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ABSTRACT 

Information on the 5d level centroid shift (εc) of rare-earth ions is critical for determining 

the chemical shift and the Coulomb repulsion parameter as well as predicting the 

luminescence and thermal response of rare-earth substituted inorganic phosphors. The 

magnitude of εc depends on the binding strength between the rare-earth ion and its 

coordinating ligands, which is difficult to quantify a priori and makes phosphor design 

particularly challenging. In this work, a tree-based ensemble learning algorithm employing 

extreme gradient boosting (XGB) is trained to predict εc by analyzing the optical properties 

of 160 Ce3+ substituted inorganic phosphors. The experimentally measured εc of these 

compounds was featurized using the materials’ relative permittivity (εr), average 

electronegativity, average polarizability, and local geometry. Because the number of 

reported εr values is limited, it was necessary to utilize a predicted relative permittivity 

(εr,SVR) obtained from a support vector regressor trained on data from ~2,800 density 

functional theory calculations. The remaining features were compiled from open-source 

databases and by analyzing the rare-earth coordination environment from each 

Crystallographic Information File (CIF). The resulting ensemble model could reliably estimate 

εc and provides insight into the optical properties of Ce3+-activated inorganic phosphors.  
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I. INTRODUCTION 

Phosphor-converted white light-emitting diodes (pc-wLEDs) have gained significant 

attention because they are less toxic than fluorescent lamps and consume less energy than 

incandescent light bulbs.1,2 In a typical pc-wLED, a rare-earth substituted inorganic phosphor 

is excited by blue or near-ultraviolet light from an LED chip. The absorbed photons are then 

down-converted and re-emitted at longer wavelengths.3 The resulting combination of the 

higher energy LED emission and the lower energy phosphor emission covers the entire 

visible spectrum, thereby appearing as white light. In general, the color quality of this white 

light is primarily controlled by the phosphor’s optical properties, which stem from the rare-

earth ion’s parity-allowed electric dipole 5d↔4f transition. The magnitude of the d-f 

separation is particularly significant because it sets the position of the absorption and 

emission energies. More importantly, it can be manipulated by varying the interaction 

between the rare-earth 5d-orbitals and the neighboring anion ligands.  

Ce3+ substituted materials are among the most widely explored rare-earth containing 

phosphors due to their unique luminescent properties such as broad and highly efficient 

emission. Typically, the energy gap between the 4f orbitals and the centroid position of the 

five 5d orbitals for a free Ce3+ ion in vacuum occurs deep in the ultra-violet region of the 

electromagnetic spectrum (~6.35 eV; 51,200 cm−1). The 5d levels can be stabilized 

(decreased) in energy relative to the free ion ground state by surrounding the cation with 

anions, called the nephelauxetic effect. This change can be quantified as the 5d centroid 

shift (εc).4 Additional energy stabilization can also be achieved by varying the different 

degrees of covalency and geometry of the cation-anion interaction, known as crystal field 

splitting (εcfs).5–7 The optical properties of a phosphor can be reasonably assessed with the 

knowledge of the centroid shift and crystal field splitting of the 5d energy levels.  
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Studies have revealed the coordination number, polyhedron size, and degree of 

polyhedron distortion around the Ce3+ ion control the crystal field splitting of the 4fn-15d-

levels, whereas the anion type is generally irrelavent.8–12 This is in contrast to the centroid 

shift, which is suggested to be closely associated with the anion ligands. The instantaneous 

position of Ce3+ electrons polarize the anion ligands, which results in a self-induced potential 

that reduces the inter-electron Coulomb repulsion between the Ce3+ electrons and causes 

the centroid energy of the 5d levels to lower.13 The centroid shift is further influenced by 

the covalency of the bonding within the crystal structure.14 Indeed, a significant degree of 

covalency appears to induce a more substantial nephelauxetic effect, and thus, a large value 

of εc. For example, the bonds in nitrides and oxynitrides  generally exhibit stronger 

covalency than oxides.15 As a result, nitride and oxynitride compounds cause a more 

significant downward shift of the 5d energy levels than oxide hosts, correlating to a more 

substantial centroid shift εc.16–22  

Considering both the ligand polarization and covalency models, εc can be estimated 

following Equation 1 based on the polarizability of N coordinating anion ligands at distance 

Ri from the rare-earth, in this case, Ce3+,8,9 

𝜀𝑐 = 1.79 × 1013𝛼𝑠𝑝 ∑
1

(𝑅𝑖−𝑓∆𝑅)
6

𝑁
𝑖=1                                                 (1) 

where αsp is the spectroscopic polarizability of the anion, ∆R is the ionic radius difference 

between Ce3+ and the cation for which it substitutes, and f is the correction parameter that 

accounts for the relaxation of the neighboring anions induced by the rare-earth substitution. 

The αsp is a phenomenological parameter that is not only related to the average 

polarizability of the N nearest anionic neighbors around Ce3+, but also represents the 

covalency within the structure. Unfortunately, quantitatively assessing αsp remains 
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challenging. Thus, it is not always straightforward to predict centroid shift values using this 

equation. 

 Relative permittivity (εr), also called the dielectric constant, provides information on 

polarizability and covalency that can be explicitly measured or calculated,23,24 making it an 

obtainable proxy for αsp.6 In general, εr varies significantly depending on the material, 

temperature, frequency of applied field, and other parameters. Nevertheless, it provides 

information on the type of bonding in a compound. Materials with a small εr tend to have 

more ionic-like interactions, such as fluorides, whereas materials with a large εr tend to be 

more covalent-like interactions, such as nitrides and sulfides. The value of the relative 

permittivity can be experimentally obtained from the comparison of the capacity of an air-

filled capacitor with that of the same capacitor containing the dielectric substance under 

specified temperature and frequency. However, these measurements are relatively  

uncommon, and thus the number of experimentally measured values is small. Fortunately, 

εr is an intrinsic material property that can also be estimated using density functional theory 

(DFT), allowing for the potential of high-throughput implementation.25 There are still 

considerable challenges in computationally determining εr; most notably, calculating εr using 

DFT is computationally expensive. DFT can also not easily account for atomic disorder, like 

site sharing, which is common in inorganic phosphor hosts, and it is currently restricted to 

smaller unit cells containing typically fewer than one hundred atoms. These limitations have 

permitted εr to be calculated for only a few thousand ordered crystalline compounds, or 

<10% of the reported inorganic solids. Luckily, the implementation of machine learning 

provides an avenue to vastly expand the number of εr values available with minimal 

computational cost. 
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Machine learning has become a valuable tool for the development of optical 

materials like inorganic scintillators, inorganic phosphors, and inorganic photovoltaics, 

among other property-specific problems.26–32 Embedding machine learning into the physical 

and chemical sciences not only accelerates the discovery of new materials but also provides 

insightful knowledge on composition-structure-property relationships. For example, a model 

based on chemical compositions and electronic structure calculations was recently 

developed to predict the Coulomb repulsion energy and chemical shift for lanthanide ions in 

a compound. In combination with the key experimentally measured parameters and the 

physical-based empirical models, the machine learning model can predict the 4f ground 

state and 5d1 excited state electronic configurations of the lanthanide dopant relative to the 

band edges of the host material, which enables the fast screening for potential candidates in 

a high-throughput manner.31 

 In this work, we employ a combination of compositional and structural descriptors to 

build a machine learning regression model that first predicts relative permittivity. This 

model is trained using ~2,800 εr,DFT values extracted from the Materials Project, and allows 

us to expand our database of εr,SVR values to ~280,000 compositions that are compiled in 

Pearson’s Crystal Database (PCD). We then use a tree-based ensemble learning method 

implementing extreme gradient boosting (XGB) to predict the centroid shift (εc,XGB) for Ce3+-

activated inorganic phosphors using a descriptor set including the machine-learning derived 

relative permittivity as well as average cation electronegativity, average anion polarizability, 

structure condensation, and Ce3+ coordination environment. Our successful development of 

a machine learning method to approximate the centroid shift is a key step to interpret and 

predict the luminescence properties of inorganic phosphors. Moreover, the centroid shift 
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data combined with luminescence spectroscopy can provide insights into the chemical shift 

of 4f-electron binding energy.33 

II. EXPERIMENTAL 

A. Relative permittivity data extraction and model construction 

The machine learning model to predict εc first requires εr,SVR as a descriptor. The εr,DFT 

of 4,867 compounds were therefore extracted from the Materials Project database.25 The 

Materials Project calculates εr,DFT using a high-throughput framework based on Density 

Functional Perturbation Theory (DFPT).34–36 In some cases, negative values of εr,DFT are 

present in the database; these were removed from the final training dataset. The number of 

compositions was further reduced to 2,991 after cross-referencing with PCD37 to ensure that 

all the phases used for machine learning are also experimentally reported, i.e. hypothetical 

crystal structures were removed. The data distribution plot is provided in Figure S1. About 

5% of the data possess an εr,DFT > 20 and these tend to be transition metal-containing 

compositions. The multiple oxidation states and narrow (or zero) bandgap makes these 

compositions unsuitable as phosphor hosts. Thus, these compounds were also removed by 

fixing the learning window to 0 < εr,DFT < 20. Compounds with elements from group 18 

(noble gases) and Z > 83 (except for U and Th) were also excluded. These criteria reduced 

the final training set to 2,832 compounds.  

The descriptors used in this study included 17 distinct compositional variables 

describing elemental properties such as position on the periodic table, electronic structure, 

and physical properties as well as their associated math expressions (difference, average, 

largest value, smallest value, and standard deviation). Additionally, 13 structural descriptors 

related to variables, including crystal system, space group, and unit cell volume, among 

others, were incorporated in the machine learning algorithm. The full list of descriptors and 
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mathematical expressions is available in the Supporting Information (Table S1). In total, 98 

descriptors were used to build the model. 

The 2,832 × 98 data matrix was split into a random train and test subsets with a 9:1 

ratio. The training set was then standardized to have a mean of 0 and a variance of 1, and 

the test set was transformed using the same scaler as the training set. The machine learning 

model was constructed using a Support Vector Regression (SVR) algorithm with the radial 

basis function (RBF) kernel.38 A grid search, which exhaustively evaluates all parameter 

combinations, was performed on the training set with a 10-fold cross-validation method to 

choose the best hyper-parameter settings. The searching space was defined as cost (C) 

values ranging in log space [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2], and epsilon values in real 

space [0.001, 0.01, 0.1, 1], where cost is the regularization term and epsilon specifies the 

epsilon-tube within which no penalty is associated in the training loss function. The scikit-

learn python implementations of these learning algorithms were used.39 

B. Centroid shift data extraction and model construction 

The development of the machine learning model to predict the centroid shift of Ce3+-

activated phosphors involved extracting 219 experimentally reported host compositions and 

the associated εc values from the literature.5,7–11,40 Before training, data were examined 

according to two primary criteria. First, phosphors hosts that do not have a reliable crystal 

structure reported were omitted. The second criterion is that the Ce3+ must have a single, 

chemically obvious substitution site or a site that was specifically studied and reported in 

the paper if the compound contains multiple substitution sites. The final number of training 

labels was reduced to 160 phosphors. Eight features, including relative permittivity, which 

was predicted using the first εr,SVR model, weighted average cation electronegativity, 

weighted average anion polarizability, and local environment related descriptors, were 
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employed to characterize these phosphors. A train-test splitting ratio of 9:1 was also used to 

randomly split the data into two subsets. 

The tree-based extreme gradient boosting (XGB) algorithm was selected to train the 

centroid shift model owing to its effectiveness in obtaining satisfactory results with small 

datasets while controlling overfitting.41 The model was gradient boosted for 50 rounds with 

a learning rate of 0.15 and a maximal tree depth of 3. These actions were carried out using 

the scikit-learn API.39 

C. Data availability 

 The training and test datasets, as well as the codes used to generate the models in 

this work can be downloaded from https://github.com/BrgochGroup/CentoidShiftPredictor. 

III. RESULTS AND DISCUSSION 

A. Modeling relative permittivity 

 The objective of SVR is to find a multi-dimentional function, f(x), that deviates from 

the training label by a value no greater than epsilon (ε) for each training sample and is 

simultaneously as flat as possible. The x in f(x) is a set of feature vectors that represent the 

compounds and the solution of f(x) is the predicted centroid shift value. A regularization 

parameter, C, also called cost, is introduced to control the compromise between model 

accuracy and flatness. As C increases, the strength of the regularization increases and then 

the tolerance for data outside of ε increases. As C approaches 0, the tolerance approaches 0 

and the equation collapses into the simplified one. The two parameters, C and ε, must first 

be optimized to maximize the model performance. Conducting a grid search for the free 

parameters, provided in Figure S2, shows that values of C = 101.75 (≈56.23) and ε = 0.1 give 

the best model performance based on the model statistics, i.e., coefficient of determination 

(r2) and mean absolute error (MAE).  
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Figure 1. Data distribution of 2,832 training samples that were calculated with DFT. The bars 
represent the total counts in each bin, and the curve represents the cumulative percentage. 

The εr was trained using these parameters and 2,832 training labels collected from 

the Materials Project. Figure 1 shows the training data distribution. Over half of the 

compositions have a DFT-calculated relative permittivity (εr,DFT) below 5, and ≈95% have an 

εr,DFT ≤ 12.5. The SVR model was evaluated with a test set, which was obtained from 

randomly selecting 10% data before training and completed unseen by the model. As shown 

in Figure 2, the histograms at the top and right show that both the DFT-calculated relative 

permittivity (εr,DFT) and the machine learning predicted values (εr,SVR) in the test set 

represent the distribution of the entire training labels well. Acceptable agreement is 

obtained between εr,DFT and εr,SVR with the coefficient of determination (r2), and mean 

absolute error (MAE) being 0.93 and 0.65, respectively. 246 out of 284 (87%) compounds in 

the test set were predicted with an error of less than 25%. There is a slight but noticeable 

underestimation for 12.5 < εr ≤ 20, which is most likely due to the limited number of training 

samples in this region. Nevertheless, this model is useful to estimate the εr,SVR for over 

270,000 compounds compiled in PCD. 
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Figure 2. Predicted relative permittivity (εr,SVR) versus DFT-calculated relative permittivity  
(εr,DFT) is shown for a 10% holdout test set. The ideal line is shown as the dashed gray line 
and the fit line is shown as the solid yellow line. The curves at the top and right show the 
histograms of the data. 

B. Connecting relative permittivity to the centroid shift prediction 

  To build the centroid shift model, 219 experimentally measured centroid shift (εc) 

data were collected from literature for Ce3+-activated inorganic phosphors. Data reduction 

was then performed. For example, although the εc data are available for BaCaBO3F and 

Sr2SiO4, they were excluded because there is no clear information on the Ce3+ substitution 

site or the associated optical properties stemming from substitution on each site. Indeed, 

the obtained value of εc for these systems could stem from Ce3+ occupying several 

crystallographic sites. This ambiguity can cause issues in machine learning; thus, these data 

were removed. Data sanitization reduced the final training set to 160 data, including 53 

(oxy)halides, 85 oxides, 5 sulfides, 2 selenides, and 15 nitrides. All of these phosphors 

contain a single substitution site, or if multiple crystallographic sites are present, the rare-

earth site occupancy was specifically investigated and reported in the literature. The data 

are provided in Table S2.  
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Analyzing these data by plotting the εc against the type of anions present in the 

composition (Figure 3a) demonstrates that the centroid shift tends to follow some trends. 

Fluorides have the smallest εc as dictated by the ionic bonding of these phases, whereas 

sulfides, selenides, and nitrides possess a relatively larger εc values resulting from their more 

covalent bonding. Although a crude estimation of εc can be made based on the anions 

present in the host compounds, εc may still vary greatly for compounds that are composed 

of the same type of anion. This variation is particularly noticeable for oxides and nitrides. 

One possible explanation is that the susceptibility of O2− and N3− to the electronegativity of 

the surrounding cations is larger than anion such as F−. In other words, the anion 

polarizability and covalency are affected more strongly by the cations in oxides and nitrides, 

leading to greater variability in the properties. This observation is a bit unfortunate because 

these compound types are among the most common classes of inorganic phosphor hosts, 

yet, they have the biggest range of centroid shifts.  

The same general trend was also observed in the plot of εr,SVR against the type of 

anions. Because the experimentally measured or DFT calculated relative permittivity for 

these 160 compositions are unknown, the εr,SVR model was used for this comparison. As 

shown in Figure 3b, the εr,SVR in general shows a trend as I− > Br− > Cl− > F− in halides, and 

sulfides, selenides, and nitrides possess a larger εr,SVR than oxides. These trends agree well 

with those in εc, as expected. There is a slightly larger spread in this plot, however, meaning 

that using εr,SVR solely to predict εc is subject to error. For example, although LaPO4:Ce3+ and 

GdAlO3:Ce3+ have a very close εr,SVR (4.23 and 4.25, respectively), they show a large 

discrepancy in εc (εc = 1.07 eV for LaPO4:Ce3+ and εc = 1.70 eV for GdAlO3:Ce3+).7,42,43 The 

failure stems from the fact that a simple descriptor like εr,SVR is not sufficient to account for 

all of the impacting factors of the centroid shift, such as the size effect. For instance, 
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permittivity can be expressed as a sum of contributions from the different atoms in a 

compound, and a large cation, such as Cs+, takes a large volume of the lattice, but it may not 

contribute much to the permittivity. However, its large size most likely leads to a smaller εc, 

according to Equation 1. 

 

Figure 3. (a) The centroid shift (εc) and (b) the machine learning obtained relative 
permittivity (εr,SVR) for Ce3+ inorganic compounds displayed against the type of anions. The 
darker regions represent a higher density of data points. 

C. Machine learning the centroid shift 

 The ability to predict the centroid shift is clearly multi-dimensional. An ensemble 

learning method was therefore constructed to predict εc accurately with features chosen 

based on numerical equations for centroid shift and the crystal structures. The features and 

the corresponding notations used in this work are provided in Table 1, and includes εr,SVR, 

average cation electronegativity defined in Equation 2, 


𝑎𝑣

=
∑𝑛𝑖𝑧𝑖𝑖
∑𝑛𝑖𝑧𝑖

                                                                     (2) 

where ni is the stoichiometric index of cation i with charge zi and i is the Pauling 

electronegativity44. The average anion polarizability is calculated in Equation 3, 

𝛼𝑎𝑣 =
∑𝑚𝑒𝛼𝑒

∑𝑚𝑒
                                                                     (3) 
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13 
 

where me is the stoichiometric index of anion e, and αe is the polarizability. In addition, R is 

the difference between the ionic radius compiled by Shannon of Ce3+ and the cation (RM) for 

which Ce3+ substitutes.45 The final descriptor is condensation (cond.), which is the ratio 

between the number of anions and the number of cations contained in the chemical 

formula. 

Table 1. The feature set used to predict the centroid shift modeled using XGB. 

Variable Notation 

Relative permittivity εr,SVR 

Average cation electronegativity av 
Average anion polarizability αav 

Ionic radius RM 

Difference in radius R 
Average bond length Rav 

Coordination number N 

Condensation cond. 

 

The model was subsequently trained using a tree-based XGB algorithm with 10% of 

the data held out for model evaluation. To account for randomness in the test data 

selection, ten different test sets were examined, which yielded an average r2 of 0.90. Figure 

4a shows the results from one of these test sets. The detailed statistics are provided in Table 

S3. The statistics of the test set prediction show compelling agreement between the εc,exp, 

and the εc,XGB with a root-mean-squared error (RMSE) of 0.18 eV and a mean absolute error 

(MAE) of 0.13 eV. These results indicate that the feature set does a reasonable job 

determining a Ce3+ phosphor’s centroid shift. 
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Figure 4. (a) Machine learning predicted centroid shift (εc,XGB) against the experimentally 
measured centroid shift (εc,exp). The test set plotted here represents 10% of the training set. 
The ideal line is shown as the dashed gray line and the fit line is shown as the solid red line. 
(b) Feature importance of the XGB model in terms of gain and coverage. 

 Analyzing the feature importance in this model can provide insight into the crystal-

chemical properties that control the centroid shift. Different feature importance matrices 

are accessible from the XGB model. The principle of developing a tree is that a new split on a 

node will be added only if the split results in a more accurate prediction. The gain can 

quantify the improvement in accuracy due to the split of a specific feature at a node. The 

gain in feature importance is the total gain across all splits in which the feature is used, 

implying the relative contribution of the corresponding feature to the model. As shown in 

the top panel of Figure 4b, the average anion polarizability (αav) has a significantly higher 

absolute gain than all other features demonstrating it is the most important feature for 

predicting εc. Moreover, relative permittivity and average cation electronegativity (av) also 

show a non-negligible influence on the model performance, while the remaining five 

features have a minimal total gain. Although the remaining five features have low gain, 

removing them from the model and re-training leads to considerably worse performance. 

All of the descriptors are essential to obtain εc,XGB.  
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Feature importance can also be evaluated based on the coverage matrix, which 

describes the relative quantity of samples related to a feature. Here, the trend is slightly 

different. As shown in the bottom panel of Figure 4b, the coverage matrix suggests that 

εr,SVR is the most crucial feature in the coverage matrix. More than 5,000 observations were 

associated with the split of εr,SVR in the boosting process. The αav and av relate to ~2,500 

observations, while RM is the least important although it still influences 989 observations. 

Overall, εr,SVR, av, and αav are the three most essential features related to the centroid shift 

regardless of the feature importance matrix. Not surprisingly, the average anion 

polarizability is more correlated to the centroid shift than the average cation 

electronegativity. The local geometry of the luminescent center and condensation 

contribute less to the model yet, they are still necessary to predict εc. 

 It is vital to quantitatively estimate the position of the 5d-excited states for rare-

earth ions in host crystal structures for designing inorganic phosphors. A phosphor with a 

large centroid shift tends to have a longer wavelength emission and using this prediction of 

centroid shift makes it possible to roughly estimate the emission color. The ability to predict 

εc even with moderate quantitative accuracy will allow researchers to accelerate phosphor 

discovery by performing a top-level screening of new phosphor hosts with desired optical 

properties. Moreover, the εc model can be combined with the knowledge of crystal field 

splitting and the phosphor host’s bandgap to predict the location of 5d levels with respect 

to the bottom of the conduction band.40 This combination would provide insight into the 

thermal quenching behavior of the phosphor that has thus far remained largely empirical. 

IV. CONCLUSIONS 

Combining high-throughput DFT calculations and machine learning techniques 

provides a unique framework to predict the relative permittivity of over 270,000 
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compounds compiled in inorganic structure databases. The predicted relative permittivity 

was then combined with chemical properties and local geometry of 160 Ce3+-activated 

phosphors to predict the centroid shift. Ensemble learning methods were successfully 

employed to predict the values of the centroid shift, which is beneficial to interpret and 

predict the luminescence properties and thermal quenching behaviors for Ce3+-doped 

phosphors. The results combined with the information of crystal field splitting can also be 

extended into the estimation of properties of other rare-earth doped materials, for example, 

the Eu2+ inter 4f-electron Coulomb repulsion energy in compound. In addition, the predicted 

εc model serves as a starting point to generate the binding energy of electrons at the top of 

the valence band. This information is not only of interest for luminescence but also for many 

other disciplines of science such as photo-catalytic splitting of water, battery potentials, 

valence band offsets in semi-conductor hetero-junction or in core shell particles among 

applications. Further tuning and improvement of these models for εc has the potential to 

make a broad impact on assisting the development of numerous functional inorganic 

materials.   

SUPPLEMENTARY MATERIAL 

See supplementary material for the following: Table S1. Feature set of the relative 

permittivity model; Table S2. Centroid shift training lables; Table S3. Centroid shift model 

statistics of ten randomly generated test sets; Figure S1. Relative permittivity data 

distribution; Figure S2. Plot of parameter optimization for cost and epsilon. 
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