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Integrative approach for transducer
positioning optimization for ultrasonic
structural health monitoring for the
detection of deterministic and
probabilistic damage location

Vincentius Ewald1 , Roger Groves1 and Rinze Benedictus2

Abstract
The concept of structural health monitoring has been introduced to ensure structural integrity during the design lifetime
of a structure. The main objectives of structural health monitoring are to detect, locate, quantify, and predict any damage
that occurs during this lifetime of the structure so that effective and efficient maintenance and repair procedures can be
performed. The location of structural damage events can be discretized as deterministic and probabilistic. A determinis-
tic location specifies that the damage occurs in high-stress regions or other regions that can be predicted by the struc-
tural design, such as the most probable location for a fatigue crack. A probabilistic damage event is one where the
location of the damage is independent of structural design parameters, such as hail impact, bird strike, and impact from
ground vehicles. A structural health monitoring system should be able to handle both these damage occurrences. In our
previous work, we optimized the transducer placement in Lamb wave–based structural health monitoring for the detec-
tion of a fatigue crack that emerges from a rivet hole. In this article, we demonstrate a combination of that method with
a different sensor placement optimization method to add the capability to detect probabilistic damage location. First, we
considered the ultrasonic wave attenuation in the structure and based on this attenuation, we created a fitness function.
Since this fitness function is difficult to solve due to its combinatorial nature, we compared three common metaheuristic
stochastic strategies: global random search, greedy algorithm, and genetic algorithm, for solving this problem. The results
of this analysis were then integrated with the previously described deterministic approach, making a global structural
health monitoring sensor placement strategy that balances the need to detect both pre-determined and random damage
location occurrences. The analytical result of the study presented is validated by experiment.

Keywords
Ultrasonic structural health monitoring, sensor placement option, fatigue crack, impact damage, metaheuristic search,
random search, greedy algorithm, genetic algorithm

Introduction

Non-destructive testing (NDT) has been implemented
in many industries to ensure structural safety and relia-
bility. Structural health monitoring (SHM) can be
regarded either as a standalone system or as a support
to already existing NDT techniques. SHM has been a
subject of interest in the last decade due to its potential
economic benefit, particularly in structural mainte-
nance1,2 of aircraft and civil infrastructure. Some exam-
ples of SHM techniques and methodologies include
fiber optic sensing (FOS),3,4 strain-sensing based on
micro-electro-mechanical systems (MEMS),5 eddy cur-
rent,6 comparative vacuum monitoring (CVM),7 and

ultrasonic guided Lamb waves.1,8 Lamb waves are one
of the promising SHM techniques due to their rela-
tively long-range inspection capability in plate-like
structures,8 which makes them suitable for monitoring
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large structures such as an oil pipeline or an aircraft
fuselage.

In practice, SHM still encounters a lot of practical
problems. One of them is robust pattern recognition in
signal classification for damage detection. One of the
vital factors that influences the statistical robustness of
the damage detection is the sensor placement. For sen-
sor positioning in SHM, previous work has studied
prioritizing the sensor location based on a detectability
limit,9 assessing the modal analysis parameter for a
damage localization assessment on a truss structure,10

and using global search and greedy algorithms.11 When
focusing on Lamb wave SHM, the number of works
focusing on sensor positioning becomes few. For exam-
ple, Lee and Staszewski12 used the local interaction
simulation approach (LISA) to model a small number
of damage scenarios and based on the result of the
simulations, the locations with the highest peak-to-
peak locations were identified as suitable locations for
sensor placement.

A related approach using simulation of Lamb wave
propagation was proposed by Venkat et al.13 In this
approach, the summed-up energy captured by all indi-
vidual sensors was plotted and the most optimal sensor
location was determined as the one with the highest
captured energy. A similar approach was realized in an
experimental setup by Stawiarski and Muc.14 However,
instead of the energy, they calculated the damage index
(DI) based on the correlation coefficient (CC) between
the baseline signal and the signal from the defected
structure. Fendzi et al.15 proposed a novel approach
for sensor placement using geometric dilution of preci-
sion (GDOP), which is based on a Lamb wave ray tra-
cing method for known damage locations. Haynes16

proposed sensor placement by minimizing the Bayesian
cost and thus selected the locally optimal sensor loca-
tion. However, if the damage occurs outside of that
area, it might fail to detect it.

Mallardo et al.17 proposed a hybrid probabilistic
approach using a combination of a genetic algorithm
(GA) and an artificial neural network (ANN), where
they related the fitness function to the approximate
error of ANN. This approach takes a very dense net-
work into consideration and seems to be suitable for
monitoring stringers and frames, but at the same time it
can be considered an overkill and not cost-efficient for
monitoring an impact in an open area. In more recent
study, Thiene et al.18 introduced DI-free sensor place-
ment optimization based on a fitness function that max-
imizes the coverage area of the sensor network. They
calculated the coverage of each pixel in the geometry
based on the pitch-catch technique, so that every pixel
that contributes to the probability that a damage in a
random location is being detected is counted. Their goal
was to maximize the coverage area of the sensor

network. A related approach on maximizing coverage
area was recently proposed by Soman et al.19 and
Ismail et al.20 Some of these techniques are also men-
tioned in a recent review by Ostachowicz et al.21 They
mentioned that as of July 2018, sensor placement
option only comprises about 4.5% of the total research
SHM papers. We believe this figure has not changed
much at the time of writing this article.

Based on these reviews, we identified two main
streams of research in sensor positioning, namely:

1. Transducer placement for detecting hotspot dam-
age from predictable locations based on fatigue
analysis such as a rivet hole crack, and

2. Transducer placement for detecting stochastic dam-
age locations that is independent of fatigue analy-
sis, such as hail impact or tool drop.

The objective of this work is to combine these two
approaches in a sensor positioning algorithm to move
toward a more practical application of a Lamb wave
SHM sensor positioning strategy. As described by
Parker,22 the Bayesian approach can concentrate only
on either the local or the global sensitivity but not both
at the same time. We would like to compensate for
both in the methodology proposed in this article and
thus our objective is to implement a hybrid global and
local approach for Lamb wave SHM.

The reason we discretize the sensor placement strat-
egy into global and local positioning is that we assume
both hotspot damage of, for example, rivets and impact
occurs all the time; thus, a more generic Bayesian
approach as has been proposed by Parker is not neces-
sarily efficient to detect hotspot damage. We are aware
that if no hotspot crack occurs, the pure global
approach as proposed by Thiene et al.18 and Soman
et al.19 would make sense. However, in this case, let us
introduce the counter-intuitive question: how often do
we see an aircraft without any mechanical fasteners?
Thus, the approach we take is to lean toward some-
thing we know: a fatigue crack would be highly likely
to appear at hotspot location and must be prioritized
first. After that, the global sensor placement strategy is
built on top of the deterministic approach.

To concretize this, we integrate the hotspot SHM
approach based on damage tolerant design, described
in Taltavull et al.,23 and the image fusion and blob
detection algorithms in Ewald et al.,24 with the DI-free
global placement approach by creating a fitness func-
tion based on attenuation18 and searching for a viable
solution using metaheuristics search algorithms on top
of the preselected sensing location for hotspot damage
detection. By optimizing the sensor position, we believe
we can maximize the information gain (i.e. amplitude
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of wave scatter) that will be useful to maximize the
probability of detection (POD).

Theory

Problem statement of SHM

We are working with a novel signal processing algo-
rithm called Deep SHM25—an SHM based on the deep
learning, that is, a signal classification algorithm based
on multi-layer neural network. The generic problem
statement of all SHM methods, including ultrasonic
Lamb wave techniques, can be formulated using Bayes’
conditional probability P,25–27 where for SHM, this can
be rewritten as

P(hu(XP,T,C,V)jXP,T,C,V)

=
P(XP,T,C,Vjhu(XP,T,C,V)) � P(hu(XP,T,C,V))

P(XP,T,C,V)

ð1Þ

where u are the synaptic parameters (or simply neural
network weights) that have to be optimized, hu is the
hypothesis of damage state (i.e. existence, location, size,
and type of damage) which is dependent on the cap-
tured signal XP,T,C,V, and influenced by parameter
tuples P, T, C, V, which correspond to actor, transi-
tional, medium, and environmental domain, respec-
tively. A detailed explanation of these parameters can
be found in Ewald et al.,25 and to summarize we depict

the above-mentioned parameters in Figure 1. Equation
(1) can be understood by considering that the posterior
belief P(hu(XP,T,C,V)|XP,T,C,V) is equal to the multipli-
cation of the prior belief P(XP,T,C,V) by the likelihood
P(XP,T,C,V|hu(XP,T,C,V)) that XP,T,C,V will occur
given that hu is true. Typically, for SHM (but also for
NDT) the objective is to maximize the value of
P(hu(XP,T,C,V)|XP,T,C,V) which means it should be
close to, if not equal, to 1. This objective can be formu-
lated mathematically as either a sigmoid function or
with the generalized logistic regression (also called soft-
max)28 which maps any real values from R into the
range [0, 1].

Assume that the observed signal XP,T,C,V consists
of k-features, then the predicted probability for the jth
class of damage information given the signal XP,T,C,V

given k-dimensional Hilbert space is

P(hu(XP,T,C,V) = jjXP,T,C,V) =
exp (½XP,T,C,V�T � uj)PK

k = 1

exp (½XP,T,C,V�T � uk)

ð2Þ

All machine learning models involve a training algo-
rithm to obtain the optimal model parameters u. Once
the training is done, the model is tested to judge its pre-
diction reliability. For both SHM and NDT, the objec-
tive is to maximize the true positives (TPs) and to

Figure 1. The realm of ultrasonic Lamb wave SHM with piezoelectric transducer (PZT), where P, T, C, V are actor, transitional,
medium, and environmental domain, respectively.
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minimize false negatives (FNs), thus maximizing the
POD, also known as the sensitivity or recall rate in the
confusion matrix

POD =

P
TPP

(TP + FN)
ð3Þ

In equation (3), TP and FN can only take Boolean
values B as defined in

B =
1 if sgn(max (P(hu(XP,T,C,V) = jjXP,T,C,V) )) = 1

0 else

�
ð4Þ

which means that the posterior belief
P(hu(XP,C,V) = j|XP,C,V) takes value 1 if its maxi-
mum probability is signed as 1. The general objective
of SHM is then given by

arg max
u,P,T,C,V

P(hu(XP,T,C,V) = jjXP,T,C,V)

) arg max
u,P,T,C,V

TP
ð5Þ

From equation (5), it can be seen that there are a mani-
fold of parameters in P, T, C, V that can be fine-
tuned, but one of the crucial parameters that influences
the posterior belief is the sensor coordinate,26 which is
contained in the actor domain P because not all loca-
tions in the material will receive the same energy. A
more detailed derivation on amplitude calculation at
any arbitrary point in the material can be found in
Bao29 and Su and Ye.30 As the piezoelectric transducers
(PZTs) are permanently attached to the structure, it
might pose a problem if the sensor network topology
can only detect a locally propagating Lamb wave. In
that case, P(hu|XP,T,C,V) will be per se lower and the
overall SHM system reliability would be low.

Search metaheuristics

As there are many possibilities to position the sensors,
it is not viable to test every single sensor network con-
figuration. This will be explained in detail in section
‘‘Sensor positioning for detection of random damage
occurrences.’’ When an exhaustive brute force search
takes too much time, normally a heuristic search is
employed to find a close-to-optimal solution within a
reasonable amount of time. To find a viable solution
from such a large search space, one could consider the
following approaches: (1) no prior knowledge was used
during the decision-making; thus, the decision prob-
ability is equally distributed over the decision set, (2)
prior knowledge is used in the decision-making and for
sorting the decision options, and (3) no prior

knowledge was involved at the beginning but is gradu-
ally incorporated as the decision-making process
evolves.

These approaches can be related to several popular
search heuristics.31–34 In a random search,31 no prior
knowledge is required. For the greedy algorithm,32 the
prior knowledge is required to sort available decision
options. In GA,33,34 no prior knowledge is required at
the beginning, but decision options are updated after
including this information. These approaches to sensor
positioning are briefly described in sections ‘‘Global
random search’’ to ‘‘GA.’’

Global random search. Global random search is the
easiest method to use to solve combinatorial problem.
However, given a limited time constraint, it is also the
least efficient since the optimal sensor position might
not be found. The algorithm is very simple and can be
demonstrated in only four lines of pseudocode, as
shown in Algorithm 1. The random value in this case is
a random position of xi, yj.

Greedy algorithm. According to Cormen et al.,32 ‘‘a
greedy algorithm always makes the choice that looks
best at the moment. That is, it makes a locally optimal
choice in the hope that this choice will lead to a globally
optimal solution.’’ For some problems, the greedy algo-
rithm can provide an optimal solution, while in other
cases it does not,32 because sometimes the selected solu-
tions reach a local optimum. In many cases, a greedy
algorithm is designed as a sequential process, but it is
possible also divide the search spaces and assign a
greedy agent to each particular search space and to exe-
cute each task in parallel. For brevity, the example
pseudocode of a sequential greedy algorithm is shown
in Algorithm 2.

In the greedy algorithm, the function value will be
sorted from the minimum to maximum, and the argu-
ment maximum is chosen as the optimal solution. For
multiple sensors, the greedy algorithm will search the
next optimal sensor position step by step. That is, the
next sensor position is determined by the previous sen-
sor position by considering the last previous sensor
position. In practice, this will lead to locally optimal
solutions that might still be globally optimal solution
within reasonable amount of time.

Algorithm 1. Random search.

1 Given a random value of search space
2 Until termination condition, repeat:
3 Calculate f(random value)
4 Update if f(random value + ) . f(random value)
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GA. The GA is a biologically inspired algorithm from
the Darwinian concept of natural evolution.33 More
concretely, it is a metaheuristic search approach that is
applicable to many optimization problems. Usually, a
GA contains three main operators: mutation, crossover,
and selection.34 Typically, the procedure starts with a
given initial population that will be assessed against its
fitness. Those individuals that have the best fitness are
crossed-over with each other and/or a ‘‘genetic muta-
tion’’ is applied, for example, by bit-flipping or replace-
ment. The individuals who do not have the best fitness
are not selected. This procedure is repeated several
times until a specified certain termination condition is
reached. A typical GA is described in Algorithm 3.

For the sensor placement problem, the sensor coor-
dinates xi, yj are first encoded as a chromosome
(Figure 2) that will be assessed against the fitness func-
tion in line 10 of Algorithm 3. The genome length is
2N, where N is the amount of the sensors to be
installed.

Typically, the aircraft manufacturer or operator will
determine how many sensors are to be installed based
on the balance between cost, additional weight, POD/
sensor network performance and safety. Generally,
more sensors installed means a higher Lamb wave cov-
erage, but this also means higher costs and energy con-
sumption, and more weight since every sensor is
attached to a cable. Also, after a certain number of sen-
sors, the coverage will only slowly increase up to the
upper limit of the sensor network performance.

As defined in Algorithm 3, there are two basic opera-
tions in a GA: the mutation and the crossover operator.
The mutation operator alters one or more values in the
chromosome and its purpose is to preserve and intro-
duce diversity, while the crossover operator is used to
combine the genetic information of two parents to gen-
erate new children. In practice, there are many other
ways to conduct mutations and genetic operations.33,34

For a simplified illustration, we will only show the most
common methods in Figure 3.

In a single-point crossover, the parent chromosome
is divided into two sub-genomes and the genome infor-
mation is permuted in order to derive the crossover chil-
dren. To create a mutated generation that can be either
a mutated parent or a mutated child, two common
methods are normally used: (1) the bit string mutation
(where a random chromosome is inserted into individ-
ual) and (2) the bit-flip mutation (where the chromo-
some order in the mutated individual is flipped). The
mutation operation rate is required to be larger than 0
to avoid being stuck in a local minima, but is typically
kept low, so that the algorithm does not jump too fast
from one optimum to another optimum as both of these
conditions make the search unnecessary long.

Methodology

In our previous work,24 we demonstrated a method to
optimize the transducer placement for Lamb wave–
based SHM for detection of a fatigue crack that
emerges from a rivet hole in an aircraft fuselage panel.
In this article, we focus on barely visible impact dam-
age that is typically caused by low velocity impact
(LVI) which is defined as under 50 m/s.35 If we design
an SHM system to detect this impact damage accord-
ing to the deterministic approach, then the sensor con-
figuration would change for each possible impact
location, hence rendering the deterministic approach
useless because it would require millions, if not more
experimental validations.

In mathematics and computer science, a comparable
problem to this sensor network coverage optimization
is called the Art Gallery Problem, which originates
from a real-world problem of guarding an art gallery
with the minimum number of guards who together can
observe the whole gallery.36 Conceptualizing the art
gallery problem into SHM sensor positioning design

Algorithm 2. Greedy algorithm.

1 Given a set of particular value of search space
2 Until termination condition, repeat:
3 Calculate f(value)
4 Sort f(value) from min to max
5 argmax f(value)

Algorithm 3. Genetic algorithm.

1 Given an initial population of search space
2 Define mutation operator
3 Define crossover operator
4 Until termination condition, repeat:
5 Calculate f(initial population)
6 Sort f(initial population) from min to max
7 Apply mutation operator from step 2 to selected

population
8 Apply crossover operator from step 3 to selected

population
9 Update population to a new population

10 Calculate f(new population) from step 9
11 Select argmax f(new population)
12 Return to step 7

Figure 2. Sensor position as chromosome in genetic algorithm
for N sensors.
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means we would like to maximize the coverage of the
monitored area given a minimum number of PZT sen-
sors. The design of an SHM system to detect random
damage locations in an aircraft is a combinatorial prob-
lem of similar complexity, where it is often assigned as
NP-complete where NP stands for non-deterministic
polynomial time, which means that such problems are
solvable in polynomial time on a non-deterministic
Turing machine.37

Sensor positioning for detection of random damage
occurrences

As previously explained, the deterministic approach
would require too many simulations, and is computa-
tionally unfeasible. Thus, it would be useful to maxi-
mize the sensor coverage area to detect damages that
occur within that coverage area. Therefore, we create a
target function that describes the attenuation at a cer-
tain location in the propagation space of the Lamb
wave. First, consider the measured signal power P in
an infinite plate at point x where the original excitation
signal power is P0,

39,42 the geometrical attenuation fac-
tor a is proportional to 1/Or30,38–41 and r is the distance
from the wavefront to the point x

P = P0 � a � exp (� b � r) where a }
1ffiffi
r
p ð6Þ

The material attenuation b depends on frequency
and thickness, for example, for a 1-mm thick aluminum
plate, the attenuation coefficient is between 2.2 and
17 dB/m for a frequency between 0.5 and 5 MHz.39,42

For a given coordinate (xi, yj), we can construct an effec-
tive travel distance assigned in pixel value f(rij) by multi-
plying the total attenuation [aij�exp(2b�rij)] by the
propagating distance rij from the wave propagation
source so that it is comparable to a measured Lamb
wave signal amplitude attenuation profile

f (rij) = rij � ½aij � exp (� b � rij)� where aij}
1ffiffiffi
rij
p ð7Þ

where the distance rij is defined as the Euclidian dis-
tance from the wave propagation source at coordinate
(xi, yj) up to an arbitrary pixel located in coordinate
(x̂i, ŷj) and aij is the dimensionless geometric spreading
correction factor at the distance rij

rij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x̂i � xi)

2 + (ŷj � yj)
2

q
ð8Þ

Consider a structural inhomogeneity such as rivet
hole at a coordinate (x̃i, ỹj) that acts as a secondary
source, since a Lamb wave wavefront is scattered at the
rivet holes. In our assumption, we simplified the scat-
tering occurring at the rivet to be homogeneous in all
direction. While this is not very realistic, the scatter
from such small rivets tends to be small in amplitude.43–45

A more detailed analytical scattering model could be
included in the calculation if a reliable formula is avail-
able. Regardless of the scattering direction, the secondary
source emits a lower energy as the waves have lost energy
in traveling from the source PZT to the rivet hole via the
indirect path r̃ij defined by

~rij = rPZT�rivet + rrivet�pixel =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(~xi � xi)

2 + (~yj � yj)
2

q
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(~xi � x̂i)

2 + (~yj � ŷj)
2

q ð9Þ

The pixel value in equation (7) for the secondary
source can be rewritten in equation (10)

f (~rij) = rrivet�pixel � ½~aij � exp (� b � ~rij)�

= rrivet�pixel �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rPZT�rivet � rrivet�pixel
p � exp (� b � ~rij)

" #
ð10Þ

where ãij is the recalculated geometrical spreading cor-
rection factor at distance rij. As an example, consider a

Figure 3. Basic operation of genetic algorithm: mutated and crossover from parent generation.
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resolution of 1 pixel that corresponds to 1 cm in real-
ity. The function values of equations (7) and (10) for
different values of b with the distance rrivet-pixel = 0.25
m are depicted in Figure 4(a) and (b), respectively.
Note that this pixel value is only a dimensionless con-
struct to indicate the Lamb wave attenuation profile.
The intuition that leads to the above-mentioned fitness
function is that it would be favorable for the Lamb
wave to travel as far as possible; however, this is limited
by the attenuation. Damage that happens in the area
which is too close to the wave source would probably
have a lower POD and an impact that happens in the
area which is too far from the wave source would also
likely to have lower POD. The sweetspot would be then
in between, as shown in Figure 4(a) and (b).

We constructed the pixel value not only based on the
attenuation profile (which goes toward + N very close
to the source) but also to anticipate the near-field zone
(NFZ), known as the dead zone since where it is diffi-
cult to evaluate any flaws. For simplicity, we only con-
sider the NFZ to be the area which is covered directly
by the PZT.

Lamb wave scattering occurs repeatedly, but each
consecutive scattering event reduces the energy.
Depending on the modes, material, excitation fre-
quency, and thickness, the attenuation b can vary
between 0.001 and 0.005 dB/cm.46 For instance, in car-
bon fiber reinforced polymer (CFRP) woven (10-ply),
the A0-mode Lamb wave excited at 285 kHz would
only need to travel 85 mm until 90% decay.30 In woven
CFRP of 8-ply, the S0-mode Lamb wave excited at
250 kHz would need to travel 1700 mm until the 90%
decay.30 Generally, the S0-mode tends to travel further
than the A0-mode due to the fact that the A0-mode
Lamb wave is dominated by perpendicular displace-
ment relative to the wave propagation direction; thus,
it is leaking more energy to the surrounding
environment.30

In contrast, the S0-mode is dominated by the in-
plane particle displacement, so that energy is better
conserved within the plate, as the partial energy leakage
is lesser than the A0-mode. For the consecutive scatter-
ing, Su and Ye30 suggested to compensate the energy
loss due to geometrical spreading for by multiplying
the measured signal magnitude with the square root of
the time elapsed as given by

f̂ (t) = f (t) �
ffiffi
t
p

ð11Þ

Consider the example proposed by Zhao et al.,47

where transducer T is placed between rivet holes as
depicted in Figure 5(a) (Case 1). Given that actuator T
was excited using a 1.8-MHz excitation frequency,
Figure 5(b) illustrates the captured S0-mode Lamb
wave signal from a series of sensors X that are located
20–200 mm away from the actuator T. In this case,
they calculated that the average attenuation rate was
0.044 dB/mm. In Case 2, they placed sensor series D

across the stiffeners, and using the same frequency and
S0-mode excitation obtained an average attenuation of
15 dB per rivet row. The distance between the rivet
rows was 6.5 cm, meaning that the average attenuation
was increased to 0.231 dB/mm. This calculation already
included the multiple scattering across the rivets.

For brevity, we consider the first appearance of the
wave scattering until the wave is absorbed at the bound-
aries of the plate. The calculated pixel score sij at pixel
(x̃i, ỹj) for a given N transducers and B inhomogeneities
can simply be defined as a summation of normalized
function values f(rij) and f(r̃ij)

sij =
X

N

jjf (rij)jj+
X

B

jjf (~rij)jj ð12Þ

The network fitness score t is simply the summation
of all pixel scores, excluding the pixel P E PN or PB,

Figure 4. Unitless pixel value of (a) f(rij) and (b) f(r̃ij) as a function of distance which is comparable to amplitude profile. For
demonstration purpose, the curve in Figure 4(b) is calculated based on r̃ij = 0.25 m + rrivet-pixel.
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which are occupied by the transducers N and inhomo-
geneities B, respectively

t =
Xm

i = 1

Xn

j = 1

sij

where sij = 0 if P 2 PN (xi, yj) _ PB(exi , eyj)

ð13Þ

As previously stated, we currently consider the
approximated effective NFZ to be the area directly
below the PZT. The rivet hole is idealized as a ‘‘second-
ary actuator,’’ with the simplification that the wave
scatter from the rivet hole is homogenously reflected to
all directions, although in practice, it depends on the
direction of the coming wavefront. Thus, it is logical to
set the pixel score to be 0 at those occupied pixels as
they do not act as wave detection points. In addition,
equation (13) can be normalized to take any positive
real number between 0 and 100

tk k=
100 � t
(m � n)

=
100

(m � n� (N + B))

Xm

i = 1

Xn

j = 1

sij

 !
ð14Þ

Examples of the network score mapping for transdu-
cers placed at coordinates 40|40 cm and 115|10 cm in a
plate with dimension of 120 3 80 cm are given in
Figure 6(a) and (b), respectively, while their alternative
representations in three-dimensional (3D) projection
are depicted in Figure 6(c) and (d), respectively. In
Figure 6(a) and (b), the sensor and rivet hole locations
are red dots in locations indicated by white and black
rectangles, respectively. Figure 6(a) shows that the
whole plate is better covered if the PZT is located at
20|40 cm since the network score is 39.73. In

comparison in Figure 6(b) (PZT location at
115|10 cm), the network score is only 33.17. Our defini-
tion of coverage is any pixel location where a direct or
scattered wave propagates. Thus, a network score of
39.73 can be considered as the average wave amplitude
is 39.73% of the maximum. Note that until equation
(14), we consider neither the signal processing para-
meters nor the algorithm yet (except the anticipation
toward the NFZ). The value of coverage level can be
later adjusted once the thresholding parameter has
been determined.

Furthermore, the network score will decrease, if the
attenuation coefficient b is increased as depicted in
Figure 7 (cf. with Figure 6(a) that has an attenuation
coefficient b = 0.3). The attenuation coefficient
depends on the material properties and excitation fre-
quency.39,42 This implies that even if the material is the
same, the network score will be lower if a higher excita-
tion frequency is applied.

The maximum network score is reached at
||t|| = 100; thus, the objective is defined as

arg max
(xi, yj)

(N)
(jjtjj) ð15Þ

Equation (15) reads, given N number of sensors,
determine the coordinate (xi, yj) of each actuator N that
maximizes the network fitness score t. Theoretically,
the maximum value is the total amount of pixels with-
out (N + B) as per equation (13). For example, a plate
with a size of 120 3 80 cm and 2 mounted sensors and
3 rivet holes would have a theoretical maximum score
of 9600 2 (2 + 3) = 9595, or 99.9479 if it is normal-
ized using equation (14).

Figure 5. (a) Sketch of distribution of rivets and transducers in wing section (‘‘T’’: actuator; ‘‘X’’: sensor in Case 1; ‘‘D’’: sensor in
Case 2); and (b) integrated Lamb wave signals captured by a series of sensors in a straight line (Case 1).47
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The physical interpretation of equation (15) means
that at the maximum network score, a minimum
attenuation is reached. Assuming that the PZT sensors
can capture any wave scatter due to the damage occur-
ring at anywhere on the plate and coupled to adequate
signal processing, the sensor network will be able to
detect and predict the damage location reliably.

From equations (12) to (15), it is obvious that the
network fitness score is independent of the DI. This at
least eases the transducer placement search for the best
fitness. However, to search for the best fitness, it would
still take a lot of time even without determining the DI
from experiment. The number of possible sensor place-
ment combinations C of given N sensors, B inhomo-
geneities, and L pixels is given by equation (16)

C =
(L� B)!

N !(L� B� N)!
ð16Þ

As an example, assume each pixel size is 1 3 1 cm,
then for a plate of 120 3 80 cm for a single sensor

(N = 1) and 3 rivet holes (B = 3) in which there are
C = 9597 possible combinations, the computation
time for the brute force search with our PC specifica-
tion in 2.57 s. However, for two, three, and four sen-
sors, the calculation time would increase from 3.4 h to
15 months and to 3000 years, respectively.

Integrative approach

As previously explained, hotspot SHM design has the
job of monitoring damage that can already be predicted
during the design phase. On the contrary, the probabil-
istic approach for SHM described in sections ‘‘Search
metaheuristics’’ and ‘‘Sensor positioning for detection
of random damage occurrences’’ is only useful for
detecting random damage locations. Our proposed
SHM system design is to integrate both approaches in
one. This is because when aircrafts are in service, they
are prone to both types of damages whose occurrences
are likely to be independent of each other. For instance,
a fatigue crack might grow from one rivet hole depicted

Figure 6. Mapped unitless pixel score sij and network score t for transducer placement at (a) 20|40 cm and (b) 115|10 cm. Figure
(c) and (d) are the alternative representations of the network score in three-dimensional projection. The white and black rectangles
signify the sensor and rivet hole locations, respectively.
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in Figure 5(a), while the area in between the rivet rows
could be prone to a tool drop or hail impact.

Assuming that this scenario is likely to happen, we
highly doubt that there is a strong likelihood that the
fatigue crack growth will suddenly induce the probabil-
ity of hail impact or tool drop occurrence between the
rivet rows. However, a hail impact could induce fatigue
crack growth. Thus, such a multiple damage location
probability with independent nature, the novel approach
we are proposing here is first to give the priority to hot-
spot SHM sensor locations and then to determine the
additional sensor locations for detecting random dam-
age, starting by reusing the hotspot sensor locations.

That is, we took the best two positions (this number
can be adjusted according to Original equipment man-
ufacturer (OEM) or aircraft operator requirement)
from the hotspot SHM design and then conducted the
metaheuristics methods to search for the additional
suitable locations. We propose that the two hotspot
SHM sensors can also be used to detect Lamb wave
scatter which originates from random damage. To
determine the hotspot sensors’ locations, a blob detec-
tion and fused images of the wave propagation was
used, as depicted in Figure 8.21

Results

Global random search

The results of the global random sensor position (see
section ‘‘Global random search’’) search are depicted in
Figure 9(a) and (b). Figure 9(a) depicts an example
result of a search for three sensors, while Figure 9(b)
depicts the result of a search of six sensors. While the
result would normally change for each iteration, it is
possible for the random search to converge with an

increasing number of sensors (see Figure 10). Figure 10
depicts the average network score after 10 searches for
1–10 sensors search from 1 to 1000 iterations.

As one can see in Figure 10, the random search algo-
rithm starts to converge from five sensors, with
decreasing standard deviation (indicated by the error
bars), toward an average network score of around 81,
which means the plate is 81% covered by the wavefront
should an impact happen anywhere on the plate. A
similar convergence can also be observed in the work
of Soman et al.,19 where they reached the convergence
at eight sensors for a plate of 100 cm 3 100 cm (ours
is 120 cm 3 80 cm). The computational time, as
expected, is linear since the calculation effort is the
same for every iteration—and in this case, the complex-
ity notation is denoted as O(n).

Greedy algorithm

The mode of operation of the greedy algorithm is
depicted in Figure 11(a) to (d). The algorithm first finds
the optimum position of one sensor (Figure 11(a)), then
calculates the next best sensor position based on the
position of the previous sensor. As can be seen from
Figure 9(a) versus Figure 11(b), the greedy algorithm
for three sensors search (network score = 73.18) per-
forms better than global random search (average net-
work score = 68.15). This is expected because the
random search does not have clear strategy to find the
maximum except by saving the best possible solution
for each iteration, while the strategy of finding the
maximum in the greedy algorithm is by dividing the
problem into smaller sub-problems.

By replacing the first line in Algorithm 2 with all
possible sensor positions instead of only random

Figure 7. Mapped pixel score sij and network score t for transducer placement at 20|40 cm for (a) b = 0.1 and (b) b = 0.7. The
white and black rectangles signify the sensor and rivet hole locations, respectively.
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values, it is possible for the greedy algorithm to deter-
mine the maximum theoretical network value thanks to
the sorting function (line 4 in Algorithm 2), which in
this case is 40.8884 as can be seen in Figure 10(a). The
problem with this approach is when more than one sen-
sor search is applied, the required calculation time is
comparable to 9600N for a plate size of 120 3 80 cm,
where N is the amount of the sensors. Sorting is there-
fore not always feasible for a multivariable search.

GA

For the GA, we use the default MATLAB GA para-
meters that are specified in the GA optimization tool-
box. Constraints such as only integer due discretization
or the candidates must be fit within the plate dimension
were specified in the MATLAB toolbox: population
size is 50 candidates for less than 5 variables (2 sensors),
or 200 candidates for more than 5 variables (.2 sen-
sors). The default selection criteria are stochastic uni-
form with 5% elite population, and a crossover fraction

set at 0.8. The mutation is uniformly distributed over
candidates and for simplicity, only single-point cross-
over is applied. The default stopping criteria specified
in MATLAB toolbox is when it reaches 100*(number
of sensors)th generation or 50 stall generations without
any time or fitness value limit.

The results from a GA for 1–8 sensor searches are
depicted in Figure 12(a) to (f), respectively. From these
figures, one can clearly see that the GA tends to outper-
form the global random search and greedy algorithms.
For instance, for three sensor searches, the GA reaches
a network score of 84.12 (Figure 12(c)) after 21 s, while
the greedy algorithm only reaches a network score of
72.28 (Figure 11(b)).

The random search performed even worse as it
reaches a network score of 62.26 (Figure 9(a)). Note
that for the special case of one sensor search, the GA
was successful in finding the maximum theoretical
value of the sorting greedy algorithm, which is 38.20
(cf. Figure 11(a) to 12(a))—thus, there is no difference
in this case between the greedy and the GA, which

Figure 8. Detected blobs during wave propagation (red and green arrows signify the propagation direction of the wave scatter) at
(a) 100 ms and (b) 125 ms. Fused differential images to obtain the best sensor positions for (c) 60-mm hotspot perpendicular crack
and (d) 60-mm hotspot crack with 8� orientation.21
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proves that the construction of the GA worked in a
consistent way.

However, it should be noted that the GA performs
slowly, especially when the number of sensors increases,
while the greedy algorithm and random search give a
result almost immediately, a search with a GA for six
sensors took almost 4 min. Not only that, the more sen-
sors that are employed, the more computer memory is
needed, sometimes forcing earlier termination of the
algorithm and resulting a lower score, such as in Figure
12(f).

In a larger plate where more sensors are to be
installed, a GA would deliver a high network score;

however, this will be neutralized by its slower perfor-
mance. To understand this more concretely, we must
consider that all algorithms are bounded by time and
space—thus, an algorithm performance is always
related to the effort needed.

The implication would be that in such a larger plate,
more sensors would be needed to increase the network
coverage; thus, more computational effort is required
to reach this level of performance. At some point how-
ever, the GA would also fail for higher number of sen-
sors to run due to space limitation unless the computer
memory is increased. That means, if we run the random
search for hypothetically 3000 years instead of running

Figure 9. Random search for (a) three sensors and (b) six sensors with black and white rectangles convention from Figures 5 and 6.

Figure 10. Distribution of network score for random search algorithm of 1–50 sensors after 1000 iterations. Error bars indicate
the standard deviation of the network score during 1000 iterations.
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the GA within 24 h for a given number of sensors, the
random search would eventually reach the performance
of GA without the complication of programming the
genetic operators itself. This is actually in line with the
No Free Lunch Theorem proposed by Wolpert and
Macready48:

Given a finite set V and a finite set S of real numbers,
assume that f : V ! S is chosen at random according to
uniform distribution on the set SV of all possible functions
from V to S. For the problem of optimizing f over the
set V, then no algorithm performs better than a blind
search.

Preliminary conclusion

As a summary, a performance comparison of the glo-
bal random search (after 1000 runs), greedy, and GAs
(after 10 runs) is presented in Figure 12, where only the
standard deviation s from the random search is shown.
Note that the standard deviation s of the GA is too
small to be visualized in the graph. The standard devia-
tion of the greedy algorithm is 0. The X-axis represents

the number of sensors, while the left Y-axis represents
the network score reached by each algorithm. The right
Y-axis represents the computational time needed for
each algorithm.

Neglecting the computation time, it is obvious that
the GA has the best performance from the three algo-
rithms. However, taking the computation time into
account, the greedy algorithm is competitive with the
GA. Note that the right Y-axis has a logarithmic scale.
Conversely, the random search took the lowest compu-
tational time while it has the lowest network
performance.

It can be seen from Figure 13 that the GA starts to
outperform the greedy algorithm from three sensors
onwards; however, the 10-run GA took about 12 times
longer (about 264 s) than the greedy algorithm. Also,
note that in Figure 13, the standard deviation for the
GAs cannot be shown as these are too small to be
visualized (2.04 or less).

One could argue about the best terminating condi-
tions of these algorithms. For this reason, we deter-
mined four different thresholds for the network score:
80, 85, 90, and 95 which can be understand as a

Figure 11. (a to d) Greedy search for 1, 3, 5, and 7 sensors, respectively. Black and white rectangles convention apply.
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coverage level between 80% and 95% of the surface—
which when coupled with adequate signal processing, it
can yield to global probability of damage detection
POD of the network between 80% and 95%. We pres-
ent the trade-off between the network score, number of
sensors N, and the required computational time in
Table 1. For brevity, we do not consider the hardware
weights and the potential data redundancy as well as

the system energy/power required as the number of sen-
sors increases.

As can be seen in Table 1, neglecting the required
computational time, it is obvious that the GA has the
best performance from the three algorithms, however,
also requires the most computational time. Conversely,
the random search has the lowest computational time
while and the lowest network performance.

Figure 12. (a to f) Genetic algorithm search result for 1, 2, 3, 4, 6, 8 sensors. Black and white rectangles convention apply.
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Integrated approach using blob detection and GA

The procedure described in Ewald et al.24 was repeated
for an aluminum plate with dimensions of
120 3 80 cm, and the two best hotspot sensor loca-
tions were determined to be 45|40 cm and 80|40 cm. As
a reference, the network score for the hotspot SHM
configuration with the sensors located at 45|40 cm and
80|40 cm is 52.22, as depicted in Figure 14(a). This is
clearly inferior to a two-sensor network generated by
the GA (Figure 14(b)). That means, the proposed hot-
spot SHM network would have a relatively poor cover-
age for the detection of damage at a random location.
In an analogous way, the sensor placement for the ran-
dom damage locations depicted in Figure 14(b) might
have a relatively lower detectability for the detection of
cracks from the rivet holes, and we interpret this trade-
off between the pure global versus pure hotspot sensor
placement method as the implication of the No Free
Lunch Theorem.

However, as a side note, Figure 14(b) is an excep-
tion: we believe this sensor configuration would still
have a good detectability of hotspot crack if we con-
sider that the wave scatter from the rivet hole is coming
in a perpendicular direction to the sensor (cf. Figure
8(c)). This would not be the case, for example, in Figure
12(d) to (f), where the sensors are not in the perpendicu-
lar position to the wave scatter coming from the rivet
hole.

After first putting the two hotspot SHM sensors at
45|40 cm and 80|40 cm, the network score can be
increased by adding several other sensors using the
methods described in sections ‘‘Global random search’’
to ‘‘Preliminary conclusion.’’ This is demonstrated by
adding 1, 2, 3, and 4 additional sensors, as depicted in
Figure 15(a) to (d). Note that in these figures, the first-
and second-best hotspot SHM sensors are denoted by
numbers 1 and 2, respectively, and the locations do not
change in every iteration.

Figure 13. Network score for random search algorithm of 1–8 sensors.

Table 1. Number of sensors N and time needed to reach network score from 80 to 95.

Algorithm Network score: 80 Network score: 85 Network score: 90 Network score: 95

N Time (s) N Time (s) N Time (s) N Time (s)

Random 3 3.62 10 7.32 n/r n/r n/r n/r
Greedy 4 26.03 6 37.95 8 44.96 n/r n/r
Genetic 3 132.09 4 268.64 4 268.64 10 1442.25

n/r: not reached.
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The black and white rectangles signify the rivet hole
and stochastic SHM sensor location, respectively. It
can be concluded from Figure 15(a) to (d) that the

network scores are lower than those from the solution
generated by the pure GA; however, we think that this
hybrid approach is the best way to compensate the

Figure 14. Network score for (a) hotspot SHM network and (b) stochastic SHM network.

Figure 15. Network score for integrated SHM with 2 sensors for hotspot and (a) 1, (b) 2, (c) 3, and (d) 4 sensors for random
damage detection, respectively. The first- and second-best hotspot SHM sensors are denoted by number 1 and 2.
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conflicting objectives between hotspot and global SHM
sensor placement.

Experimental validation

Experimental design

Hotspot SHM. As previously described in section
‘‘Methodology,’’ a hybrid approach that combines a
hotspot and a global SHM sensor network design was
made for an aluminum plate of size 100 3 50 cm with
eight rivet holes using the simulation parameters given
in Ewald et al.24 The hotspot location is assumed to be
at 75|20 cm with a maximum damage tolerance size of
a 16-cm fatigue crack (from tip to tip). Figure 16(a)
and (b) depicts the wave propagation at t = 100 ms in
the baseline and artificially cracked plate, respectively,
where Figure 16(c) is the subtracted result of Figure
16(a) and (b).

There are several blob centroids of interest, as
depicted in Figure 16(c) and marked by the blue dots,
where the largest and second-largest blobs are marked
by green and red dots, respectively. The fused images
from wave propagation times between 25 and 250 ms
are depicted in Figure 16(d), and after averaging the
blob centroids from all time frames, the best hotspot

sensor coordinates found after using blob detection
algorithm were 65|21 cm and 84|20 cm.

Integrated approach on global and hotspot SHM. After find-
ing the hotspot sensors’ locations of 65|21 cm and
84|20 cm, the rest of the locations were determined by
the GA. To minimize the number of PZT used in the
experiments, we tested two sample networks: (1) 3 glo-
bal + 2 hotspot sensors, and (2) 5 global + 2 sensors
hotspots. For conciseness, the first network will be
denoted as ‘‘3 + 2,’’ while the latter will be denoted as
‘‘5 + 2’’ from this point onwards. The sensor coordi-
nates determined by the GA are depicted in Figure
17(a) and (b).

Multiple PZTs could additionally act as actuators to
send excitation signals, and this would generate a larger
dataset. Ideally, to reach the energy level that corre-
sponds to the maximum network score, all actuators
should be excited at the same time. For the 3 + 2 net-
work, this would require five waveform generators. We
do not have this amount of necessary hardware; there-
fore, for demonstration purposes, we only excited the
hotspot sensor located at 65|21 cm; thus, only a frac-
tion of the previously described signal power in equa-
tion (6) was used. The available hardware during the
test were a Picoscope 6402A oscilloscope, an Agilent

Figure 16. Simulated wave propagation in (a) baseline/pristine and (b) artificially cracked plate. (c) The subtracted result of image
(a) and (b), where the centroids of largest and second-largest blob are marked by green and red dots, respectively. (d) Fused
differential image from all time frames between 25 and 250 ms.
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Waveform generator 33500B, standard BNC cables, a
radial PZTs American Piezo APC-850 (Ø 9.52 mm,
thickness = 1 mm, resonance frequency
fr = 207 kHz), and a desktop PC with Waveform
Builder Pro and software from Picoscope installed. The
experimental setup is depicted in Figure 18.

As we have radial mode PZTs with a thickness
smaller than the diameter, normally it is the S0-mode
which is the predominant waveform that will be actu-
ated and sensed by the PZT.51 From eight specimens,
two plates must be assigned as baseline; otherwise, the
residual time-trace cannot be calculated. The baseline
from the 3 + 2 and 5 + 2 network will be designated
as scenarios 1A and 1B, respectively. As scenarios 2
and 3 have very large and visible damage (almost

30 cm), we can expect that the 3 + 2 network will be
more than sufficient to identify this damage, and
accordingly since scenarios 6 and 7 have a hardly
noticeable barely visual impact damage (BVID), the
denser 5 + 2 network is assigned to them. Finally, to
compare the damage localization performance from
both networks, the 3 + 2 and 5 + 2 network were
assigned to scenarios 4 and 5, respectively.

Experimental details

In order to experimentally validate our sensor network
configuration to detect both random and hotspot dam-
age occurrences, we tested several damage scenarios as
given in Table 2. An artificial fatigue crack was created

Figure 17. Sensor positions for (a) 3 + 2 network (scenario 1A) and (b) 5 + 2 network (scenario 1B). The red dots signify the
hotspot sensors and the blue dots signify the rest of the global sensors that are determined by the genetic algorithm.

Figure 18. Experimental setup.
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by milling a slot adjacent to the rivet hole. The length
of the artificial crack in a real application would be
determined according to the damage tolerance criteria.
For this study, we assumed it to be 8 cm from tip to
tip, that is, including the rivet hole with a diameter of
1 cm.

Due to the limitations of the dimensions of the fixa-
tion table of the impact tower (see Figure 19(a)), we
reduced the dimensions of the plate to 100 cm 3 50 cm
as depicted in Figure 19(b) and repeated the procedure
given in section ‘‘Integrated approach using blob detec-
tion and GA.’’ Depending on the impact type (hail
impact, tool drop, ground collision), the impact energy
could vary. For instance, a tool drop has a typical
energy lower than 28 J,50 while hail impact energy dur-
ing taxiing can reach up to 157 J49 and this can reach
3900 J49 during cruise. The TU Delft impact tower was
operated at up to its height limit h = 2.0 m, which cor-
responds to an impact energy EImpact of 80.4 J, as given
in Table 2. This impact energy was sufficient to cause a
large visible damage on the test coupon (see Figure
20(a)).

The maximum mass m that can be attached to the
impactor is 2.4 kg (made of Tungsten), making the
total impact mass 4.1 kg (including the mass fixation).
During the testing period, a spherical impactor shape
and fixator holder with sharp corner were available
and thus were chosen. It is true that this mass is heavier
than typical hail, but if we assume the potential energy
EPotential is fully converted to kinetic energy EKinetic this
corresponds to impact velocities between 5.60 and
6.26 m/s—which is typically slower than hail impact
even during taxiing. As an illustration, the damaged
aluminum plates from scenarios 3, 5, and 7 are depicted
in Figure 20(a) to (c).

Experimental result and discussion

To validate the consistency of each specimen setup,
the cumulative CCs between the baseline and each
damage scenario were calculated. The PZT pulsing
actuation used the trivial 5-cycles Hann sinusoid (at
f = 200 kHz), and the signal amplitude was recorded
by the oscilloscope. As the hotspot sensor at 65|21 cm
is used as an actuator, the only sensor which is avail-
able at the same location on every specimen is the one
located at 84|20 cm. The normalized baseline signals,
their envelope, and the corresponding cumulative CC
are depicted in Figure 21. The CC can be calculated
for any time length, for instance, the CC of the base-
line signals and between the baseline envelopes until
300 ms are 0.9254 and 0.9366, respectively. This is to
be expected, since even in an ideal experimental
case, two similar and pristine plates can still have a dif-
ference in measurement due to material properties or
in the presence of minor defects inside the materials.

Moreover, background noise and vibration from
nearby equipment in the laboratory can cause a low-
frequency signal oscillation. For this reason, we heuris-
tically band pass the signal between half and double of
the resonance PZT frequency (100–400 kHz) to isolate
the low and high-frequency noise. Theoretically, an

Figure 19. (a) Impact test setup and (b) dimension of the
specimen in mm (including the rivet holes).

Table 2. Damage scenarios tested using aluminum 7075-T6 of size 100 3 50 3 0.2 cm.

Scenario Height
h (m)

Energy
EImpact (J)

Velocity
v (m/s)

Description of impact Impact
epicenter (cm)

Hotspot crack
coordinates (cm)

Sensor network

1A None
These are baselines

3 + 2
1B 5 + 2
2 2.0 80.4 6.3 CVID, ca. ½ plate breaks 27; 24 None 3 + 2
3 2.0 80.4 6.3 CVID, ca. ½ plate breaks 27; 24 75; 20 3 + 2
4 1.7 68.4 5.8 VID, ca. ¼ plate breaks 20; 35 None 3 + 2
5 1.7 68.4 5.8 VID, ca. ¼ plate breaks 20; 35 None 5 + 2
6 1.6 64.3 5.6 BVID, only dent 27; 24 75; 20 5 + 2
7 1.6 64.3 5.6 BVID, only dent 27; 24 None 5 + 2

CVID: clearly visual impact damage; VID: visual impact damage; BVID: barely visual impact damage.
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optimization on the band pass is needed; however, this
was not the main purpose of our study. Since the plate
dimensions are 100 3 50 cm and assuming that the S0-
mode is traveling at 5300 m/s, at 300 ms the wavefront
would have covered a traveling distance of 2.12 m.

Fatigue crack detection. There is neither a need for dam-
age localization nor damage classification for hotspot
SHM placement as both the location and critical dam-
age size will have been predicted according to damage
tolerance design. Logically, only the SHM detection

function applies here. As can be seen from Figure 22(a),
there is an 80% decrease in the amplitude of both sig-
nals and the envelope between 36 and 53 ms, which cor-
responds to a traveling distance of 19 cm for the S0-
mode, which is exactly the distance between the actua-
tor and the sensor. Accordingly, the CC of the signals
and the envelope drops below 0.3 at 36 ms. Assuming
that the measurement instrument is working properly
(e.g. no defective cables or equipment), such a huge
decrease in amplitude (80%) clearly signifies the lack of
wave scatter in the propagation path between sensor
and actuator. As such, it can be assumed that the crack

Figure 20. Example of damaged aluminum plates from scenario (a) 3, (b) 5, and (c) 7 of Table 1, respectively.

Figure 21. Baseline for scenario 1A and 1B at sensor located at 84|20 cm. The full results can be found in our Github.
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emerging from the rivet hole has already blocked a sig-
nificant portion of the wave propagation path. Figure
22(b) can be explained in the same way.

Impact localization. While the detection of hotspot dam-
age typically only requires an observation of amplitude
change, impact localization also requires a signal obser-
vation regarding phase shift to extract information to
calculate the travel distance of a particular Lamb wave
mode. As an example, a comparison of the signal wave-
forms, envelopes, and their corresponding CC between
the baseline (scenario 1A) and scenario 2 from network
3 + 2 at two different sensing locations are given in
Figure 23(a) and (b).

Since the CCEnvelopes only considers half of the sig-
nals and does not consider the incremental variation of
the amplitude within the envelope, it is less sensitive
toward the time shifts in the original signal waveforms,
as can be seen in Figure 23(a) between 60 and 90 ms,
marked in red dotted rectangle. On the other hand,
CCEnvelopes is quite sensitive toward amplitude change,
especially when the amplitude suddenly drops, such as
between 180 and 200 ms, marked in Figure 23(b) in
purple dotted rectangle. During this period, CCSignal

also drops, although this occurs in less dramatic way,
that is, 0.9678–0.8713 for CCEnvelopes in comparison
with 0.8337–0.7942 for CCSignal. Figure 23(b) can be
explained in the same manner.

As stated in the section ‘‘Experimental result and
discussion,’’ the CC of the baseline signals and between
the baseline envelopes until 300 ms are 0.9254 and
0.9366, respectively. For this reason, we can only con-
sider that a damage would occur if the CC drops below
these numbers. However, the CC would not only drop
just because of the damage, we must consider all error
propagation factors, such as an inhomogeneous
amount of applied superglue between the PZT and
plate surface, geometrical tolerances such as length,
width, thickness of the plate and the rivet holes, the
exact coordinate of the sensor placement, potential
micro-defects within the plate, and so on. For this rea-
son, it would be wise to consider a threshold CC that is
slightly below these numbers, but still above 0.5
(CC = 0.5 means 50% correlation), otherwise all
information that is contained below the threshold will
be suppressed, too.

Along with the objective stated in section
‘‘Introduction’’ and Thiene et al.,18 the purpose of this

Figure 22. (a) Scenario 1A versus 3 and (b) scenario 1B versus 6. The full results can be found in our Github.
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article is definitely not to propose a novel signal pro-
cessing method or new feature to calculate DI, but
rather to propose a sensor network placement method
that is DI-free and can be coupled with any signal pro-
cessing. As an example, we consider a threshold of
CCEnvelopes = 0.9 (which is \0.9254) and a
CCSignal = 0.8 (which is \0.9366). Thus, if both CC
values drop below these thresholds, it is considered as
significant. The original waveform and the signal envel-
ope from the baseline (1B) and the damaged plate (sce-
nario 5) and their CC captured by PZTs located at
12|40 cm and 11|12 cm is depicted in Figure 24(a) and
(b).

After determining the threshold, the first thing to
consider is the time-of-arrival (TOA). Since both CC

values are always changing every time increment, it is
wise to take the TOA where the CC either (1) reaches
its local optima or (2) stabilizes as a local plateau. For
brevity, in both these cases CC is denoted as CC*. An
example for Case (1) is given in Figure 24(a), where the
TOA of the CC*Signal and CC*Envelope are at 124.0 and
128.6 ms, respectively. An example for Case (2) is given
in Figure 24(b), where the TOA of the CC*Signal and
CC*Envelope is at 120.9 and 150.8 ms, respectively. The
TOA of course might change if the threshold is lowered
or raised.

For simplification, we consider only the TOA of the
first local optima and the first local plateau. In future
work, the desired technique can be combined with
more advanced signal processing however in line with

Figure 23. Comparison between signals waveforms, envelopes, and CC of the scenario 1A (baseline) and 2 (damaged) at the
sensor located at (a) 84|20 cm and (b) 38|41 cm.

Figure 24. Comparison between signals waveforms, envelopes, and CC of the scenario 1B (baseline) and 5 (damaged) at the
sensor located at (a) 12|40 cm and (b) 11|12 cm.
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our objective: we would like to know how well our
hybrid sensor placement method works if it is coupled
with conventional signal processing. The localization of
the impact damage can be triangulated by calculating
the elliptical distance between actuator and two differ-
ent sensor positions, according to equations (17a) and
(17b)

dS0(Path1) = PActuator�k PDamage

��
+ PDamage

�� � PSensor1k= vS0
� TOASensor1

ð17aÞ

dS0(Path2) = PActuator�k PDamage

��
+ PDamage � PSensor2

�� ��= vS0
� TOASensor2

ð17bÞ

In equations (17a) and (17b), dS0(Path1) and dS0(Path2)

are the sums of the Euclidian distance from the actuator
to the damage and the damage to the sensor indexed
with location 1 and 2 measured from each position P of
either the actuator or damage, respectively. PActuator,
PSensor, and PDamage are the x- and y-coordinates of the
actuator, corresponding sensor, and damage, respec-
tively. vS0

and TOASensor are the velocity of the S0-wave-
mode and the time of arrival at the corresponding
sensor location, respectively. PDamage can be obtained
by solving equations (17a) and (17b) simultaneously.
By repeating this step for all actuator–sensor pairs, a
distribution of predicted PDamage can be obtained. For
every solved quadratic equation, there are a maximum
of two solutions. An example of these calculations using
TOA from CC*Envelope for a single actuator–sensor pair
is given in Table 3. Note that the full table is too long
to be presented here.

Not every single solution is useful, for instance, in
scenario 1A–3, the first predicted coordinate at
79|78 cm, which lies outside of the plate; thus, the other
solution which is at 16|25 cm is taken as the accepted
predicted location. In scenario 1A–4, both solutions
are complex roots so they cannot be considered
anymore. In this case, only the roots that fulfill the

constraint (i.e. positive real numbers within the dimen-
sions of the plate) are taken as an accepted solution.

The reason that sometimes there are no accepted
solutions is because in equations (17a) and (17b), all
TOA(CC*) are multiplied by S0-wavemode velocity
since we assume that the dominant Lamb mode for
excited radial PZT is the S0-mode. This is an oversim-
plification because generally, both fundamental Lamb
modes are always present, that is, after the wavefront
encounters inhomogeneities such as rivet holes and
plate boundaries, wave mode conversion occurs. To
avoid this, a Lamb wave mode separation technique
such as Xu K56 can be used to sort in which group the
TOA belongs to. For now, it is enough to consider all
accepted predicted damage locations and to calculate
the distribution of these predictions. The distribution of
the predicted damage locations is summarized in Figure
25(a) to (d), which shows predicted damage locations
from scenarios 2, 4, 5 and 7, respectively. As can be
seen from Figure 25(a), even a simple algorithm can
easily localize a large damage size (about ½ of plate
impacted).

As can be seen from Figures 25(a) and 26(a), the
simple algorithm can easily localize a large damage size
(about ½ size of the plate height, that is, 30 cm),
although there is an area that was not covered by the
distribution as the damage itself is quite large.
Furthermore, for the localization of smaller impact
damage (about ¼ plate, that is, impacted in scenario 4
and 5) which are depicted in Figure 25(b) and (c) and
Figure 26(b) and (c), respectively, the determination of
damage location based on TOA calculation outputs
provides a relatively reliable localization. This is in con-
trast with BVID, which barely causes a smaller dent on
the surface where in this case, even the denser network
is not able to predict the damage location in a sufficient
manner as depicted in Figures 25(d) and 26(d). Taking
a closer look into the quantification of the localization
performance, we calculated several criteria as given in
Table 4 as follows:

Table 3. Predicted damage location based on TOA-triangulation from various damage scenario.

Scenario x-y-Coordinate (in cm) of TOA of CC*Envelope (in ms) from Predicted damage
x-y-coordinates (in cm)

Actuator Sensor 1 Sensor 2 Sensor 1 Sensor 2

2 65|21 84|20 10|33 197.9 113.7 22|26 OR 21|39
3 65|21 84|20 24|10 40.5 131.4 79|78 OR 16|25
4 65|21 24|10 10|33 200.5 110.7 Complex Root
5 65|21 84|20 12|40 202.3 128.6 21|31 OR 18|52
6 65|21 35|7 36|41 208.9 150.8 22|56 OR 59|67
7 65|21 84|20 12|40 204.3 131.4 21|31 OR 17|53

TOA: time-of-arrival; CC: cumulative correlation coefficients.
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1. Averaged Euclidian distance d: the distance
between each predicted damage location Px,y

(which is just the distribution mean) and the epi-
center of the actual damage epicenter Ax,y without
considering the multi-site damage;

2. Mahalanobis distance M: the distance between
actual damage epicenter without considering the
multi-site damage and the probability distribution
of all predicted damage locations;

3. Standard deviation sx and sy for both x- and y-
axis;

4. Percentage R which is ratio between elliptical area
covered by vertex sx and sy divided by plate size,
which is 100 3 50 cm = 5000 cm2, for scenario 2,
4, 5, and 7: these elliptical areas can be seen in
Figure 26 already.

As it can be seen from Table 4, the Euclidian dis-
tances between the predicted and actual epicenter
vary between 5.0 and 14.3 cm. Note that in scenario
2–5, the damage is quite large, that is, not only dents
and therefore it occupies multiple locations and the

actual damage locations are covered by R. In scenar-
ios 6 and 7, R is large, but the damage size is small
(dents Ø = 1 cm), which poses a limitation of the
damage detection algorithm, because the Lamb wave
mode at this particular PZT frequency (200 kHz,
wavelength l = 2.65 cm) is not a good match with
the damage size. The difference between scenarios 6
and 7 is only the artificial fatigue crack located at
75|20 cm for scenario 6, as described in section
‘‘Fatigue crack detection.’’ For scenario 7, the aver-
age error on Euclidian distance is 14.3 cm and the
ratio R is 17.8%.

Practically, if scaling our approach for a larger-sized
structure (e.g. 5 3 5 m), then at least 4 m2 (about 1=6

or 16.7% of the surface) must still be scanned manu-
ally. As stated previously, our sensor network pattern
is designed to work independently of any signal pro-
cessing; thus, to increase accuracy in the future, the sig-
nals could be first separated using method described in
Xu56 and then processed further using the delay and
sum method for sparse reconstruction described in
Nokhbatolfoghaihai.56

Figure 25. Damage localization result from scenario (a) 2, (b) 4, (c) 5, and (d) 7.

24 Structural Health Monitoring 00(0)



Thus, when scaling up our results to a business case,
the approximated reduced man-hours using the integra-
tive approach is about 83%, even if our sensor network
is less dense than those proposed by Soman and col-
leagues19,55 and Ismail et al.20 In Soman and
Malinowski,55 they suggested that for nine sensors, an
area 90.2% within an aluminum plate with a size of
1 m 3 1 m if the coverage is defined as the percentage
of an area that lies in the sensing range of a single
sensor–actuator pair. A further adaptation for sensor
density must be considered if a temperature change is
involved as reported by Croxford et al.56 They reported
that for a small temperature change (less than 1�C),

5 sensors/m2 in an aluminum plate is enough for base-
line subtraction in pulse-echo technique with 1-MHz
central frequency. The density becomes absurdly high
(97 sensors/m2) if a large temperature change (more
than 10�C) is introduced. Fortunately, Lamb wave
SHM with a central frequency higher than 500 kHz is
very rare as such high-frequencies will typically induce
the unfavorable higher-order Lamb modes, especially
in a plate thicker than 4 mm.

Clarke53 and Croxford55 considered that SHM sys-
tems to be successful if those combine (1) good sensitiv-
ity to defects, that is, good damage detection capability,
and (2) preferably with localization and identification,

Figure 26. Real plate from scenario (a) 2, (b) 4, (c) 5, and (d) 7. The blue rectangles indicate the impact damages where the red
ellipse are the distributions of predicted damage locations.

Table 4. Euclidian and Mahalanobis distance between the predicted and actual impact epicenter.

Scenario Ax,y (cm|cm) Px,y (cm|cm) d (cm) M (unitless) sx|sy (cm|cm) R

2 27|24 29|33 9.5 4.438*10–3 19|11 13.0%
3 27|24 24|28 5.0 4.665*10–3 19|7 8.3%
4 20|35 27|34 6.8 2.990*10–3 20|8 10.2%
5 20|35 33|33 12.8 3.824*10–3 21|12 16.2%
6 27|24 26|30 5.8 2.033*10–3 21|13 17.2%
7 27|24 37|35 14.3 1.531*10–3 23|12 17.8%
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with (3) a low sensor density. While such a denser net-
work as has been proposed by Soman et al.19,55 and
Ismail et al.,20 we think they may increase the sensitivity
and thus can reach at least 95% man-hours reduction—
however, on the other side, the investment cost must also
be taken into consideration. If the investment cost over-
weighs its benefit, we start to doubt the practicality and
the usefulness of the SHM system when the SHM system
is intended primarily to reduce the maintenance cost.

Furthermore, we believe this figure tends to be over-
estimated because in airline operation, many unpredict-
able things occurred (sensor dies, oscilloscope is
broken, cable is torn, etc.). In a worst case where we
can only reach 50% of the promised reduced man-
hours, the integrative approach would still count
41.6% instead of 83% man-hours reduction. Airlines
typically spend around 30% of their budget for the
maintenance, so if the man-hours are reduced by
41.6%, this would still save them at least 12.5% of the
operating expenses. This is a very broad figure, but we
can expect the calculation above to be quite realistic.

It is often forgotten that the purpose of SHM is not
to replace NDT completely, but to determine whether
a further NDT inspection of a certain aircraft part is
needed during unscheduled maintenance or not.
Therefore, we believe that by reducing the inspection
man-hours by at least 41.6%, we consider that our
hybrid sensor placement method with a minimum num-
ber of sensors for hotspot and global damage detection
contributes to design strategies for Lamb wave SHM.

Conclusion

In this work, we demonstrated that a sensor network
topology for hotspot SHM for detection of predictable
crack location can be merged with the probabilistic
approach without sacrificing too much of the global sen-
sitivity. To do so, first, the hotspot sensor locations are
determined according to the largest centroid based on
blob detection algorithm. To determine the sensor posi-
tions for detecting random damage, three search algo-
rithms were compared: global random search, greedy,
and GA. Global random search has the lowest perfor-
mance, and the GA has the best performance.
Accordingly, as per the No Free Lunch Theorem, the
GA took the most computational resources—this can be
either in time or space while the random search took the
least computational resources. The performance and
required computational resources of the greedy algo-
rithm lies in between global random search and the GA.

Since the specimen size used in our work was not
too large and the computational time for every itera-
tion search was below 1 h, we decided to use the GA to
determine the global sensor positioning. It is also worth

to mention that, in line with Mallardo et al.,17 our
results suggest that global sensor positioning tends to
work well in an open area but not very suitable for
complex geometry such as placement close to stringers
and fasteners. The reason the GA is placing sensors in
impractical locations is due to unprecise engineering
constraints formulation; thus, the GA search space
becomes very large. Our recommendation for future
work is thus a more precise engineering constraints
definition.

Nevertheless, with this hybrid approach, we demon-
strated that sensor networks can detect fatigue cracks
and locate randomly occurring damage, if these do not
occur at the same time. We believe this likelihood is
small, but nevertheless, it might be interesting in future
study to understand the probability of fatigue crack
and impact occurring at the same time.

Given the results in section ‘‘Experimental result and
discussion,’’ we consider that our hybrid approach
based on blob detection algorithm and search meta-
heuristics can partially address sensor positioning prob-
lem in active ultrasonic SHM in scalable manner—
especially when the detection requirement is not too
high (such for BVID). However, for placing a much
larger numbers of sensors in a larger and complex struc-
ture, we suggest using the greedy algorithm instead of
the GA to compensate for the network performance
and the computational effort required.
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4. Güemes A, Fernández-López A, Diaz-Maroto PF, et al.

Structural health monitoring in composite structures by
fiber-optic sensors. MDPI J Sens 2018; 18: 1094.

5. Guidorzi R, Diversi R, Vincenzi L, et al. Structural mon-
itoring of a tower by means of MEMS-based sensing and
enhanced autoregressive models. Eur J Control 2014; 20:

4–13.
6. Sodano AH. Development of an automated eddy current

structural health monitoring technique with an extended
sensing region for corrosion detection. Int J Struct Health

Monit 2007; 6: 111–119.
7. Roach D. Real-time crack detection using mountable

comparative vacuum monitoring sensors. J Smart Struct

Syst 2009; 5: 317–328.
8. Wilcox PD, Lowe M and Cawley P. Long range Lamb

wave inspection: the effect of dispersion and modal selec-
tivity. In: Thompson DO and Chimenti DE (eds) Review
of progress in quantitative nondestructive evaluation, vol.
18A. Boston, MA: Springer, 1999, pp. 151–158.

9. Cobb RG and Liebst BS. Sensor placement and struc-
tural damage identification from minimal sensor infor-
mation. AIAA J 1997; 35: 369–374.

10. Shi ZY, Law SS and Zhang LM. Optimum sensor place-
ment for structural damage detection. J Eng Mech 2000;
126: 1173–1179.

11. Kripakaran P, Saitta S, Ravindran S, et al. Optimal sen-
sor placement for damage detection. In: Proceedings of

the 18th international workshop on database and expert

systems applications, Regensburg, 3–7 September 2007.
12. Lee B and Staszewski W. Sensor location studies for dam-

age detection with Lamb waves. J Smart Mater Struct

2007; 16: 399–408.
13. Venkat RS, Boller C, Qiu L, et al. Integrated approach to

demonstrate optimum sensor positions in a guided wave
based SHM system using numerical simulation. In: Pro-

ceedings of the 8th international symposium on NDT in

aerospace, Bangalore, India, 3–5 November 2016.
14. Stawiarski A and Muc A. On transducers localization in

damage detection by wave propagation method. MDPI J

Sens 2019; 19: 1937.
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