de-
ployments on cloud infrastructure and other uses of virtual machines where perfor-
mance can be less predictable, and many aspects of the system state are hidden and
need to be diagnosed or inferred from observations.

We have shown that the Bayesian experimental design paradigm leads to an elegant
closed-form solution to estimate the expected information gain of executing a task on
a machine, and that the optimal experimental schedule can be precomputed offline. In
addition, we have shown that there is a simple method for updating the posterior distri-
bution over task parameters given the observation. Together, these results constitute a
thought-provoking first step towards learning the resource requirements of applications
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by exploiting the natural heterogeneity in the cluster. Our approach allows us to learn
resource requirements without the extra privileges (root access) over the cluster.

Despite the performance improvement by ThroughputScheduler, there are still a
few limitations with the scheduling policy. In order to learn the resource requirements,
ThroughputScheduler needs a few heterogeneous machines in the cluster. If a cluster
is homogeneous, then the resource requirements can not be learned, and therefore,
scheduling policy can not be implemented. Additionally, ThroughputScheduler does
not take into account the real-time load on various resources of machines while making
the scheduling decision.





4
DARA: DYNAMICALLY

ADAPTING, RESOURCE
AWARE SCHEDULER

In the last chapter, we introduced the ThroughputScheduler for heterogeneous clusters,
which takes application resource requirements and machine capabilities into account.
Compared to existing Hadoop schedulers, ThroughputScheduler is a major improve-
ment to Hadoop scheduling for two reasons. First, it relaxes the non-realistic homogene-
ity assumption, and second, it’s a resource aware scheduler: The ThroughputScheduler
assigns tasks to those machines that can most efficiently satisfy the resource require-
ments of those tasks.

We have experimentally shown the benefits of using ThroughputScheduler, it can still
be improved upon. For example, ThroughputScheduler does not consider the real-time
loads on the machine resources while assigning tasks to machines. Rather, it implicitly
assumes that all the machines have identical loads on all the resources. Loads, however,
have a direct impact on the performance of applications. For instance, CPU cores will
be very busy if they are already running many CPU intensive tasks. In that case, running
additional CPU tasks will further load the CPU cores, which might slow down all the
CPU intensive tasks on that machine. Therefore, it is critical to consider real-time loads
on machines’ resources when scheduling tasks.

The Hadoop community is aware of limitations with the existing Hadoop schedulers.
The latest version of Hadoop, YARN, takes into account the resource capabilities of ma-
chines, and therefore can deal with heterogeneous clusters up to a certain point. YARN
pretends that every task requires a fixed amount of memory (generally, 1 GB) and a fixed
number of CPU cores (generally, 1 CPU core). Tasks are allocated to every machine until
the total memory is full or all the CPU cores are busy. As we discussed in Chapter 2, YARN
uses the following equation to determine the number of parallel tasks on a machine, also
denoted by the number of containers:

59
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Total number of Containers = min

{
TotalMemory

ContainerMemorySize
, #Cores

}
(4.1)

Here, ContainerMemorySize denotes the memory assigned to a container. Each con-
tainer executes exactly one task. This scheduling however might lead to an inefficient
utilization of available resources. For instance, let’s assume machine M has 16 CPU cores
and 2 GB of memory. Let’s suppose the scheduler assumes that every container uses 1
GB of memory; in other words, the container memory size is 1 GB. Hence, machine M
will run 2 tasks in parallel. If CPU intensive applications are submitted, then the CPU
cores of machine M will be underutilized. Therefore, to efficiently utilize the available
resources, it is critical to consider the actual resource usage of tasks. In summary, we
observe the following shortcomings of YARN:

• Fixed container size in terms of CPU core and memory.

• Similar to ThroughputScheduler, YARN also fails to take into account the real-time
load when assigning tasks to machines.

To overcome the shortcomings of the scheduling policies mentioned in this chapter,
we introduce the Dynamically Adapting, Resource Aware (DARA) Scheduler for Hadoop.
DARA improves the throughput on both homogenous and heterogeneous clusters. DARA
extends YARN so it takes into account actual machine resource loads, machine capabil-
ities and the resource requirements of tasks while assigning tasks on machines. To gen-
erate the scheduling policies, DARA uses throughput as the objective function, where
throughput is defined in terms of number of tasks completed per unit time.

Just like the ThroughputScheduler, DARA also uses a performance model to generate
scheduling policies, which is known as a dynamic model. The dynamic model predicts
task completion time in terms of task resource requirements, machine capabilities and
loads on the resources of each machine. We learn the parameters of the dynamic task
completion model automatically on data obtained from offline experiments. The pa-
rameters are related to resource capabilities of machines. The dynamic model allows
us to solve the problem of determining the optimal combinations of tasks that maxi-
mizes the throughput of the cluster. Figure 4.1 notionally describes the intuition behind
DARA’s efficiency gains.

In Figure 4.1, the axes denote the available resources: CPU (X axis) and memory (Y
axis). The two rectangles along the axes (blue and orange) are the representation of two
machines (nodes) with different machine capabilities. As shown with the rectangles, ma-
chine1 (Node1) has more memory compared to machine2 (Node2), and machine2 has
more processing power than machine1. Let’s assume there are tasks from two applica-
tions, A and B, to be scheduled on machine1 and machine2. Tasks from application A use
more memory and less processing power than tasks from application B. An arrow in the
plot represents the resource usage of a task. The job of the scheduler is to keep the arrows
in the rectangle until they reach either the memory or CPU edge of the rectangle. In other
words, the scheduler’s goal is to keep adding tasks to a machine, as long as memory or
CPU are not over subscribed. The existing Hadoop schedulers (CapacityScheduler and
FairScheduler) do not take into account the actual resource requirements of tasks and
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Figure 4.1: Existing schedulers are unaware of resource requirements of tasks and hence cannot use this in-
formation to make scheduling decisions. DARA reaches better task-to-node allocations by mixing tasks with
varying resource requirements, which leads to better utilization of resources.

instead allocate the same amount of resources (for example, 1 CPU core and 1 GB mem-
ory). This kind of allocation is represented by black arrows in Figure 4.1. Only three tasks
could be added to machine1 because all the available CPU resources are used, however,
there was still free memory left. Similarly, the default Hadoop scheduler can only fit two
tasks to machine2.

On the other hand, DARA takes into account both the resource usage and available
resources to fit the maximum number of tasks. DARA adds four tasks to both machines.
It adds three memory intensive tasks (orange arrow) to machine1, and to keep overall
memory load less than the total memory, it adds a CPU intensive task (blue arrow). Sim-
ilarly, DARA can fit four tasks to machine2. In summary, by assigning tasks on machines
based on the resource requirements and load, DARA can run three more tasks in parallel
than existing Hadoop schedulers can without oversubscribing the resources.

Intuitively, we expect performance gains from DARA due to a better utilization of
concurrent resources (for example, disk I/O plus CPU, multiple CPU cores) while care-
fully avoiding over-subscription. We monitor the loads on various resources on ma-
chines and execute tasks that are suitable for those particular loads. For instance, mix-
ing CPU-intensive tasks with disk-intensive tasks will achieve better throughput than
putting CPU-intensive tasks with other CPU-intensive tasks. Running CPU-intensive
tasks will increase CPU load on a machine and, therefore, to get better performance we
should add disk-intensive task that will not impose additional CPU load on a machine
[74–76]. Likewise, DARA can account for heterogeneity in available cluster resources,
for example, by automatically assigning disk-intense tasks to nodes with fast solid-state
disks, if available and possible, without reducing benefits of data-locality.

As we will show, DARA improves throughput over existing Hadoop schedulers up to
50 percent compared to CapacityScheduler and 55 percent compared to FairScheduler
on a homogeneous cluster. DARA also speeds up the workload execution as much as 1.5
times compared to CapacityScheduler and 1.55 compared to FairScheduler.

In the next section, we define throughput and then introduce our model for task
completion time. Following that, we formulate DARA’s scheduling policy as the result
of an optimization problem that maximizes throughput. Finally, we present our empiri-
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cal results and conclusions.

4.1. PRELIMINARIES
In this section, we provide a general framework that we use to implement the DARA
scheduler, and we also define the performance metric (throughput). We first define the
terminologies used in the framework.

4.1.1. CLUSTER

A cluster C is a set of n machines, M = {M 1, M 2, . . . , M n}, that running a set of l appli-
cations, A = {A1, A2, . . . , Al }. The goal of a scheduler is to optimize some objective func-
tion. In our work, we choose throughput as our objective function. The description of
throughput is given in the following section.

4.1.2. THROUGHPUT
Throughput can be understood as the rate at which a cluster is finishing the given work.
Naively, throughput could be defined as:

Throughput = Total work completed in time window T w

T w (4.2)

In an Hadoop environment, total work is defined as all the applications that need to
be processed by the cluster. An application is divided into number of tasks. The total
work can, therefore, be seen as the number of completed tasks processed by the cluster
in a certain time window T w . The total work, however, cannot be simply calculated
by adding the number of tasks of each application completed by the cluster in the time
window T w . The following example illustrates that counting all tasks from all application
does not give the actual work done.

Example 4.1.1. Depending on the resource requirements of applications, tasks from var-
ious applications can have different task completion times. For instance, let’s assume
two tasks, t ask1 and t ask2, which belong to applications A1 and A2. A1 has twice as
much CPU demand as A2 and A1 reads and writes three time more bytes than A2. Un-
der similar conditions, on a given machine, task completion time of t ask1 will always
be higher than t ask2 because t ask1 uses more CPU time than t ask2. In simple words,
we can say that t ask1 is bigger than t ask2. As a result, for a given time window, a clus-
ter will complete more smaller tasks than bigger tasks. Completing more smaller tasks
doesn’t necessarily imply that the total work is also finishing at the higher rate because
the total work needs to be done is the sum of both bigger and smaller tasks. Smaller tasks
will be finished faster, but it might happen that only a small fraction of the total work is
completed by the cluster in a certain interval.

The naive definition of the total work done does not take the size of a task into ac-
count; hence, maximizing total work favors smaller applications (or tasks) over larger
ones. Instead, we define the total work in terms of the normalized number of completed
tasks, where normalization is done based on a notion of size of tasks. We define the size
λ j of a map task belonging to application A j as the time to finish the task on a reference
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machine where no other tasks are running in the background. If there are l applications
running on a n machine cluster, then the following seems to be an adequate measure of
how much work is getting done by this task:

Total work completed in time window T w =
n∑

i=1

l∑
j=1

λ j yi j (4.3)

where yi j is the total number of tasks of application A j completed on machine M i in the
time window T w . In our definition, the total work done by the cluster is determined by
the sum of all the work finished by each machine in T w . The work done by a machine can
be estimated by adding the effective number of tasks of each application that is running
in parallel in T w .

To estimate the throughput, we also need an appropriate method to define T w . The
definition has a direct impact on the scheduling policies. A scheduling policy might not
be efficient if T w is not defined properly. The following examples illustrate the impor-
tance of defining T w appropriately.

Example 4.1.2. Consider three applications, A1, A2 and A3 that are running concur-
rently. All tasks of these applications have identical size and same resource require-
ments. Each application has a different number of tasks: A1 has 1000 tasks, A2 has 5000
tasks, and A3 has 20000 tasks. At any time, a new application can be submitted to the
cluster. One possible way to define T w is by interpreting it as the time to complete the
longest application. In our case, A3 is the longest application, therefore, T w would be
equal to the completion time of A3. However, it might very well happen that before the
completion of A3, a new application, A4 is submitted which has a greater number of
tasks than A3. In that case, T w would be equal to the completion time of A4. 4

The above example highlights that there is no unique way to define the completion
time of the longest application. Similarly, due the possibility of the application submis-
sion at any random time, there is no unique way to define the completion time of the
smallest application, too. Therefore, we define T w as the duration between submission
and completion of applications. We start the clock as soon as a new application is sub-
mitted or an existing one finishes. We stop the clock and measure the time as soon as
any other new application is submitted or completed. For a given time window, T w , the
throughput of the cluster can be defined as

τ(C ,Y) =
n∑

i=1

l∑
j=1

λ j · yi j

T w (4.4)

Here, τ(C ,Y) denotes the throughput of the cluster C and Y is represented by the follow-
ing matrix:

Y = [
yi j

]
i∈[1,n]
j∈[1,l ]

(4.5)

Equation 4.4 shows that the total throughput of the cluster is determined by adding
the throughput of each machine. The value yi j depends on how many parallel tasks of
application A j are running on machine M i . The number of parallel tasks from an appli-
cation on a machine is determined by the number containers assigned to the application
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Figure 4.2: The timeline of the execution of three applications on a machine M1. The X axis denotes the time
and the Y axis denotes the application. The timeline shows various T w s. x1 j denotes the number of parallel

tasks of application A j on machine M1. The average task completion of those parallel tasks is represented by
t1 j .

on that machine. Let’s assume xi j denotes the number of containers of application A j

to be run on machine M i . In this chapter, we improve the cluster throughput by deter-
mining the optimal values for xi j . We denote ρi j as how many times xi j parallel tasks
from application A j are executed concurrently on machine M i to run total yi j tasks. The
value of ρi j can be estimated by

ρi j =
yi j

xi j
(4.6)

For example, if 4 containers are assigned to an application on certain machine, then
to execute 100 tasks of that application, approximately 25 times that many tasks will be
executed in parallel.

If xi j containers of application A j are running on machine M i , we represent the av-
erage task completion as ti j . The time windows T w can be estimated by Equation 4.7:

T w = ρi j ti j (4.7)

To illustrate the formulation presented so far, we present the following example, which
is graphically depicted in Figure 4.2.

Example 4.1.3. Let’s assume three applications, A1, A2, and A3, that are submitted to
a cluster at different points in time. Figure 4.2 shows the timeline of these applications
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on machine M 1. Other cluster machines will also have analogous timelines. We assume
these applications are identical in terms of their size but have varying resource require-
ments. Application A1 is submitted first and 5 tasks of A1 are executed in parallel on
M 1 (x11 = 5). The average task completion time of these parallel tasks is denoted by t11.
Each task is represented by a thread. Later, applications A2 and A3 are submitted to the
cluster. During the entire lifetime of these three applications, we observe 5 time win-
dows, T w

1 ,. . . ,T w
5 . For each time window, the throughput can be estimated by dividing

the number of completed tasks by the time window. For instance, in T w
2 , the machine

processes 12 tasks of A1 (y11 = 12) and 8 tasks of A2 (y12 = 8). In total, 20 tasks are com-
pleted by M 1 in the time window T w

2 . During the time window T w
2 , three tasks of appli-

cation A1 (x11 = 3) and 4 tasks of A2 (x12 = 4) are executed in parallel. Therefore, from
Equation 4.6 we can derive that ρ11 = 4 and ρ12 = 2. Hence, by using Equation 4.7, T w

2
can be estimated in terms of t11 and t12 as follows:

T w
2 = 4t11 = 2t12 (4.8)

4
Combining Equations 4.4, 4.6 and 4.7 gives:

τ̄(C ,X) =
n∑

i=1

l∑
j=1

λ j · xi j

ti j
(4.9)

Here, X is the container assignment matrix

X = [
xi j

]
i∈[1,n]
j∈[1,l ]

(4.10)

Equation 4.9 implies that if there are more parallel tasks executed on a machine, then
the machine will complete more tasks simultaneously, but each task might take longer
to complete because the load on the machine would be higher. Therefore, we need a
scheduling policy that can maintain a balance between parallelism and loads on a ma-
chine such that the throughput is maximal.

Hence, our scheduling goal can be concisely, albeit abstractly, stated as computing:

X∗ = argmax
X

τ̄(C ,X) (4.11)

The definition of throughput is provided in terms of hindsight measurements. Hence,
in order to maximize throughput by making intelligent scheduling decisions, we need to
be able to predict throughput. We hence need to develop a model of throughput that
depends on the decisions made in scheduling. In the next section, we will show how we
can automatically learn the parameters of the model to predict the individual task com-
pletion times ti j . We will then describe how we can maximize the predicted throughput
while respecting data locality. As mentioned in the Chapter 2, data locality is a crucial
feature of Hadoop. Our scheduler needs to optimize only within the flexibility provided
by the redundant storage of data on multiple nodes, and optimize only in terms of the
assignment to those machines.
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4.2. LOAD DYNAMIC MODEL
In this section, we describe the steps to learn the task completion time model in terms
of task resource requirements, machine capabilities and the current load on machines.
Unlike the static model, the dynamic model is not purely a process-based model. We
learn the parameters of model from the data. In the previous chapter, we have already
introduced the concept of the resource requirements and machine capabilities. In this
chapter, we also introduce the load on machines. Load on a machine depends on the
characteristics of tasks being executed by the machine. In order to derive a realistic
model of task completion time, we use a notion of load on existing resources.

We denote the load on machine M i by a tuple Li = 〈Li
1,Li

2, . . . ,Li
N 〉, where Li

k is the

load on resource k of machine M i . In our work, we consider loads on two resources of a
machine: Li

c , or CPU load; Li
d , or disk load. We will now present an approach to estimate

these loads given the set of tasks running on M i , and some measurable resource usages
of these tasks. Before explaining our modeling approach, we first describe the data set
and our methodology to generate the data set.

4.2.1. GATHERING DATA

In the load dynamic modeling method, our goal is to learn parameters of a model that
predicts task completion time in terms task of resource usage, machine capabilities and
the loads on machines. We use data driven approach to learn the parameters. The data
set consists of task completion time of various tasks executed on machines under various
load. The load on a machine is determined by how many tasks are running in parallel
on the machine and what are their resource usage. Different kinds of tasks impose dif-
ferent kinds of load. To generate different kinds of loads, we run various combinations
of tasks in parallel on the machine. These parallel tasks may have similar or different re-
source utilization. To generate the data, we run tasks from various Hadoop benchmark
applications. We selected the benchmark applications because they cover the spectrum
of applications that we use in our Hadoop cluster. For instance, we execute a certain
number of Pi tasks in parallel to generate one kind of load and then we execute certain
number of Pi and W or dCount tasks in parallel to generate another kind of load. We
run various combinations of tasks to cover a broader spectrum of load values. We use
applications Pi , W or dCount , Sor t , Pi +W or dCount , Pi +Sor t and Pi +W or dCount
to generate the data. Here, Pi+W or dCount means that tasks from Pi and W or dCount
are being executed in parallel.

INSIGHTS FROM DATA

To gain a deeper insight in the data, we first present the characteristics and configura-
tions of applications executed on machines. Table 4.1 shows the list of applications we
run to generate the data, along with the number of task configurations we use to gener-
ate various loads.

We collect average map task completion time for every application in each configu-
ration. Each configuration imposes a certain amount of CPU, IO and memory load on
a machine. To analyze the impact of loads on machines, we present and discuss the
average task completion times of a few applications for different load settings.
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Application CPU
Time
(Sec)

RAM
(MB)

Disk I/O
(MB)

Task
Configu-
rations

Pi 10 230 5 2 to 16
Sort 5 280 500 2 to 16
WordCount 30 300 140 2 to 16
Pi + WordCount 6/30 230/300 5/140 2 to 16
Pi + Sort 6/5 230/280 5/500 2 to 16
WordCount + Sort 30/5 300/280 140/500 2 to 16

Table 4.1: Per task resource requirements of Hadoop benchmark applications. In the cases of a+b applications,
the resource requirements are presented in the a,b order.

The data plotted in Figure 4.3 shows the impact of the number of parallel tasks on
the map task completion. For each configuration, a certain number of tasks from the
application Pi are executed to impose a certain load. The plots show that as the number
of parallel tasks increases. In the beginning, the task completion time remains nearly
unchanged, and subsequently, the task completion time increases nonlinearly. Table 4.1
shows that Pi tasks perform a very small amounts of I/O activity, hence, Pi tasks mainly
exploit machine CPU. Therefore, it is assumed that each Pi task adds extra load on CPU
cores of a machine. For fewer numbers of parallel tasks, multiple cores share the CPU
load and process tasks in parallel; there, we observe that initial load doesn’t increase the
task completion significantly. Later on, for higher numbers of parallel tasks, each core is
overloaded with work, which causes a non-linear increment of task completion time.

In this example, we only showed the impact of CPU load on task completion time.
In our next example, we discuss the impact of CPU and I/O load on task completion. To
demonstrate the impact of multiple resources, we present the task completion time data
of applications Pi and Sor t .

The data in Figure 4.4 show that as the number of Pi and Sor t tasks increase, the task
completion time for both applications increases slowly in beginning and subsequently
it increases faster. We also observe adding more Pi tasks does not have significant im-
pact on Sor t task completion time; similarly, adding Sor t tasks does not increase task
completion time Pi task significantly. Pi is a CPU intensive application and Sor t is an
I/O intensive. Therefore, Pi tasks do not have significant impact on the performance of
Sor t tasks and vice versa.

These examples demonstrate that as we add more tasks on a machine, the comple-
tion of those tasks increases because the load on those machine increases. Each task
adds a certain amount of load on each resource of the machine. For example, Pi tasks
impose more load on a CPU then other resources, and Sor t task puts more pressure on
a disk. In order to determine the impact of load on task completion time, we first need
a formulation to estimate the load. The next section describe our approach to estimate
load on various resources of a machine.
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Figure 4.3: Average Map task completion time under various configuration
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(a) Task Completion time for Pi application
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(b) Task Completion time for Sor t application

Figure 4.4: Task completion data for Pi and Sor t applications. The X axis (Lc ) represents the CPU load and the
Y axis (Ld ) represents the disk load.
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4.2.2. DETERMINING LOAD

Every task imposes a certain load on the CPU, memory and disk of a machine, depend-
ing on the CPU, memory and disk requirements of the task. As we discussed earlier,
map tasks first read files, then process the read content based on their map function,
and finally write data back to the local disk. Reading from and writing to the filesystem
constitutes the total disk load imposed by the task. In this work, we are only considering
CPU, disk and memory loads on a machine. Estimating memory load is straightforward.
A certain amount of memory is used for the entire execution of a task. If there are mul-
tiple tasks running in the parallel on the machine, then the total memory load can be
determined by adding the memory used by all those tasks.

On the other hand, computing CPU and disk I/O load is not as straightforward as
estimating memory load because, during the execution, we assume that a task is either
exploiting CPU or disk. Therefore, it is not easy to determine how much load is imposed
by the task on CPU and disk I/O. To estimate the CPU and disk I/O load, we take into
account the CPU time and the bytes used by the task. Both CPU time and bytes used
are measured from the Linux kernel of the machine where tasks are executed. To mea-
sure resource usage from Linux kernel, root access privileges over the cluster machines
might be needed. The root access is not necessarily granted for every cluster. In the case
when the root access is not granted, the ThroughputScheduler described in the previous
chapter can be used, otherwise DARA scheduler can be used. The CPU time determines
the time spent by the CPU to finish the task. We assume that the remaining time is spent
by the task to perform the disk activity. Therefore, we assume that the load imposed on
CPU cores of a machine is proportional to the CPU time of the task divided by the overall
task completion time, and the amount of disk I/O load is proportional to the number of
bytes read and written divided by completion time.

MODEL BASED APPROACH

For a task of application A j , we can use the following entities as a proxy for CPU and disk
loads:

R j
c = c j

c j +d j
R j

d = d j

c j +d j

Here, c j and d j are the CPU time and total bytes written and read by a task. For
example, applications Pi and Sor t have the same CPU seconds. However, Sor t has
much more disk activity than Pi (cf. Table 4.1) and as a result, its Rd value is much
higher than its Rc value. This reflects the fact that Sor t is a disk I/O intense application
and Pi is a CPU intense application.

If l applications are running concurrently on a machine M i , then the total loads on
M i can be computed as:

Li
c =

j=l∑
j=1

R j
c xi j Li

d =
j=l∑
j=1

R j
d xi j

Here, xi j denotes the number of containers assigned to application A j to machine
M i .
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4.2.3. LEARNING THE MODEL
In this work, our intuition is to derive a task completion model on a given machine, un-
der a given task assignment policy, and knowing only the overall resource requirements
of the task (CPU time and disk I/O in bytes). The task assignment policy will determine
the CPU and I/O load on every machine because the policy decides that how many tasks
from each application will run on every machine.

We use the following function as our inductive bias for the model to be learned:

ti j =λ j + c jαi
c (Li

c )2 +d jαi
d (Li

d )2 (4.12)

Here, ti j denotes the predicted task completion time. It must be noted that we do
not include memory load in the model, rather, we assume that task assignment policy
always makes sure that the used memory is always less than total memory. In case of
over-subscrption of the memory, we assume that the performance of machines become
undeterministic and therefore, cannot be formulated in a form of an analytical equation.

In the model, c j and d j are the CPU time and bytes written and read by tasks of
A j . αi

c and αi
d capture the cpu and disk I/O capabilities of machine M i . Li

c and Li
d

represent the current load on these resources, as a result of other tasks running on the
machine. c j and d j , are the only two values that need to be measured at runtime, since
they are application specific, and we cannot know all applications ever submitted to the
cluster ahead of time. Li

c and Li
d , can be computed at runtime based on the scheduler’s

knowledge of which tasks have already been assigned and are currently running on the
machine. Hence, the parameters that need to be learned are: αi

c ,αi
d . We search for values

of parameters that minimize the Root Mean Squared Error (RMSE) between the values
predicated by the model and the actual observed values.

The model in Equation 4.12 uses the size of the application, λi , as the intercept,
which determines the execution time of a task under minimal load. The model reflects
the fact that as the loads, Li

c and Li
d increase, tasks start experiencing a slowdown. Em-

pirically, we observed a super-linear increment in task completion with respect to Li
c and

Li
d , therefore, we model the increase in completion time using (Li

c )2 and (Li
d )2.

Figure 4.5 gives a flavor of the training data and fitted model. It shows the values of
the average completion time, Tav g , for map tasks of Pi running on a node with eight CPU
cores and one disk for various loads. These loads, Lc and Ld , were a result of different
combinations of Pi and Sor t applications running on the node. Red dots in Figure 4.5
shows the empirical Tav g value of Pi on the node. These values increase more rapidly
with Lc compared to Ld . This is because Pi is a CPU intensive application. Also note that
the plot reflects the eight CPU cores, as this is roughly where the times start increasing
in the Lc dimension.

We evaluate the accuracy of the model in terms of Root Mean Squared Error (RMSE).
We measure 30 percent RMSE for the model we learn in this chapter. We intend to further
improve the accuracy of the model and therefore, we develop a data driven model which
further improves the accuracy. We do not consider a linear functional form for the model
because a linear form would imply that the task completion time linearly increases with
the load. This kind of linear behavior suggests that the throughput remains unchanged
for varying load values. Moreover, we could also use a more complex functional form
to improve the accuracy of the model, but in that case, we could not get the analytical
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Figure 4.5: Training data and fitted model of task completion time for Pi on a node with eight CPU cores.
The x- and y-axes, Lc and Ld , represent CPU and disk I/O load, respectively. The z-axis shows the average task
completion time. Red dots show the empirical Tav g value, while the blue surface represents the trained model.

form for the scheduling policy. In the absence of the analytical form, a sampler-based
approached can be used to generate scheduling policy. Implement the scheduler using
a sampler could severely impact the performance of the scheduler.

4.3. THROUGHPUT MAXIMIZATION
To implement the scheduling policy, we use Equation 4.12 to predicted the individual
task completion time ti j . Equarion 4.12 can be expressed as the following function ρ,
which takes θ j ,πi ,Li , and λ j as inputs:

X∗ = argmax
X

∑
i

∑
j

λ j xi j

ρ(θ j ,πi ,Li ,λ j )
(4.13)

where θ j = (c j ,d j ).
As we discussed earlier, the total cluster throughput is a summation of the through-

put of all the machines in a cluster. To simplify matters, we assume that the throughput
of a machine is independent from all throughput of all other machines. This is not en-
tirely accurate given a set of tasks to be allocated, as allocating a task to one machine
means that it will not be allocated to a different machine. But the effect of this depen-
dence seems minor and vanishes for large numbers of tasks being allocated. With this
simplification, Equation 4.13 can be rewritten as:

X∗ =∑
i

argmax
X

∑
j

λ j xi j

ρ(θi ,π j ,L j ,λ j )
(4.14)
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In Equation 4.14, we break down the maximization of cluster throughput into the max-
imization of throughput of individual machines. This allows the scheduler to maximize
each machines throughput separately by allocating optimal numbers of containers to
applications with different relative resource loads. Hence, the overall optimization prob-
lem can stated as:

X∗ =∑
i

x∗i (4.15)

where x∗i denotes the vector of containers to allocate for each application on machine

M i in order to locally maximize throughput on this machine:

x∗i = argmax
xi

∑
i

λ j xi j

ρ(θ j ,πi ,Li ,λ j )
(4.16)

Given the trained model derived in Equation 4.12, we can use Equation 4.12 directly to
formulate the scheduling used by DARA, and which we describe programmatically in the
next section.

4.3.1. IMPLEMENTATION

We implemented the DARA scheduler in Hadoop version 2 (YARN) by extending the ex-
isting FairScheduler. The implementation can be succinctly described by its three main
functions, ADDAPPLICATION, REMOVEAPPLICATION and DARASCHEDULE. Resource ca-
pabilities (πM ) are estimated for every machine M in the cluster before starting the clus-
ter for production.

In the production phase, when an application, ANew , arrives, one of the map tasks
from the application is executed on a node, and its overall resource requirements, θNew ,
(CPU time and total number of bytes written and read) are obtained by the NodeMan-
ager from the operating system on the node. This information is sent to the Resource-
Manager where it is received by DARA. The list of all applications A and their resource
requirements, Θ, as well as the current assignment, X, are known from the records kept
by the scheduler.

The function, COMPUTEOPTIMALASSIGNMENT, maximizes the expression shown in
Equation 4.16 by finding the optimal number of containers for each application for a
given machine M . This function takes as input the resource requirements of applica-
tions,Θ, and the capabilities, πM , of the machine.

To avoid the over-subscription of memory, this method only explores the space of
combinations of tasks where the sum of the peak memory usages is less than total avail-
able memory on the nodes. Hence, the returned assignment never oversubscribes mem-
ory. The returned list of the optimal assignments for this node is stored as a global vari-
able (at least in this pseudo-code) and is here designated as x∗M . Recall that this assign-
ment is a simple list of numbers, one for each application running on the cluster, indi-
cating the best combination of tasks to run of these applications in order to maximize
throughput.

The ADDAPPLICATION function runs when a new application is submitted to the clus-
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ter:

Algorithm 4.3.1: ADDAPPLICATION(ANew ,C l uster )

θNew ← GETRESOURCEREQ(ANew )
for each machine M ∈ Cluster

do



πM ← M.GETRESOURCECAPABILITIES()
A ← M.GETRUNNINGAPPS()
Θ← GETRESOURCEREQ(A)
A ← A+ ANew

Θ←Θ+θNew

x∗M ← COMPUTEOPTIMALASSIGNMENT(Θ,πM ,xM)

In the current implementation, we use exhaustive search to implement the func-
tion, ComputeOpti mal Assi g nment . At the completion of an application, ADone , Θ
is updated by removing ADone from the list of running applications, A. The optimal as-
signment for the remaining applications is updated by calling the optimization function
again.

Algorithm 4.3.2: REMOVEAPPLICATION(ADone ,C l uster )

for each machine M ∈ Cluster

do



πM ← M.GETRESOURCECAPABILITIES()
A ← M.GETRUNNINGAPPS()
A ← A− ADone

Θ← GETRESOURCEREQ(A)
x∗M ← COMPUTEOPTIMALASSIGNMENT(Θ,πM ,xM)

The optimal assignment corresponds to the set of (orange and blue) vectors we com-
bined in Figure 4.1 to reach the location in the resource load space where resources are
optimally utilized, and hence, throughput is greatest.

Once the optimal number of containers for every running application on every node
is determined, they can be exploited to make scheduling decisions. The native Hadoop
scheduler sorts task/machine pairs according to whether they are local (data for the task
is available on the machine), on the same rack, or remote. We introduce our routine
based on our task requirements estimation called BESTAPPTOADD to break ties within
each of these tiers as shown in Algorithm 4.3.3. Intuitively, if we have two local apps, we
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would run the one most compatible with the machine first.

Algorithm 4.3.3: DARASCHEDULE(Cluster,Request)

for each machine M ∈ Cluster

do



AppsWithLocalTasks ← M.GETLOCALAPPS(Request)
AppsWithRackTasks ← M.GETRACKAPPS(Request)
AppsWithOffSwitchTasks ← M.GETOFFSWITCHAPPS(Request)
if AppsWithLocalTasks 6= NU LL

then

{
Abest ← BESTAPPTOADD(AppsWithLocalTasks,M)
ASSIGNTASKFORAPP(M, Abest )

else if AppsWithRackTasks 6= NU LL

then

{
Abest ← BESTAPPTOADD(AppsWithRackTasks,M)
ASSIGNTASKFORAPP(M, Abest )

else

{
Abest ← BESTAPPTOADD(AppsWithOffSwitchTasks,M)
ASSIGNTASKFORAPP(M, Abest )

Algorithm 4.3.4: BESTAPPTOADD(A, M)

return (argmaxA∈A x∗
A,M −xA,M )

In BESTAPPTOADD, x∗
A,M denotes the optimal number of containers to allocate to

application A on node M and xA,M is the number of containers node N has currently
allocated for application A. The term x∗

A,M−xA,M computes the current under-allocation
for the application on this node compared to the optimal allocation. When selecting
tasks to run on a node, the scheduler uses this number to determine the application
A whose actual assignment is lowest compared to its optimal assignment. Hence, by
adding tasks of this application we are getting closer to the optimal assignment. Note
that our scheduler, like others, never removes running tasks from a node to achieve the
optimal assignment. Hence, we do not consider over-allocations in this function.

4.4. EMPIRICAL RESULTS
To evaluate the performance of DARA, we conducted experiments on our six machine
Hadoop cluster. Each machine has 8 physical CPU cores, 12 GB of RAM, and runs CentOS
5.6. We compare the performance of DARA Scheduler against CapacityScheduler [37]
and FairScheduler [38].

FairScheduler and CapacityScheduler are the schedulers underlying resource-aware
big data platforms such as Mesos [85]. Mesos fairly shares cluster resources among dif-
ferent frameworks such as Hadoop and MPI. Mesos implements Dominant Resource
Fairness (DRF) [86] to fairly allocate CPU and memory among different users. It assumes
a priori knowledge about the resource requirements of jobs, unlike DARA, which auto-
matically infers it. Another reason why comparing DARA to Mesos is not appropriate
is that Mesos maximizes fairness rather than throughput, so a comparison would not
be fair. All the experiments were repeated multiple times, and in each run same results
were obtained. Therefore, we select results from one run to describe in the following
subsections.
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4.4.1. CONTAINER ALLOCATION

To investigate the container allocation scheme of DARA, various combinations of Hadoop
benchmark applications were run on the cluster.

DARA determines the optimal number of containers per application for every com-
bination. Table 4.2 shows these numbers for one of the nodes in the cluster for a few ex-
ample workloads. All six nodes in the cluster are identical, therefore, the optimal number
of containers to allocate is the same for all nodes of the cluster. In the previous chapter,
we demonstrated that any heterogeneity in cluster resources can actually be exploited
for improved performance as well, and DARA would be able to exploit this seamlessly,
too.

Allocation per Application
Workload Pi Sort WordCount RandomWriter

Pi 12 - - -
Sort - 7 - -

WordCount - - 14 -
RandomWriter - - - 3

AggWC - - - -
Pi + Sort 12 5 - -

Pi + WordCount 9 - 7 -
Sort + WordCount - 0 - -

Table 4.2: Optimal number of containers as computed by DARA for every application and their combinations.

The table shows that DARA allocates the highest number of concurrent containers
when only running WordCount alone. This is because WordCount uses a good mix of
CPU and disk I/O. On the other hand, RandomWriter generates lots of disk I/O load but
does not need CPU for very long. Due to the limited bandwidth of disks, the number of
containers that maximize throughput when running RandomWriter alone is very small.
For the combination of Sort and WordCount, Sort gets no containers at first because
running WordCount will keep both CPU and disk I/O busy.

Note that Pi is so CPU intense and Sort is so disk intense, that the optimal number of
Pi containers to run does not change when adding a Sort application. Hence, intuitively,
the Sort tasks are being processed “for free.”

4.4.2. WORKLOAD DESIGN

Due to unavailability of production workloads, we construct various synthetic workloads
based on publicly available Hadoop traces from Facebook [87].

Facebook has published traces of its clusters in order for other to be able to simu-
late real workloads from Facebook Hadoop clusters. A workflow is defined as a set of
MapReduce jobs that are submitted to the cluster in certain intervals. However, Face-
book did not publish the job specific resource requirements, nor did they provide the
actual jobs (MapReduce programs). Instead, they suggest constructing the simulated
workloads purely based on I/O operations that read and write a specific number of bytes
to and from disk. This is not sufficient for our purposes. In order to evaluate the effec-
tiveness of our scheduling, we require heterogeneous workflows with varying disk I/O,
memory, and CPU requirements. Therefore, we only used the submission intervals from
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the Facebook traces, but constructed our own jobs. The workflows we constructed con-
tain between one and five MapReduce jobs, randomly selected from a pool of standard
MapReduce jobs. The Hadoop distribution includes benchmark MapReduce jobs. These
have different kinds of resource requirements (CPU and I/O), and were therefore, a good
pool to choose from. Table 4.3 describes the composition of each workload.

Workload Job Composition
WL1 Pi
WL2 Sort
WL3 WordCount
WL4 RandomWriter
WL5 Pi, WordCount
WL6 Pi, Sort
WL7 Sort, WordCount
WL8 WordCount, Sort, AggWordCount
WL9 Pi, WordCount, Sort

WL10 AggWordCount, Pi, Pi
WL11 WordCount, Pi, Sort
WL12 Sort, AggWordCount, WordCount, WordCount
WL13 AggWordCount, AggWordCount, Sort, Pi
WL14 Pi, Sort, WordCount, AggWordCount, WordCount
WL15 AggWordCount, WordCount, Sort, WordCount, AggWordCount
WL16 Pi, Pi, Pi, WordCount, WordCount

Table 4.3: Composition of workload that are used compare performance of DARA against Fair and Capacity
scheduler.

For each workload, jobs are submitted in the order they appear in Table 4.3. In order
to simulate the submission intervals between two jobs in accordance with the Facebook
traces, we randomly draw samples from the populations of submission intervals pro-
vided in Facebook Hadoop traces.

Figure 4.6 shows a histogram of the arrival intervals of jobs in Facebook’s traces.

For our experiments we construct 16 synthetic workloads, and every workload contains
one or more MapReduce applications from Hadoop benchmark examples.

4.4.3. WORKLOAD SPEEDUP

We compared the performance of DARA against CapacityScheduler and FairScheduler in
terms of speedup of workload execution on the cluster. Speedup gained by DARA is mea-
sured by dividing time to complete workload using FairScheduler and CapacitySched-
uler by time to complete workload using DARA. Workload completion time is defined as
the time from the beginning of execution until the completion the application finishing
last. Speedup results are shown in Figure 4.7.

Our experimental results demonstrate that DARA speeds up execution of all the work-
loads compared to CapacityScheduler and FairScheduler. Even though DARA is designed
to optimize the execution of map tasks only, we can see the speedup of overall MapRe-
duce applications. The improved speedup shows that DARA is assigning tasks to ma-
chines that efficiently satisfy the the task resource requirements.
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Figure 4.6: Histograms of time interval (in seconds) between two application submissions at Facebook Hadoop
cluster.

4.4.4. CLUSTER THROUGHPUT

To further evaluate the container allocation policy of DARA, we compare the perfor-
mance of DARA against CapacityScheduler and FairScheduler in terms of throughput.

The cluster throughput is measured using Equation 4.4. The time variable used in
Equation 4.4 is measured as the time to complete a workload. In case of multiple appli-
cations in a workload, the completion time of the application finishing last is used in the
throughput measurement. Results are shown in Figure 4.8.

The results show that DARA delivers higher throughput than than FairSchedulers and
CapacitySchedulers. For applications that are CPU intensive, DARA assigns more con-
tainers than for I/O intensive applications. For the latter, it turns out that the optimal
number of containers is significantly less than the number of CPU cores. Also, the other
rule of thumb is to assign containers based on the amount of RAM divided by 1 GB, but
this would not assign the optimal number of containers in terms of throughput. DARA
dynamically adapts its container allocation to the resource requirements of the mix of
applications running at any one time, and as a result achieves higher throughput.

4.4.5. RESOURCE UTILIZATION

Another way to understand the improved throughput achieved by DARA is to consider
resource utilization. To illustrate this, we ran Pi and Sort applications together on the
cluster and monitored the CPU usage while both the applications are active.

Recall that Pi is a CPU intensive application and Sort is an I/O intensive application.
Therefore, both CPU and disk I/O are exploited during the execution of applications.
Figures 4.9 and 4.10 show the CPU utilization for the DARA scheduler and FairSched-
uler.

DARA is exploiting CPU much more efficiently than FairScheduler. For DARA, the
average user CPU usage is around 35 percent and waiting for I/O is around 20 percent
(Figure 4.9). On the other hand, for FairScheduler with the average user CPU utilization
around 17 percent and waiting for I/O is around 20 percent (Figure 4.10). These results
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Figure 4.7: Speedup gained by running workloads with DARA compared to FairScheduler and CapacitySched-
uler. For our 16 workloads, DARA provides average speedup of 1.14 compared to FairScheduler and 1.16 com-
pared to CapacityScheduler. X axis indicates which workload was used for the experiment.
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Figure 4.8: Throughput comparison on Hadoop benchmarks. For our 16 workloads, DARA increases the aver-
age throughput by 16% compared to CapacityScheduler and 14% compared to FairScheduler.
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Figure 4.9: CPU Utilization of the cluster when Pi+Sort are in parallel executed by DARA
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Figure 4.10: CPU Utilization of the cluster when Pi+Sort are executed by FairScheduler

demonstrate that DARA efficiently exploits multiple resources by allocating containers
more intelligently based on its automatically inferred knowledge about their resource
requirements. In this example, intuitively, DARA combines tasks a way that when one
application is waiting for I/O, it can be exploited to do the additional processing.

DARA is carefully designed to improve throughput without oversubscribing the avail-
able memory of a node. To validate this design feature, we monitor memory used by
every node of the cluster. Figure 4.11 shows the memory usage of a node in the clus-
ter during the execution of all the workloads with DARA. This observations shows that
the actual memory used is significantly under the total memory on the node. Similar
memory usage is reported from the other nodes in cluster.

4.5. CONCLUSION
DARA represents a novel approach for scheduling jobs on Hadoop clusters to maximize
throughput. The framework dynamically determines the optimal number of contain-
ers to run for each application and node. Unlike previous schedulers, DARA uses an
estimate of the actual resource requirements of running applications together with re-
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Figure 4.11: Memory usage of a node in the cluster while running different workloads using DARA.

source capabilities of nodes to optimize for throughput. To the best of our knowledge,
none of the existing (published) schedulers consider CPU and disk I/O use when making
scheduling decisions in online manner.

Our main contributions are twofold. First, we present a model of task completion
time that can be trained offline to account for node-specific capabilities, which we then
parameterize online to account for application specific resource requirements, based
solely on the actual overall resource consumption of the first map task. Second, we
present an algorithm that can use this model to make scheduling decisions that improve
throughput. Empirical results confirm that DARA scheduler performs better than exist-
ing Hadoop schedulers in terms of throughput, speedup, and resource utilization. While
DARA is specifically for Hadoop, the underlying idea and overarching approach general-
izes to other frameworks of distributed computing as well.



5
IDENTIFYING PERFORMANCE

PROBLEMS IN HETEROGENEOUS

HADOOP CLUSTERS

So far in this thesis, we have covered the scheduling aspects of the Hadoop CMS. As we
discussed in our goals in Chapter 1, the other important component of the CMS is mon-
itoring and diagnosis. High throughput is necessary for the businesses of the companies
that depend on Hadoop. A cluster can have a higher throughput if all the machines are
producing output at a higher rate. If the machines start failing or slowing down then
the cluster productivity might be severely affected. No matter how good or costly the
machines are, in practice they can abruptly fail because of unexpected faults. In such
scenarios, it is important to take certain actions such that the cluster production can be
maintained at a certain level. Therefore, from the production point of view, it is impor-
tant to keep monitoring the performance of machines and to identify faults in machines
that might cause slowdown or failure.

In Chapter 2, we introduced two types of faults, hard faults and soft faults. CPU fail-
ure, disk failure, network failure can be seen as hard faults, resulting in failing applica-
tions. Soft faults, on the other hand, don’t cause application failure on machines; how-
ever, applications complete at a lower than usual rate. Limping hardware, unnecessary
background processes, or poor task scheduling resulting in overloaded machines, can
all be seen as soft faults. These faults create resource congestions, such as CPU or I/O or
network congestion, resulting in slowdowns. The heartbeat protocol works on the idea
that if a machine is alive, it will send the heartbeat message. But in the presence of soft
faults, a machine can still send the heartbeat message. In spite of the presence of soft
faults in machines, as long as the machine is alive it can send the heartbeats. As a result,
hard faults can be detected by Hadoop heartbeat protocol, however, it fails to detect soft
faults. Compared to hard faults, the causes and impacts of the soft faults is a little more
complex to understand.

81
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One of the well-known solutions to identify soft faults is the peer-similarity [65] [11],
which compares the performance of map tasks from a given application on cluster ma-
chines to find the machine(s) with soft faults. Tasks from the applications are executed
on each machine of the cluster, and task completion times on each machine are ob-
served. Tasks completion times are compared among machines, and machines on which
tasks are taking longer to finish are suspected to be faulty. The peer-similarity approach
works well in practice, but has many limitations. The approach relies on the assumption
that the cluster is homogeneous, meaning that all machines have the same hardware
and software configuration. As we discussed in Chapter 3, this assumption is not always
true in production clusters. Moreover, the peer-similarity approach is limited to iden-
tifying faulty machines; it can not detect which resources are affected by the faults. To
implement a resource-aware CMS, however, it is important to monitor performance of
each resource in every machine of the cluster.

In this chapter, we investigate the problem of identifying resource specific soft faults
in heterogeneous Hadoop clusters. To address this problem, we derive two data-driven
approaches for identifying the performance problems that are applicable to the hetero-
geneous clusters. In our first method, we propose an approach to detect resource spe-
cific soft faults in machines [88]. We present a very simple probabilistic model-based
approach to detect such soft faults. To build the probabilistic model, we assume that
the task resource requirements and machine capabilities are already known. The perfor-
mance of a machine is measured in terms of slowdown of a machine. A slower machine
will process tasks at a lower rate compared to faster machines.

This probabilistic model-based approach has a few shortcomings. First, it assumes
that resource requirements of tasks and resource capabilities of machines are known in
advance. In many practical cases, both of these parameters are generally unknown. Sec-
ond, the approach works in offline mode, which means that while detecting the faults,
the cluster needs to stop processing applications. Therefore, this approach can reduce
overall cluster productivity.

In our next approach, we improve the previous probabilistic model-based approach [89],
where we relax the assumptions that the requirements and performance metrics are
known. Rather, we propose an unsupervised learning-based approach to learn unknown
parameters. To make our approach appealing, we develop the monitoring tool that
works in online mode; therefore, soft-faults can be detected without stopping produc-
tion. Our approach continuously estimates the machine capabilities in terms of the
slowdown of every machine, and slowdown is measured for every kind of resource (CPU
or disk) separately. Hence, our solution is able to explain what kinds of resources are
affected in the presence of faults in real time. While continuously monitoring the slow-
down of machines, a radical increment in slowdown indicates the presence of a fault.
This is accomplished without any additional input from the user or the cluster adminis-
trator.

In this chapter, we only develop methodologies to find soft faults in Hadoop clusters.
We believe that hard faults can be efficiently diagnosed using the Hadoop heartbeat pro-
tocol. In the next section, we describe the nature and impact of soft faults on the cluster.
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(a) Time distribution for WordCount without CPU
hogging

(b) Time distribution for WordCount with CPU
hogging

Figure 5.1: CPU intensive MapReduce jobs such as WordCount are strongly affected in their completion time
by over-subscription of the CPU (note the number of seconds shown on the x-axis).

(a) Time distribution of RandomWriter without
CPU hogging

(b) Time distribution of RandomWriter with CPU
hogging

Figure 5.2: MapReduce jobs that are not as CPU intensive, such as RandomWriter, are much less strongly
affected in their completion time by over-subscription of the CPU.

5.1. SOFT FAULTS
We consider soft faults in the form of resource contention on the cluster machines. There
are numerous ways for resource contention, such as any hardware fault, limping hard-
ware, oversubscription of resources due to unknown background processes. Resource
contention also could be the result of bad scheduling. For the purpose of understanding
the impact of these resource problems, we simulate two types of soft faults: CPU hogging
and disk I/O hogging. To simulate the CPU hogging, we run multiple infinite while loops
to keep all the CPU cores busy. 1 As a result, tasks of CPU intensive applications took
much longer to complete, as shown in Figure 5.1. On the other hand, disk I/O intensive
jobs, such as the RandomWriter, are not affected nearly as strongly, as can be seen in
Figure 5.2.

These experiments suggest that if a certain resource has performance problems, then
it mainly impacts the performance of the applications that are mostly exploiting that
particular resource. In the next section, we present our first approach to identify soft

1To simulate the disk hogging, we read and write random data from the disks.
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faults, which is based on the kinds of resources used by applications.

5.2. RESOURCE CLASSIFICATION BASED APPROACH
This approach for determining performance problems of a heterogeneous Hadoop clus-
ter consists of two steps. First, we learn a performance model of every machine in the
cluster for each class of applications. Application classes are created based on what kinds
of resources are primarily used by applications. In the second step, these performance
models are used to estimate how long a given new task should take on a given machine.
Intuitively, if a new task takes much longer than predicted by the model, the machine
is likely to be suffering from a fault. By comparing the impact such a fault has on the
completion time for tasks of different classes, meaning different resource profiles, it is
possible to diagnose the kind of fault in the sense of determining which resource is af-
fected (for example, CPU, disk I/O).

5.2.1. ASSUMPTIONS
Our approach makes the following assumptions:

1. The resource profile, in terms of CPU, and I/O of a given task, is known in advance.

2. For each application, there is one resource that is the bottleneck which dominates
the resource requirements for all map tasks of the application. For instance, a CPU
intensive application is only marginally affected by disk I/O contention.

3. The class-specific, relative-task completion time is machine independent. This
means that for two applications, A and B, of the same class, if B takes a factor of X
longer than A on one machine, then this factor will also apply to the completion
times for A and B on another machine. This is true even if the two machines have
different configurations. We will further elaborate on this and provide empirical
evidence for this assumption in Section 5.2.4.

4. The completion times for tasks executing on the same machine are independent
of each other.

5. The distribution of completion times for the tasks of a specific application on a
specific machine follows a Gaussian distribution. This means two things: repeat-
ing the exact same task multiple times would lead to a Gaussian distribution, and
also the execution time for individual tasks of the same application (processing
distinct 64MB blocks of the same data set using the same algorithm) follows this
distribution.

Our use of a Gaussian distribution in this chapter is a first, pragmatic choice. In
principle, a distribution that does not extend into the negative values would be a
better choice for this application.

Given these assumptions, our approach is captured by Figure 5.3. We can infer from
the completion time of applications J1 and J2 on machine M1 to the completion time
of J2 on M2 once the completion time for J1 on M2 is known. This is possible based on
Assumption 3.
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J1,M2 J2,M2 

αCJ1J2 
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Figure 5.3: The complexity coefficient α describes the relative hardness or complexity of an application com-
pared to other applications, and is assumed to be machine independent. Likewise, β is a coefficient that cap-
tures the relative performance of one machine compared to another. It reflects the relative hardware configu-
ration of the machines. Both of these coefficients are specific to a class of application, denoted C .

5.2.2. CLASSES
Our diagnosis approach relies on an understanding of the resource profile of a task. Ev-
ery task will make use of system resources in different ways. Some applications are more
CPU intensive, while others read and write from and to disk more than others. In this
chapter, as stated in Assumption 2, we assume that for each application there is a single
resource that forms the bottleneck. We only consider two classes: CPU intensive appli-
cations and disk I/O intensive applications. The assumption states that the intersection
between these two classes is empty. In the rest of the chapter, we will denote the class of
applications whose bottleneck is resource R as CR . Hence, we will be talking about two
classes: CC PU and C IO .

In our approach, we run our diagnosis for every class and in the end, combine these
diagnoses to recommend the specific root cause for a slowdown. For example, if we ob-
serve that on a particular machine only CPU intensive applications take longer than pre-
dicted by the model, this suggests that the machine is suffering from CPU over-subscription,
which could be caused, for example, by some background operating system or zombie
process.

BASE MODEL OF CLASS

In our approach, we assume that initially, for instance, during first installation of the
cluster, a set of prototypical “base” applications can be run on each machine. We as-
sume that one such application for each class of applications is run on each machine,
where there is one class for each dimension in the configuration space (for instance,
CPU speed, disk I/O speed, or amount of RAM). This is discussed further in the next
section.

For the two classes we are considering in this chapter, CC PU and C IO , WordCount
and RandomWriter are selected as base applications, respectively. The model for an-
other application of a class is determined relative to the base application model. Given
application J belonging to class CR , we define αCR

J , the complexity coefficient of applica-
tion J with respect to resource R, as the factor of how much longer J takes to compute
relative to the base application for CR . Assumption 3 states that this factor is equal for ev-
ery machine. That means that if, for instance, the original WordCount task on machine 1
takes 60 seconds, and another application that is also CPU intense takes 120 seconds on
the same machine, then we assume that the same factor of 2 would be observed on other
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machines as well. Empirical justification and the procedure for estimating application
complexity coefficients is described in Section 5.2.4.

5.2.3. BEHAVIORAL MODEL CONSTRUCTION

To learn the models, we gather time samples of mapping tasks of every application from
the log files generated by Hadoop. We collect the system logs produced by Hadoop’s na-
tive logging feature on the master node. Subsequently, we parse these log files to collect
timing samples for every machine in the cluster. Each entry in the log can be treated as
an event and is marked with a time stamp. An event is used to determine when a task
is started and when it finishes on a specific machine. The duration of mapping tasks
is computed by subtracting those time stamps. We denote the average duration of all
mapping tasks belonging to application J on machine M by t J ,M .

MODEL LEARNING

It is assumed that mapping task durations of the same application are distributed nor-
mally for any specific machine. The model for each application class CR is hence de-
scribed by a mean µ̂J ,R and variance σ̂J ,R . For the base applications of each class, we can
easily learn these parameters from the samples gathered during the initial execution of
base applications.

For each class CR , we run the base application of the class on the Hadoop cluster and
collect samples t J ,M ,i for every machine M . Recall that Hadoop schedules the execution
of the tasks belonging to an application onto the available data machines according to
where the data to be processed is stored. Since the data is distributed roughly uniformly,
this process produces a number of samples for each machine. We assume that during
this initial learning, no faults occur on the cluster.

For an application J , the mean and variance for machine M can be estimated using
the standard maximum likelihood estimator over the samples collected for tasks belong-
ing to the base application of CR :

µ̂J ,M = 1

NJ ,M

∑
i

tJ ,M ,i (5.1)

σ̂2
J ,M = 1

NJ ,M

∑
i

(tJ ,M ,i − µ̂J ,M )2 (5.2)

Here, NJ ,M is the total number of samples collected for machine M and application
J . In our experiments, we use WordCount as the base application for class CC PU , and
RandomWriter for C IO . We introduce the shorthand JC PU = W or dCount and J IO =
RandomW r i ter . In the rest of the chapter, we refer to µ̂JC PU ,M and σ̂2

JC PU ,M as the model

parameters of the base application for CC PU , and µ̂JIO ,M and σ̂2
JIO ,M , respectively, for C IO .

5.2.4. ESTIMATING APPLICATION COMPLEXITY

Assumption 3 states that the relative complexity of an application compared to its base
application does not depend on the machine it is executed on. To verify this assumption,
we conducted an experiment with two new MapReduce applications: J ′C PU and J ′IO . The
first term, J ′C PU , belongs to class CC PU , and second term, J ′IO , belongs to C IO . For every
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machine M in the Hadoop cluster, we computed αC PU
J ′C PU ,M

and αIO
J ′IO ,M

as:

αC PU
J ′C PU ,M

=
µ̂J ′C PU ,M

µ̂C PU ,M
(5.3)

αIO
J ′IO ,M

=
µ̂J ′IO ,M

µ̂IO,M
(5.4)

The above equations use the ratio of the means of task completion times to estimate
αs, because using the means reduces out the measurements noise.
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Figure 5.4: The values for complexity coefficient α for applications belonging to CC PU (WordCount) and CIO
(RandomWriter). Note that even though the machines are heterogeneous, the relative complexity of an appli-
cation is comparable between machines.

Figure 5.4 shows the results. The figure shows that the complexity coefficient for
each class is fairly similar across machines, providing empirical justification for Assump-
tion 3.

5.2.5. DIAGNOSIS
Given the duration of mapping tasks belonging to a previously unseen application J2
on a number of machines {Mi }i , we want to determine whether any of the machines is
having a fault and what the nature of the fault is. We do this by estimating for each ma-
chine how long each task should take under normal circumstances, and then use this
information to determine a likelihood for a new observation (task duration) to indicate
abnormality of the machine. The idea for predicting the duration is that we can estimate
the model, meaning, the distribution of task duration, for a new task executing on a spe-
cific machine by scaling the base model of the class of the application for this machine
by the complexity coefficient. The complexity coefficient, in turn, can be estimated from
all other machines that have already run tasks of this application.

PREDICTING APPLICATION COMPLETION TIME

When diagnosing machine Mk for an application of class CR , to get a better estimate
of the complexity coefficient, every machine’s α value for this application will be used
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except Mk ’s. Hence, αR
J ,∗ can be estimated as follows:

αR
J ,∗ = 1

N −1

∑
i 6=k

αR
J ,Mi

(5.5)

Here, N is the number of machines in the cluster that ran mapping tasks for this appli-
cation.

On machine Mk , the model for application J2 can be inferred from the model for
Mk for applications of the respective class. Given the estimated complexity coefficient
αR

J ,∗ for application J2 belonging to class CR , the mean and variance for J2 on Mk can be
estimated as:

µ̂∗
J2,Mk

= αR
J2,∗ · µ̂R,Mk (5.6)

σ̂∗
J2,Mk

= αR
J2,∗ · σ̂R,Mk (5.7)

Recall that the approximate model of an application on a machine, characterized by
these two parameters, describes the (approximate) distribution of durations of tasks of
this application in this machine. Therefore, the approximate model can be used for di-
agnosis by computing the relative likelihood for an observed duration x of a task using
the probability density function (pdf) of the underlying distribution; in this case, the pdf
of the normal distribution is:

f (x; µ̂, σ̂) = 1

σ̂
p

2π
e−

1
2 ( x−µ̂

σ̂ )2
(5.8)

If a machine is suffering from over-subscription of a resource that is extensively used
by the task, then this resource over-subscription will slow down the task and make the
observed task completion time (duration) less likely. Hence, we consider a machine Mk

to potentially have an over-subscription of resource R, if for an application J ′R of class
CR , f (t J ′R ,Mk

; µ̂∗
J ′R ,Mk

, σ̂∗
J ′R ,Mk

) is the least compared to the average relative likelihood for

the durations observed for tasks of J ′R on all other machines. That is when:

f (t J ′R ,Mk
; µ̂∗

J ′R ,Mk
, σ̂∗

J ′R ,Mk
) ¿

1

N −1

∑
i 6=k

f (t J ′R ,Mi
; µ̂∗

J ′R ,Mi
, σ̂∗

J ′R ,Mi
)

5.2.6. EXPERIMENTAL EVALUATION
To evaluate the effectiveness of our diagnosis approach, we collected task durations
from the log files of our 14-machine Hadoop cluster for two different instances of the
WordCount and RandomWriter applications. The 14 machines are quite heterogeneous
in their hardware configuration since these machines were purchased at different times
and for different original purposes. This heterogeneity is reflected in Figure 3.1.

Following the described approach, we divided the experiments into two phases: a
learning phase and a diagnosis phase. In the learning phase, we learned the model for
the two base applications, one for WordCount and one for RandomWriter, for each ma-
chine in the cluster. During this phase, we made sure that every machine was function-
ing flawlessly.
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During the diagnosis phase, we simulated two types of resource contention: disk
I/O contention on machine 10 and CPU contention on machine 13. These faults were
simulated by running additional programs on the machines that made excessive use of
these resources (“hogging”). For CPU hogging, we over-subscribed each CPU core on
the machine by a factor of two by running one extra program per core that ran an infinite
loop with a basic arithmetic operation inside. Hence, the overall load per CPU core was
around 2.0 when the Hadoop applications were executing. For disk hogging, we ran a
program that repeatedly wrote large files to the disks used by HDFS.

With these fault simulations in place, we ran a different WordCount application and a
different RandomWriter application. These applications differed from the applications
used as base applications in that they repeated certain sub-tasks multiple times. This
was to ensure these applications have roughly the same resource profile as the base ap-
plications but at the same time take noticeably longer. As can be seen in Figure 5.4, these
applications took roughly twice as long as their respective base application.
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Figure 5.5: Results of the diagnosis for an instance of the WordCount and an instance of the RandomWriter
application. On machine10 (Node10), we injected disk I/O contention. On machine13 (Node13), we injected
CPU contention. The y-axis shows the relative likelihood for observed task durations.

RESULTS

Figure 5.5 summarizes the results of our experiment. On the x-axis we show the ma-
chine number. For each machine, two relative likelihood values for the observed average
task durations are shown: one for the new WordCount application and one for the new
RandomWriter application.

As can be seen, the relative likelihood for the observed task durations of the second
WordCount application on machine13 is the lowest (almost zero) compared to other ma-
chines. Similarly, the relative likelihood for the observed task durations of the second
RandomWriter application on machine 10 is lowest. This suggests that it is indeed pos-
sible to use the presented approach to identify abnormally behaving machines in a het-
erogeneous Hadoop cluster. Any machine whose average task duration has a relative
likelihood that is lowest compared to the average likelihood over other machines is a
candidate diagnosis. This is because, according to the model, it is unlikely to observe
such average task durations on a machine that is behaving normally. Applied to the re-
sults shown in the figure, this approach would correctly identify machines 10 and 13 as
being abnormal.
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Furthermore, note that the performance of machine 13 on the RandomWriter is not
noticeably reduced by the presence of CPU contention, and likewise, the effect of disk
I/O contention on machine 10 does not impact the completion time of the CPU intense
WordCount application to a noticeable degree. This leads us to believe that this approach
is indeed capable of determining the type of fault occurring on a machine, at least to the
level of detail of which resource is affected by the fault. Applied to our results, this ap-
proach would correctly determine that machine 10 is suffering from disk I/O contention,
and machine 13 is experiencing CPU contention.

All the experiments were repeated multiple times, and in each run same results were
obtained. Therefore, we select results from one run to describe in this section.

The results demonstrate that the probabilistic model-based approach successfully
uncovered soft faults on a heterogeneous Hadoop cluster. However, this approach makes
lots of assumptions, such as the resource requirements are known in advance, and there
is only one resource that can cause bottlenecks for one application. In practice, these
assumptions might not be true. In many cases, when a programmer or user submits
applications to the cluster, the resource usage of the application might not be available.
Similarly, in many cases, it might happen that more than one resources causes the bot-
tleneck. In these cases, our approach can not be used to diagnose faults. Additionally,
this approach works in offline mode, which can cause lower productivity. Therefore, in
the next section, we present our next approach in which we relax these assumptions
while identifying performance problems in heterogeneous Hadoop clusters. Moreover,
our next approach is also online in nature, and therefore, it is not required to halt pro-
duction to identify the faults.

5.3. CONTINUOUS MONITORING APPROACH
Now we describe the methodology to implement the monitoring tool to detect resource
specific performance anomalies in a machine. Our monitoring approach is based on the
static model of task completion time that we defined in terms of task requirements and
machine performance. Unfortunately, these requirements and performance are not di-
rectly observable and there is no simple way to predict task execution times given only
machine hardware specifications and task source code. Instead, we adopt a learning ap-
proach where machine parameters are continuously learned from observed task com-
pletion times using our model.

As we defined in Chapter 3, the static model predicts the execution time of a task on
a machine given the task resource requirements and the performance of the machine.
The task resource requirements are represented by a vector, θ = [θ1,θ2, . . . ,θN ], where
each component represents a resource requirement of a certain type (for example, CPU,
disk I/O, network I/O). The performance of the machine is measured by the slowdown,
which is described by a corresponding vector, γ = [γ1,γ2, . . . ,γN ]. It must be noted that
the slow parameter γ is the inverse of machine capability κ that we defined in Chapter 3.
The total time T i , j to process a task of application i on machine j is the sum of the times
of each resource requirement and the respective machine performance:

T i , j =∑
k
θi

kγ
j
k +Ω j (5.9)

Here,Ω j represents the fixed overhead to start the task on the machine. We assume that
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every application imposes the same amount of overhead on a given machine. As we dis-
cussed eariler in this work, we consider a two dimensional model in which γ = [γc ,γd ]
represents computation and disk I/O machine performance. Here, θ = [θc ,θd ] repre-
sents the corresponding task requirements. The task duration model will be as follows:

T i , j = θi
cγ

j
c +θi

dγ
j
d +Ω j . (5.10)

In order to monitor the state of every machine, we use observations of map execution

times T i , j to infer the values of γ j
c and γ

j
d . For a specific machine, a significant increase

in γ
j
c or γ j

d highlights a performance problem (machine has become slower) such as a
runaway process or disk contention. This will allow an administrator to identify the root
cause of cluster performance problems.

5.3.1. MONITORING MODULE
We adopt a Bayesian perspective in which we start with a prior distribution over the pa-
rameters of the model P (γc ,γd ,θc ,θd ) and update these using observations of mapping
times {T i , j }N

1 where i is a task index and j is a machine on which it was run to get the
posterior P (γc ,γd ,θc ,θd |{T i , j }N

1 ).

We assume that the observed execution times T i , j are normally distributed around
the value predicted by the task duration model of Equation 5.10. The uncertainty is given
by a standard deviation σ j associated with machine j :

T i , j ∼N
(
θi

cγ
j
c +θi

dγ
j
d +Ω j , σ j

)
(5.11)

Given the likelihood function for observed time samples based on parameter values,
the posterior distribution of the slowdown of a machine, and the resource profile of an
application can be derived using Bayes rule. For our model with only CPU and disk I/O
resources, the likelihood function has the following form:

p(T i , j | θi
c ,θi

d ,γ
j
c ,γ

j
d ,σ j )

= 1p
2πσ j

·exp

(
T i , j −θi

cγ
j
c −θi

dγ
j
d −Ω j

)2

2σ j 2
(5.12)

We do not know the exact functional form of the prior P (γc ,γd ,θc ,θd ) nor the poste-
rior P (γc ,γd ,θc ,θd |{T i , j }i , j ), but we do know that all of the variables are correlated by the
observations. We propose an approximate decomposition in terms of the product of two
bivariate normal distributions, which we optimize using a heuristic re-estimation proce-
dure. This approximation is motivated by the observation that the individual slowdown
parameters γc and γd are linearly, negatively correlated given an observation because
they enter into the likelihood linearly and represent a sum that explains the time taken.
The intuition is that execution time can be explained by a fast CPU and slow disk I/O
or fast disk I/O and slow CPU. We therefore employ a bivariate normal with full covari-
ance matrix to represent the joint probability over the slowdown parameters. A similar
argument motivates the use of a second bivariate normal to represent the symmetric
linear correlation in the resource requirements parameters of the task. We use bivariate
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Gaussian distribution because, due to their simple mathematical form, we can derive
the analytical expression of posterior distribution:

P (γc ,γd ,θc ,θd |{T i , j }i , j )

= P (γc ,γd |{T i , j }i , j )P (θc ,θd |{T i , j }i , j )

This factored joint is approximated by iteratively updating each component distribution

using Algorithm 5.3.1. We initialize the slowdown parameters γ j ,t
c and γ

j ,t
d from offline

experiments. The algorithm then computes the posterior distribution of the resource
profile of every application in the cluster for the given time sample and prior values of
machine performance measure. In this step, the mean values of the slowdown param-

eters γ̄ j ,t
c and γ̄

j ,t
d are used to determine the task requirements p(θi ,t

c ,θi ,t
d ). Similarly,

in the second step, machine slowdown parameters are updated based on the posterior

distribution of the resource profile. The updated p(γ j ,t+1
c ,γ j ,t+1

d ) is used as the prior dis-
tribution for further iterations.

Algorithm 5.3.1: MONITORCLUSTER(T i j )

for each Iteration t ∈ Total Iterations

do

{
p( θi ,t

c ,θi ,t
d | { T i , j , γ̄

j ,t
c , γ̄

j ,t
d } j )

p( γ
j ,t+1
c ,γ

j ,t+1
d | { T i , j , θ̄i ,t

c , θ̄i ,t
d }i )

There are two major challenges to implementing the proposed heuristic. First, we
need to derive the marginal distributions p(γc ,γd ) and p(θc ,θd ). Second, we need to
explain how the performance parameters γc and γd are initialized.

5.3.2. UPDATING MARGINALS
In this section, we derive the update for the marginal distribution of task requirements
p(θc ,θd ). The task model shown in Equation 5.10 is symmetric in terms of machine
slowdown and requirement parameters, so the same form of update can be used for the
machine performance parameters p(γc ,γd ). To derive the posterior marginal distribu-
tion p(θc ,θd ), we treat θc and θd as random variables in Equation 5.10. These random
variables are assumed to follow bivariate Gaussian distribution. The uncertainty about
the slowdown is therefore captured by a covariance matrix Σθi

c ,θi
d

:

[θi
c ,θi

d ] ∼N ( [µ
θi

c
,µ

θi
d

],Σ
θi

c ,θi
d

) (5.13)

We assume that the observed execution time T i , j is normally distributed as described

in Equation 5.12. For the derivation, we substitute the expected values of γ̄ j
c and γ̄

j
d for

the parameters. When an application is first submitted, we assume that the resource
requirements for its tasks are completely unknown. Assuming an uninformative prior,
the posterior distribution after the first observation is just proportional to the likelihood:

p(θi
c ,θi

d | T i , j ) = 1p
2πσ j

·exp

(
T i , j −θi

c γ̄
j
c −θi

d γ̄
j
d −Ω j

)2

2σ j 2
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For the second and subsequent updates, we have a definite prior distribution and
likelihood function. These two are multiplied to obtain the density of the second pos-
terior update. Let the first experiment be on machine j with slowdown γ j , and let the
observed time be T i , j . Let the second experiment be on machine k with slowdown γk ,
and let the observed time be T i ,k . The resulting posterior distribution is as follows:

p(θi
c ,θi

d | T i , j ,T i ,k ) =
1p
2π

·exp

 (
T i , j −θi

c γ̄
j
c−θi

d γ̄
j
d−Ω j

)2

2σ j 2 +
(
T i ,k−θi

c γ̄
k
c −θi

d γ̄
k
d−Ω j

)2

2 σk 2


With every time sample we can recover the mean µθi

c ,θi
d

and covariance matrix Σθi
c ,θi

d

by using the property of bivariate Gaussian distributions. Expanding the exponent of
Equation 5.14, and collecting the θi

c and θi
d terms, gives us a conic section in standard

form:
a20θ

i
c

2 +a10θ
i
c +a11θ

i
cθ

i
d +a01θ

i
d +a02θ

i
d

2 +a00 = 0

As we discussed in Chapter 3, there is a transformation to map between the coefficients
of a conic in standard form and the parameters of a Gaussian distribution [83]. The mean
and covariance of the distribution with the same elliptical form is given by the following
equation:

[
µ
θi

c
µ
θi

d

]
=

 a11a01−2a02a10
4a20a02−a2

11
a11a10−2a20a01

4a20a02−a2
11

 (5.14)

Σ−1
θi

cθ
i
d

=
[

a20
1
2 a11

1
2 a11 a02

]
(5.15)

For every new time sample, we compute coefficients anm of Equation 5.14. These
coefficients determine the updated value of µθi

c
, µθi

d
and Σi

θc ,θd
.

5.3.3. INITIALIZE MACHINE SLOWDOWN PARAMETERS
The initial values of machine slowdown are estimated by executing probe applications
offline. Since the time we measure is the only dimension with fixed units, the value of the
parameters is undetermined. We determine the parameters of the system by choosing a
unit map task to define a baseline. The unit map task has an empty map function, and it
does not read or write from or to HDFS.

The compute and disk task requirements, θc and θd respectively, are both zero; there-
fore, Equation 5.10 allows us to estimate Ω. Multiple executions are averaged to create
an accurate point estimate. Note that Ω includes some computation and disk I/O that
occur during start up.

One could imagine attempting to isolate the remaining parameters in the same fash-
ion, however, it is difficult to construct an application with zero computation or zero
disk I/O. Instead, we construct applications with two different levels of resource usage
defined by a fixed ratio η.

Let’s assume we aim to determine γc . First, we run an application J 1
c = 〈θc ,θd 〉 with

fixed disk requirement θd (J 1
c might be a application which simply reads an input file and
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processes the text in the file). We compute the average execution time of this applica-
tion on each machine. According to our task model the average mapping time for every
machine j can be given as follows:

T 1, j = θcγ
j
c +θdγ

j
d +Ω j (5.16)

Next, we run an application Jηc , which reads the same input, but the processing is mul-
tiplied by η compared to J 1

c . Therefore, the resource requirements of Jηc can be given as
Jηc = 〈ηθc ,θd 〉. The average mapping time for every machine can be given as follows:

T η, j = ηθcγ
j
c +θdγ

j
d +Ω j (5.17)

We solve for θdγd in Equations 5.16 and 5.17, set them equal, and solve for γ j
c to get the

initial slowdown value:

γ
j
c = T η, j −T 1, j

θc (η−1)
(5.18)

This equation gives us γ j
c in terms of a ratio. To make it absolute, we arbitrarily choose

one machine as the reference machine. We set γ1
c = 1 and γ1

d = 1 and then solve Equa-
tion 5.18 for θc . Once we have the task requirements θc in terms of the base units for
machine 1, we can use this application requirement to solve for the machine slowdown
on all the other machines. Similarly, we estimate γd . To avoid network communication
while learning machine slowdowns, we set the number of reducers to zero and set the
replication factor to one. Table 5.1 gives an example of computed machine slowdown
parameters for an eight-machine cluster of heterogeneous machines.

machine γc γd Ω

machine1 1 1 45
machine2 1 1 45
machine3 0.1 0.33 5.3
machine4 0.1 0.33 5.3
machine5 0.1 0.25 4.8
machine6 0.1 0.33 5.3
machine7 0.1 0.33 5.3
machine8 0.1 0.33 5.3

Table 5.1: Machine Slowdown and Overhead

5.3.4. EXPERIMENTAL EVALUATION
To evaluate the effectiveness of our monitoring tool, we execute two MapReduce jobs,
Pi and TestDFSIO, on the eight-node Hadoop cluster while continuously estimating γc

and γd for every node. Pi calculates digits of Pi and starts 2000 mapping tasks on the
cluster. TestDFSIO writes 4 TB of files on the nodes of the cluster. The nodes in the
cluster are heterogeneous in their hardware configuration since these machines were
purchased at different times and for different original purposes. This heterogeneity is
reflected in Table 5.1.

We conduct two experiments to demonstrate detection of CPU contention and disk
I/O contention. First, we illustrate the nominal case. At the time zero, we start both the
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Figure 5.6: CPU hogging is injected in machine7. The slowdowns for γc and γd are plotted as the normal
condition (green) and CPU hogging (red). Job TestDFSIO finishes at 25:00.
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Figure 5.7: Disk hogging is injected in machine3. The slowdowns for γc and γd are plotted as the normal
condition (green) and Disk hogging (Red). Job TestDFSIO finishes at 25:00

MapReduce jobs Pi and TestDFSIO. In Figures, 5.6(a) and 5.6(b), and 5.7(a) and 5.7(b),
the green line shows the increase in CPU usage. The line increases slowly as it takes a
number of updates before the priors on the γ parameters are overcome by the data. At
time 25:00, TestDFSIO completes and CPU slowdown falls.

To demonstrate detection of CPU contention, we repeat the experiment but intro-
duce a third CPU hogging task on machine7 at time 10:00. Red lines in Figure 5.6(a),
demonstrate that the monitoring system can detect the presence of a CPU hogging job.
The CPU saturates and does not show additional load until TestDFSIO completes at time
25:00. Unlike the nominal case, the CPU continues to be loaded by the hogging task. A
similar effect can be seen for disk I/O in Figure 5.6(b)), however, the effect on disk I/O is
smaller as the problem is due to CPU hogging, not disk I/O.

In Figure 5.7(a) and Figure 5.7(b), we can see that the monitoring system has more
trouble isolating disk hogging processes. We start with the nominal behavior shown by
the green line. Again, we start the Pi and TestDFSIO jobs. Once the TestDFSIO job
completes at time 25:00, the CPU behavior returns to low levels.

To demonstrate the detection of disk hogging, we repeat the experiment but intro-
duce a disk hogging task on machine3 at time 10:00. Again, due to resource saturation,
we do not see an immediate effect. However, once TestDFSIO completes at time 25:00,
we see that both the CPU and disks stay busy. While we can see that there is a fault
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present, we cannot clearly distinguish between a CPU and disk fault in this case. There
was no impact of CPU or disk I/O hogging on the slowdown on machines other than ma-
chine7 or machine3 for these experiments. All the experiments were repeated multiple
times, and in each run same results were obtained. Therefore, we select results from one
run to describe in this section.

5.4. CONCLUSIONS
We have presented two approaches for diagnosing performance issues in heterogeneous
Hadoop clusters. The approaches extend the existing diagnosis approaches for Hadoop
clusters where the peer-similarity assumption does not hold. Further, the diagnosis is
extended to distinguish between different types of faults. In our first approach, we build
a probabilistic model of task completion time of applications on every machine in the
cluster. To find the find machines, we compare the current performance of applications
against their learnt performance.

To empirically validate our diagnosis approach, we simulated soft faults in a Hadoop
cluster consisting of 14 machines, running two different MapReduce jobs with differ-
ent resource profiles. The preliminary results presented in this chapter suggest that the
proposed approach is viable and able to achieve the intended goals of a) identifying
machines on which resource contention is occurring, and b) determining the resource
which is over-subscribed by considering the relative impact of faults on the completion
time for jobs with different resource requirements. This approach has two drawbacks.
First, it’s an offline approach, and therefore, it can result in a lower production. Sec-
ond, the approach assumes that resource profiles of applications are known, and this
assumption might not be always true.

Therefore, we present a continuous state estimation approach for heterogeneous
Hadoop clusters to detect performance issues on server nodes. This approach works
in real time and does not require any specification of task requirements or server per-
formance, but learns these parameters automatically by exploiting heterogeneity in the
cluster. Using our monitoring tool, a system administrator can not only discover un-
derperforming machines, but can also infer which resource in the node is lowering the
performance. The chapter presents a novel and simple iterative heuristic to approximate
the joint distribution in terms of marginals.

To empirically validate our diagnosis approach, we simulated soft faults in a Hadoop
cluster consisting of eight nodes, running two different MapReduce jobs with different
resource profiles simultaneously. The preliminary results presented in this chapter sug-
gest that the proposed approach is viable and able to achieve the intended goals of a)
identifying machines on which intermittent resource contention is occurring, and b)
determining the resource which is over-subscribed by considering the relative impact of
faults on the completion time for jobs with different resource requirements. While our
demonstration uses the Hadoop system, the our approach is applicable to other frame-
works of distributed computing as well.
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A PERVASIVE APPROACH TO

SCHEDULER DESIGN

For high-throughput systems, such as Hadoop, an efficient scheduler is critical to main-
tain high production. In the previous chapter, we described the importance of effi-
cient schedulers and showed the performance gains from our Hadoop cluster, where the
scheduler either maximizes throughput or minimizes task completion time. To achieve
the best possible production from a cluster, the available resources need to be exploited
efficiently. In order to use the resources efficiently, a few characteristics of the resource
must be known to the scheduler, such as how many resources are available, how busy
they are, and how well they are performing. We define the features of machines, such as
how well each resource is performing, as the state of a machine. The scheduler uses the
current beliefs about the state of machines for an optimal task assignment.

In realistic applications, there are several factors that might hamper a precise estima-
tion of the state of a machine. For example, in a cluster consisting of several machines,
a machine might either be a physical machine or a virtual machine (VM) running on
an unknown physical machine. Limping hardware, unspecified background processes,
or poor task scheduling results in overloaded machines [90]. These problems create re-
source congestions such as CPU or I/O or network congestion, resulting in the lower per-
formance of one or more resources. In the case of Virtual Machines (VMs), this problem
is magnified because they are dependent on a physical machine shared with other com-
peting applications that may degrade their performance. Moreover, VM migrations may
also result in unexpected and abrupt performance changes. This volatile performance
makes it very challenging for the scheduler to precisely estimate machines’ state.

Along with the precise estimation task, it is also essential for a scheduler to be com-
pletely autonomous in order to make clusters self-adaptive. An efficient self-adaptive
scheduler automatically detects the changes in states and updates them. As soon as
changes in a machine’s performance are detected, a common response at the data cen-
ter is that the machine stops running the production workloads, and a software agent
is started (automatically or manually) that runs a diagnostic workload on the machine.
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Even though this approach estimates new states very precisely, it comes at a price. Stop-
ping machines can have serious negative impact on the overall cluster production. There-
fore, we need a framework that updates the beliefs about the machine state and also
maintains a certain production level. To this end, we apply Pervasive Diagnosis.

Pervasive Diagnosis [25] is a framework that identifies faulty components during
production without necessarily stopping production. It enables higher production by
scheduling production workload in systems to gain maximum diagnostic information.
In Pervasive Diagnosis, if the scheduler is uncertain whether or not a component is
faulty, it generates a production plan that uses such a suspicious component. Depending
on the outcome of an execution plan (pass/fail), the state of the components is inferred.
Pervasive Diagnosis obtains a higher long-run productivity than a decoupled combina-
tion of production and diagnosis. Unfortunately, this framework has been only studied
and developed for binary systems, where a component can be either faulty or healthy
and plans can either pass or fail. In Chapter 5, we discussed a methodology to esti-
mate the state of machine capabilities by running actual production jobs on the clus-
ter. This approach maximizes information gain to efficiently learn the machine capa-
bilities. However, the approach does not guarantee that a certain performance will be
maintained during the estimation of states.

In this chapter, our primary goal is to develop a framework for schedulers that au-
tomatically generates policies that maximizes the production. We assume that a system
can be in steady mode, where the system states remain steady, or the system can be in
uncertain mode, where system states are varying. In the steady mode, the productive
scheduling policies are generated using the methodologies we derived in Chapter 4. In
the uncertain mode, we extend the Pervasive Diagnosis framework to the continuous do-
main to estimate the state of machines without stopping them from production. States
of a machine are modeled as continuous variables because machine states represent the
effective capabilities of the machines. Therefore, in our work we model machine states as
random variables. Unlike Pervasive Diagnosis, a machine (component) may have more
than one state variable. Every machine has a state variable corresponding to every re-
source in the machine. In this chapter, we consider CPU speed and I/O bandwidth as
our state variables per machine. If we schedule a workload on a machine and observe a
slow performance, then we cannot precisely say which resource is actually causing the
slowdown. Therefore, the problem of estimating state is much more challenging than
binary Pervasive Diagnosis.

To estimate the state of a system, Pervasive Diagnosis implements a diagnostic pol-
icy that maximizes information gain. However, the most informative policy might not
be very productive. Systems such as Hadoop are developed for large volume produc-
tion. Therefore, in our framework, to estimate the states we implement a policy that
has maximum expected production and also maximizes future production gain. Ex-
pected production implies how much production workload is finished while estimating
the states. Future production depends on how system states are estimated, because a
more accurate estimate implies that the future scheduling policy will more optimally as-
sign workloads to machines. To select such a policy in a decision theoretic setting, we
present a cost function in terms of instant expected production gain from running the
policy and expected future production after running the policy. Such a production deci-
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sion theoretical framework is useful for systems such as Hadoop because if the system is
in steady state where the system dynamics are not changing, then the framework would
always run the most productive policy. In the case where there is uncertainty about the
system state, then framework runs policies that will give us enough information about
the system to maximize the future production. As part of our contributions, we intro-
duce a decision theoretic support to the Pervasive Diagnosis framework to make it more
efficient. We empirically evaluate the performance of our framework under steady con-
ditions and uncertain conditions. In both the cases, our framework enables maximum
production from the cluster. Under the steady conditions, we observe throughput im-
provement up to 18 percent. Under varying conditions, we gain throughput by seven
times compared to a scheduler that doesn’t update the beliefs in the machine states.

6.1. OPTIMIZATION FRAMEWORK
As we stated earlier, we assume that the system can either be in a steady mode or uncer-
tain mode. During the production, the system can transition between the stable mode
and the uncertain mode. At any time, an efficient scheduler will always keep the pro-
duction maximum, whether the system is stable or uncertain. In our decision theoretic
setting, a scheduler generates policies to maximize production. Here we treat produc-
tion as our reward function. Let’s assume for cluster C , the system states are denoted by
Π and the policy is represented by X. State of each machine in the cluster, in terms of
the performance of machines is interpreted as the state of the cluster. A policy decides
that how many parallel containers should be assigned to an application on a machine.
An optimal scheduling policy can be formalized as:

X∗ = argmax
X

R(Π,X) (6.1)

Here, R denotes a reward function, which represents the productivity obtained by exe-
cuting policy X on a cluster that has stateΠ. It must be noted that the reward function has
both the cluster state and policy as input. If the cluster states are changing, the scheduler
will automatically take these changes into account, and therefore, it will continuously
generate policies to maximize the reward (production). It is computationally intensive
to search an optimal policy; therefore to reduce the overhead, the optimal policies are
only generated when changes in system states are observed.

Pervasive Diagnosis has addressed this type of problem. In the uncertain mode, Per-
vasive Diagnosis uses information criteria to generate policies that reveal maximum in-
formation about the system. However, there is no guarantee that the most informative
policy is also the most productive policy. It might happen that the productivity signifi-
cantly goes down by executing the informative policy. Moreover, it cannot be guaranteed
that after running the informative policy the system will be productive enough to com-
pensate for the possible production lost by running the informative policy. We argue
that for systems, such as Hadoop, the productivity is the most critical metric. Lost pro-
duction can seriously harm business revenues. Therefore, we develop a reward based
decision theoretic framework that maintains the system production at the maximum
possible level all the time. We aim to achieve this goal by deriving a reward function
R(Π,X) that can be used to generate policies that always maximize production. To de-
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fine, such a reward function, we need a formulation to estimate the production of the
cluster.

6.1.1. PRODUCTION METRIC AND STATE ESTIMATION
In this section, we provide a formulation to estimate the expected value of production.
Subsequently, we provide the methodology to update the cluster state. Expected value
of production, and state estimation are used to formulate R(Π,X).

EXPECTED PRODUCTION

Production metric measures the expected performance of the system under a certain
policy and for the given state of the system. We use throughput as our metric to measure
the productivity of the cluster. In Chapter 4, we have defined the throughput. In this
chapter, we will be using the same definition of throughput, which is given as:

τ̄(Π,X) =
n∑

i=1

l∑
j=1

λ j · xi j

tΠ,X
i j

(6.2)

As we described in Chapter 4, λ j denotes the size of application A j , and xi j denotes

the number of containers assigned to A j on machine i . The value tΠ,X
i j denotes the av-

erage task completion time of A j on machine i , for a given cluster state, Π, and a given
policy, X.

The dynamic model, proposed in Chapter 4, f (θ j ,Πi ,Li ,λ j ), is used to predict the
average task completion time. Therefore, the task completion time can be estimated as
the following:

tΠ,X
i j = f (θ j ,Πi ,Li (X),λ j ) (6.3)

Here, θ j denotes the resource requirements of application A j , and Πi denotes the state
of machine M i in terms of its resource capabilities. Li (X) represents the load on machine
M i which is running the policy, X. Hence, Equation 6.2 can be expressed as:

τ̄(Π,X) =
n∑

i=1

l∑
j=1

λ j · xi j

f (θ j ,Πi ,Li (X),λ j )
(6.4)

Here, τ̄(Π,X) is defined as the production utility function. The expected production is
given by:

E
[
τ̄(Π,X)

]= ∫
Π
τ̄(Π,X)p(Π)dΠ (6.5)

Here, p(Π) denotes the belief about the machine states of the cluster.

STATE ESTIMATION

Once a cluster starts running tasks using a policy, their completion times are used as ob-
servations to update the machine state beliefs. In our formulation, Πt is a set of state
variables at time t , which are unobservable. We use Ot to denote set of observations
variables at time t . The task completion time is treated as the observation. A migration
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event is responsible for abrupt state change of the cluster. If a cluster consists of VMs,
then migration of a VM from one physical host to another might drastically change the
state of the VM. Variable mt is a boolean variable which denotes whether or not a mi-
gration event occurs at time t . The following Baysian formulation is used to determine
the probability distribution ofΠt+i+1, which the state of the cluster after t + i +1 steps in
future:

P (Πt+i+1 | O1:t−1,m1:t−1,X1:t−1) (6.6)

=
∫
Πt ···Πt+i

j=i∏
j=0

P (Πt+ j+1 |Πt+ j ,mt+ j )P (Πt | O1:t−1,m1:t−1,X1:t−1)dΠt · · ·dΠt+i

To compute the above predictive distribution is calculated by the posterior distribu-
tion, P (Πt | O1:t−1,m1:t−1,X1:t−1) and the Markov predictive model, P (Πt+ j+1 |Πt+ j ,mt+ j ).
To obtain the predictive model, we use the first order Markov assumption that the next
state only depends on the previous state. Therefore we use,

Πt+i+1 =Πt+i +Vmt+i (6.7)

Vmt+i is a vector which denotes the noise in the above Markov model. The noise mod-
els abrupt or gradual changes in the system. In case of abrupt changes Vmt+i , will have
high values and therefore, the weight of older observations will be negligible compared
to new observation in the state estimation shown in Eq 6.6. The lower value of Vmt+i

implies gradual changes and, in that case, all observations will be treated equal. We use
the following to determine the noise at time t + i :

Vmt+i =
{

V l ow , if mt+i = 0

V hi g h , if mt+i = 1
(6.8)

Here, mt+i = 1 denotes that the VM has migrated to another physical host, and mt+i =
0 denotes that the VM is still running on the same physical host. The value for mt+i can
be determined by the cluster migration policy. For our experiments we choose Vhi g h = 1
and Vlow = 0.001.

6.1.2. SEARCH OF MOST PRODUCTIVE POLICY

After deriving the methodologies to compute the expected production and the probabil-
ity distribution over system states from observations, we now develop the reinforcement
learning [91] based framework to search for the most productive policy. A policy will
be “most productive” if it maximizes the expected production. Earlier we defined the
reward function R that is used by the scheduler in search the most productive policy
(Eq. 6.9). If the system is in a steady state (no migration), the R is equal to τ̄(Π,X), which
is estimated in Eq. 6.4. Hence, the search for a productive policy can be given as:

X∗ = argmax
X

E
[
τ̄(Π,X)

]
(6.9)
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When a system is in steady state and we precisely know the states, the scheduler finds
the policy that maximizes expected production, which is throughput is our case. How-
ever, when there is uncertainty in the states of the system, then using the same machine
state belief to find an optimal policy might harm the production. This is because it is
likely that the actual state of the system might be different from the scheduler’s beliefs
about the system state. Hence, the system states need to be estimated precisely. We aim
to use the Pervasive Diagnosis approach to estimate the system state. Unlike the tradi-
tional Pervasive Diagnosis approach, our framework does not use expected informative
gain as the only expected reward. It also incorporates expected production in the reward.
The reward should also include expected future production after estimating the system
state. Let’s assume that at time t , the system is in state Πt and there is a high variance
in system state belief. The scheduler wants to search for a policy Xt that maximizes the
reward R. Just like reinforcement learning, the reward can be broken into immediate
reward, Ri , and future reward, R f , which is given as the following:

R(Xt | O1:t−1,m1:t−1,X1:t−1) =Ri (Xt | O1:t−1,m1:t−1,X1:t−1)+R f (Xt | O1:t−1,m1:t−1,X1:t−1)
(6.10)

Ri (Xt | O1:t−1,m1:t−1,X1:t−1) is the immediate reward for executing a policy Xt , given
the past observations, O1:t−1, past migration events, m1:t−1 and past policies X1:t−1. The
immediate reward can be expressed as the following:

Ri (Xt | O1:t−1,m1:t−1,X1:t−1) = E
[
τ̄(Πt ,Xt )

]
P (Πt |O1:t−1,m1:t−1,X1:t−1)

(6.11)

The immediate reward is determined by calculating the the immediate throughput,
E

[
τ̄(Πt ,Xt )

]
, which is gained by running policy, Xt , under the cluster state, Πt , and the

probability distribution of the cluster state is determined by the posterior distribution,
P (Πt | O1:t−1,m1:t−1,X1:t−1).

Let R f (Xt | O1:t−1,m1:t−1,X1:t−1) be the total expected future reward for running new
jobs after updating the model from observations. We approximate the future stream of
value by assuming the future returns stay constant until a regime change event such as
process migration or environment change. For each future state, Πt+i+1, we search a
policy, Xt+i+1, that maximizes the future reward function. As shown in Equation 6.13, we
use a discount factor γ to represent the probability of this change occurring at any time
step.

R f (Xt | O1:t−1,m1:t−1,X1:t−1) =
∞∑

i=0
γi E

[
argmax

Xt+i+1
τ̄(Πt+i+1,Xt+i+1)

]
P (Πt+i+1|O1:t−1,m1:t−1,X1:t−1)

(6.12)

To solve this reinforcement learning problem, we prepare a heuristic simplification
assumption that the reward remains constant into the future. We assume that rewards
for each step after t + 1 in the future will be equal to the t + 1 step. Hence, the overall
future reward is given by the following:
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R f (Xt | O1:t−1,m1:t−1,X1:t−1) = 1

1−γ
E

[
argmax

Xt+1
τ̄(Πt+1,Xt+1)

]
P (Πt+i+1|O1:t−1,m1:t−1,X1:t−1)

(6.13)

Therefore, total expected reward can be given as:

R(Xt | O1:t−1,m1:t−1,X1:t−1) = E
[
τ̄(Πt ,Xt )

]
P (Πt |O1:t−1,m1:t−1,X1:t−1)

+ 1

1−γ
E

[
argmax

Xt+1
τ̄(Πt+1,Xt+1)

]
P (Πt+i+1|O1:t−1,m1:t−1,X1:t−1)

(6.14)
Hence, the most optimal policy at time, t , can be obtained from the following:

Xt∗ = argmax
Xt

 E
[
τ̄(Πt ,Xt )

]
P (Πt |O1:t−1,m1:t−1,X1:t−1)

+ 1

1−γ
E

[
argmax

Xt+1
τ̄(Πt+1,Xt+1)

]
P (Πt+i+1|O1:t−1,m1:t−1,X1:t−1)

 (6.15)

Here, P (Πt+i+1 | O1:t−1,m1:t−1,X1:t−1) can be evaluated using Equation 6.6. To eval-
uate the expression derived in Equation 6.15, multiple nested samplers need to be im-
plemented. Also, for every sample, we will have to search for the policy Xt+1 that maxi-
mizes the expected throughput. Implementing such a compute intensive sampler in the
scheduler can significantly reduce the overall performance of the system.

We therefore approximate the utility gained by using an improved model in the future
by a linear multipleβ of the information gain associated with the experimental policy Xt ,
as shown in Equation 6.16:

R f (Πt ,Xt ) =β · IG(Xt |Πt ) (6.16)

Let’s assume that U is a utility function which estimates the information gain. Infor-
mation theory tells us that the expected KL divergence can be used to determine the
information gain [81]. Therefore, we select the expected KL divergence as the utility
function, which is given as the following:

U (Ot ,mt ,Xt ) =
∫

O
DK L

[
p(Πt+1 | Ot ,mt ,Xt ) || p(Πt )

]
dOt (6.17)

=
∫

O

∫
Πt+1

p(Πt+1 | Ot ,mt ,Xt )

ln
p(Πt+1 | Ot ,mt ,Xt )

p(Πt )
dΠt+1 p(Ot | Xt ,mt ) dO

A sampling based solution [80] is implemented to estimate the above expression.
This policy is suboptimal as it may learn more than is necessary to make effective de-
cisions, but should optimize the schedule to learn about the parameters we are most
uncertain about. We propose to empirically learn the value of β. However, for time be-
ing, we use β= 0 and β= 1 for our experiments. In the future, we would like to develop
an empirical methodology to learn β.
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Figure 6.1: Comparison of ThroughputScheduler with Capacity Scheduler in terms of throughput. We observe
throughput improvement up to 18 perecent under steady mode.

6.2. EMPIRICAL RESULTS
To empirically demonstrate the performance of our framework, we conduct experiments
on our six-node Hadoop cluster. We implement our framework in the Hadoop scheduler,
and we call it ThroughputScheduler. Each node has 8 physical CPU cores, 12 GB of RAM,
and runs CentOS 5.6. We use Hadoop benchmark examples as workloads. The primary
goal of our framework is to maximize total production (throughput) under stable and
uncertain states. Therefore, we run experiments to demonstrate the effectiveness of our
framework in stable state and uncertain state. All the experiments were repeated multi-
ple times, and in each run same results were obtained. Therefore, we select results from
one run to describe in the following subsections.

6.2.1. PERFORMANCE UNDER STABLE STATE

To evaluate the performance of ThroughputScheduler in the stable state, we run var-
ious Hadoop workloads and measure cluster throughput for each workload. Since it
is common to submit multiple workloads in parallel, we also run workloads in combi-
nations and measure throughput for each combination. We compare the performance
of ThroughputScheduler against state-of-art CapacityScheduler [37] and FairScheduler
[38].

The results show that ThroughputScheduler delivers higher throughput than Fair
and Capacity schedulers by assigning tasks to servers that maximize the production.

6.2.2. PERFORMANCE UNDER UNCERTAINTY

To evaluate the performance of ThroughputScheduler under uncertainty, we shut down
a few CPU cores of a server while running the workload. Shutting down cores during the
workload execution also simulates the VM migration effect. We run this experiment us-
ing ThroughputScheduler, with and without the Pervasive Diagnosis framework. With-
out the Pervasive Diagnosis framework, ThroughputScheduler assumes no changes in
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Figure 6.2: Performance of ThroughputScheduler with and without Pervasive Diagnosis framework. β = 0 is
used for this experiment under an uncertain model. Time on X axis is in terms of minutes.
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Figure 6.3: Performance of ThroughputScheduler with and without Pervasive Diagnosis framework. β = 1 is
used for this experiment. Time on X axis is in terms of minutes.

the believed machine states. Therefore, it uses the initial beliefs about the states during
the entire execution of workloads. On the other hand, with the framework, Through-
putScheduler estimates the new belief states of machines as soon as a change is detected
and derives a policy that maximizes the throughput for new beliefs.

Figure 6.2 shows that the throughput drops from 40 to around 1 due to core shut-
down. Without the Pervasive Diagnosis state estimation framework, ThroughputSched-
uler keeps running at low throughput. On the other hand, with the Pervasive Diagnosis
framework, the throughput goes down in beginning but the schedulers update the be-
liefs of machine states and raises the throughput almost 7 times. It must be noted that
we achieved such a throughput gain for a certain application and under a certain set-
ting. At the same time, it should also be noted that the Hadoop clusters are long running
systems, and therefore 7 times gain for one case shows the potential benefits of our ap-
proach.

In the second experiment, we do not inject any artificial slowdown in any of the
servers. While running the workloads on the cluster, the scheduler detects that one of
the servers has lower throughput than other servers. This is a suspicious observation
because it is believed that all the servers were identical. Less throughput indicates that
the server state is different from other servers. The server might be performing slower
to process this kind of workload or it has some hardware issues or it might be running
some unknown processes. To get more information about the server, ThroughputSched-
uler with Pervasive Diagnosis runs the workloads according to an informative policy by
setting β= 1. Results of the experiment are shown in Figure 6.3.

Results show that with the Pervasive Diagnosis framework, throughput of the server



6

106 6. A PERVASIVE APPROACH TO SCHEDULER DESIGN

goes down as it runs informative tasks to determine the updated beliefs of machine
states. However, after the update, the throughput increases and gets better than Through-
putScheduler without Pervasive Diagnosis.

In both the experiments under uncertainty, we demonstrate the performance of our
framework on only one server rather than the entire cluster. We must recall that through-
put of the cluster is a sum of throughputs of all the servers. Therefore, any improvement
in one server’s throughput directly improves the throughput of the cluster.

6.3. CONCLUSIONS
We extended a Pervasive approach for estimating system machine state beliefs to con-
tinuous domains using a Pervasive Diagnosis framework. To estimate the system belief
in machine states, our framework uses a decision theoretic approach to determine an
optimal policy that maximizes immediate and future production, weighing the cost in
production of diagnostic workloads against future gains. We derive an objective func-
tion to implement the decision theoretic scheme. Whether there is uncertainty about
the system machine state beliefs, or the beliefs are known precisely, the framework will
generate optimal policies that maximizes the production.

Unlike Pervasive Diagnosis, our framework can handle systems that are described
by multiple, continuous state variables. We implemented pervasive state estimation for
the problem of scheduling in Hadoop to maximize the production of Hadoop clusters.
We define throughput as a metric to measure cluster production. For Hadoop clusters,
the system CPU congestion and I/O bandwidth of the servers are used as state vari-
ables. Empirically, we confirm that our extended Hadoop scheduler improves the clus-
ter throughput by up to 18 perecent under stable conditions. More importantly, we also
demonstrate that when server capabilities change, our framework successfully detects
the change, updates its belief by running informative workloads, and as a result can pro-
vide throughput that can be seven times higher compared to a scheduler that does not
update its belief of machine states.
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CONCLUSION

Hadoop is one the most famous tools used to run the big data applications. The appli-
cations are written in the form of MapReduce programs, and they work on the data that
is stored in a Hadoop Distributed File System (HDFS). From a revenue point of view, it
is important to efficiently run applications. The performance of those applications on
a Hadoop cluster depends on how efficiently cluster resources are being utilized. Effi-
cient use of cluster implies better throughput, improved SLAs, and improved (gained)
capacity from the cluster. Gaining extra capacity provides the ability to run more ap-
plications on the given cluster. Therefore, this dissertation addresses the problem of
designing the Cluster Management System (CMS) for Hadoop clusters to use resources
more efficiently. In the previous chapters, we mention that our CMS design has two pri-
mary components: scheduler and fault monitor. We propose two designs of schedulers,
and both of them are resource-aware schedulers. The monitoring unit not only monitors
the performance of machines, but it also monitors the resource-specific performance of
every machine. In this thesis, our work revolves around these two components, schedul-
ing and monitoring. In each chapter, we address the issues related to these components.
Our contributions in the thesis can summarized as follows:

• Generally, CMS for various distributed systems assume a homogeneous cluster
where machines are identical to each other in terms of their resource capabilities.
The homogeneity assumption makes the CMS’s job easier in terms of scheduling
and monitoring. For instance, if all machines are identical then simple schedul-
ing policies, even round-robin, can be used for scheduling. However, the ho-
mogeneity assumption is not true in practice. Machines in the clusters are col-
lected from different generations, and therefore clusters naturally become hetero-
geneous. Additionally, the performance of machines will degrade over the time,
and performance-different machines will degrade differently. In such heteroge-
neous cluster environment, scheduling and monitoring becomes challenging. There-
fore, it makes sense to enable CMS to handle heterogeneous clusters as well. We
study the problem of implementing the scheduler and monitoring tool for clusters
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that can be both homogeneous and heterogeneous. To extend CMS capabilities to
heterogeneous clusters, we include the resource capabilities (CPU cycles, disk I/O
and memory) of machines in the CMS implementation.

• To efficiently implement the CMS scheduler, resource requirements of workloads
need to be known. Workloads are submitted to clusters by users, and the sub-
mitted workloads are in the form of executable files. Therefore, in practice, the
resource requirements of every new incoming workload is unknown in advance.
We also do not expect that the programmers will provide the resource usage of
applications while submitting them. Profiling tools can be used to derive these
unknown resource requirements. Profiling tools run workloads in certain envi-
ronments to estimate the resource requirements of workloads. The profiling tools
are practically useful, however, in order to use them, the applications need to be
executed in an isolated environment. While the applications are running in the en-
vironment, they cannot be executed on the actual production cluster. Therefore,
using profiling tools can severely reduce the cluster productivity. In this thesis, we
aim to derive learning approaches, which determine the resource usage of appli-
cations without stopping the production. Our first approach exploits the resource
heterogeneity to learn the resource requirements. The approach executes the ap-
plications’ tasks on the actual heterogeneous production cluster, and the observed
task completion times are used to estimate the resource requirements. The second
approach simply measures the resource usage of machines while running tasks on
them to profile the applications. Neither of these approaches stop production at
any point for the learning.

• To efficiently assign workloads to machines, the scheduler must also know the
resource-specific capability of every machine. Additionally, determining the ma-
chine resource capabilities is important to monitoring the performance of the clus-
ter. We refer these capabilities as machine states. Such machine states can change
suddenly due to the faults in the machines, or over time, the state can change grad-
ually due to performance degradation. Executing workloads of a certain kind also
impact the machine state dynamically. For example, if there are CPU-intensive
workloads on a machine, then the effective CPU capability of a machine will be
lower. The existing CMS tools can only find out if a machine is performing bet-
ter or slower than other machines. Those tools fail to capture resource-specific
performance states, therefore they can not exactly identify if a slowdown in a ma-
chine is because of CPU capability or disk I/O. Those tools also can not capture
the dynamic machine states. Therefore, in this thesis, we address these issues by
proposing tools that can estimate resource-specific dynamic machine states. Just
like learning about the resource requirements, the method to learn the machine
capabilities also does not require machines to stop production. The production
tasks of different resource requirements are executed on machines, and based on
the task completion times, the machine capabilities per resource is estimated.

• In this thesis, both the learning modules to determine resource requirements and
machine capabilities are implemented in the Hadoop scheduler. As the final con-
tribution of this thesis, we propose a scheduler design that runs in two modes,



7.1. FUTURE WORK

7

109

learning and optimal scheduling. The learning mode, which is also known as ex-
plore, includes learning resource requirements and machine capabilities. After
learning the parameters with a certain precision, the scheduler switches to the
optimal scheduling mode, which also known as the exploit. The scheduler has dif-
ferent objective functions in each mode, and generates scheduling policies that
maximizes a specific objective function. In the explore mode, the information
gain about the parameters is the objective function. In the exploit phase, the pro-
ductivity gain is the objective function. In this work, we define productivity in
terms of either task completion time or throughput. Due to two different defini-
tions of productivity, we propose two schedulers in this thesis. The first scheduler,
ThroughputScheduler, tries to minimize task completion time in heterogeneous
Hadoop clusters by running tasks on machines that can most efficiently satisfy
the tasks’ resource requirements. ThroughputScheduler has a drawback that it
does not consider real-time load on various resources of machines while making
the scheduling decisions. To overcome this limitation, we propose DARA sched-
uler, which maximizes the throughput of the clusters, and also considers real-time
loads while generating the scheduling plans.

• It must be noted that the scheduler never stops production — either it’s in explore
phase or exploit phase. However, it might very well happen that in exploit phase
the production is lower, because the most informative scheduling policy might
not be the most productive policy. In this thesis, the ultimate goal of the CMS is to
maximize the overall productivity. Therefore, the scheduler automatically decides
how much to learn such that the overall production is maximized. If the param-
eters are not learnt precisely, then in the exploit phase the production might not
be the most optimal. On the other hand, if the scheduler spends lots of time in
learning, then the overall production might be lower. Hence, the scheduler should
find a balance between the explore and exploit phase. To find the balance, the
scheduler uses the Pervasive Diagnosis based approach, where we define cluster
productivity in terms of throughput and information gain.

7.1. FUTURE WORK
Inspired by the contributions we made in this thesis, there are many interesting open
problems that are worth exploring. In the following, we suggest several recommenda-
tions for the future work:

• The proposed schedulers, ThroughputScheduler and DARA scheduler use two per-
formance models, static model and load-dynamic model, to generate the schedul-
ing policies. The static model is a process-based model and the load dynamic
model is a data-driven. In this thesis, both of these models are not very accurate,
and we do not provide a detailed discussion about the errors in the models. To
make sure that the scheduler is running fast, our goal was to derive an analytical
expression for the objective function that can be easily optimized. Therefore, we
did not use any complicated models that could improve the accuracy. However,
we believe that a more accurate model will improve performance of the scheduler
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in terms of the cluster productivity. In the future, it would be interesting to de-
velop more accurate models to implement the scheduler. It might not be possible
to derive the analytical expression for the objective functions with more accurate
models, which can complicate the scheduler implementation. We recommend
that sampling-based approaches can be employed in such scenarios.

• In this thesis, we always use the synthetic workload for experimental evaluations,
because we do not have any production workload. The synthetic workload is gen-
erated using the Hadoop benchmark applications. Although these benchmark ap-
plications cover a broader range of applications, it would be very useful to know
how much improvement is observed on the production workload.

• Apart from the non-production workload, the other limitation with our experi-
mental setup is the smaller cluster size. Due to limited resources, we used a clus-
ter size of up to 6-8 machines for the experimental evaluations. However, a typical
Hadoop cluster has hundreds to thousands of machines. The proposed CMS de-
sign extends the existing Hadoop schedulers, which maximizes performance of
each machine by estimating how many tasks to run on each machine. In practice,
most of the cluster machines are similar to each other. Even in heterogeneous
clusters, there will be some sub-groups of homogeneous machines. Therefore, the
task assignment calculation results for one machine can be reused by all the other
similar machines. In theory, our CMS design can be scaled up to any number of
machines, as long as Hadoop native schedulers are scalable. However, we do not
have any experimental evidence to support that argument. It would be very inter-
esting to evaluate the performance of our CMS on bigger clusters.

• In our work, we compare the performance of our schedulers against the existing
Hadoop schedulers, FairScheduler and CapacityScheduler. These two schedulers
are part of the open source Hadoop distribution and is widely used in produc-
tion by various organizations. Hadoop is an open source project, and contributes
are continuously improving the various aspects of Hadoop, including scheduling.
Most of the improvements in Hadoop scheduling policies are already part of these
two schedulers. Therefore, comparing the performance of our schedulers against
these schedulers implies the comparison against the latest Hadoop version. How-
ever, there are other open source projects which emerged from Hadoop, such as
Spark, which has its own scheduling and resource management modules. In the
future, it would be interesting to compare performance of our CMS with other
Hadoop related projects, such as Spark.

• This dissertation proposes a CMS solution for Hadoop, but the design methods de-
veloped in this work can be extended to other distributed-computing frameworks
as well. In future work, we would like to improve the CMS aspects of distributed
systems, such as Grid Computing using our CMS methodologies.



SUMMARY

In recent years, we have seen a major shift in computing systems: data volumes are grow-
ing very fast, but hardware capabilities to store, process, and transfer the massive data
are not speeding up at the same rate. Today, data are generated from a variety of sources,
such as social networking websites, business transactions, banking sectors, etc. These
data are valuable and contain lots of vital information if they are analyzed efficiently. The
processing capabilities of single machines, however, are not sufficient enough, which
makes it harder to use them for data analysis. As a result, most web companies, but
also the traditional business organizations, research labs, and universities, are scaling
out their major computational frameworks to clusters of thousands of machines. To find
the hidden and interesting insights from the data, in addition to simple queries, also
complex machine learning algorithms and graphs processing are becoming a common
choice in many areas. Nowadays, the problem to collect, store and analyze these data is
called the Big Data problem.

Due to various hardware limitations, the traditional large scale distributed comput-
ing platforms, such as SQL, grid computing, and volunteer computing are not suited for
big data. To solve the big data problem, Hadoop has emerged as the most useful frame-
work. Hadoop Distributed File System (HDFS) is used to store a tremendous amount of
data in cluster machines in a distributed manner. Once the data is stored in HDFS, the
MapReduce framework is used to analyze the data. Programs to analyze data are written
in Java based MapReduce framework and to execute on the Hadoop clusters. To reduce
the network bottleneck, Hadoop sends computation to data, rather than the traditional
approach where data is sent to machine to process.

To ensure the better performance, it is important for Hadoop clusters to have an
efficient scheduler component and fault resilient component. These components can
be collectively defined as the Cluster Management System (CMS) of Hadoop. Although
many organizations have widely used Hadoop, its current CMS is still not efficient enough
to optimally run applications on Hadoop. For example, it fails to identify the resources
required by the applications and resource capabilities provided by the cluster while dis-
tributing applications on machines. Therefore, it might happen that resources are used
sub-optimally, which leads to an overall lower productivity of the cluster. Additionally,
the heartbeat protocol used by Hadoop to identify faulty machines can only detect ma-
chines that have stopped working. The protocol cannot detect faults in the machines
that only might slow down the performance of machines. Such faults include hogging
of resources and limping hardware. Moreover, Hadoop assumes that the cluster is ho-
mogeneous, which means that cluster machines are identical regarding their resources.
However, in practice, often Hadoop clusters are quite heterogeneous.

In this thesis, we study the challenges with the design of the existing Hadoop CMS,
specifically concerning resource management. We propose a CMS design to utilize the
cluster resources efficiently which optimally runs applications on the cluster. The two
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important features of our CMS design are the autonomous behavior and self-adaptation.
The intuition behind these features is to ensure a high productivity of the cluster. The
cluster should be able to adapt automatically to the dynamic behaviors such as the chang-
ing resource requirements of applications and the varying capabilities of the machine
resources. To implement the mentioned features, we design two main components of
CMS: a scheduler and a fault monitor. The goal of the scheduler is to run applications
on machines that can most efficiently satisfy the applications’ resource requirements.
To accomplish this goal, the application resource requirements need to be learned au-
tomatically and without causing the severe production loss. Therefore, our scheduler
autonomously determines the resource requirements in an online way by scheduling
the actual applications on the machines, such that the information gain about the re-
source requirements is maximum. We use two approaches to learning the resource re-
quirements. The first approach uses the resource heterogeneity present in the cluster to
implement the learning. The second approach learns the resource requirements by mea-
suring the resource utilization of machines while running actual workload. Once the re-
source requirements are learned, the scheduler runs applications on machines such that
the throughput of the cluster is maximum.

Once the applications are up and running efficiently, the other challenge for the CMS
is to maintain the productivity of the cluster under the performance problems in ma-
chines. These performance problems can cause lower the machine performance, which
leads to the lower production. The monitoring module of our CMS continuously esti-
mates the state of each machine in the cluster. The state of a machine is characterized
in terms of the performance of each resource of the machine, such as CPU, I/O, and
memory. The machine states are estimated without stopping the cluster production by
running the actual production workloads in a way such that cluster states can be learned.
Once the cluster states are determined, they can be directly used by the cluster admin-
istrators to identify the problems in the cluster. Additionally, the information about the
machine states can be provided as an input to the scheduler such that applications can
be distributed efficiently to machines under the dynamic behaviors of machines. Un-
like Hadoop’s heartbeat protocol based fault detection mechanism, our monitoring tool
successfully detects slowdowns in machines, both heterogeneous and homogenous.

We have implemented our CMS by extending the Hadoop scheduler and compared
the performance of our scheduler with existing Hadoop schedulers. Our results demon-
strate that the proposed CMS improves the performance in terms of throughput and
application completion time. The proposed CMS improves performance of both ho-
mogeneous and heterogeneous clusters. Moreover, the CMS successfully uncovers the
performance problems in the Hadoop cluster in real time. Such kinds of performance
problems could not be detected by native Hadoop heartbeat based fault detection. In
this work, we concentrated the CMS design for Hadoop; however, the proposed con-
cepts and theories are not only limited to Hadoop, and can easily be extended to any
distributed computing platform.



SAMENVATTING

In de afgelopen jaren was er een belangrijke verschuiving in computersystemen te zien:
data volumes groeien zeer snel, terwijl de hardware-mogelijkheden om grote hoeveelhe-
den gegevens op te slaan, te verwerken en te verplaatsen niet in het zelfde tempo mee-
groeien. Vandaag de dag worden gegevens gegenereerd uit verschillende bronnen, zoals
social networking websites, zakelijke transacties, het bankwezen, et cetera. Deze gege-
vens zijn waardevol en bevatten veel essentiële informatie als ze efficiënt worden geana-
lyseerd. De verwerkingsmogelijkheden van afzonderlijke machines zijn echter niet vol-
doende, waardoor het moeilijker is om de gegevens te gebruiken voor gegevensanalyse.
Als gevolg daarvan schalen de meeste webbedrijven—maar ook traditionele bedrijven,
onderzoekslaboratoria en universiteiten—hun rekencapaciteit op tot clusters van dui-
zenden machines. Om verborgen en interessante inzichten uit gegevens te halen, niet
alleen eenvoudige antwoorden, worden complexe machine learning en graafalgoritmen
steeds meer toegepast. Tegenwoordig wordt het probleem hoe deze gegevens te verza-
melen, op te slaan en te analyseren het Big Data probleem genoemd.

Als gevolg van verschillende beperkingen van de hardware, zijn de traditionele large
scale distributed computing-platforms, zoals SQL, grid computing en volunteer com-
puting niet geschikt voor Big Data. In plaats daarvan is Hadoop het meest bruikbare
platform gebleken. Het Hadoop Distributed File System (HDFS) wordt gebruikt om een
enorme hoeveelheid data op een gedistribueerde manier in clustermachines op te slaan.
Zodra de gegevens zijn opgeslagen in HDFS, wordt het op Java gebaseerde MapReduce-
framework gebruikt om de gegevens te analyseren op de Hadoop-clusters. Om de belas-
ting voor het netwerk te verminderen, stuurt Hadoop de berekening naar de gegevens in
plaats van de traditionele aanpak waarbij de gegevens naar de machine worden verzon-
den ter verwerking.

Om de betere prestaties te garanderen, is het belangrijk dat Hadoop-clusters een
efficiënte planningscomponent en foutherstellingscomponent hebben. Deze compo-
nenten kunnen gezamenlijk worden gedefinieerd als het Cluster Management System
(CMS) van Hadoop. Alhoewel veel organisaties al Hadoop op grote schaal gebruiken, is
het huidige CMS van Hadoop nog niet efficiënt genoeg om applicaties optimaal te laten
lopen. Zo is het niet in staat om bij het verdelen van applicaties te bepalen welke mid-
delen de applicaties nodig hebben, en welke beschikbaar zijn op het cluster. Daardoor
kan het gebeuren dat de middelen suboptimaal worden ingezet, wat leidt tot een la-
gere totale productiviteit van het cluster. Daarnaast kan het hartslagprotocol, dat wordt
gebruikt door Hadoop om defecte machines te identificeren, alleen machines opspo-
ren die volledig zijn gestopt met werken. Het protocol kan geen fouten in de machines
op te sporen die enkel de prestaties van de machine verminderen. Bovendien neemt
Hadoop aan dat het cluster homogeen is, met dezelfde hoeveelheid middelen voor alle
clustermachines. In de praktijk zijn er echter vaak grote verschillen tussen machines in
hetzelfde Hadoop-cluster.
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In dit proefschrift bestuderen we de nadelen van het ontwerp van het bestaande Ha-
doop CMS, in het bijzonder met betrekking tot resource management. We stellen een
CMS-ontwerp voor dat applicaties op het cluster kan draaien met optimaal gebruik van
de beschikbare middelen. De twee belangrijkste kenmerken van ons CMS-ontwerp zijn
autonoom gedrag en zelf-adaptatie. De intuïtie achter deze kenmerken is het waarbor-
gen van een hoge productiviteit van het cluster. Het cluster moet zich automatisch kun-
nen aanpassen aan het dynamische gedrag, zoals de benodigde middelen van applica-
ties en de variërende capaciteiten van de clustermachines. Om de genoemde functies
te implementeren, ontwerpen we twee belangrijke onderdelen van een CMS: een plan-
ner en een storingsmonitor. Het doel van de planner is om applicaties te laten draaien
op de machines die het meest efficiënt de beschikbare middelen ter beschikking kun-
nen stellen. Om dit doel te bereiken, moeten de benodigde middelen automatisch inge-
schat kunnen worden, zonder dat daarbij ernstig productiviteitsverlies worden geleden.
Daarom bepaalt onze planner ’online’ de benodigde middelen, door te applicaties zo
op machines te plannen dat de informatiewinst over de benodigde middelen maximaal
is. We maken gebruik van twee benaderingen voor het leren van de benodigde midde-
len. De eerste benadering maakt gebruik van de heterogeniteit in het cluster om de be-
nodigde middelen te achterhalen. De tweede benadering leert de benodigde middelen
door de benutting van middelen te meten terwijl de applicatie wordt uitgevoerd. Zodra
de benodigde middelen bekend zijn, voert de planner de applicaties zodanig uit dat de
doorvoer van het cluster maximaal is.

Zodra de applicaties efficiënt werken, is de andere uitdaging voor het CMS om bij
prestatieproblemen in machines de prestatie van het cluster toch hoog te houden. De
bewakingsmodule van ons CMS bepaalt continu de status van elke machine in het clus-
ter. De toestand van een machine wordt gekenmerkt in termen van de prestaties van
elke bron van de machine, zoals de processor, I/O en geheugen. De toestand van de
machines wordt geschat zonder de clusterproductie te stoppen, door de normale pro-
ductiewerklast zodanig uit te voeren dat de toestand van het cluster bepaald kan wor-
den. Zodra de clustertoestanden zijn bepaald, kunnen ze direct worden gebruikt door
de clusterbeheerders om de problemen in de cluster identificeren. Bovendien kan de in-
formatie over de toestand van verschillende machines door de planner worden gebruikt
om applicaties efficiënt te kunnen verdelen, gegeven het dynamische gedrag van de ma-
chines. In tegenstelling tot het hartslagprotocol van Hadoop, kan onze monitoring tool
met succes vertragingen in machines detecteren, zowel heterogeen als homogeen.

We hebben ons CMS geïmplementeerd door de Hadoop-planner uit te breiden en
hebben de prestaties van onze planner vergeleken met de bestaande Hadoop-planners.
Onze resultaten tonen aan dat het voorgestelde CMS de prestaties verbetert, zowel wat
betreft de doorvoer als de doorlooptijd van applicaties. Het voorgestelde CMS verbe-
tert de prestaties bij zowel homogene als heterogene clusters. Bovendien is het CMS
in staat gebleken succesvol de prestatieproblemen van een Hadoop-cluster in real time
te identificeren. Dergelijke vormen van prestatieproblemen konden niet worden gede-
tecteerd door het standaard, op een hartslag gebaseerde, foutdetectiemechanisme van
Hadoop. In dit werk concentreren we ons op het CMS ontwerp voor Hadoop. De voor-
gestelde concepten en theorieën zijn echter niet beperkt tot Hadoop, en kunnen gemak-
kelijk worden toegepast bij andere gedistribueerde computerplatforms.
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