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ABSTRACT
Ant Colony algorithms are a set of biologically inspired al-

gorithms used commonly to solve distributed optimization

problems. Convergence has been proven in the context of

optimization processes, but these proofs are not applicable

in the framework of robotic control. In order to use Ant

Colony algorithms to control robotic swarms, we present in

this work more general results that prove asymptotic con-

vergence of a multi-agent Ant Colony swarm moving in a

weighted graph.
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• Mathematics of computing → Stochastic processes; •
Computingmethodologies→Multi-agent systems; •The-
ory of computation→ Multi-agent learning;
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1 INTRODUCTION
Decentralised and distributed algorithms have been used

largely to solve problems where a divide and conquer ap-

proach provides an advantage in either complexity or re-

source consumption. In recent years, this concept has been

applied to robotics in the form of multi-agent systems or

swarm robotics. These strategies have clear advantages when

solving certain optimisation problems where solutions are
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constructed piecewise, or in problems where exploration is

a key element. For the latter, the advantage of using swarms

is clear, but it adds the necessity to analyse the convergence

when exploration is no longer needed. When implementing

swarm coordination in multi-agent systems, there has been

a clear tendency to draw inspiration from nature. Swarms

occur naturally in many insect and animal species, therefore

attempting to model these biological swarming behaviours is

a big part of biomimicry research [3, 11]. In this framework,

Ant Colony (AC) algorithms are a subset of biologically in-

spired stochastic algorithms based on the behavioural traits

of ants, used commonly for optimization problems. Their

main characteristic is the use of stigmergy: the environment

is the main communication medium and information storage

tool [5–7]. The agents mark the environment and make sto-

chastic decisions based on the marks they encounter. These

algorithms can be used as a control strategy for robotic

swarms, either as a path planning system [2, 8, 10, 30] or to

directly stablish coordination in a robotic swarm [1, 9, 15, 24].

Consider a foraging and exploitation problem where we

need to find a goal in an unknown space and find the short-

est route back and forth from the source to the goal. In this

unknown space we do not have access to a global position-

ing system. This is often the case in exploration or mapping

problems [28]. The advantages of a stigmergy-based method

become more evident: a multi-agent system governed by AC

algorithms explores and builds paths simultaneously with-

out the need of centralised instructions. Furthermore, AC

algorithms are stochastic in the agent decision process. That

is, the agents make choices based on a probability distribu-

tion influenced by the marking in the environment they find

themselves. This can lead to congestion advantages in traffic

routing applications[26]. For both exploration and routing

problems, it is common to model the environment as a dy-

namic weighted graph, with agents moving from vertex to

vertex.

With these applications in mind, we are interested in

studying the convergence properties of AC algorithms when

applied to swarm coordination. Random walks have been

largely studied [19, 22, 31], and edge-reinforced random

walks on weighted graphs and its asymptotic behaviour has

been studied for continuous and discrete time [20, 21, 27].

Alternatively, convergence has been proven for certain kinds

of AC optimization algorithms [13, 14, 29], but the results
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do not apply directly to swarm control. In most cases they

require of a central entity to analyse all paths the agents are

generating, and add more or less weight depending on a cost

function. Furthermore, when applying these algorithms to

cyber-physical swarms, interacting with the environment

translates into some kind of data transmission. In such net-

works there can be communication restrictions (desired or

undesired), under which the existing convergence proofs

would not hold. We are interested in applying these tech-

niques to control and route real swarms, hence the motiva-

tion to find more general convergence conditions.

The goal of this work is to study the asymptotic conver-

gence of the swarm to a certain distribution, while providing

conditions in graph structure and parameter choice. We also

give estimates on convergence rates, and how they relate to

problem parameters and graph topology. For this, we model

the agent environment as a weighted graph, where agents

add weight to the edges as they traverse them. The agents

have a starting set in which they are initialized, and a tar-

get set that they want to reach. When the graph weights

are modified by the agent movements, it introduces a time

dependency and coupling in the system between the agent

and weight dynamics that may give rise to non-Markovian

processes. Therefore we make use in this work of results con-

cerning convergence of stochastic matrices of Kushner [16–

18] and more recently by Qin et. al. [23] to show under which

restrictions in graph structure we still maintain convergence

properties, splitting the results for directed and undirected

graphs. This is motivated by its different applications. In

exploration-exploitation swarm problems undirected graphs

are necessary since the exploration of a physical space must

be independent of the directionality of the discretization.

Alternatively, traffic routing problems require modeling the

space with directed graphs, since traffic is directional. The

different convergence results are then presented in relation

with the different conditions that the system needs to fulfil.

At last, we include simulations of a set of standard scenarios

to illustrate the convergence results.

2 PRELIMINARIES
2.1 Notation
We denote sets with calligraphic letters and functions with

non-calligraphic letters. Vectors are represented in bold. A

set whose elements depend on a parameter is indicated

as S(·). Sequences are represented as {A(t)} ≡ {At } ≡

{A(0), A(1), ..., A(t)}. We consider only discrete time sys-

tems, i.e. t ∈ N+
0
.

2.2 Weighted Graphs
We make use in this work of connected planar graphs, since

we aim to represent a 2D geometric space. Therefore, we

are free to discretise our space in a graph that is both con-

nected and planar. Furthermore, we consider both directed

and undirected graphs. We refer to an edge connecting i
to j as {ij} ≡ {ji} if the graph is undirected, and (ij) if the
graph is directed. For simplicity, all concepts and definitions

regarding weighted graphs will be define using undirected

notation (edge from i to j as {ij}), but will apply to both

directed and undirected graphs unless the opposite is stated.

Definition 1. We define a time-varying weighted graph
G B (V, E,W (t)) as a tuple including a vertex set V , edge
set E and weightsW : N+

0
→ R

|V |×|V |
+ , where each value

Wi j (t) is the weight assigned to edge {ij} ∈ E. Furthermore,
the graph is connected if for every pair i, j ∈ V there exists a
set of edges

{{iu1}, {u1u2}, ... , {un j}} ⊆ E

that connects i and j.

The image of a function assigning values to edges in a

graph can be written as a matrix, and the subscript will

indicate both edges and entries in the image of the function.

That is, let f : N→ R |V |×|V |
. Then, fi j (k) is the ij-th entry

in the image f (k), which corresponds to the edge e ≡ {ij}.
We use this function class for the graph weights, and by

definition

Wi j (·) B 0 ∀{ij} < E .
The degree of vertex i is di B |{{ij} : {ij} ∈ E, j ∈ V}|,

and weighted degree is

wi (t) B
∑
k ∈V

Wik (t).

Furthermore, when considering directed graphs the degree

di refers to the out-degree unless the opposite is stated. For

undirected graphsWi j (t) ≡Wji (t), but the converse does not
necessarily hold for directed graphs.

Definition 2. [4] An i− j path in G is a subgraphV ′ ⊆ V ,
E ′ ⊆ E

V ′ = {i,k, l , ..., z, j}, E ′ = {{ik}, {kl}, ..., {zj}}

where no vertex appears twice. An i-cycle is then a closed path
i − i starting and ending in the same vertex i ∈ V .

The diameter of the graph δ is the length of the longest

path for any i, j ∈ V .

Definition 3. Let G = (V, E) be any connected graph.
We define the frontier of a subset of vertices K1 ⊂ V with
respect to a second subset K2 ⊂ V where K1 ∩ K2 = ∅ as

F (K1 → K2) B {u ∈ K1 : {vu} ∈ E,v ∈ K2}.
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2.3 Stochastic Matrices and Convergence
The expected value of a random variable X is denoted as

E[X ], and when conditioned to a sequence Yt we denote

E[X |Yt ].

Definition 4. [12] A sequence of integrable random vari-
ables Xt measurable with respect to a sequence of increasing
σ−algebras {Ft } is called a Martingale if

E[Xt+1 |Ft ] = Xt a.s . ∀t ⩾ 0,

When considering a discrete time system, {Ft } includes all the
information until time t .

A stochastic matrix is a square matrix P ∈ Rn×n with

non-negative entries and the sum of its rows (or columns)

each equal to 1. Their use to represent Markovian processes

has been extensively studied, since the probability transition

matrix of a Markovian discrete time process can be repre-

sented with such matrices. It is useful to define the following

stochastic convergence concept.

Definition 5 (Almost Sure Convergence[12]). Let Ω
be a probability sample space, withω ∈ Ω being any event. We
say a sequence of random variables X0, X1, ...,Xt converges
almost surely (a.s.) to a random variable X∞ as t → ∞ iff

Pr [{ω : Xt (ω) → X∞ as t → ∞}] = 1.

In this work we make use of convergence results for the

product of stochastic matrices presented by Qin et. al. [23].

For this purpose, we introduce the following concepts pre-

sented in their work. LetM2 be the class of all scrambling

matrices (no two rows are orthogonal)[25].

Assumption 1 (Qin et. al. [23]). Let A(t) be a discrete time

dependent row stochasticmatrix, with

∏t=k
t=j A(t) its left prod-

uct from k to j (i.e. A(k)A(k − 1)A(k − 2)...A(j)). Suppose the
process satisfies:

(1) There exists integer h > 0 such that for all k > 0:

Pr

[
h+k∏
t=k

A(t) ∈ M2

]
> 0,

∞∑
i=1

Pr


k+ih∏

t=k+(i−1)h

A(t) ∈ M2

 = ∞.

(2) There is a positive α such that any Ai j (t) > α if

Ai j (t) > 0.

Theorem 1 (Qin et. al. [23]). Under Assumption 1, the
product of the sequence of row stochastic matrices

∏t=k
t=0 A(t)

converges to a random matrix of identical rows L = 1ξT a.s.
as k → ∞, where ξ ∈ Rn satisfies ξT 1 = 1.

Note that the results in Theorem 1 do not imply that the

stochastic matrix A(t) converges, only its product. We show

in the following Corollary that the same result applies for

column stochastic matrices, but with convergence to LT .

Corollary 1. The results in Theorem 1 apply similarly to
a sequence of column stochastic matrices. In particular, for a
sequence {Bt } where Bi ∈ Rn×n and all BTi satisfy Assumption
1:

lim

k→∞

t=k∏
t=0

B(t) =
(
1ξT

)T
Proof. We can show this by contradiction. The results

presented in Theorem 1 are formulated for row-stochastic

matrices. Let M be a class of row stochastic matrices which

sequences satisfy Assumption 1. Consider the sequence of

column stochastic matrices {Bk }, with any sequence formed

by transposed elements {BTi } ∈ M. Let MB be the set of

all possible matrices Bi , and MBT the set of all BTi , such

that Bi ∈ MB and BTi ∈ MBT for any i . Consider the left
product of the original sequence. Observe that we can take

the transposed of the product:[
t=k∏
t=0

Bt

]T
=

t=k∏
t=0

At , (1)

where At ∈ MBT for all t . If the limit as k → ∞ of (1) does

not exist, there exists a sequence {At } for which its product

does not converge. But by definition, the sequence {At }

satisfies Assumption 1 since Ai ∈ MBT , and any sequence

{BTi } ∈ M. Therefore, the limit in (1) must satisfy (a.s.):

lim

k→∞

t=k∏
t=0

Bt = lim

k→∞

[
t=k∏
t=0

At

]T
=

(
1ξT

)T
,

where ξ ∈ Rn+ and all its entries sum to 1. □

3 SYSTEM DESCRIPTION
Let G0 be a weighted connected graph as in Definition 1. Let

A = {1, 2, ...,n} be a set of agents walking from vertex to

vertex. The position of agent a at time t is xa(t) = v, v ∈ V0,

and we group them in a vector X (t) := {xa(t) : a ∈ A}.

The position of the agents will evolve depending on some

probability transition matrix P(t) : N+
0
→ R |V0 |× |V0 |

.

For certain swarm problems (exploitation, shortest path),

agents walk around in the graph trying to find a target set

T0 ⊂ V0 starting from a start set S0 ⊂ V0. This imitates the

behaviour of ants starting at a nest and looking for a food

source. This motivates the modification of the graph such

that this is reflected in our probability transition matrix.

3.1 Graph Expansion
The starting and target set represent the "ant nest" and "food

source" in the biomimicry parallelism. We want the agents

to visit these sets infinitely often, but not necessarily staying
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(a) Planar graph.
(b) Expanded graph,mod-
ified edges (blue).

Figure 1: Graph Expansion with target set (red)

in them for more than one time step. After finding one of

the sets, the agent must turn around into its previous vertex;

if agents find T0, the best strategy to return to S0 is to follow

their last direction. To solve this and not have a set of agent

dependent P(t), we can build an alternative graph in the

followingway. Consider the graph in Figure 1a. The target set

is represented in red vertices, with the frontier set in darker

red ({i, j,k, l}) and the inner vertex in light red. The inner

edges are represented in light grey. Since we only need the

agents to find any vertex v ∈ T0, we can disregard the inner

vertices in T0 when constructing the probability transition

matrix. Now consider the following vertex expansion. We

take the frontier vertices and eliminate from the graph the

edges connecting them, and we divide the vertices into di
new vertices with degree 1. This transformation on the graph

is represented in Figure 1b. Red vertices are the expanded

set of target vertices, and blue edges its corresponding edges.

See that with this we replace each target set column and row

in P(t) by di new rows, each with only one entry p = 1. With

this we can define an extended graph G, with corresponding

modified setsV, E,W (t),T and S, starting from a graph G0.

Definition 6. Let G0 = (V0, E0,W0(t)) be a connected,
planar, weighted graph. Let T0 ⊂ V0, S0 ⊂ V0 be a target and
starting set, with adjacent edge sets ET0

0
, ES0

0
and frontier sets

T
f
0
= F (T0 → V0 \ T0), S

f
0
= F (S0 → V0 \S0). We define an

expanded graph GT,S = (V, E,W (t)) with expanded target
and starting sets T ,S. The expanded graphG is also connected,
since we remove interior vertices to connected sub-graphs.

Remark 1. If the sets T0 and S0 are adjacent, the expansion

would produce a disconnected graph. Nevertheless, this is a

pathological case and therefore it is assumed the minimum

distance between both sets is larger than 1 vertex.

For a complete definition and construction of the expanded

sets, see Section 7.1. Consider again Figure 1b. It is clear that

by taking the expanded form of the graph we are not chang-

ing the geometric shape of the graph. It simply eliminates

the interior of target and starting sets, and transforms the

vertices such the agents turn around by adding rows and

columns to P(t). Although it does limit the behaviour of the

agents. The agents cannot pass through the original sets

T0, S0, nor can they walk around the frontiers. However, we

consider this behaviour desirable to our problem; when in-

troducing a target and starting sets of more than one vertex,

a pathological behaviour would be to stay permanently in

one of the two sets. By constructing the expanded graph G

we avoid this behaviour modifying the graph structure.

3.2 Agent Dynamics
In our AC system, we are interested in getting our agents

to converge to trajectories connecting a starting set S and a

target set T infinitely often. First, consider all the vertices

in our graph that are not connected to S nor T . In this case,

the agents move by selecting adjacent vertices based on the

weight dependent probability distribution

Pr{xa(t + 1) = j | xa(t) = i} =
Wi j (t)

wi (t)
, a ∈ A, i, j < T ∪ S.

(2)

This is analogous to a biased random walk in a graph. Fur-

thermore, operating with the expanded form of the graph as

described in Definition 6 enables us to write the probability

transition matrix for an expanded weighed graph as

Pji (t) =

{
1 if i ∈ T ′ ∪ S′, {ij} ∈ E ′

Wi j (t )
wi (t )

else.
(3)

This translates into the following dynamics for the agent

probability distribution.

Definition 7. The distribution of agents y : N+
0
→ R

|V |
+

is the probability of having an agent in any vertex i ∈ V at
time t . The distribution evolves according to

y(t + 1) = P(t)y(t).

That is, given a distribution y(t), the product P(t)y(t) gives us
the distribution at the next time step. Note that Pji represents
then the probability of moving from i to j , and Pr{xa(t+1) = j}
is the j-th entry of y(t + 1). The distribution is initialised to
some initial distribution y(0) = y0.

Remark 2. See that the agent distribution y(t) follows Mar-

kovian dynamics; the probabilities at time t + 1 are fully

determined by the state at t . Although this does not imply

the system is fully Markovian; the probability transition ma-

trix may follow an underlying non-Markovian process (this

is in fact the case, as showed in the following section).

Observe that now the purpose of the graph expansion pro-

cedure becomes clearer. By generating the expanded graph

G′
we are able to incorporate an implicit one-step memory

while having P(t) not depend on the agent vertex history.
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3.3 Graph Dynamics
Let us first define the following agent movement matrix.

Definition 8. Thematrix of agentmovements as a function
of time,M : N+

0
→ R |V |× |V | , has entries

Mi j (t + 1) := |{a ∈ A : xa(t + 1) = j , xa(t) = i}|, (4)

that is, the entry i, j of the matrix M(t + 1) is the amount of
agents that were at vertex i at time t , and move to vertex j at
time t + 1.

Observe thatMi j (t + 1) is a random variable, since it de-

pends on the agent state at t + 1 and this follows a stochastic
process described in Definition 7. With this we can write the

weight dynamics in the graph.

Definition 9. LetM be an agent movement matrix. If G
is a directed graph, each time step the graph weight matrix is
updated following the dynamics

W (t + 1) = (1 − ρ)W (t) + ∆wM(t + 1), (5)

where ρ ∈ (0, 1) is a chosen evaporation factor, and ∆w =
ρ
n

is the amount of weight each agent adds to the edge. If G
is undirected, Mi j and Mji act over the same edge, and the
dynamics are

W (t + 1) = (1 − ρ)W (t) + ∆w
(
M(t + 1) +MT (t + 1)

)
. (6)

All weights are initialised to a uniform weight distribution,
W (0) = ω0A, where A is the adjacency matrix of G.

The value of n may be limited to the practical applica-

tion, but in principle ∆w is a design parameter and we are

free to choose any value. The choice of ∆w =
ρ
n is moti-

vated by the fact that it ensures the total amount of weight

will be constant if the initial weight amount adds to 1, i.e.∑
i
∑

jW (t)i j = 1 ∀t > 0 if ω0 |E | = 1, both for directed and

undirected graphs.

We can now show why the process is not Markovian.

The evolution of P(t) depends on the evolution ofW (t). If
W (t) is fully known, then P(t) is Markovian. But the only

way of knowingW (t) is by knowing the entire sequence

M(0), M(1), ..., M(t − 1). Therefore, P(t) does depend on

states previous to t −1, and it cannot be a Markovian process.

In factM(t) cannot be considered to be Markovian either.

The probability P{M(t + 1) = Mt+1 |M(t) = Mt ,M(t − 1) =

Mt−1...} , P{M(t+1) = Mt+1 |M(t) = Mt }; the probabilities

ofM(t) taking certain values depend on the underlying graph
weight distributionW (t). ButW (t) is in fact determined by

the entire sequence of movements M(t),M(t − 1), ...,M(1).

Only by knowing themovementsM(t)we cannot reconstruct
W (t), therefore the values M(t + 1) are dependent on the

entire sequenceM(1),M(2), ...,M(t).

3.4 Problem Definition
We consider now the graph and agent dynamics together to

define the complete AC Swarm system in a graph.

Definition 10. We define an AC Graph System AS B
(G, {X (t)},Λ) where G is an expanded weighted, planar con-
nected graph built from a certain G0 with at least one odd
length cycle. The weightsW (t) follow the dynamics in Defi-
nition 9. The agent positions {X (t)} := {X (0),X (1), ...,X (t)}
follow the agent probability distribution dynamics in Defini-
tion 7. Finally, Λ B (T ,S, P(t)) is the tuple of restrictions to
the agent movements, with P(t) defined as (3). The sets T , S
are the expanded target and starting sets, constructed from
some T0, S0.

Remark 3. Observe the requirement of G being connected

and having at least one odd length cycle. This implies that

for long enough times, any vertex i ∈ V is reachable from

any other j ∈ V . This is a common concept when study-

ing random walks, and it is shown in the next section. The

necessity of this will become clear in further sections.

We are ready now to formulate the convergence problem

that concerns this work.

Problem 1. Let an AC Graph System AS as defined in Def-
inition 10. Can we ensure the distribution of agents around the
graph G converges to a stationary distribution y∞? and, what
are the conditions for the graph topology and parameters that
need to be satisfied?

4 RESULTS
As pointed out in Definition 9, the weight dynamics are differ-

ent if we consider a directed graph since the weightsWi j (t)
are affected by the symmetric agent movementsMji (t). This
motivates to approach the problem in slightly different ways

for directed or undirected graphs. We first present general

convergence results that hold for any connected graph. After

that, we present stronger convergence results in the case the

graph is directed. The proofs for all the statements in this

section are included in Section 7.

4.1 Connected Graphs: y∞ Convergence
Recall the agent distribution dynamics in Definition 7. With

any connected graph, we can write the distribution at any

time t > 0 as

y(t+1) = P(t)y(t) = P(t)P(t−1)y(t−1) = ... =
k=t∏
k=0

P(k)y(0).

Therefore, if the limit L∞ B limt→∞

∏k=t
k=0 P(k) exists,

lim

t→∞
y(t + 1) = lim

t→∞

k=t∏
k=0

P(k)y(0) = L∞y(0) C y∞. (7)
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That is, if we can show the product of our sequence of sto-

chastic matrices P(t) converges to a stochastic matrix, the

agent distribution will converge to a stationary distribution.

For this, let us defined a restricted weight matrix.

Definition 11. Let G be a connected planar graph. We
defined a restricted weight matrixW (t) constructed fromW (t)
such that, ∀{ij} ∈ E:

W i j (t) =

{
Wi j (t) ifWi j (t) ≥ ε,
ε else.

Then, the matrix

P ji (t) =

{
1 if i ∈ T ′ ∪ S′, {ij} ∈ E ′

W i j (t )
w i (t )

else,

is the restricted probability transition matrix.

To show the agent distribution convergence properties,

we first present the property introduced in Remark 3.

Proposition 1. Let G be an undirected weighted connected
graph. Let G have at least one odd length cycle C of length lc .
Let pti j be the probability of any path reaching vertex j from i

in time t . Let δ be the diameter of the graph. Then,

t ⩾ 2δ + lc ⇒ pti j > 0 ∀i, j ∈ V .

Remark 4. We consider graphs that represent geometric

discretisations of space. Since we can always add a self loop

in a vertex with weight ε , we consider that effectively the

bound in Proposition 1 can be tightened to t ≤ 2δ + 1.

Proposition 2. Let AS be an AC system. Let G be any
connected planar graph. Let a minimum weight ε > 0 such
that we can construct the restrictedW (t), P(t). If G has at
least one cycle of odd length, the sequence {PT (t)} satisfies the
conditions in Assumption 1.

Now, we present the main result for any connected graph

regarding agent distribution convergence.

Theorem 2 (Agent Distribution Convergence). Let
AS be an AC graph system from Definition 10. Let G be any
connected planar graph. If a minimum weight ε is set in every
edge, the graph G will remain connected, and the product∏t=k

t=0 P(t) converges to a column matrix a.s. as t → ∞,

lim

k→∞

t=k∏
t=0

P(t) = ξ1T , (8)

where ξ ∈ R
|V |
+ has all entries adding to 1.

Corollary 2. LetAS be an AC graph system. Let G be any
connected planar graph. Let ε be the minimum weight set in
each edge. Let every agent a ∈ A use a different weight matrix
W a(t) such that

W a
i j (t) =

{
0 if Xa(t) = i and Xa(t − 1) = j,
Wi j (t) else.

Then, each agent will converge to a certain stationary distri-
bution ya(t)

a.s.
−−→ ya∞ as t → ∞.

Corollary 3. LetAS be an AC graph system. Let G be any
connected planar graph. Let ε be the minimum weight set in
each edge. Let ϕa ∈ {0, 1} be a random variable taking value
1 if a communication event from agent a ∈ A takes place, and
value 0 otherwise. If ϕa is independent of M(t), then it does
not affect convergence properties of the system.

4.2 Directed Graphs: P∞ Convergence
In a directed graph, the weights of an AC graph system AS ,
and edges (ij) are not affected by the changes in edge (ji).
Considering this, to prove the main result for directed graphs

we present first a set of necessary concepts.

Proposition 3. Let AS = (G, {X (t)},Λ) be an AC system.
Let its state be fully defined at time t by σ -algebra

Ft = σ ({M(0), M(1)...,M(t)}),

where Ft ⊂ F , and F is the set of all possible events (combina-
tions of agent choices). At last, let ni (t) B |{a ∈ A |Xa(t) =
i}| be the total amount of agents in vertex i at time t . Then,
the position of an agent Xa0 (t + 1) is a random variable inde-
pendent of other agent positions Xak (t + 1), ak ∈ A \ {a0},
and the conditional expected value ofM(t + 1) is

E
[
Mi j (t + 1) | Ft

]
= Pji (t)ni (t).

Remark 5. The sum over the rows in M(t + 1) depends on
the state of our system at time t . More specifically,∑

j ∈V

Mi j (t + 1) = |{a ∈ A |Xa(t) = i}| ≡ ni (t).

Similarly, the weighted degreewi (t + 1) is also determined

if we know the values ofM(0), M(1), ...,M(t). By definition

wi (t + 1) =
∑
k ∈V

(1 − ρ)Wik (t) +
ρ

n
Mik (t + 1) =

=(1 − ρ)wi (t) +
ρ

n

∑
k ∈V

Mik (t + 1).

Then,

wi (t + 1) = (1 − ρ)wi (t) +
ρ

n
ni (t).

With this, we can show a strong stochastic property of

the evolution of P(t) when the underlying graph is directed.

Proposition 4. Let AS be an AC graph system from Def-
inition 10. Let G be a directed graph, i.e.Wi j , Wji . Let the
increasing σ algebra Ft = σ ({M(0), M(1)...,M(t)}), where
Ft ⊂ F , and F is the set of all possible events (combinations
of agent choices). Finally, let the temporal increment in any
entry ij of the probability transition matrix P(t) be defined
∆Pji (t) B Pji (t + 1) − Pji (t). For any ρ ∈ (0, 1),

E
[
∆Pji (t) | Ft

]
= 0.
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We introduce Doob’s Martingale convergence Theorem.

Theorem 3 (Doob’s Martingale Convergence [12]).

Let Xn be a Martingale such that

sup

n
E[X+n ] < ∞.

Then, Xn converges a.s..

At last, we present the main Theorem of this section.

Theorem 4. [Transition Probability Convergence for di-
rected graphs] Let AS = (G, {X (t)},Λ) be an AC graph sys-
tem. Let G be a directed graph with minimum weight ε = 0.
Then, the probability transition matrix of the agent movement
converges a.s. to a stationary P∞. That is, P(t)

a.s.
−−→ P∞ as

t → ∞.

Remark 6. In an undirected graph, the probabilities Pji (t) can
be affected by flow of agents moving inwards to i . Theorem 4

relies on the fact that this does not happen to directed graphs.

Nevertheless, the authors believe an analogous proof can

be established for undirected graphs, using the fact that the

edges of the graph are modified by a set of agents that do

converge to a fixed distribution.

Corollary 4. Let AS be an AC graph system. Let G be a
directed connected planar graph. Let ε = 0 be the minimum
weight set in each edge. Let ϕa ∈ {0, 1} be a random vari-
able taking value 1 with probability pϕ if a communication
event from agent a ∈ A takes place, and value 0 o.w. If ϕa is
independent ofM(t), then P(t)

a.s.
−−→ P∞ as t → ∞.

4.3 Convergence Speed
Consider the results of Theorem 2. By establishing a min-

imum weight ε we ensure convergence of the agent distri-
bution as t → ∞. Let us recall concepts from Qin et. al.

[23].

Definition 12 (Qin et. al. [23]). The sequence {W (i)} is
said to converge exponentially fast toY at a rate no slower than
γ−1 for some γ > 1 independent of an eventω if γ k ∥Wk −Y ∥ =
Z for some Z ≥ 0.

Theorem 5 (Qin et. al. [23]). In addition to Assumption
1, if there exists a number p ∈ (0, 1) such that for any k ∈ N0

we have Pr
[∏h

i=kW (i) ∈ M2

]
≥ p > 0, then the almost sure

convergence of the product to a randommatrix L is exponential,
and the rate is no slower than (1 − pαh)1/h .

Remark 7. Recall Proposition 2. By adding aminimumweight

ε , the graph is connected for all t and since there exists at

least an odd length cycle,

Pr


(
t0+2δ+1∏
t=t0

P(t)

)T
∈ M2

 = 1 ∀t0.

Therefore, with p = 1 and α = ε
1+(d∗

i −1)ε
, the convergence

rate for an AS system with minimum weight ε is no slower

than (1 − α1+2δ )
1

1+2δ .

5 SIMULATIONS
To show the convergence results in simulated examples, we

restrict our cases to the following baseline scenarios. First, all

edge weights are initialised to a uniform valueW (0) = ω0A,
where A is the adjacency matrix and ω0 = 1/|E|.

• Directed and undirected triangular planar lattices.

• |S| = |T | = 1. Sets placed randomly in the graph.

• δ ∈ {10, 20}, |A| ∈ {20, 80}.
• ε ∈ {0, ω0

5
}, ρ ∈ {2 · 10−2, 1.5 · 10−1}

We consider ε = 0 for both directed and undirected graphs.

This is since, although we only showed P∞ convergence for

directed graphs, by Remark 6 there is enough reason to be-

lieve it will also converge for directed graphs. For simplicity,

we consider only triangular planar lattice graphs. Therefore,

there is no need to add a self loop in the graph, and G satis-

fies the necessary conditions. The choice of low ρ values is

motivated by the size of the graphs. The parameter ρ influ-

ences how fast weights go to zero (or ε). A value of ρ = 0.05
yields a half life time of t1/2 ≈ 13 time steps, and we consider

graphs of diameters between 10 and 20.

To show the convergence in the case of P∞ we plot the

values ∆Pmax−∆Pmin,where ∆Pmax = maxi, j {P(t +1)−P(t)},
and the converse for the minimum. To show convergence

of the matrix product to an identical column matrix, let first

∆Π =
[∏k

t=0 P(t)
]
i
−

[∏k
t=0 P(t)

]
j
, where

[∏k
t=0 P(t)

]
i
is

the i-th column of the matrix product, and i and j are chosen
at random among all columns. Therefore, to show conver-

gence we plot ∆Πmax − ∆Πmin.

5.1 Convergence Results
Figures 2a and 2b show the convergence results both for

the matrix P(t) and the product of matrices with ε = 0, and

Figure 3 shows the convergence of the product for ε = ω0/5.

Each line represents the average of 50 simulations done with

the same parameter set. The colors correspond to a fixed set

of parameter in the legend, dotted lines are undirected graphs

and full lines directed graphs. Note from Figure 2b how the

convergence of the matrix product is indeed exponential, and

has a very fast convergence rate. However, from Theorem 4,

we require the minimum weight to be set to zero to ensure

the convergence of P(t), but ε > 0 to have convergence in the

matrix product. From Figures 2a and 2b we can see that both

the matrix product and P(t) converge. This is consistent
with the results in Theorems 4 and 2; for convergence to

P∞ we need to set ε = 0. By setting ε = 0 we allow the

graph to become virtually disconnected, therefore in some
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Figure 2: Directed and Undirected Graphs with ε = 0.

cases the matrix product may not converge to an identical

columnmatrix. Figure 3 shows the convergence of the matrix

product for ε = ω0/5. Note that there does not seem to be

much difference in the convergence for ε = ω0/5 or ε = 0.

At last, observe that the convergence in P∞ seems to be

much slower and noisy than for y∞. This is consistent with
the fact that y∞ converges exponentially fast, while for P∞
we do not have that guarantee, and thus may converge only

as t → ∞. Observe that the convergence results are ex-

tremely similar for both directed and undirected graphs. This

confirms the idea pointed out in Remark 6. Furthermore, The

convergence to a P∞ transition matrix seems to be heavily

influenced by the evaporation rate.
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n = 20, ρ = 0.15, δ = 10
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n = 20, ρ = 0.02, δ = 10

n = 80, ρ = 0.02, δ = 20

Figure 3: Directed and Undirected Graphs with ε =
ω0/5.

6 DISCUSSION
The results in Section 4 show different kinds of convergence

for a multi-agent swarm that follows a stigmergy based algo-

rithm and what conditions the system needs to satisfy. Con-

vergence of the probability transition matrix to P∞ seems

to happen only for ε = 0; To ensure convergence in agent

distribution to a certain y∞, the graph cannot become dis-

connected (ε > 0). Although, as seen in Figures 2b and 3,

convergence in agent distribution seems to occur for most

simulations even when ε = 0. Note as well that, as computed

in Remark 7, the agent distribution convergence is expo-

nentially fast and it can be seen in the simulation results.

Allowing (or forcing) the graph to become disconnected in

finite time, we would expect the agents to converge to a

certain distribution only inside each sub-graph.

Additionally, from Corollary 3 and 4 we can now show

that the convergence is maintained under communication

constrains, therefore allowing agents to modify communica-

tion patterns based on convergence estimations. Therefore,

now that we have guarantees that such a swarmwill give rise

to stationary behaviours, the main question that arises from

these results is: How can we know more (and maybe control)

the final distribution y∞, and how do the swarm parameters

affect this stationary distribution?. The authors consider this

questions to be of big interest for robotic swarm design, and

it is in fact the main line of work that the authors aim to

pursue in the near future.

To address this problem, one could consider the swarm

as the distribution y(t), considering an infinite number of

agents, and study the resulting mean-field model. Represent-

ing the entire system as a mean field system (including the
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graph dynamics), would then open a venue to further study

the target distributions y∞.

7 PROOFS
Proof: Proposition 1. If there are no odd length cycles

in G, then we can split the graph in odd and even vertices.

Starting from an odd vertex it is only possible to reach any

other odd vertex in even times, and the converse. Let there

now be one odd cycle C. Let i be a starting node and j any
other vertex, with the shortest i − j path being of even length

li j . Then, p
t
i j > 0 if t > 2k + li j ∀k ∈ N+

0
. The only way of

reaching j in odd time is by completing then the odd length

cycle. Let liv be the minimum path length between i and any
vertex v ∈ C, and let lv j be the minimum v − j path length.

Then, pti j > 0 if t > 2k + liv + lv j + lc ∀k ∈ N+
0
. Since C is

the only odd length cycle, todd = 2k + liv + lv j + lc is an odd

number. And particularly, if δ is the diameter of the graph,

todd ≤ 2δ + lc .

□

Proof: Proposition 2. First of all, W i j ∈ {ε, 1} for all

edges {ij} satisfyingWi j (t) , 0. Let d∗i B max{di : i ∈ V ′}.

Then,

α =
ε

1 + (d∗i − 1)ε
⇒ P ji > α ∀P ji > 0, (9)

which satisfies the condition (2) of Assumption 1. For con-

dition (1) in Assumption 1, see that the associated digraph

to P(t) is a connected planar graph. From Proposition 1, the

matrix product

LT (t0, 2δ+t0+1) B
[
P(t0 + 2δ + 1)P(t0 + 2δ )...P(t0)

]T
(10)

has all entries LTkl (t0, 2δ + t0 + 1) > 0 for any pair k, l and
any t0. This follows from connected graphs properties; each

entry Lkl (t0,δ +t0) represents the probability of getting from
vertex k to vertex l in δ steps starting from t = t0. From (9)

we make sure that the graph can never become disconnected,

therefore P(t) is irreducible for all t . Furthermore, since no

edges are being deleted for any t , the probability

Pr

[
LT (t0, 2δ + t0 + 1) ∈ M2

]
= 1 ∀t0 > 0.

Hence, PT (t) satisfies Assumption 1. □

Proof: Theorem 2. Let P(t) be constructed from Defini-

tion 11 with ε > 0 being a minimum weight at choice. From

Proposition 2, we know that the sequence {PT (t)} satisfies
Assumption 1, and recalling Corollary 1, the left product

lim

k→∞

k∏
t=0

P(t) = ξ1T .

Then, the agent distribution as t → ∞ is

lim

t→∞
y(t) = ξ1T y0 = ξ ,

since ξ1T is a matrix of identical columns ξ and the vector y0
sums 1 over all its entries. The agent probability distribution

converges a.s. to the vector ξ regardless of y0. □

Proof: Corollary 2. The proof follows identical steps to

Theorem 2. Now we have |A| different sequences {Pa(t)},
depending on the movement of each agent. However, each

sequence satisfies Assumption 1 (it can be easily checked by

the logic in Proposition 2). Therefore, each agent converges

to a distribution ya(t)
a.s.

−−→ ya∞ as t → ∞. □

Proof: Corollary 3. Proof is analogous to Theorem 2.

In fact, to have y(t)
a.s.

−−→ y∞ as t → ∞ we do not need to

impose γ to be independent fromM(t), but this requirement

does affect a second corollary in the next section. □

Proof: Proposition 3. First see that ifW (t) is known, so
is the transition probabilitymatrix P(t). Now recall that Pji (t)
determines the probability of any agent moving from vertex

i to vertex j at time t . Therefore, for any agent a ∈ A,

P{Xa(t + 1) = j |Xa(t) = i} =

{
1, i ∈ T ′ ∪ S′,
Wi j (t )
wi (t )

else.

The weights in the graph are only updated after all agents

have moved. Then, the choice of one agent at time t does
not affect the choices of other agents at t . Denote Ai = {a ∈

A : Xa(t) = i} and observe that ni (t) ≡ |Ai |. Then,

E
[
Mi j (t + 1) | Ft

]
=

∑
a∈Ai

Pji (t) = Pji (t)ni (t).

□

Proof: Proposition 4. First, it is trivial from (3) that for

any i ∈ T ′ ∪ S′

∆Pji = 0 ⇒ E
[
∆Pji | Ft

]
= 0 ∀t > 0.

Consider now the rest of the edges (i < T ′ ∪ S′
). From (3)

and substituting the weight dynamics in Definition 9:

Pji (t +1) =
Wi j (t + 1)

wi (t + 1)
=

(1 − ρ)Wi j (t) +
ρ
nMi j (t + 1)

wi (t + 1)
. (11)

As pointed out in Remark 5

wi (t + 1) = (1 − ρ)wi (t) +
ρ

n
ni (t). (12)

Now we can compute the probability increment ∆Pji =
Pji (t + 1) − Pji (t) from (11) as

∆Pji =
((1 − ρ)Wi j (t) +Mi j (t + 1)

ρ
n )wi (t) −Wi j (t)wi (t + 1)

wi (t)wi (t + 1)
(13)

and substituting (12) in the numerator in (13),

∆Pji =

ρ
n

(
Mi j (t + 1)wi (t) −Wi j (t)ni (t)

)
wi (t)wi (t + 1)

. (14)
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Observe that, by using the result in Proposition 3

Wi j (t)ni (t)

wi (t)
= Pji (t)ni (t) = E[Mi j (t + 1) |Ft ]. (15)

Finally, substituting (15) in (14):

∆Pji =
ρ

n

Mi j (t + 1) − E[Mi j (t + 1) |Ft ]

wi (t + 1)
. (16)

Let us now take the conditional expected value of (16). The

denominator is fully determined by Ft . Furthermore,

E[E[Mi j (t + 1) |Ft ] | Ft ] = E[Mi j (t + 1) |Ft ] ⇒

⇒ E[∆Pji |Ft ] = ρ
E[Mi j (t + 1) − E[Mi j (t + 1)|Ft ] |Ft ]

nwi (t + 1)
= 0.

□

Proof: Theorem 4. Take the probability transition ma-

trix increment ∆Pji (t). See that it is a random variable that

takes values ∆Pji (t) ∈ [−1, 1] (therefore, supt E[∆Pji (t)
+] <

∞). Now, from Proposition 4

E[∆Pji |Ft ] = 0 ⇒ E[Pji (t + 1) − Pji (t) |Ft ] = 0.

See that Pji (t) is fully determined by the the information in

σ -algebra Ft . Then,

E[Pji (t + 1) − Pji (t) |Ft ] = E[Pji (t + 1) |Ft ] − Pji (t) =

=0 ⇐⇒ E[Pji (t + 1) |Ft ] = Pji (t).
(17)

From Definition 4 it is clear that the entries of the probability

transition matrix are all Martingales, and by Theorem 3 the

matrix will converge to a P∞ a.s. □

Proof: Corollary 4. Take eq. (14). If γ ∈ {0, 1} is a ran-
dom variable determining if weight is being added or not,

we can write

∆Pji =

ρ
n

(∑Mi j (t+1)
k=1 γk − Pji (t)

∑ni (t )
k=1 γk

)
wi (t + 1)

, (18)

withwi (t + 1) = (1 − ρ)wi +
ρ
n
∑ni (t )

k=1 γk . But if the variables
M(t) and γ are independent, E[XY |Ft ] = E[X |Ft ]E[Y |Ft ].

Furthermore, let Z =
∑Mi j (t+1)

k=1 γk , and observe that by the

law of total expectation

E [Z | Ft ] = E
[
E

[
Z |Mi j (t + 1)

]
| Ft

]
=

= E
[
Mi j (t + 1)pγ | Ft

]
= pγ E

[
Mi j (t + 1) | Ft

]
.

(19)

Then, taking the expected value of the numerator in (18):

E


Mi j (t+1)∑
k=1

γk − Pji (t)

ni (t )∑
k=1

γk

������Ft
 =

=pγ
(
E

[
Mi j (t + 1)|Ft

]
− E

[
Mi j (t + 1)|Ft

] )
= 0.

(20)

Therefore, P(t)
a.s.

−−→ P∞ as t → ∞ regardless of γ . □

7.1 Construction of Expanded Graph
Definition 13. Let G = (V, E) be a connected graph. Let

u ∈ V and Eu ⊂ E be the set of adjacent edges to u (in and
out edges). We define the degree expansion of u with respect to
a subset of the adjacent edges Ek ⊂ Eu as a set of new vertices
ui and edges uii :

CV(u, Ek ) B {ui : {ui} ∈ Ek },

CE(u, Ek ) B {{uii} : {ui} ∈ Ek }

Note that CV(u, Ek ) is a set of new vertices, all with degree 1,
and CE(u, Ek ) yields the edges connecting them to Ek .

In Definition 13 we use undirected graph notation, such

that {ui} ≡ {iu}. If G is directed, CE(u, Ek ) and CV(u, Ek )

are generated by computing in every case both (ui) and (iu).
Let G = (V, E,W (t)) be a connected, planar, weighted

graph. Let T ⊂ V , S ⊂ V be a target and starting set, with

adjacent edge sets ET , ES and frontier sets Tf = F (T →

V \ T), Sf = F (S → V \ S). Let the sets of adjacent edges

to the frontiers be

ET,f = {{uv} : u ∈ Tf , v ∈ V \ T or v ∈ Tf , u ∈ V \ T },

ES,f = {{uv} : u ∈ Sf , v ∈ V \ S or v ∈ Sf , u ∈ V \ S}.

The sets of expanded vertices and edges are

Tx B {∪CV(uT , ET,f ) : uT ∈ Tf },

Sx B {∪CV(uS , ES,f ) : uS ∈ Sf },

and

ETx B {∪CE(uT , ET,f ) : uT ∈ Tf },

ESx B {∪CE(uS , ES,f ) : uS ∈ Sf }.

Then, the expanded sets in G′
are constructed as follows:

T ′ B Tx , S′ B Sx ,

V ′ B V ∪ (Tx ∪ Sx ) \ (T ∪ S),

E ′ B E ∪ (ESx ∪ ETx ) \ (ET ∪ ES).
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