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Drift-Free Inertial Sensor-Based
Joint Kinematics for Long-Term

Arbitrary Movements
Ive Weygers , Manon Kok , Henri De Vroey , Tommy Verbeerst, Mark Versteyhe ,

Hans Hallez , and Kurt Claeys

Abstract—The ability to capture joint kinematics in
outside-laboratoryenvironments is clinically relevant. In order
to estimate kinematics, inertial measurement units can be
attached to body segments and their absolute orientations
can be estimated. However, the heading part of such ori-
entation estimates is known to drift over time, resulting
in drifting joint kinematics. This study proposes a novel
joint kinematic estimation method that tightly incorporates
the connection between adjacent segments within a sensor
fusion algorithm, to obtain drift-free joint kinematics. Drift in
the joint kinematics is eliminated solely by utilizing common
information in the accelerometer and gyroscope measure-
ments of sensors placed on connecting segments. Both an
optimization-basedsmoothing and a filtering approach were implemented. Validity was assessed on a robotic manipulator
under varying measurement durations and movement excitations. Standard deviations of the estimated relative sensor
orientations were below 0.89◦ in an optimization-based smoothing implementation for all robot trials. The filtering
implementation yielded similar results after convergence. The method is proven to be applicable in biomechanics, with a
prolonged gait trial of 7 minutes on 11 healthy subjects. Three-dimensional knee joint angles were estimated, with mean
RMS errors of 2.14◦, 1.85◦, 3.66◦ in an optimization-based smoothing implementation and mean RMS errors of 3.08◦, 2.42◦,
4.47◦ in a filtering implementation, with respect to a golden standard optical motion capture reference system.

Index Terms— Body sensor networks, gait, inertial-sensor drift, motion analysis, sensor fusion, wearable sensors.

I. INTRODUCTION

INTEREST in outside-laboratory movement analysis with
inertial sensors (i.e. accelerometer and gyroscope) is

increasing [1], [2]. Optoelectronic camera-based systems are
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currently known as the golden standard in biomechanical
analysis [3]. Unlike artificial laboratory situations, inertial
sensor-based methods can provide a way to measure
kinematics in comfortable outdoor settings, omitting restric-
tions in physical space [4]. In this work we propose a novel
tightly coupled sensor fusion algorithm for joint kinematic
estimation (e.g. the knee joint as depicted in Fig. 1) from
inertial measurements. We aim to make inertial sensors
applicable to long-term human motion analysis in challenging
outside laboratory environments, i.e. on a sports field or a
hospital environment.

Inertial sensor-based methods typically require one sensor
unit to be attached to adjacent segments around a joint of
interest [2]. In order to estimate joint kinematics, the absolute
three-dimensional (3-D) orientation of both inertial sen-
sors is required. By fusing different sources of orientation
information from sensor measurements, an accurate sensor
orientation estimate can be obtained [5]. Angular velocity
yields information on the change of orientation, after an
integrating step. These relative sensor orientation estimates
are accurate over short time periods but drift over time, due
to the integration of noise and a non-zero gyroscope bias.
Accelerometers are used as a measure of gravity to
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Fig. 1. Experimental setup: Two inertial sensors are attached to thigh
and shank body segments. Reference coordinate frames (blue) R1 and
R2 are formed by clusters of optical markers that follow the movements of
inertial sensor coordinate frames (white) S1 and S2. Sensor orientations
are estimated with respect to a global coordinate reference frame G
and reference orientations are obtained with respect to a Vicon base
coordinate frame B.

compensate for drift in the tilt angle of the orienta-
tion estimates [6]. The heading angle of such estimates is
still unknown and will drift over time. To compensate for this
drift, an absolute measure of heading from 3-D magnetometers
can be used [7], [8]. However, near ferro-magnetic material
and electronic devices, the magnetic field vector is disturbed,
which makes magnetometers unusable in many clinical
settings such as a hospital environment [9]–[11]. Furthermore,
the magnetic disturbance typically varies at different
physical sensor locations in a non-homogenous magnetic
environment.

Long-term stable sensor orientation estimates are impossible
without absolute sensor heading information. However,
previous studies have shown stable joint kinematic estimates,
while omitting magnetometer measurements, by combining
measurements of multiple inertial sensors and constraints for
different joint kinematic models:

For joints that are modeled to have one Degree of
Freedom (DoF), Dejnabadi et al. [12] proposed a method for
the calculation of knee flexion and extension joint angles by
describing acceleration measurements of adjacent segments at
the joint center. Furthermore, Dorschky et al. [13] proposed
a method to estimate planar gait and running kinematics as
well as kinetics from inertial measurements. The obtained
kinematics were insensitive to drift, due to translating inertial
measurements from body segments to a virtual sensor at the
joint center.

For joints with two DoF, Laidig et al. [14] recently proposed
an inertial motion tracking method with an orientation-based
constraint that overcomes the need for magnetometer measure-
ments. Long-time stable and drift-free relative orientations and
joint angles were tracked.

For joints that are modeled to have three degrees of freedom,
Fasel et al. [15] combined information from multiple inertial
sensors to obtain drift-free 3-D segment orientations and joint
angles, suitable for highly dynamic movements. Joint-center
positions were estimated and drift in connecting segments was
estimated and removed from proximal to distal connecting
sensor. Lee et al. [16] proposed a method to compensate
for relative heading drift between sensors. After separately
estimating the pitch and roll of two sensors [17], a second
Kalman filter exploited information on the link between seg-
ments to improve the relative orientation between sensors.
Roetenberg et al. [18] incorporated the position of the joint
center in the sensor dynamics to correct for drift in the joint
angle. Kok et al. [19] incorporated position and velocity in the
dynamic model, combined with a biomechanical constraint to
keep adjacent segments connected, at all times. This resulted
in drift-free joint angles.

In previous studies, joint kinematics for 3 DoF joints
is usually obtained in a decentralized manner. For example,
by estimating a drift trend and adapting drift-affected
orientation estimates afterwards [15] or by combining parts
of the orientation estimates from multiple cascade Kalman
filters [16], [17]. Such loosely coupled approaches consist of
sequential steps that use little or no knowledge from previous
steps. This could result in a loss of certainty and accuracy
between steps [20]. Also, experimental validation has been
carried out on rigid mechanical setups with joints that match
ideal assumptions [16] or is restricted to segment inclination in
a dominant sagittal movement plane [15]. Including position
and velocity [19] makes the problem more computationally
heavy and extensive validation is necessary for a good
understanding of the working principles [18].

In the present study, we propose a novel joint kinematic
estimation method that eliminates drift in the 3-D relative
movement between two inertial sensors. Drift in the
joint kinematics is eliminated solely by utilizing common
information in the accelerometer and gyroscope measurements
of sensors placed on connecting segments. The main
contributions of this work include the following:

1) In contrast to loosely coupled approaches, we tightly
couple rigid body kinematics within the sensor fusion algo-
rithm to compensate for drift in the joint kinematics.

2) Extensive validation is carried out in three movement
planes with respect to an industrial robotic manipulator.
Moreover, a prolonged gait trial of 7 minutes, on 11 healthy
subjects shows applicability in biomechanics and robustness
against inter-subject gait variances, with respect to a golden
standard optical motion capture reference system.

3) In addition to an optimization implementation, a filtering
approach is presented that opens up for longer real-world
studies.

The remaining contribution is organized as follows: In
Section II, models are described that couple the orienta-
tion of two segments and thereby compensate for drift
in the estimated relative sensor orientation. In Section III,
an optimization-based smoothing and a filtering algorithm are
presented that use the models from Section II to estimate
the sensor orientations. In Section IV, experimental validation
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Fig. 2. Models and intuition: (a) Kinematic model with two inertial sensors S1 and S2, attached to segments that connect at the joint center jc by
a spherical joint. (b) Joint center acceleration ajc,t expressed in both sensor coordinate frames aS1

jc,t, aS2
jc,t and their projection onto a common, but

drifting global coordinate frame G. (c) The relative orientation between segments qS1S2 is independent of a reference coordinate frame G.

on a robotic manipulator gives understanding to the proposed
method. In Section V, applicability of the method in
biomechanics is evaluated for a long-term gait trial on healthy
subjects. Section VI discusses the obtained results.

II. MODELS

Joint kinematics is characterized as the study of the relative
motion of two consecutive body segments of the human
body [21]. Such a system can be modeled as two adjacent rigid
segments, connected by a spherical joint with no restrictions
in terms of rotational DoF.

In our model, each segment consists of an inertial sensor
with coordinate frame Si (Fig. 2 (a)) where a subscript
index i (with i = 1, 2) differentiates between individual
sensor coordinate frames. Two adjacent segments connect at a
common point, the joint center jc. In the direction of this point,
position vectors r Si

i are defined from each sensor coordinate
frame origin. Orientations are expressed in unit quaternion and
direct cosine matrix notations. For example, qGS2

t and RGS2
t

both describe the orientation of sensor coordinate frame S2
with respect to the global coordinate frame G at time index t .

A. Dynamic Model
Inertial sensors are commonly used for orientation estima-

tion from gyroscope and accelerometer measurements [5]. The
sensor’s angular velocity ω

Si
t is measured by the gyroscope

ySi
ω,t and modeled at each time instant t with t = 1, . . . , N as

ySi
ω,t = ω

Si
t + eSi

ω,t , (1)

where eSi
ω,t is zero-mean Gaussian noise, distributed

as N (0,�ω). We define the gyroscope noise covariance
as �ω = σ 2

ωI3, where I3 describes the 3 × 3 identity matrix
and N is the total number of samples in the process. Scale
factors and non-orthogonality in the sensor axes are assumed
to be negligible due to calibration by the manufacturer. The
individual absolute sensor orientations qGSi

t , can be estimated
following dynamic model

qGSi
t = qGSi

t−1 �
T

2
ySi
ω,t , (2)

where the measured angular velocity ySi
ω,t is integrated

over a time step T , to estimate the change in orientation
from qGSi

t−1 to qGSi
t . The � operator in (2) denotes a quaternion

multiplication and ySi
ω,t describes a pure quaternion notation

of the vector ySi
ω,t [22].

B. Measurement Model
Orientation estimates from gyroscope measurements are

known to be accurate for short time periods, but drift over
time [5]. To remove this drift, orientation estimates can be
updated by using measurements of acceleration ySi

a,t that are
modeled as

ySi
a,t = RSi G

t (aG − gG)+ eSi
a,t , (3)

where gG denotes the gravity component, aG denotes the
linear acceleration component and RSi G = (RGSi )T.

We make use of common information present in the
gyroscope and accelerometer measurements of two adjacent
inertial sensors to update both orientations RGS1

t and RGS2
t

together, in order to compensate for drift in the joint
angle RS1 S2

t . From rigid body kinematics we learn that the
acceleration of a common point i.e. the joint center, should
have only one unique description of acceleration aSi

jc,t in a
common reference coordinate frame (Fig. 2 (b)), which can
be expressed as

RGS1
t aS1

jc,t = RGS2
t aS2

jc,t + elink,t , (4)

where elink,t ∼ N (0,�link). Joint center accelerations aS1
jc,t

and aS2
jc,t are approximated by evaluating acceleration measure-

ments ySi
a,t at a distance r Si

i from the joint center by using CSi
t

as

aSi
jc,t = ySi

a,t − CSi
t r Si

i ,

CSi
t = [ySi

ω,t×]2 + [ẏ Si
ω,t×]. (5)

Here, the operator × describes a cross product matrix
formulation and ẏ Si

ω,t denotes angular accelerations. Joint
center position vectors r Si

i are estimated from inertial
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Filt.-algorithm 1: Joint Kinematic Estimation

Input: Inertial sensor data
{

ySi
a,t , ySi

ω,t

}N
t=1 for i = 1, 2,

an initial orientation estimate q̃GSi
1|1 for i = 1, 2,

covariance matrices P1|1, Q, and R.
Output: Orientation estimate q̂GSi

1:N , for i = 1, 2.
1: Approximate r S1

1 , r S2
2 as in [23].

2: for t = 2, …, N do
3: Approximate aS1

jc,t , aS2
jc,t following model (5).

4: Time update
5: q̃GSi

t |t−1 = q̃GSi
t−1|t−1 � expq(T 2−1ySi

w,t−1), for i = 1, 2.
6: Pt |t−1 = Ft−1 Pt−1|t−1FT

t−1 + G QGT

7: Measurement update
8: St = Ht Pt |t−1 H T

t + R
9: Kt = Pt |t−1 H T

t S−1
t

10: η̂t = Kt elink,t
11: Relinearize
12: q̃GSi

t = q̃GSi
t � expq(η̂Si ,t 2

−1), for i = 1, 2.
13: Pt |t = Jt (Pt |t−1 − Kt St K T

t )J T
t

14: q̂GSi
t = q̃GSi

t , for i = 1, 2.
15: end for

measurement data as proposed by Seel et al. [23], under the
assumption that segments are rigid.

Conventional methods [5], [6] assume a dominant gravity
component and approximating zero linear acceleration compo-
nent to compensate for drift in the tilt part of the orientation
estimates. In contrast, the proposed measurement model (4)
yields orientation information in three movement planes rather
than only in the tilt part, as long as there is acceleration.
We will explicitly use this information in Section III to obtain
drift-free 3-D joint kinematics.

III. ESTIMATION OF JOINT KINEMATICS

Models from Section II are implemented in a filtering
(Filt.-algorithm 1) and an optimization-based smoothing
approach (Opt.-algorithm 2). The smoothing algorithm uses
all measurements

{
ySi

a,t , ySi
ω,t

}N
t=1 in each iteration, to obtain

the most accurate estimates. The filtering algorithm on the
other hand opens up for on-line implementations.

We adopt the orientation parameterization from [5] to
encode orientations qGSi

t in terms of an orientation deviation
state vector ηt ∈ R

3 around a linearization point q̃GSi
t .

For our two-sensor kinematic model we define the state
as ηt =

[
ηT

S1,t
ηT

S2,t

]T ∈ R
6. Joint center position vectors r Si

i
are estimated from inertial measurement data as proposed
by Seel et al. [23], under the assumption that segments are
rigid. Moreover, angular accelerations ẏ Si

ω,t are approximated
from gyroscope measurements by means of a five-point finite
difference approximation.

A. Filtering
Our filtering algorithm to estimate joint kinematics is

summarized in Filt.-algorithm 1. It extends the multiplicative
extended Kalman filter from [5] to estimate the orientation of
two sensors and to incorporate the model (4).

Opt.-algorithm 2: Joint Kinematic Estimation

Input: Inertial sensor data
{

ySi
a,t , ySi

ω,t

}N
t=1 for i = 1, 2,

an initial orientation estimate q̃GSi,(0)1:N for i = 1, 2,
covariance matrices �init, �ω, and �link.

Output: Orientation estimate q̂GSi
1:N , for i = 1, 2.

1: Approximate r S1
1 , r S2

2 as in [23] and aS1
jc,1:N , aS2

jc,1:N
following model (5).

2: Set k = 0.
3: while termination condition is not satisfied do
4: Compute: ε =

[
(εS1

init)
T (εS1

ω )T (εS2
init)

T (εS2
ω )T

(εlink)
T
]T

.

5: Compute: J , G = J Tε, Ĥ ≈ J TJ .
6: set η̂

(k+1
1:N ) = −Ĥ−1G.

7: Relinearize
8: q̃GSi ,(k+1)

t = q̃GSi ,(k)
t � expq(η̂

(k+1
Si ,t

)2−1),
for i = 1, 2.

9: k ← k + 1.
10: end while
11: Set q̂GSi

1:N = q̃GSi,k
1:N , for i = 1, 2.

Sensor dynamics recursively propagate measurements of
the angular velocity ySi

w,t through the states (step 5) and
the state covariances Pt (step 6). Orientation estimates of
both sensors are simultaneously updated using measurement
model (4) (steps 8-10). To derive Ht , the Jacobian of the
measurement model (4) with respect to the state, we first note
that Rt ≈ R̃t (I3 + [η×]) by assuming ηt to be small [5].
Measurement model (4) can therefore be written in terms of
the state ηt as

R̃GS1
t (I3 + [ηS1,t×])aS1

jc,t

≈ R̃GS2
t (I3 + [ηS2,t×])aS2

jc,t + elink,t . (6)

Hence the matrix Ht ∈ R
3×6 is given by

Ht =
(

R̃GS1
t [aS1

jc,t×] − R̃GS2
t [aS2

jc,t×]
)

. (7)

Additionally, the linearization point is updated as well
as the covariance around this updated linearization point
(steps 12-13). Note that the expq operator denotes the vec-
tor exponential map i.e. v ∈ R

3 → q ∈ R
4 [6] and

steps 5, 12, and 14 apply to both sensors.

B. Optimization
Instead of using measurements up to the current time-step

(Filt.-algorithm 1) and iteratively calculating the state,
in Opt.-algorithm 2, we also present an optimization-based
smoothing approach. Since the noise in (2) and (4) is
Gaussian, this reduces to a weighted least-squares problem
which we solve using a Gauss-Newton approach [24]. Each
Gauss-Newton iteration k, makes use of all measurements
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TABLE I
MEAN σ AND MAX σ FROM THE ESTIMATED AVERAGE JOINT CYCLE OVER ALL CYCLES FOR ALL ROBOT TRIALS

Fig. 3. Illustration of the Jacobian structure for joint kinematic estimation.
The white dots denote the 3×3 size of each part in the Jacobian matrix.
Due to the tightly coupled nature of the algorithm, the measurement
model (purple) is allowed to directly adapt the orientation estimates of
both sensors at all time, to keep segments connected. Sensor dynamics
(blue) yield information on current and previous orientation estimates.
A prior initial orientation estimate (orange) can be adapted during
different Gauss-Newton iterations.

{
ySi

a,t , ySi
ω,t

}N
t=1 to calculate the objective function as

η̂1:N = arg min
η̂1:N

2∑
i=1

(
‖eSi

init‖2�−1
init︸ ︷︷ ︸

Initial

+
N∑

t=2

‖eSi
ω,t‖2�−1

ω

︸ ︷︷ ︸
Dynamics

)
+

N∑
t=1

‖elink,t‖2�−1
link︸ ︷︷ ︸

Measurement model

, (8)

where ‖e‖2
�−1 weighs the cost e according to its noise

covariance as ε = �−1/2e. We refer to [5] for the objective
functions regarding the initial orientation estimates eSi

init and the
sensor dynamics eSi

ω,t , with their corresponding derivatives and
covariance matrices �init, �ω. The objective function is then
evaluated on the current linearization point q̃GSi,(k)

1:N (step 4).
Objective functions are appraised with respect to the state
by calculating the Jacobian J in (step 5) (Fig. 3) with the

following derivatives for the link between segments

delink,t

dηS1,t
≈ −R̃GS1

t [aS1
jc,t×],

delink,t

dηS2,t
≈ R̃GS2

t [aS2
jc,t×]. (9)

Search direction and step size are defined by the gradient G
and approximated Hessian Ĥ, to update the state (step 6).
The linearization points are updated (step 8) before each new
iteration. Note that steps 8 and 11 apply to both sensors.

IV. EXPERIMENTAL VALIDATION

A. Measurement Setup
Experimental validation was done on a 6-DoF industrial

robotic manipulator (ABB IRB 120) where two inertial sensors
(MTw Awinda, Xsens) were attached on the robot via Velcro
strips (Fig. 5). To mimic arbitrary movements, the end effector
was imposed to draw an eight-shaped trajectory with varying
maximum end effector speeds and time durations, as described
in Table I. An industrial robotic manipulator is capable of
performing the exact same movement pattern, multiple times.
It is therefore possible to assess both drift and accuracy of the
orientation estimates by comparing different cycles of a trial.

All trials were processed using Filt.-algorithm 1 and Opt.-
algorithm 2, that were implemented in a custom Matlab
(R2018a, Mathworks, USA) script. A static time period
of 5 seconds at the beginning of each experiment is used to
correct for a gyroscope bias and to empirically define noise
variance σ 2

ω to fill matrices �ω and Q. Initial orientations
q̃GSi

1|1 , q̃GSi,(0)1:N were set to [1 0 0 0]T and initial process
covariance P1|1 was set to I6. Measurement noise covariance
matrix R and covariance matrix �link were chosen to be I3.

B. Accuracy in Varying Excitation and
Measurement Duration

After processing all trials, joint angle estimates are obtained
following

q̂ S1S2
t = (q̂GS1

t )c � q̂GS2
t , (10)
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Fig. 4. A comparison between the conventional and the proposed sensor fusion scheme for robot trial 6: Resulting absolute orientation estimates
qGS1

t (a, d), qGS2
t (b, e), and relative orientations qS2S1

t (c, f) (Euler representation). In conventional methods for orientation estimation (a-c), absolute
orientation estimates (a-b) drift in the heading part when only gyroscope and accelerometer data are used. When making use of rigid body kinematics
and approximating joint center accelerations in the measurement update of the proposed method (d-f), absolute sensor orientations (d, e) will drift
in pitch, roll, and yaw, but relative orientations (f) become consistent.

were the c operator denotes the quaternion conjugate. In
order to discuss all resulting joint angle estimates for the
longest robot trials 3 (with the fastest movement excitation)
and 9 (with the slowest movement excitation), a peak-finding
algorithm divides each trial of size 3×N (Euler representation)
in C cycles, each of size 3 × (N/C). A sample by sample
average cycle C is obtained from all cycles. The deviation
of all cycles in C from C at each time instance can be
expressed as standard deviations (σ ) (Fig. 6). Mean (σ and
maximum (max σ ) standard deviations are reported in Table I.

Fig. 4 shows a comparison between the conventional
and the proposed sensor fusion scheme for robot trial 6.
It illustrates how the proposed model adapts both absolute
sensor orientations in such a way that relative orientation
estimates improve. The optimization-based smoothing yields
the best results compared to a filtering implementation,
with standard deviations under 0.89◦ and maximum standard
deviations up to 1.97◦. We can conclude that even in absence
of absolute heading information, accelerometer readings are
sufficient to keep both segments drifting together (as illustrated
in Fig. 2 (b, c)).

Even after 300 seconds of measurement, the estimated joint
angles still coincide with standard deviations under 0.70◦.
We can conclude that measurement duration does not affect
the algorithm outcome. Note that when movement excitation
decreases (Trials 4-9), a filtering implementation yields greater
deviations as shown in (Fig. 6, (b)). However, this deviation is
not due to drifting estimates over time. An optimization-based
smoothing implementation can adapt the initial orientation
estimate by making use of all measurements, in multiple

Fig. 5. Experimental validation: A 6-DoF industrial robotic manipulator
(ABB IRB 120) moves in a predefined eight-shaped trajectory by actu-
ating joint axes j1 − j4. Two inertial sensors S1 and S2 simultaneously
capture the movement of robotic segments R1 and R2. Sensor orienta-
tions are estimated with respect to a global coordinate reference frame
G and robot reference orientations are obtained with respect to a robot
base coordinate frame B.

filter iterations. The filtering implementation only relies on
accelerations and model (4) to be able to update the sensor
orientation as shown in Fig. 7.

V. APPLICATION TO GAIT ANALYSIS

We demonstrated that the proposed method is able to
estimate consistent and drift-free 3-D joint kinematics, over
long periods of time, with respect to an industrial robotic
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Fig. 6. Estimated joint angles (Euler representation) for robot trial 3, with the fastest movement excitation (a, c) and robot trial 9, with the slowest
movement excitation (b, d). Solid lines summarizes all robot cycles in the trial as one mean cycle. The colored region around the solid lines describes
the deviation of the estimates over time with 3σ bounds. Both Filt.-algorithm 1 (a, b) and Opt.-algorithm 2 (c, d) of the proposed method result in
consistent estimates. High dynamic movements (a) result in high accelerations to preserve a fast convergence, even in a filtering implementation.
Slow dynamic movements (b) need time to converge to consistent movement cycles in a filtering implementation, as illustrated in Fig. 7.

Fig. 7. Estimated joint angles for robot trial 8 (a) and robot trial 2 (b),
in color (Opt.-algorithm 2) and gray (Filt.-algorithm 1 ). Over time both
algorithms converge to the same estimate. The red line indicates when
estimates from filtering and optimization-based smoothing coincide. In a
filtering implementation, the time needed for this convergence depends
on the dynamics of the motion. High dynamic movements (b) converge
faster than slower movement dynamics (a).

manipulator. To evaluate the applicability in biomechanics, our
method was applied to gait analysis.

A. Study Design
We evaluate our IMU-based joint kinematic estimation

method against a gold-standard 3-D optical motion capture
reference system. The inertial measurement-based method
consisted of 2 inertial sensors (MTw Awinda, Xsens). The opti-
cal motion analysis reference system consisted of 13 infrared
cameras (VICON Vero,Vicon Motion Systems Ltd). Both

systems measured at a sample rate of 100Hz. Hardware time
synchronization was used to simultaneously capture inertial
measurements and marker trajectories. Joint kinematic esti-
mates are computed in both an optimization-based smoothing
manner and filtering approach, after capturing all data points.
Measurement and process noise covariances were determined
as described in Section IV-A.

Eleven healthy subjects (4 male and 7 female, age ranged
between 18 and 57 years old, body mass index (BMI) ranged
between 18.31 and 28.89) with no history of knee surgery prior
to testing, gave their written informed consent. Inertial sensors
were attached latero-cranial on the shank and on the lateral
side at mid-distance on the thigh via Velcro strips. Custom
3-D-printed plastic cases with reflective marker clusters house
the inertial sensors and therefore simultaneously capture the
sensor orientation as a golden standard reference (as shown
in Fig. 1).

At the beginning of the data acquisition, subjects were asked
to stand still for 5 seconds. Afterwards, all subjects were
told to walk arbitrarily in a comfortable self-selected pace
for 7 minutes. During measurement, subjects could change
their walking direction and speed.

The study has been approved by the institutional research
committee of KU Leuven (Clinical trial center UZ Leuven,
Nr. S58936). All tests were done in accordance with the 1964
Helsinki declaration and its later amendments.

B. Coordinate Frame Alignment
Sensor coordinate frames Si and marker-based coordinate

frames Ri will not be perfectly aligned due to unknown
manual and sensor-to-case misalignments. Moreover, both
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Fig. 8. Resulting 3-D knee joint angles for one subject, obtained from inertial sensor readings with the proposed method for joint kinematic estimation
(green: Opt.-algorithm 2, dotted-green: Filt.-algorithm 1) and the optical reference (black) for a prolonged gait trial of 450 seconds. Results are plotted
after coordinate frame alignment. Drift is clearly eliminated for the entire duration of the gait trial.

systems have different reference coordinate frames which do
not align: sensor orientations are estimated with respect to
a global coordinate reference frame G and clustered marker
orientations are obtained with respect to a Vicon reference
coordinate frame B as illustrated in Fig. 1.

To compare sensor orientation estimates (q̂GS1
t , q̂GS2

t ) and
Vicon reference orientations (q B R1

t , q B R2
t ), constant misalign-

ments q R2 S2 and q R1S1 are estimated from relative orientation
references q R1 R2

t and relative orientation estimates q̂ S1S2
t ,

by using the Theorem 4.2 from J.D. Hol [6]. Intuitively,
the misalignment qG B becomes irrelevant (as depicted in
Fig. 2 (c)) when interest lies in the relative orientation, which
can be formulated as

q S1 R1 � q R1 R2
t � q R2 S2 ≈ q S1G

t � qG B � q BG � qGS2
t ,

q R1 R2
t � q R2 S2 ≈ q R1S1 � q S1S2

t . (11)

C. Data Analysis
In total, 11 optimizations and 11 filtering problems

were solved. Processing a trial of 7 minutes (two inertial
sensors measuring with a sample rate of 100Hz) by using
Opt.-algorithm 2, typically converges after a couple iterations
and takes about 15 minutes for an inefficient proof-of-concept
Matlab implementation on 2 Xeon Gold 6140 CPUs@2.3 GHz
(Skylake), 18 cores each. In comparison, Filt.-algorithm 1
takes about 9 seconds for a 7-minute trial. However, the matrix
that needs inversion in the Gauss-Newton algorithm
(Opt.-algorithm 2, step 6) is inherently sparse and can be
solved efficiently in about 247ms.

We computed the coefficient of determination (R2) between
the estimated and reference relative sensor orientations (after
coordinate frame alignment) using all time points from all
subjects. In addition we used all data points and computed
the ordinary least product regression and root-mean-squared
errors (RMSE).

D. Results
Correlation between the optical reference and joint

kinematic estimates, in both Filt.-algorithm 1 and
Opt.-algorithm 2, for all subjects are illustrated in Fig. 9.
Mean RMSE for all subjects were 2.14◦, 1.85◦, 3.66◦ in
the optimization-based smoothing implementation and 3.08◦,
2.42◦, 4.47◦ in the filtering implementation. Maximum
RMSE were 2.66◦, 3.42◦, 4.55◦ in the optimization-based
smoothing implementation and 4.12◦, 4.71◦, 5.38◦ in the
filtering implementation. Overall, correlations are above 0.9.
The remaining variances are likely due to subject specific
violations of the model assumptions on rigidity of body
segments and small translational joint movements.

Fig. 8 shows the results for one subject with RMSE
of 1.60◦, 1.37◦, 2.03◦ for an optimization implementation and
RMSE of 2.18◦, 1.58◦, 3.12◦ for the filtering implementation,
over the whole capture period. In addition, we zoom in on
four time frames and report their RMSE in Table II. Drift is
clearly eliminated for the entire duration of the gait trial.

VI. DISCUSSION

The proposed method tightly couples rigid body kinematics
within the sensor fusion algorithm, thereby eliminating drift
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Fig. 9. Relative sensor orientation estimates (for both Filt.-algorithm 1 and Opt.-algorithm 2) and optical reference for eleven subjects walking for
seven minutes. Correlation between orientation estimates and optical reference using ordinary least products regression, root-mean-square error
(RMSE) and coefficient of determination R2 are presented. Each correlation plot has 462000 points, from 11 subjects, each associated with a
different color.

TABLE II
RMSE OF KNEE JOINT ANGLE ESTIMATES W.R.T. OPTICAL

REFERENCE FOR ONE SUBJECT

in the joint kinematic estimates. An intuitive explanation of
the working principles is summarized in Fig. 2. Standard
loosely coupled approaches [16] report RMSE of 3.04◦ over
three minutes of measurement, on a two-link mechanical
setup that matches idealistic model assumptions. Others report
segment inclination errors of 3.9◦ for high dynamic
movements over 90 seconds of measurements [15]. The tightly
coupled nature of our proposed method achieves errors that
are on average less than these reported in other studies, while
being applied to arbitrary unconstrained human movements,
over longer measurement durations. By estimating only the
orientations of the sensors, rather than also their position and
velocity [19], the problem becomes less computationally heavy
to solve. This work more extensively validates the approach
than existing state-of-the art [15], [16] on an accurate industrial

robotic manipulator in Section IV. In addition, the application
to gait analysis in Section V proves that our method is
sufficient to eliminate drift, even in less-perfect conditions with
possible soft-tissue artifacts and joint-translational movements,
under varying movement speeds. Although the optimization-
based implementation yields more accurate results, the filtering
approach opens up for longer in-the-wild studies i.e. long term
patient monitoring and smart garments.

The analysis of gait and functional movements outside
of a laboratory can provide interesting clinical insides. The
proposed method is currently applied to clinical gait analysis.
During such movements, quasi-static time intervals occur
where the inertial sensors are approximately a measure of
gravity. In this state, the accelerometer measurements com-
bined with the presented measurement model (4) do not yield
information on the relative heading between sensors. Although
the proposed method relies on the presence of acceleration,
low dynamic activities such as gait proved to contain sufficient
acceleration to correct for drift in the joint angle in Section V.
A limitation of the current study might be the occurrence
of shocks and vibrations which causes some special caution
in sports applications [25]. The position of the sensor with
respect to the joint center is assumed to be fixed, which does
not allow for soft tissue artifacts. During these events joint
position vectors become time-dependent, which has to be taken
into account. However, during clinical gait analysis, this seems
to be less of an issue. Note that the estimated joint angles do
not reflect clinically relevant knee joint kinematics. Standard-
ized reporting of joint motion asks for the identification of
anatomical joint-axes following Grood and Suntay [26] and
the International Society of Biomechanics (ISB) [27], [28].
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However, methods that aim to identify these joint axes and
overcome sensor-to-segment misalignments, often depend on
accurate relative orientation estimates [29], [30].

We applied the presented method to clinical gait-analysis.
However, further validation must be done to generalize
to different functional movements such as lunges, walking
stairs, or more highly dynamic movements with high angular
velocities or persistent centripetal accelerations such as
cycling or running. Moreover, the magnitude, direction, and
frequency of occurrence of accelerations that are required
to keep the heading stable will be topic of future work.
The proposed sensor fusion scheme for connected seg-
ments can easily be scaled to multiple connecting segments.
Fasel et al. [15] previously reported that direction errors in
the joint position around 10◦ affected segment inclination
and joint angle accuracy by less than 0.6◦. Future research
needs to be conducted to analyze the effects of errors
in the estimated joint center position vectors on the kinematic
estimates. Furthermore, future research might focus on
uniquely jointly determining the relative sensor orientations
and position vectors under certain types of motion. More
efficient implementations can be achieved by exploiting the
structure of the problem with tailored message passing [31]
and by preintegration of inertial measurements [32] which is
another direction of future work.

VII. CONCLUSION

A novel method that allows for the estimation of 3-D joint
kinematics from inertial measurements was presented. The
method requires one inertial sensor unit per adjacent segment
around a joint of interest. Drift in the relative sensor orientation
is compensated solely by exploiting common information in
the accelerometer and the gyroscope measurements of the two
sensors and rigid body kinematic equations.

Consistency in the kinematic estimates was evaluated with
respect to an industrial robotic manipulator with excellent
results under varying movement excitations and measurement
durations. Although, the proposed method relies on the pres-
ence of acceleration, low dynamic activities such as gait was
shown to contain sufficient acceleration to correct for drift
in the joint angle. Further studies should include analysis
of observability to clarify which motions are sufficient for
the model to become manifest. Moreover, it needs to be
investigated whether the estimation of model parameters e.g.
joint position vectors [23] can be incorporated in the model.

The proposed algorithm allows us to perform long (>5 min)
gait trials irrespectively of the walking direction. Even in
absence of absolute heading information, angles between
two body-attached inertial sensors can be estimated with an
average accuracy of <2.56◦ at any point in time. This makes
long-term biomechanical analysis possible in realistic outdoor
settings.
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