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Brief Papers
Deep Model Compression and Inference Speedup of Sum–Product

Networks on Tensor Trains

Ching-Yun Ko , Cong Chen , Zhuolun He, Yuke Zhang, Kim Batselier , and Ngai Wong

Abstract— Sum–product networks (SPNs) constitute an emerging class
of neural networks with clear probabilistic semantics and superior
inference speed over other graphical models. This brief reveals an
important connection between SPNs and tensor trains (TTs), leading
to a new canonical form which we call tensor SPNs (tSPNs). Specifically,
we demonstrate the intimate relationship between a valid SPN and a
TT. For the first time, through mapping an SPN onto a tSPN and
employing specially customized optimization techniques, we demonstrate
improvements up to a factor of 100 on both model compression and
inference speedup for various data sets with negligible loss in accuracy.

Index Terms— Model compression, sum–product network (SP),
tensor train (TT).

I. INTRODUCTION

Density estimation is one of the most general tasks in machine
learning, where the aim is to learn an estimator for a joint probability
distribution over a set of random variables (RVs) from a set of
samples. Such an estimator can be used to do inference, namely,
computing the probability of queries over those RVs. There are
many classical density estimators such as probabilistic graphical
models (PGMs) [1], like Markov networks and Bayesian networks,
whose exact inference is #P or NP-hard and, therefore, computa-
tionally infeasible. To develop traceable graphical models, a new
deep network structure called the sum–product network (SPN) [2]
has been proposed which can compute marginal and conditional
probabilities in linear time with respect to the size of the network.
Moreover, an SPN exhibits a clear semantics of mixtures (sum nodes)
and features (product nodes): given a high-dimensional data set
xk ∈ R

d (k = 1 . . . N), an SPN learns and encodes a probability
distribution over the data and implicit latent (hidden) variables.
Many works have emerged utilizing SPNs in computer vision [3]–[6],
speech modeling [7], [8], and robotics [9], [10]. An SPN uses
only sum and product nodes, which largely simplifies hardware
deployment [11] and forms a strong candidate for lightweight proba-
bilistic neural networks on terminal or edge devices. However, despite
the above-mentioned advantages, the SPNs learned by the existing
structure and weight learning approaches (see [12]–[15]) are often
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oversized and contain much redundancy, thus preventing the full
exploitation of SPNs as compact graphical networks.

On the other hand, the recent surge of tensor arithmetic [16], [17]
in various neural networks has also blossomed in the machine
learning community [18]–[22]. The existence of a low-rank tensor
approximation in various practical problems, analogous to low-rank
matrix factorizations, can often lift the curse of dimensionality
and reduce computation and storage from exponential complexities
to a linear cost. In line with these works, this brief reveals the
intimate connection between SPNs and tensor trains (TTs) [23]. Most
importantly, a natural TT representation of an SPN (abbreviated
hereafter as a tensor SPN/ tSPN) will be proposed which allows
the use of a compact TT to represent this SPN when the sample
probabilities are reasonable.

In particular, we leverage the wealth of the existing SPN learning
algorithms and attempt to turn their inherently wide SPN tree outputs
(due to the intrinsic way of learning through partitioning the data
matrix) into a “deep” tree by means of a tensor decomposition subject
to a unique nonnegativity constraint. To the best of our knowledge,
such a mapping of an SPN onto a tSPN is proposed for the first
time, which automatically enforces the sharing of weights through the
TT cores. The tensor representation has an inference computational
complexity of O(N R2d), compared with that of O(N Nwd) in an
original SPN, where N is the number of samples, R is the maximal
TT-rank, Nw is the number of SPN subtrees, and d is the number of
variables. Experiments show that a typical Nw is at least ten times
larger than R2, which explains why the faster inference is possible
with the proposed tensor representation. Compared to SPNs, tSPNs
are able to both compress the number of parameters and speedup the
inference up to a factor of 100, with negligible loss in the probabilistic
modeling accuracy.

II. RELATED WORKS

Although deep networks show great potential in many scenarios,
their large model size quickly becomes a bottleneck for real-world
deployment. A trending topic in recent years has been in lowering
the computational costs of deep networks by model compression and
parameter quantization [24]–[26]. By doing so, the model storage,
memory bandwidth, and computation can then be reduced to facilitate
terminal or edge computing.

This work concerns the compression of SPN model parameters
through a TT. Before going into the details, we review a common
compression approach in neural networks: pruning. Pruning takes a
large network and deletes features or parameters under specific guide-
lines. For example, the optimal brain damage [27] and optimal brain
surgeon [28] techniques prune networks to reduce the number of
connections based on the Hessian of the loss function. Alternatively,
in [29], connections are eliminated based on the parameter magni-
tudes. The HashedNets [30] technique reduces model sizes using hash
functions to randomly group connections into hash buckets, where
all connections within the same bucket share a single parameter.
Hu et al. [31] delete connections based on the output statistics of
activated neurons.

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. (a) Example SPN with Boolean variables. Bold edges: induced tree
example (see Definition 3). (b) Scopes, denoted by {◦}, for every node in the
example SPN.

These schemes, however, do not generalize to SPNs because the
validity (see Definition 2 in the following) of an SPN may be violated
after pruning the trivial weights. There are relatively few works
on SPN compression, most existing schemes [4], [13], [32], [33]
prune learned SPNs by simply discarding edges with zero weights,
and recursively removing nonroot parentless nodes. In this way,
the resultant SPNs still preserve completeness and consistency and
are, therefore, still valid SPNs. An alternative to pruning is the
conversion of SPNs into graph SPNs [34]. Specifically, similarities
of subtrees stemming from one identical variable (node) in an SPN
are evaluated in a bottom-up fashion. Subtrees are then merged if
their similarities exceed a predefined threshold1. To this end, we aim
at finding compact yet valid tSPNs from a trained reference SPN and
will compare with approaches that preserve validity.

III. PRELIMINARIES

A. SPN Basics

We use a modified SPN example from [2], [35], shown in Fig. 1(a),
to motivate some concepts and operations of SPNs. Boolean variables
are chosen for the ease of illustration, while their generalization to
multi-nominal or continuous variables is straightforward [2]. To begin
with, an SPN is a directed acyclic graph with alternating layers of
sum and product (internal) nodes and a root node on top. The edges
emanating from sum nodes have nonnegative weights, while the edges
emanating from product nodes are all of unit weight. The leaves
contain the set of RVs X = {X1, . . . , Xd }. For boolean variables,
the indicator functions xi and x̄i are 1 when Xi and X̄i are 1,
respectively, and 0 otherwise.

Definition 1: The scope of an SPN is the set of variables appearing
in its leaves. The scope of an internal sum or product node is the
scope of the corresponding sub-SPN rooted at that node, as illustrated
in Fig. 1(b).

1Whether this procedure preserves SPNs’ validity, however, is uncertain.

Definition 2: An SPN is complete when all children of a sum node
have identical scope. It is consistent when no variable appears negated
in one child of a product node and nonnegated in another. An SPN
is valid when all its sum nodes are complete and all product nodes
are consistent.
Most existing algorithms learn valid SPNs [12]–[14], which act as
the starting point for the contributions in this brief. The sum nodes
have the semantics of a mixture of components, while the product
nodes represent features. An SPN is called a normalized SPN when
the edges emanating from a sum node have a total weight of one.
Consequently, the SPN in Fig. 1(a) is a valid and normalized SPN.
We use Sw(x) ∈ R to denote the SPN output where w is the
vector containing all (nonnegative) weights in the network, and
x ∈ R

d contains all RVs. A distribution is tractable if any marginal
probability can be computed in linear time proportional to the number
of graph edges.

Definition 3: An induced tree [14] is a subtree of an SPN originat-
ing from the root following two rules: 1) only one edge out of a sum
node is selected at a time and 2) all edges out of a product node are
selected. It can be readily checked that the total number of induced
trees arising from an SPN is τ = S1(1), i.e., by setting w = 1 and
x = 1 where 1 is the all-ones vector of the appropriate size.
For instance, the bold edges in Fig. 1(a) denote an induced tree
by selecting the left route out of each sum node. An important
concept that serves as a stepping stone to TTs is that of the network
polynomial [36]:

Definition 4: Let f (x) be the probability mass function of a set of
discrete RVs X = {X1, . . . , Xd }. The network polynomial of f (x)
is the multilinear polynomial

∑
x f (x)

∏
x λ(x), where

∏
x λ(x) is

the product of evidence indicators that has a value of 1 in the state x.
Any joint probability function of d I -valued discrete RVs is repre-
sented by I d probabilities. The corresponding network polynomial
has, therefore, I d terms. For example, the joint probability function
f (x) of the SPN in Fig. 1 has a network polynomial that consists of
23 = 8 terms

f (x) = (0.8)(0.3)(0.6)x1x2x3 + (0.8)(0.3)(0.4)x1x2 x̄3

+ (0.8)(0.7)(0.6)x1 x̄2x3 + (0.8)(0.7)(0.4)x1 x̄2 x̄3

+ (0.2)(0.5)(0.9)x̄1x2x3 + (0.2)(0.5)(0.1)x̄1x2 x̄3

+ (0.2)(0.5)(0.9)x̄1 x̄2x3 + (0.2)(0.5)(0.1)x̄1 x̄2 x̄3. (1)

An SPN can thereby be viewed as a network polynomial
Sw(x) := f (x) that encodes a probability function. The beauty of
an SPN lies in its exact and tractable inference. Equation (1) is an
instance of a normalized SPN. For an unnormalized SPN, there are
two ways to normalize it. One is to scale the edge weights out of
each sum node such that they add up to one, i.e., turning it back
into a normalized SPN. Alternatively, we can compute the partition
function in one bottom-up pass by setting x = 1, namely, Z = Sw(1),
such that Sw(x)/Z is a probability function.

Example 1: Assuming a normalized SPN, the probability of a fully
specified state (also called a complete evidence) x, e.g., x1 = 1,
x2 = 0, x3 = 1 in Fig. 1(a), is easily computed through a bottom-up
pass by setting xi = 1 and x̄i = 0 for i = 1, 3 and x2 = 0 and
x̄2 = 1.

Example 2: Assuming a normalized SPN, the probability of some
evidence, e.g., x1 = 1 in Fig. 1(a), can be computed by marginalizing
over x2 and x3. This is computed through a bottom-up pass by setting
x1 = 1 and x̄1 = 0, and xi = x̄i = 1 for i = 2, 3.
These two examples can be easily verified by comparing with (1).
Similar tractable operations allow us to compute the conditional
probability, as well as the most probable explanation (MPE) by
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Fig. 2. LearnSPN operations. (a) Slicing. (b) Chopping.

augmenting an SPN to incorporate the sum nodes’ latent variables
(namely, a selective SPN) and using maximum nodes in place of sum
nodes as described in [37].

Now, to transform an SPN into a tSPN, we need to slightly modify
the induced tree (Definition 3) by terminating at the leaf nodes.
This implies that the bottom-layer sum nodes of the SPN have a
univariate scope. We remark that the leftmost xi in Fig. 1(a) can be
regarded as a leaf node with one edge having zero weight, namely,
(x1 x̄1)(1 0)T , while the one adjacent to it is (x2 x̄2)(0.3 0.7)T .
In fact, prevailing SPN learning algorithms (e.g., LearnSPN, SPN-B
and SPN-BT2 [12], [13]) all produce SPN trees terminating at leaf
nodes. Although SPN illustrations often utilize networks with shared
weights (e.g., the two top branches in Fig. 1(a) are shared among
many induced trees), conventional learning algorithms are all based
on the “slice” and “chop” operations on the data set matrix [15],
or variants with additional regularization constraints. A toy example
illustrates the basic learnSPN flow. Referring to Fig. 2(a), the slicing
operation constructs children of a sum node by clustering similar
sample instances. This is often done via k-means clustering
or expectation–maximization (EM) for Gaussian mixture models
(GMMs). In Fig. 2(b), the chopping operation constructs children of a
product node by grouping-dependent variables. This is often done by
the G-test or mutual information methods wherein a scoring formula
is used to determine whether variables belong to the same group.

These hierarchical divisive clustering steps are surprisingly simple
and effective but they proceed in a top-down fashion and never
look back, which often leads to inherently wide SPN trees. For
example, in the standard NLTCS benchmark, learnSPN (with default
hyperparameters) generates an SPN with 19 layers and 1420 leaf
nodes even though there are only 16 variables. This example shows
that the existing learning algorithms do not readily produce shared
edges (and weights) across different induced trees and do not generate
SPNs that can otherwise be represented compactly.

B. Tensor Basics

Tensors are high-dimensional arrays that generalize vectors and
matrices to higher orders. A d-way or d-order tensor A ∈

2Binary row clustering (B); Tree distributions as leaf nodes (T).

R
I1×I2×···×Id is an array where each entry is indexed by d indices

i1, i2, . . . , id . We use the convention 1 ≤ ik ≤ Ik for k = 1, . . . , d .
When I1 = . . . = Id = I , the tensor is called cubical. MAT-
LAB notation is used to denote entries of tensors. Boldface capital
calligraphic letters A,B, . . . denote tensors, boldface capital letters
A, B, . . . denote matrices, boldface letters a, b, . . . denote vectors,
and Roman letters a, b, . . . denote scalars. A set of d tensors, like
the cores of a TT [23], is denoted A(1),A(2), . . . , A(d). The notion
of a rank-1 matrix is generalized to tensors as follows:

Definition 5 [16, p. 460]: For a given set of vectors a1 ∈
R

I1 , . . . , ad ∈ R
Id , the entries of the corresponding rank-1 tensor

A ∈ R
I1×···×Id are defined as

A(i1, i2, . . . , id ) := a1(i1)a2(i2) · · · ad(id ).

A rank-r tensor is the sum of r rank-1 tensors. The matrix-vector
product is extended to the multiplication of a vector to a tensor along
one of its modes.

Definition 6 [16, p. 458]): The k-mode product of a ten-
sor A ∈ R

I1×···×Id with a vector u ∈ R
Ik is denoted

B = A×k uT ∈ R
I1×···×Ik−1×Ik+1×···×Id for which the correspond-

ing entries B(i1, · · · , ik−1, ik+1, · · · , id ) are defined as

Ik∑
ik=1

u(ik)A(i1, · · · , ik−1, ik , ik+1, · · · , id ).

We will also require the notions of the Khatri–Rao product and tensor
vectorization:

Definition 7: If A ∈ R
N1×M and C ∈ R

N2×M , then
their Khatri–Rao product A � C is the N1 N2 × M matrix
[A(:,1)⊗ C(:, 1), · · · , A(:, M)⊗ C(:, M)], where ⊗ denotes the
standard Kronecker product.

Definition 8: The vectorization of a tensor A, denoted vec(A),
reshapes A indexwise into a column vector with the same number
of entries.
The storage of a d-way tensor with dimensions I requires I d ele-
ments. Tensor decompositions are crucial in reducing the exponential
storage requirement of a given tensor. In this work, we utilize the TT
decomposition [23].

Definition 9 [23, p. 2296]: A TT representation of a tensor
A is a set of d three-way tensors A(1) ∈ R

1×I1×R2 ,A(2) ∈
R

R2×I2×R3 , . . . , A(d) ∈ R
Rd×Id×1 such that A(i1, i2, . . . , id ) can

be computed from

R2,...,Rd∑
r2,...,rd=1

A(1)(1, i1, r2)A(2)(r2, i2, r3) · · ·A(d)(rd , id , 1).

Here, R2, . . . , Rd are called the TT-ranks, and the three-way tensors
A(1), A(2), . . . ,A(d) are called the TT-cores.
Our key idea is to represent a network polynomial of any joint
probability function by a low-rank TT. In this way, all I d (if
I1 = . . . = Id = I ) probabilities can be computed from O(d I R2)

numbers where R is the maximal TT-rank. Without loss of generality,
we consider only boolean variables (I = 2).

Definition 10: For a given network polynomial f (x) of d binary
RVs, we define the corresponding TT consisting of d three-way ten-
sors F (1) ∈ R

1×2×R2 ,F (2) ∈ R
R2×2×R3 , . . . ,F (d) ∈ R

Rd×2×1

such that the evaluation of f (x) for a given state x can be computed
from(

F (1) ×2

(
x1
x̄1

)T
)(

F (2) ×2

(
x2
x̄2

)T
)
· · ·

(
F (d) ×2

(
xd
x̄d

)T
)

.

(2)

Note that the F (1)×2
(
x1 x̄1

)
and F (d)×2

(
xd x̄d

)
factors are row

and column vectors, respectively. The other factors are matrices such
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Fig. 3. tSPN equivalence of the SPN shown in Fig. 1(a).

that the whole product results in the scalar f (x). Small TT-ranks
imply small matrix factors, which, in turn, gives rise to a massive
reduction in both the number of network parameters and the inference
time.

IV. SPN TO TSPN CONVERSION

The major innovation of this brief stems from the important
observation that an SPN induced tree terminated at leaf nodes is,
in fact, a rank-1 tensor. Using Fig. 1(a) again as an example, there
are two such induced trees that can be regarded as the addition of
two rank-1 terms with mode products (xk x̄k) onto their kth mode,
as shown in Fig. 3. Consequently, summing all the rank-1 terms
produces a d-way cubical tensor of dimension I = 2. This tensor
can then hopefully be sufficiently approximated by a low-rank TT
as a particular kind of tSPN. We aim at building a tSPN based on
the TT structure, depicted in Fig. 4, while satisfying the following
constraints.

1) The TT-cores contain only nonnegative entries.
2) There is a mixed core, whose position is arbitrary, with all its

entries summing up to 1.
3) Every core to the left of the mixed core is a left normalized core,

which means that each of its vertical slices F (k)(:, :, αk+1)
sums up to 1.

4) Every core to the right of the mixed core is a right normalized
core, which means that each slice F (k)(αk , :, :) sums up to 1.

5) When we encounter a slice that contains all zeros, it means
the two slices (one vertical and one horizontal) in two adjacent
cores corresponding to the same αk can be removed and the
dimension Rk is shrunk by one.

The first constraint ensures that a tSPN has nonnegative weights. The
remaining constraints ensure that the partition function Z = 1 when
xk = x̄k = 1 for all k’s. A tSPN obeying the above constraints
is called a normalized tSPN in analogy to a normalized SPN. The
left/right normalized cores and the mixed core are strongly analogous
to the mixed-canonical form of a TT which consists of left/right
orthogonalized cores and a mixed core. We remark that a tSPN having
a TT structure automatically enforces the desired weight parameter
sharing as well as a deep network. This is because each scalar
(namely, probability) evaluation of a TT-based tSPN, when contracted
with (xk x̄k) at its kth mode, k = 1, . . . , d , results in a matrix product
across all TT-cores (see Definition 10).

Recalling from Fig. 3, a tSPN is fully captured by a d-way cubical
tensor F through summing all rank-1 terms (induced trees) extracted
from the learned SPN. The conversion of such a full-tensor tSPN
into a TT-based tSPN then boils down to converting F into its
TT format F (1), . . . ,F (d). A direct way to obtain the TT form
of F is by regarding each rank-1 tensor term, corresponding to
an induced tree, as a rank-1 TT and sum them all up into a new
TT [23]. However, this makes the TT-ranks R2, . . . , Rd equal to the
number of rank-1 terms and, therefore, impractically high. Although
TT-rounding [23, p. 2305] by using the singular value decomposi-
tion (SVD) between successive cores may reduce the TT-ranks, it will

destroy the nonnegativity of the weights and result in cores with
negative values. Similar issues arise when we use nonnegative tensor
factorization (NTF) algorithms [38] on F which also produce a large
number of rank-1 tensor terms. In fact, constructing the full tensor F
explicitly is computationally prohibitive when the number of variables
d go beyond 17 on our computers. This motivates us to develop
an SPN-to-tSPN construction algorithm, called spn2tspn, through
a recently proposed tensor-network nonlinear system identification
method [39] as explained in the following.

A. Algorithm: spn2tspn

Starting with a valid SPN learned from a given data set, we com-
pute by exact inference the probabilities of a set of training input
samples and randomly generated samples. This step has a complexity
linear to the number of SPN edges and generates a set of multi-input
single-output (MISO) data suitable for the identification of the
TT underlying the tSPN. More specifically, training samples are
meaningful data and constitute positive samples used in the SPN
learning and, therefore, correspond to higher probabilities. Whereas,
the uniformly generated samples are negative samples outside the data
set3. They are fed into the SPN for their probabilities that are mostly
close to zero. We then utilize these MISO data to identify a TT-based
tSPN by adapting the approach in [39]. In particular, with a set of
N (positive and negative) samples together with their probabilities,
the goal is to obtain a tensor F ∈ R

2×···×2 in a TT form such that
the probability distribution it represents is aligned with that of the
SPN. We first collect the N column vectors (xk x̄k )T into the matrix
S(k) ∈ R

2×N for k = 1, . . . , d . Next, we formulate the optimization
problem

min
F
||ST vec(F )− y||22 (3)

where vec(F ) is represented by a TT with nonnegative cores F (k),
and ST ∈ R

N×2d
is computed from

S = S(d) � S(d−1) � . . .� S(1) (4)

and y ∈ R
N×1 is the vector of probabilities of the N samples.

Following from [39], (3) is broken into least-squares subproblems
of smaller sizes solved by the alternating linear scheme (ALS).
However, different from [39], we aim at obtaining a nonnegative F (k)

to ensure clear probabilistic semantics. Therefore, a nonnegativity
constraint is further imposed on each subproblem, which is then
solved by the nonnegative least-squares (NNLS) method [40] within
each ALS iteration. This formulation also resembles the tensor
completion work [41] that employs a TT format but without the non-
negativity constraint. In short, one solves the following least-squares
subproblem for F (k) by NNLS

y =

⎛
⎜⎜⎜⎜⎜⎝

aT
>k,1 ⊗ s(k)T

1 ⊗ a<k,1

aT
>k,2 ⊗ s(k)T

2 ⊗ a<k,2
...

aT
>k,N ⊗ s(k)T

N ⊗ a<k,N

⎞
⎟⎟⎟⎟⎟⎠ vec(F (k)) (5)

where s(k)
l ∈ R

Ik×1(1 ≤ l ≤ N) denotes the lth column of S(k), and
aT
<k,l and a>k,l are the auxiliary notations defined as

aT
<k,l := (F (1) ×2 s(1)T

l ) . . . (F (k−1) ×2 s(k−1)T
l ) ∈ R

Rk

a>k,l := (F (k+1) ×2 s(k+1)T
l ) . . . (F (d) ×2 s(d)T

l ) ∈ R
Rk+1 .

3Empirically, negative samples generated from uniform sampling yield
consistently good performance in all our numerical experiments.
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Fig. 4. Normalized tSPN analogous to a normalized SPN, wherein the shaded parts within a core have entries summing up to unity. The vertical, cross, and
horizontal lines in the lower tensor diagram denote left normalized, mixed, and right normalized cores, respectively.

TABLE I

DATA SET ATTRIBUTES

This update is followed by a normalization step to ensure F (k) is
left (right) normalized. Each of the TT-cores is updated sequentially
until the maximum number of iterations is reached or when the
residual in (3) falls below a given tolerance. The pseudo-codes are
summarized in Algorithm 1.

Algorithm 1 spn2tspn (SPN-to-tSPN Mapping)
Input: Initial TT-ranks (defaulted at 20), a valid SPN and N positive
and negative samples.
Output: A compressed TT-based tSPN.
1: Construct d input matrices S(1), S(2), . . . , S(d) as described above
2: Infer the probabilities of the N samples via the valid SPN and

stack them into y
3: Randomly initialize nonnegative TT-cores with prescribed initial

TT-ranks
4: while stopping criteria not met do
5: for k = 1, . . . , d − 1 do
6: vec(F (k))← solve (5) using NNLS
7: b← sum over the first and second indices of F (k)

8: Identify nonzero slices �← find(b �= 0)
9: F (k) ← F (k)(:, :,�)×3 diag(1./b(�))

10: F (k+1)← F (k+1)(�, :, :)×1 diag(b(�))
11: end for
12: for k = d, . . . , 2 do
13: vec(F (k))← solve (5) using NNLS
14: b← sum over the second and third indices of F (k)

15: Identify nonzero slices �← find(b �= 0)
16: F (k) ← F (k)(�, :, :)×1 diag(1./b(�))

17: F (k−1)← F (k−1)(:, :,�)×3 diag(b(�))
18: end for
19: end while

The core steps in Algorithm 1 are Lines 6–10 and Lines 13–17,
where Lines 6 and 13 include the use of NNLS for enforcing
the nonnegativity of cores and Lines 7–10 and 14–17 are the

left/right normalization of cores. Notably, zero slices are automat-
ically removed during the normalization process. Once a tSPN is
built, a reserved portion of the data set input samples (not used in
the learning) is used as test inputs and their probabilities are used
as test outputs to check the quality of the tSPN. We remark that the
differences in Algorithm 1 from that in [39] are threefold: 1) addi-
tional nonnegativity constraints in subproblems; 2) supplementary
autotrimming and redundancy removal; and 3) disparate normaliza-
tion procedures due to a newly defined normalized canonical form.

The most computationally expensive steps in Algorithm 1 are the
NNLS solves, with a complexity of O(R6) flops in each iteration,
where R is the maximal TT-rank. The inference in a tSPN inherits the
efficiency of traditional SPNs and can further exploit the TT structure.
This is done as described by (2) by computing the two-mode product
of each TT-core F (k) ∈ R

Rk×2×Rk+1 with the vector (xk x̄k ) and
then multiplying the obtained matrices and vectors. This implies that
batch inference can be performed by a sequence of two-mode prod-
uct-Khatri–Rao product between TT-cores and inputs. This requires
O(N R2d) flops compared with O(N Nwd) flops in an SPN, where
N is the number of samples, R is the maximal TT-rank, Nw is the
number of SPN subtrees, and d is the number of variables.

V. EXPERIMENTS

A. Data sets and Implementations

We evaluate the proposed spn2tspn algorithm on publicly available
benchmark data sets4. Relevant details of number of variables and
average probability (in logarithm) of training samples are listed
in Table I. We sort the data sets by their sample probabilities, which
we will refer back when we discuss the applicability of the proposed
algorithm. Reference SPNs are trained on the above data sets by
Spyn [13] (Python implementation.5) Algorithm 1 is implemented in
MATLAB6 and all experiments were run on a desktop computer with
an Intel i5 quad-core processor at 3.2-GHz and 16-GB RAM.

B. Metrics and Baselines

Our aim is to find an alternative valid SPN representation
that exhibits negligible probabilistic modeling loss. Subsequently,
we want to ensure samples’ probabilities are significantly larger than

4https://github.com/arranger1044/spyn/tree/master/data
5https://github.com/arranger1044/spyn
6https://github.com/IRENEKO/tSPN
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TABLE II

SPN AND tSPN INFORMATION FOR VARIOUS DATA SETS

those of negative samples. To validate this condition7, we adopt the
metrics of false positive rate (FPR, Type I error) and false negative
rate (FNR, Type II error) [42] with a threshold probability θ , where

FNRθ = #{sample : P(sample) < θ}
#samples

FPRθ = #{neg.sample : P(neg.sample) ≥ θ}
#neg.samples

.

With FNRθ and FPRθ , we are able to measure how many negative
samples can, indeed, have larger inference probabilities than some
of the samples. Specifically, when we fix the FNRθ to, say, 2%
and evaluate the corresponding FPRθ , it means we want to quantify
the portion of negative samples that have larger probabilities than
2% of the samples. This yields a fair and effective quantification
of how good a probabilistic model can discriminate samples from
negative samples in both SPNs and tSPNs. In addition, to fairly
compare our proposed method in the context of validity-preserving
approaches, a baseline pruning approach that discards weights with
the few smallest values is also applied to the reference SPNs with
the same parameter reduction ratio as in the spn2tspn conversions.

C. Results and Applicability

We summarize the experimental results in Table II, where data sets
are ordered as in Table I. As the inference complexities of tSPNs
and SPNs are O(N R2d) flops and O(N Nwd) flops, respectively,
the difference in complexities boils down to the comparison of the
squared maximum TT-rank R2 and the number of subtrees Nw .
On account of the above, the maximum TT-rank R in tSPNs is listed
together with the number of SPN subtrees Nw in Table II, alongside
the inference times.

After obtaining the reference SPNs, we apply Algorithm 1 to map
the SPNs to their tSPNs. As given in Table II, the total number of
parameters in the tSPNs are up to a 100 times smaller compared to the
original SPNs, which implies that the original SPNs, indeed, contain
nonneglectable redundancy. Furthermore, one can readily check that
the tSPNs inference is up to 146.7× faster than the conventional SPN
inference, which is explained by different values of R2 and Nw .

Besides, the dramatic reductions in the number of parameters and
speedups in the inference time, it is also remarked that there are small
differences between the statistical outputs of the SPNs and tSPNs of
the KDDCup2K, MSNBC, MSWeb, and Retail data sets, relatively
small differences for the NLTCS data set, and larger differences
for the Plants data set. Specifically, no negative samples will be
interpreted as samples when the FNR of the samples is 2% and 5%
on the KDDCup2K, MSWeb, and Retail data sets. On the NLTCS
and MSNBC data sets, the tSPN exhibits a much better capability
in distinguishing samples and negative samples than the baseline

7A typical metric, Kullback–Leibler divergence, requires the two distribu-
tions to satisfy absolute continuity, which is typically not satisfied in SPNs
and their tSPNs.

pruned SPN when FNR= 2%, 5%. As the average probability of
data set samples decreases, both the baseline pruned SPN and the
tSPN of the Plants data set fail to distinguish at least 5% of samples
with the smallest probabilities from negative samples. We summarize
the runtime of our proposed spn2tspn algorithm in the last column
in Table II. A comparison of the total runtime between our proposed
method and that of SPN training (Spyn) is difficult as different
languages were used for the implementation (MATLAB vs Python).
Some additional remarks are in order as follows.

1) The depth of a tSPN (corresponding to the number of TT-cores)
is inherently high, while its width (corresponding to TT-ranks)
is usually low. This means a higher expressive efficiency is
obtained.

2) We observed poorer fitting onto tSPNs in data sets with small
average sample probability, where the inferred tSPN’s ability
in distinguishing samples from negative samples degrades.
We propose two possible causes: 1) numerical (ill-conditioned)
issues in linear equations and 2) negative samples used in
tSPN training are bound to be insufficient when the number
of variables is large.

3) Regarding the above-mentioned problems, a natural follow-up
question is whether tSPN learning can be directly performed on
the TT or other tensor structures rather than starting from the
SPN followed by tSPN conversion. Research along this line is
underway and results will be reported in our upcoming work.

VI. CONCLUSION

This brief has mapped an SPN with d variables onto a d-way tensor
named tensor SPN or tSPN. The transformation of the latter into
a TT then allows inherent sharing of originally distributed weights
in an SPN tree, thereby leading to an often dramatic reduction in
the number of network parameters as shown in various numerical
experiments, with little or negligible loss of modeling accuracy.
The TT-based tSPN also automatically guarantees a deep and nar-
row neural-network architecture. These promising new results have
demonstrated tSPN to be a more natural canonical form for realizing
an SPN compared to the existing tree structure.
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