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ABSTRACT

Large area electron microscopy (EM) imaging has long been difficult due to fundamental limits in throughput for conventional electron microscopes. New devel-
opments in transmission electron microscopy and multi-beam scanning electron microscopy (MBSEM) imaging have however made it possible to generate large EM
datasets [1,2,3]. This article describes a transmission imaging technique that is suitable for a MBSEM as it allows for a relatively straightforward way of separating
the signals generated by each beam. The technique places a thin (50nm-200nm) tissue section directly on top of a coated scintillator. The electrons that are
transmitted through the section generate light in the scintillator which is collected by a high NA objective and imaged onto a photon detector. This article gives a
model for the contrast-to-noise (CNR) and signal-to-noise (SNR) ratio that is to be expected for this imaging technique. These parameters were calculated using
Monte-Carlo simulations. It was found that the CNR increases when decreasing landing energy and SNR increases with increasing landing energy. These two trends
cause that there is an intermediate energy where imaging performance is best. The energy of this optimum was calculated for various levels of heavy metal staining,
section thickness, coating material, coating thickness and light collection efficiency. The model was verified experimentally on a synthetic sample.

1. Introduction

In the last decade, there has been a major push for large volume
scanning electron microscopy, of which the most striking example is
full brain connectomics [4,5]. This development was made possible by
the ability to store the large datasets involved, as well as by the in-
creasing work being done on automatic segmentation of this data [6-9].
The throughput speed in SEM imaging is limited by the maximum probe
current allowable to obtain a desired resolution. This limitation can be
circumvented by employing multiple beams in one SEM. In these Multi-
Beam SEM’s (MBSEM) the maximum throughput is governed primarily
by the number of beams and detector bandwidth. The current per beam
is still limited but the theoretical throughput speed scales linearly with
the number of beams. The ZEISS MultiSEM already has been available
for some time, which has up to 91 beams (up to 331 beam proven [10])
with secondary electron (SE) detection [2,3]. Delft University of
Technology has, over the past decade, developed a MBSEM with 196
beams [11].

Signal detection in the MBSEM with regular detectors is impossible.
In such microscopes the signal generated by each beam has to be
physically separated. In the ZEISS MultiSEM this is performed by fo-
cusing the secondary electrons from the sample, through a separate
optical system, onto a detector array. In our MBSEM, with 64 beams, we
employ a transmission imaging technique which makes for a relatively
straightforward separation of the signals created by the multiple beams
[12]. This circumvents the need for extra electron optics and leaves the
SEM column unchanged. The imaging is performed with a low energy
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electron beam (2-10keV) similar to methods using a solid state detector
[13,14] or an SE based transmission detector [15]. In our method we
place the tissue section directly on top of a thin scintillator screen
(thinner than 200um) which is coated with a conductive layer. The light
signal generated by the electrons transmitted through the sample is
collected by a high NA objective lens and the light is imaged onto a
photon detector outside of the vacuum chamber. Alternatively, the
detector could be placed in vacuum, directly underneath the scintil-
lator. An overview of the detection method is shown in Fig. 2. This
method was first developed by A. Boyde [16], who placed a thick
section on top of a glass substrate and collected the cathodolumines-
cence created by the transmitted electrons. By using a scintillator in-
stead of glass, the light output and thus the DQE is greatly increased
and the use of an ultrathin section gives a higher image resolution than
a thick section. Compared to other detection methods, the collection
efficiency of the detection is very high and is only limited by the
backscatter coefficient of the scintillator. It has been shown that this
imaging method can be used to image, heavy metal stained and em-
bedded biological tissue sections [12]. Results of tissue imaging are
shown in Fig. 1, where the transmission imaging is compared to
backscatter imaging. The sample is a 70nm thick section of rat pan-
creas, prepared according to the OTO protocol and embedded in EPON.
Fig. 1a and 1b show, at first glance, a large similarity in both contrast
and signal-to-noise ratio (SNR) for both imaging modalities. Fig. 1¢ and
1d show that in some cases, the transmission imaging can give contrast
in locations where there is hardly any in backscatter imaging (high-
lighted by the arrow). In previously published work we have already
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Fig. 1. SEM image of a nucleolus (a,b) and endoplasmic recticulum and cyto-
plasm (c,d) in rat pancreas, (a,c) (inverted) backscatter compared to (b,d)
transmission imaging.Images a,b acquired with a landing energy of 4keV, c,d
were acquired at 3.5keV. All images were stretched to full dynamic range and
acquired at a 16 bit pixel depth. (a,b) show similar contrast where the images
(c,d) show that the contrast in transmission imaging can be greatly different
from backscatter imaging, as indicated by the arrow. This is illustrated by the
line profile taken along the yellow line (inset in figure ¢ and d). The peak in the
line profile is much higher in the case of transmission imaging.

drawn some conclusions about the image quality using a semi-analy-
tical method [17]. This paper is dedicated to analyzing the quality of
the detection method and determine the optimum imaging conditions.
This is done with a more rigorous Monte Carlo simulation method to aid
some over simplifications from the previous work. The outcome is then
compared to backscatter detection.

2. Monte Carlo model
2.1. Performance parameters

In order to evaluate the optical transmission detection system and to
compare it to backscatter imaging, two parameters are considered.
These parameters are Contrast-To-Noise Ratio (CNR) and SNR. The
most well known parameters of these two is SNR. In this article the SNR
which is referred to is the detected SNR at the end of the detection chain
(SNR,,»). The CNR and SNR are given by Egs. (2.1) and (2.2).

CNR = Hiour — Haout

ot + T 2.1

SNR, = Hout gnp, - Haow
Olout O20ut (22)
The CNR gives a quantification of how well two features are con-
trasted against the noise on those features. |1; and I, are the expectation
values of the signal of the two features, in our case the amount of de-
tected transmitted or backscattered electrons and o; and o, are the
standard deviations of these signals. An example in a simulated image
of the effect of SNR and CNR is shown in Fig. 3. The image shows two
lines with lower transmission coefficient than the background. The CNR
is calculated between the background and the lines. The SNR is the
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o (d)

(f)

Fig. 2. An overview of the detection method as described. (a) The SEM pole-
piece, (b) backscatter detector, (c) electron beam, (d) ultrathin tissue section on
a conductive coating on a scintillator, (e) scintillation light, (f) high NA light
microscope objective, (g) light imaging system (can consist of multiple lenses
and windows), (h) photon detector.

CNR ﬁ

Fig. 3. From left to right showing the effect of increasing CNR and/or SNR. The
image was simulated for transmission imaging with binomial noise. It shows
that if there is a high SNR and a high CNR image quality can be considered best.

SNR

average SNR over the whole image. The images were stretched to full
dynamic range, which means maximum digital contrast without clip-
ping. It shows that just a high SNR or CNR will not give a good image.
When we consider a low SNR and CNR, the lines are hardly visible. Low
SNR but high CNR has very clearly defined lines. But even if the CNR is
low, and the SNR is high, still the lines are visible. The best looking
image is however that in which both the SNR and CNR are high [18].
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Fig. 4. The cascading noise model used for the SNR and CNR calculations.

To calculate the SNR and CNR in a final image, the whole detection
system has to be taken into account. For this analysis a cascading noise
model is used as developed by F. Timischl [18,19]. The cascade of noise
here is as follows. In the imaging system there are five conversion steps
which add noise to the eventual signal (see Fig. 4). The first of which is
the shot noise on the primary electron beam, which follows Poisson
statistics. The second is the generation of the transmission or back-
scattered electrons in the sample, which follow binomial statistics. The
third stage is scintillation, which follows Poisson statistics. The last two
stages are the collection of the light by the objective lens and the de-
tection, which follow binomial statistics. The detector with typically a
total gain of 10° was omitted as it adds no noise by itself. Readout noise
and detector dark noise are left out of the calculation, as both are
considered to be avoidable. The scintillation is, in this work, omitted for
backscatter imaging, as various detector setups are possible [20] and
the calculation is done for a best case scenario. The signal and the noise,
Uouts H20uts Olouss O20ue from Eq. (2.2) are calculated as shown in Egs.
(2.3) and (2.4).

Fiout = MipMyHisMeMg (2.3a)
Hoour = HopMorMosMc Mg (2.3b)
2 2 2
07 07 O
Olout = Myour X (% + 1 2 %
Hip  HipHy  HapMaMg
o ai )%
Hupkbhishe  FapbaksHoty (2.42)
2 2 2
- - -
O2out = Mogur X (izb + 2 7 + 5 P
Moy MopHy  HopMorMog
Ucz Uf )%
HopHokagh?  HopHoHaoskct (2.4b)

Where ,, u;, g, . and o; are the expectation value and
Oy, 01, G5, 0. and oy are the standard deviation of the beam, transmitted
electrons (or backscattered), scintillation, light collection and the de-
tector efficiency, respectively. Note that due to the scintillator term,
which contains the deposited energy, the CNR is influenced by the
energy loss in the sample. The number in the subscript is the area for
which the number holds. For example, in this article, 1 would be resin
and 2 would be a cell membrane. As shown by Timischl [18], the CNR is
independent of contrast and brightness settings, where the SNR is not.

2.2. Monte Carlo model setup

To obtain the parameters in Eq. (2.2) which are needed for CNR and
SNR calculation, Monte Carlo simulations were performed using the
Casino simulation software [21]. The model used for this work is based
on the imaging of Osmium fixed (stained) tissue embedded in an epoxy
resin. In electron microscopy of tissue samples, most commonly Os-
mium-Tetroxide is used as a post-fixative after aldehyde fixation. Os-
mium tetroxide reacts and binds with the unsaturated lipids present in
the tissue material, for instance cell membranes [22]. Furthermore,
Osmium is a high atomic number, dense metal, which gives high con-
trast in all detection methods used in electron microscopy and is thus
often seen as a stain as much as a fixative. It must be noted that, except
for fixation and staining, the osmium present in the tissue also provides
a conductive path for the electrons to the substrate, preventing char-
ging. The amount of osmium at any place in the tissue is highly de-
pendent on the composition of the tissue before fixation and numbers in
literature vary greatly (from 2wt% to 15wt% [23-26]). For this model
we will assume that the contrast generated in the biological material is
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Table 2.1
Table showing the compositions of the materials used in the Monte Carlo si-
mulations, compositions are given in wt %.

Material Density (g/cm®) H C o Os

Epon 1.22 0.080 0.63 0.29 0

Membrane 5% stain 2.29 0.080 0.63 0.24 0.05

Membrane 1% stain 1.43 0.080 0.63 0.28 0.01

Membrane 10% stain 3.35 0.080 0.63 0.19 0.1
Y Al (0]

YAG 4.56 0.45 0.23 0.32

completely generated by the Osmium and the comparatively light and
low density native elements give no contrast. The sample provided is
built up as follows: An ultra thin tissue section (50-100 nm), a Boron
coating (10nm-130nm) and a YAG:CE substrate. The two different areas
of the sample are bare epon, the embedding medium, and an Osmium
fixated cell membrane with either 1wt%, 5wt% or 10wt% of Osmium.
The full compositions are listed in Table 1. In the simulations, the
electron beam, impinges on one of the materials for an energy varied
between 1keV and 10 keV. From the Monte Carlo simulation three
parameters are obtained for each energy. Those parameters are: the
backscatter coefficient, the amount of electrons absorbed in the scin-
tillator and the average energy these electrons deposit. These numbers
are then used to fill in Egs. (2.2) to (2.4), for a certain current and dwell
time.

An example of the full transmission detection chain will now be
given. The tissue section has a thickness of 70 nm, 5% staining (see
Table 1) on the membrane and the scintillator has a 70 nm B coating.
The landing energy is chosen to be 5keV at a current of 1nA and a dwell
time of 1 ps. This current and dwell time gives on average 6241 elec-
trons (u,) with a standard deviation of 79 (o) electrons. The average
transmission coefficients are calculated using Monte-Carlo simulations.
These are, for the membrane: 0.73 and for the bare resin: 0.90 (x,). The
standard deviations of the transmitted electrons are 0.44 and 0.3 (o),
respectively, according to the binomial distribution (\/u,(1 — u,)). The
average energy deposition of the electrons in the scintillator is also
taken from the simulations. The electrons are now converted to light
with an estimated efficiency of 20 photons per keV per electron [27],
giving an average of 59 photons per electron for the membrane and 73
for the bare resin (y,). These have standard deviations of J73 and /59
respectively, according to the Poisson distribution. The next two terms
in the chain are no longer material dependent. The collection efficiency
of the imaging system can be considered fairly low due to the limited
numerical aperture of the objective lens (0.95) and reflection losses of
the rest of the imaging system. The collection efficiency of the photons
in our system is calculated by assuming a homogeneous light source in
the YAG:CE. An optical air objective with an NA of 0.95 will now collect
approximately 18% of the light, the other lenses and mirrors lower . to
0.05 with a standard deviation of 0.21(c.). The detector has a limited
fill factor and quantum efficiency at the wavelength of the scintillation
light. From the supplier data sheet we find that u, is approximately 0.4
with a standard deviation of 0.49 (o). Filling these numbers into
Egs. (2.2) to (2.4) gives a value of 7.4 for the CNR and a value of 49 and
57 for the SNR on the membrane and resin, respectively. Backscatter
detection is calculated in the same fashion for the steps that are still
valid: electron beam, backscatter generation and collection efficiency
(assumed to be 0.5). The average SNR for backscatter imaging in this
case is 12, and a CNR of 2. All these calculations give a single point in,
for instance, Fig. 5.

3. Monte Carlo simulation of the model sample

A result of the model is shown in Fig. 5. It shows the dependence of
both CNR and SNR on the landing energy for a 100nm section and a
70nm boron coating layer on top the scintillator. First we only consider



W. Zuidema and P. Kruit

50 - _
e
-k ey o
/ \ xR
40+ / \ XTI K
/ N7 X — % —CNR 1% staining
IS ¢ —© ~CNR 5% stain
a0l &« VAN — % —CNR 10% stain
x // )\/*/ \ — »* —SNR 1% stain
z , é *\ — © —SNR 5% stain
© AN \ — % —SNR 10% stain
20F ¥/ 70N W
/
1K \ ~
/ Q *®
1!, N ~u
10—/Q hN T
/_x \0\* \*\* .
\\\"\w‘ "0‘~0_‘O__O‘~0:2~+
0 . e T R VRV g A
3 4 5 6 7 8 9 10
Landing energy (keV)
(a).
2000
— % —1% staining
5% staining
10% staining
1500 [
o
)
& 1000 [
b4
o
500
YAk
7 X\Nx\\x\
0 L L \)\(_-x_-)\(\"‘—"ﬁ-—x—-x—*—.,‘
3 4 5 6 7 8 9 10

Landing energy (keV)

(b)
Fig. 5. Graphs showing the results of Monte Carlo Simulation, the effect of the

level of staining on (a) the SNR and CNR and (b) the product of SNR and CNR.
Staining improves the CNR significantly without reducing SNR.

the 5% staining case. The simulation was run from 1keV to 10keV but
the graph starts at 3.5keV as below that energy, no electrons pass
through the membrane anymore. Imaging here can still be performed
but the contrast mechanism will be severely compromised and a CNR or
SNR can no longer be calculated. Because of the difference in trans-
mission coefficient between the membrane and the surrounding resin,
the SNR values are slightly different for the two areas. In this graph the
average of the two was taken, as in this model it is assumed that all
other values lie in between the two extremes defined by the membrane
and the resin. As the energy increases, more electrons pass through the
tissue and create more photons in the scintillator, causing the SNR to
rise with energy. At higher energy this is due to the generation of extra
photons by each electron. On the other hand, the CNR drops with in-
creasing energy until it almost reaches zero. This drop is caused by the
difference in transmission coefficient between the membrane and the
resin becoming smaller at higher energies. As the SNR and the CNR
have opposite trends as a function of energy, an optimum energy will
exist where both are high. There are different ways to define this op-
timum, in this article it will be assumed that the optimum lies where the
product of SNR and CNR is maximized. At this maximum, the combi-
nation of the two has the highest possible value. For the case shown
here this optimum lies at 4keV (5). The next question that arises from
this result is, how does this optimum, and the levels of both SNR and
CNR change with various levels of staining, coating thickness, scintil-
lator yield and collection efficiency of the optical system.

Ultramicroscopy 218 (2020) 113055

Level of staining and section thickness

Depending on the application and specific tissue, the amount of
staining can vary greatly. In order to investigate the effect of the level of
staining, the content of osmium in the membrane is changes to 1wt%
for low staining and 10 wt% for a high staining. The effect of the
staining level in the transmission imaging is shown in Fig. 5. The
staining level changes both the SNR and CNR levels, but clearly has the
biggest effect on the CNR. The difference between the staining levels
will severely effect the current and dwell time needed to get a good
image. The optimum landing energy shifts to a higher energy as the
amount of staining increases, from 3.5keV to 4.5keV. Here is where one
should watch out, as when the wrong energy is chosen, the effect of
extra staining can be undone. In general, the conclusion can be made
that extra staining is always beneficial from a pure imaging perspective,
as it will enhance the contrast without deteriorating the SNR greatly.
There is no maximum to the amount of staining from an imaging per-
spective, as long as electrons can pass even the most densely stained
areas of the sample.

Decreasing the section thickness from 100nm to 50nm has a similar
effect as the change of staining level (figure omitted). This can be ex-
plained by the fact that the transmission of electrons through a material
is mostly dependent on mass-thickness, the product of membrane
thickness and its density [28]. This causes that changing the thickness
and composition has a similar effect. The optimum imaging energy
changes from 4 to 3.5keV, with the change in thickness as described.
Increasing the section thickness will however result in a bad blurred
membrane edges, as the membranes do not go straight down through
the section but will in general always be at an angle.

Scintillator coating thickness and material

Because the scintillator is non-conductive, a conductive coating has
to be applied to its surface to avoid charging. The coating material and
thickness chosen for the previous analysis was 70nm of Boron. Boron
was chosen because of it’s low atomic number and density, causing a
low absorption and backscatter coefficient. The thickness of 70nm was
experimentally found to be the optimum as it allows for the electron
beam to spread out significantly before hitting the scintillator. This
ensures that the image is not contaminated with small scale imperfec-
tions in the scintillator or its surface. For reasons with the same con-
siderations, it might be that a different coating thickness or material is
preferred. First we analyze the effect of a different thickness of boron.
The results of the calculation are shown in Fig. 6a, for a 5% stained
section of 100nm thickness. As is to be expected, all the trends in SNR
and CNR observed before are the same and independent of coating
thickness. An interesting observation is that the variation in coating
thickness does not so much change the levels of SNR and CNR but shifts
them in energy. This is due to the coating layer acting as an amplifier
for the difference in transmission coefficient between the two regions.
This effect can also be seen in Fig. 6b, which shows a shift in the op-
timum energy for imaging.

A change of the material was also investigated and the result is
shown in Fig. 7. For the change of material the mass density was kept
constant to that of 70nm of B. This translates to a 54 nm Al layer and 16
nm Mo layer. From the graph it is clear that the imaging performance is
dependent on the mass thickness of the coating and not so much on the
material. There is however a chance that the imaging is influenced by
imperfections in the coating layer, as the electron beam has less dis-
tance to be able to spread out, before hitting the scintillator surface. If
Boron is not available, any other (conductive) metal can be used as long
as the mass thickness is the same.

Detection parameters
Other efforts in the signal detection are the efficiency of the scin-
tillator, the collection efficiency of the objective lens and the detection
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Fig. 6. Graphs showing the results of Monte Carlo Simulations, the effect of
scintillator coating (Boron) thickness on (a) the SNR and CNR and (b) the

product of SNR and CNR. The coating thickness shifts the optimal landing en-
ergy for imaging. The CNR is not affected, where the SNR is slightly reduced.

efficiency of the detector. The collection efficiency of the objective lens
can be increased by increasing the NA. Previous calculations were
based on an air objective with an NA of 0.95. It has been shown that
higher NA immersion objective up 1.4 can be used in vacuum [29],
which gives a method to increase the collection efficiency. The effect of
increased collection efficiency is shown in Fig. 8. Clearly an increase in
collection efficiency would be beneficial for the detection system. A
doubling of the collection efficiency, causes the both the SNR and the
CNR to rise. The maximum product of these two parameters increases
by a factor 1.5, when the collection efficiency is increased from 5% to
10%. Increasing the scintillator yield from 20 to 40 photons per keV per
electron has the same effect as increasing the collection efficiency from
5 % to 20% (graph not shown).

Comparison to backscatter imaging

The most used imaging modality in SEM imaging of tissue is making
use of the backscattered electrons. As the tissue section is flat and has
hardly any topography, secondary electron imaging is generally less
optimal. Backscatter imaging does not show the sample topography but
the amount of staining in each position in the section. Areas with a
higher density or atomic weight will show a higher backscatter signal,
making for instance stained membranes visible. A free standing section
and a section on a Kapton substrate were simulated for the calculations.
For the calculation a Kapton substrate and a free standing section were
simulated. Kapton was chosen because it is widely used in the atum-
tome serial sectioning system [30]. The free standing section is re-
presentative of a section on a TEM grid.
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Fig. 7. Graphs showing the results of Monte Carlo Simulations, effect of the
coating material, with a fixed mass-thickness, on (a) the SNR and CNR and (b)
the product of SNR and CNR. The material that the coating is made of does not
affect the imaging as long as the mass-thickness of the coating is the same.

The result of simulations for a 5% stained membrane are shown in
Fig. 9. As can be expected from expressions relating the backscatter
coefficient to the landing energy [31], the backscatter coefficient for
the free standing tissue increases with lower energy, increasing the
SNR. For the tissue on kapton, the SNR is fairly constant, due to the
background of the substrate on the backscatter electrons. This back-
ground however does not contain any information and the contrast does
thus not change. The CNR gets slightly higher at higher energies, but
does not change as much with energy as it does for transmission ima-
ging. If backscatter imaging is compared to the transmission imaging, it
stands out that both the CNR and SNR are lower for the 5% stain. The
graph of the product of SNR and CNR was omitted in this comparison as
the product in the case of backscatter imaging is too low to be rea-
sonably compared to the transmission imaging case.

Comparison to secondary electron imaging.

In many studies secondary electron (SE) detection is used for ima-
ging of heavy metal stained and resin embedded tissue sections
[2,32-34]. Especially in MBSEM microscopes, SE’s can be detected due
to their relatively small energy spread. This spread allows for the fo-
cusing of the SE electron beams onto a detector [35,36]. The main
disadvantage of this method of detection is that in general SE’s are
mostly generated by topographical features, of which there are non or
few in the flat tissue sections. Therefore it is thought that the image
formation contrast in the case of flat tissue samples is a result of so-
called SE2 electrons, that is secondary electrons that are generated by
backscattered electrons. This being an indirect process, extra noise is
added in the SE generation step. Due to this, the images have less
contrast and a lower signal to noise than TE and BSE imaging. A
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Fig. 8. Graphs showing the results of Monte Carlo Simulations, the effect of
light objective collection efficiency on (a) the SNR and CNR and (b) the product
of SNR and CNR. Increasing the light collection efficiency increases the SNR and
SNR slightly.
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Fig. 9. Comparison between the CNR and SNR in transmission imaging (circles)
and backscatter imaging (crosses). Both the CNR and SNR of transmission
imaging are much higher in transmission imaging than backscatter imaging.

comparison is shown in Fig. 10. The image shown is that of OTO stained
rat pancreas tissue embedded in EPON, with a 70nm section thickness.
The SE image was taken at 2.5keV and the transmission image at 3keV,
both with a 400pA beam current and a 800ns dwell time. The detector
used for SE detection was an in-lens scintillation detector. The section
showed charging effects at lower landing energies than 2.5keV. The TE
image shows more contrast and a better SNR than the SE image.
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(a) (b)

Fig. 10. OTO stained 70nm section of rat pancreas imaged at (a) 2.5keV
landing energy with SE detection and at (b) 3keV landing energy with TE de-
tection. Imaging was performed with a 400pA beam current and 800ns dwell
time. Both image histograms have been stretched to full dynamic range. The TE
image clearly shows more contrast and less noise than the SE image.

4. Experimental setup for model verification

The model as described in the previous section cannot be easily
verified with fixated tissue sections. In a tissue section the exact com-
position at two different points is not known and the sample is ex-
tremely heterogeneous, so no two locations will have the same com-
position. Therefore another sample was manufactured: a YAG:CE
scintillator substrate was half coated with 50nm Al and half with 50nm
Cr. For these measurements a FEI Verios SEM was used, equipped with
a Delmic SECOM integrated optical set-up [29]. SECOM is an integrated
inverted fluorescent microscope, used for correlative light and electron
microscopy. In this SECOM platform, the excitation path was removed
and the system was only used for collecting the light generated in the
scintillator. This light is collected using a 0.95 NA air objective, posi-
tioned directly underneath the scintillator, and focused on a Hama-
matsu multi-pixel photon counter (s13360-3050sc). During the ex-
periments the current was constant at 800pA and the dwell time was
5us. The electron beam was defocused to a spot size of larger than 25um
to blur out all small scale defects that might be present in the Al or Cr
layer. The low dwell time of 5us was chosen in order to avoid possible
bandwidth limitations in the detection path of the backscatter detector.
Due to inhomogeneous light output of the scintillator, which is location
dependent on scales larger than a few micrometers, the measurements
were performed at random spots on the sample. To find the true SNR
and to compensate for an offset (brightness) in the images, the mea-
surements were done at 0.4nA and 0.8nA beam current and adjusted
accordingly. At this current and dwell time, the amount of photons
arriving at the detector within that dwell time is not lower than 2000.
The dark count of the detector in that same time is 2, which can thus be
neglected.

To check the model with actual tissue imaging, tissue from a rat
pancreas was used. The tissue was prepared according to the OTO
protocol [37] and cut to a 100nm section. The tissue was placed on top
of a TEM grid which was then stuck to a Boron coated CRY18 scintil-
lator with carbon tape. Because of the small space between the TEM
grid and the scintillator, the beam can spread out after leaving the
tissue, making sure that the image is not obscured by an in-
homogeneous coating or scintillator defects. As mentioned before, it is
hard to verify CNR results on tissue, but methods are available for es-
timating SNR in an SEM image. This method is described by Joy [38]
and relies on the fact that if the pixel size in the image is taken small
enough (much smaller than the size of the beam), two subsequent lines
in the image are very similar and from those a SNR can be calculated by
using the formula in Eq. (4.1), where X and Y are two successive lines in
the image. This can now be done for all the lines in an image, giving an
SNR. The pixel size was chosen to be 0.5nm, which is significantly
smaller than the estimated probe size of about 4nm full-width half
maximum. For every landing energy, three different images were taken
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Fig. 11. Representation of experimental results to measure the CNR and SNR.
The sample a scintillator half coated with 50nm Al and 50nm Cr. The example
shown here are cutouts of the images used to find the CNR and SNR.

and for those the SNR was calculated. Taking images of the same areas
twice is not possible as imaging changes the sample, the transmission
yield changes slightly and the sample tends to deform.

SNR = R where R, = cov(X, ¥)

1-R, Jvar(Y)var(Y) “4.1)

5. Experimental results

A representation of the experimental results is shown in Fig. 11. It
shows the two regions, Al and Cr in both backscatter and transmission.
The image is scaled to full range and it shows that in TE imaging the
contrast is higher than in BSE. Because Cr is a heavier metal than Al, we
expect it to have lower transmission coefficient and a higher back-
scatter coefficient than Al, which we can immediately see in the image.
In TE the noise is hardly visible due to the high contrast to noise ratio.
This image clearly illustrates the better sensitivity to material density
compared to backscatter imaging.

When analyzing the images we find the results shown in Fig. 12.
Note that the average SNR is shown, as the SNR for the Cr and Al re-
gions are different. First, inspecting the measured CNR and SNR for TE
imaging, it shows that the expected trend is found. As the energy goes
down, the CNR becomes larger, but at the same time fewer electrons
reach the scintillator causing a drop in the SNR. At higher energy the
opposite happens and the SNR rises and the CNR drops. Because of a lot
of unknown factors in the measurement, namely objective lens collec-
tion efficiency, scintillator efficiency, small errors in the Monte Carlo
simulation and precise thickness of the Cr and Al films, the absolute
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Fig. 12. Results of the SNR and CNR measurements on a sample with 50nm Cr
and 50nm AL, for (a) transmission imaging and (b) backscatter imaging. The
same trend and levels are observed in the model and the experiment.
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Fig. 13. The product of SNR and CNR for a 50nm Al and 50nm Cr layer as a
function of landing energy. The same trend and levels are observed in the model
and the experiment. The peak lies in the same location.

values were not compared with calculation results. The trends are
however as expected. The product of SNR and CNR for the TE imaging,
is shown in Fig. 13. The peak lies at the same position in the experi-
ments as it does in calculations. As we have seen from the Monte Carlo
model, collection efficiency and scintillator yield does not change the
best energy for best imaging.

When comparing the transmission imaging to backscatter imaging,
we have to keep in mind that the actual signal will be influenced by the
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Fig. 14. Graph showing the measured (average) SNR as a function of landing
energy for rat pancreas tissue. Measurements were done for with the same
current and dwell time. It shows the decreasing SNR at low landing energy.
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Fig. 15. Comparison of TE imaging and BSE imaging (inverted contrast) for
landing energies of 3keV, 5keV and 12keV. The horizontal field width (HFW) is
6um, a dwell time of 5us and a beam current of 50pA.

scintillator substrate. The backscattered electrons from the scintilaltor
will give an extra noise floor to the signal. The collection efficiency of
the backscatter detector is an unknown, especially as this will be an
energy dependent efficiency. Furthermore, we have not developed a full
noise model of this detector. From Fig. 11 we can however see that the
CNR in BSE imaging is much lower than for TE imaging. When looking
at Fig. 12, it is clear that the levels for both CNR and SNR are much
lower than in the TE imaging case.

The result from SNR measurements on tissue images is shown in
Fig. 14. It can be seen here that the SNR increases with energy. After
7.5keV the calculation with Eq. (4.1) fails, as there is not enough detail
in the image due to loss of contrast. Even though this method does not
calculate the product of SNR and CNR, it is a convenient and quick way
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to find the optimum imaging energy, which is at the point where the
SNR stops rising. Fig. 15 shows tissue images for three different landing
energies compared for both TE and BSE imaging. At first glance the
contrast and SNR look better in the TE images than they do in the BSE
images. In the BSE case it is clear that the image quality goes up with
lower energy, as the 3keV image seems to be the best. In TE imaging the
difference is subtle but on close inspection it can be seen that the image
is the best at 5keV. This is the same landing energy as was found from
Fig. 14. The drop in CNR at higher energies is not very quick due to the
fairly high staining in this tissue section.

6. Summary and conclusions

In summary, we have made a noise transfer model for transmission
imaging in a MBSEM in order to calculate the CNR and SNR. The model
considers the CNR between a stained membrane and the surrounding
unstained embedding resin, in both transmission and backscatter ima-
ging. The input variables for the model were calculated using Monte
Carlo simulations. The model was verified using both a test sample and
stained tissue sections. The effects of changing the staining, section
thickness, scintillator coating material, thickness and detection para-
meters show that:

® There is a landing energy where the product of the CNR and SNR of
the imaging method shows a maximum.

e Staining has an larger effect on the CNR than on the SNR. This also

also holds for the section thickness. The CNR increases with in-

creased staining and section thickness, where the SNR is fairly
constant.

The thickness of the Boron (or another material) coating on the

scintillator shifts the optimum energy for imaging but has little ef-

fect on the imaging performance (SNR and CNR).

e Changing the scintillator coating material does not change the
imaging performance if the mass-thickness is kept constant.

e Increasing the collection efficiency or scintillator quantum effi-
ciency has a beneficial effect on the imaging performance, albeit
relatively small compared to staining.

e The transmission imaging presented in this work performs better
than backscatter imaging of heavy metal stained embedded tissue
sections.

Concluding, the imaging method discussed in this paper can out-
perform backscatter imaging and is suitable for use in the MBSEM.
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