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Abstract

Wind farm control (WFC) algorithms rely on an estimate of the ambient wind speed, wind

direction, and turbulence intensity in the determination of the optimal control setpoints. How-

ever, the measurements available in a commercial wind farm do not always carry sufficient

information to estimate these atmospheric quantities. In this paper, a novel measure (‘‘observ-

ability’’) is introduced that quantifies how well the ambient conditions can be estimated with

the measurements at hand through a model inversion approach. The usefulness of this measure

is shown through several case studies. While the turbine power signals and the inter-turbine

wake interactions provide information on the wind direction, the case studies presented in this

article show that there is a strong need for wind direction measurements for WFC to sufficiently

cover observability for any ambient condition. Further, generally, more wake interaction leads

to a higher observability. Also, the mathematical framework presented in this article supports

the straightforward notion that turbine power measurements provide no additional information

compared with local wind speed measurements, implying that power measurements are super-

fluous. Irregular farm layouts result in a higher observability due to the increase in unique wake

interaction. The findings in this paper may be used in WFC to predict which ambient quantities

can (theoretically) be estimated. The authors envision that this will assist in the estimation of

the ambient conditions in WFC algorithms and can lead to an improvement in the performance

of WFC algorithms over the complete envelope of wind farm operation.
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1 INTRODUCTION

The European Wind Energy Association (EWEA) predicts the amount of installed wind energy to increase from 106 GW in 2012 to 735 GW in

2050, which at that point should provide for about 50% of the European Union's electricity demand.1 The success of wind energy largely relies

on its financial competitiveness with other renewable and nonrenewable sources. Control plays an invaluable role in this matter. In the past, the

focus of control research has been on wind turbine control. Recently, the interest has largely shifted towards wind farm control (WFC), in which

multiple turbines inside a wind farm are coordinated together to improve their combined energy yield.2 WFC addresses the issue of wakes, which

are slower and more turbulent pockets of air that form behind a wind turbine as energy is extracted. Wake formation has led up to an estimated

23% loss in the annual energy yield of the closely spaced Lillgrund offshore wind farm at the coast of Sweden compared WITH an idealized

situation without wake formation.3 The underlying concept of WFC is to influence the wake such that it has a smaller impact on downstream

turbines. A popular approach in the literature is yaw-based wake steering, in which the wake position is shifted laterally by purposely operating an

upstream turbine at a yaw misalignment. Recent studies have shown the potential of yaw-based wake steering for wind farm power maximization
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FIGURE 1 The closed-loop framework
for model-based wind farm control. In
this framework, measurements from each
turbine in the wind farm (eg, turbine
power signals and wind vane
measurements) are used to adapt a
simplified model of the wind farm to
better represent the current wind farm
dynamics. Typically, the freestream wind
speed and wind direction are among the
estimated quantities. This adapted
surrogate model is then used to optimize
the control settings of each turbine to
increase the power capture of the wind
farm. Finally, these setpoints are
transmitted to the real-world turbines
and the cycle repeats itself [Colour figure
can be viewed at wileyonlinelibrary.com]

in high-fidelity simulation,4 wind tunnel experiments,5 and field tests under dynamic inflow conditions.6-8 These publications suggest an increase

in the annual energy yield in the order of 1% and situational increases of up to 20% for certain wind farms under particular inflow conditions that

cause large wake losses.

The wake losses and therefore the amount of yaw misalignment that maximizes the energy yield is highly dependent on the wind direction,

wind speed, and turbulence intensity of the incoming wind field.3 As these atmospheric conditions constantly change, so do the optimal yaw

angles. Typically, a simplified (‘‘surrogate’’) model of the flow and turbine dynamics is leveraged to calculate the optimal yaw angles.9 However,

due to the complicated flow behavior at a range of temporal and spatial scales, no surrogate model exists that is accurate for all the different

atmospheric conditions a wind farm may encounter. For this reason, closed-loop control solutions are becoming increasingly popular in the

literature.2 The underlying idea of this closed-loop control framework is that the surrogate wind farm model is continuously adapted such that it

accurately and consistently predicts the wind farm behavior.

The closed-loop WFC framework is shown in Figure 1. This framework consists of three components, namely, (a) a surrogate wind farm model,

(b) a model adaptation algorithm, and (c) a control setpoint optimization algorithm. Surrogate wind farm models can typically be separated into

static and dynamic models. These model types attempt to predict the minute-averaged and the second-to-second flow and turbine behavior,

respectively. The purpose of the model adaptation algorithm is to modify parameters inside the surrogate model such that it can accurately predict

the wake interactions inside the wind farm, which includes the freestream wind speed and wind direction. Finally, an optimization algorithm is

necessary to determine an optimal control policy such that a particular wind farm objective is achieved, eg, maximization of the wind farm power

production. The focus in this article is on the model adaptation algorithm; the interested reader is referred to the survey by Boersma et al2 for

more information on surrogate models and optimization algorithms.

The body of literature on real-time model adaptation for WFC is scarce. Most WFC literature has focused on setpoint optimization and model

development.2 This goes paired with the fact that most WFC algorithms in the literature have been tested under quasi-steady ambient conditions,

meaning that the mean wind speed, wind direction, and turbulence intensity were time invariant. This holds for both numerical simulations4 and

real-world scaled experiments.5,10 This limits the applicability of such algorithms, as the experiments do not sufficiently represent the real-world

fluctations in the atmosphere.

A handful of articles in the literature is concerned with the estimation of atmospheric conditions and model adaptation for WFC. Annoni et al11

proposed a model-free algorithm to estimate the wind direction inside a wind farm using the wind vane measurements of different turbines

and obtaining a consensus on the most probable value. Doekemeijer et al12 proposed a method to estimate the freestream conditions by a

model inversion approach using the time-averaged turbine power measurements and a static surrogate model assuming the wind direction is

known, which is comparable with the idea coined by Gebraad et al.4 Furthermore, Gebraad et al13 synthesized a Kalman filter for their dynamic

surrogate model, which uses the turbine power measurements to estimate the flow field inside the wind farm. The adapted surrogate model was

able to accurately predict the wind farm dynamics, though the wind direction was constant and assumed to be known. Similarly, Doekemeijer

et al14 used a dynamic surrogate model with an ensemble Kalman filter to estimate the flow field and turbulence intensity using turbine power

measurements. High-fidelity simulations showed that the algorithm was able to successfully reconstruct the dynamic wind field for a two-turbine

and a nine-turbine wind farm. However, also in this work, the wind direction was assumed known. Further, Shapiro et al15 synthesized and

evaluated a WFC solution assuming a constant wind direction. Besides the estimation of the ambient conditions, Bottasso and Schreiber16

attempt to estimate several model tuning parameters to improve the accuracy of the surrogate model.

All aforementioned work, apart from that of Annoni et al,11 is tested under quasi-steady ambient conditions in simulation, thereby significantly

limiting their applicability. In essence, these methods combine a set of measurements with some sort of surrogate or consensus model that relate

one measurement to another. These methods are fundamentally limited due to the fact that only a finite amount of information is measured.
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One can easily think of situations in which the ambient conditions cannot be derived from the available measurements. Such a situation would be

considered ‘‘unobservable’’ or ‘‘unestimatible.’’ Thus, before one may attempt to estimate the ambient conditions, one should consider whether

the situation is observable in the first place. However, to the best of the authors' knowledge, there is no literature on the observability for

ambient condition estimation. This paper aims to fill this scientific gap, and the contributions of this article are

• Proposing a formal definition for a mathematical measure (henceforth referred to as observability) that quantifies how well the ambient

conditions (ie, wind direction, wind speed, and turbulence intensity) can be reconstructed from the measurements available in the wind farm.

• Comparing the effect of different wind farm topologies and sensor configurations on the observability for a large range of ambient

conditions that a wind farm may encounter during operation.

• Performing theoretical case studies with wind farms with DTU 10-MW wind turbines.

This article is organized as follows. The surrogate model used in this work is presented in Section 2. The issue of estimation and a novel

quantitative measure of observability is presented in Section 3. Simulation results are shown in Section 4, and the article is concluded in Section 5.

2 SURROGATE MODEL: FLORIS

The surrogate model used in this work is referred to as the ‘‘FLOw Redirection and Induction in Steady-state’’ (FLORIS) model.9 This model

predicts the time-averaged power capture of each turbine and the time-averaged three-dimensional flow field for a wind farm under a specified

set of inflow conditions. The timescale of FLORIS is on the order of minutes. A schematic overview of the types of inputs and outputs to the

FLORIS model is shown in Figure 2. Fundamentally, FLORIS combines several submodels from the literature. The main components of FLORIS

used in this article are described in the remainder of this section.

Firstly, FLORIS includes the single-turbine wake model from Bastankhah and Porté-Agel,17 which predicts the time-averaged three-dimensional

wind field behind a turbine. Secondly, the turbine-induced turbulence is calculated using an empirical function proposed by Crespo and

Hernández.18 Thirdly, the wind field under multiple overlapping wakes is calculated through a sum-of-squared-deficits law as proposed by

Katic et al.19 Fourthly, the power production of each turbine is calculated using the rotor-effective wind speed and the nondimensional power

coefficient CP, as

Pi =
1
2
𝜌ADU3

i CP(Ui, 𝛾i), (1)

where 𝜌 is the air density, AD is the rotor swept area, Ui is the spatially averaged inflow wind speed at turbine i, and 𝛾i is the yaw angle of the

turbine relative to the incoming wind. The nondimensional power and thrust coefficients, CP and CT, can be derived using actuator disk theory for

aligned inflow (𝛾i = 0). Alternatively, the nondimensional power and thrust coefficients can be calculated using an aero-elastic turbine simulation

model for various wind speeds (and yaw misalignment angles) such as OpenFAST20 or Bladed. A common expression modeling the effect of a

yaw misalignment on the turbine power production is4

CP(Ui, 𝛾i) = CP(Ui,0) · cos𝜅 (𝛾i) , (2)

where 𝜅 has a typical value of 1.4 to 2.0, depending on the wind turbine.

The results of an arbitrary wind farm simulation with two 10-MW turbines21 is shown in Figure 3. The computational cost for a single FLORIS

run is 10 millisecond to 1 second, depending on the number of turbines in the wind farm. FLORIS has shown a good match with results from

high-fidelity simulations,12 wind tunnel experiments,22 and field tests.8,23 Furthermore, the variant presented in this article has fewer tuning

parameters than a comparable model proposed in Gebraad et al.4 For a more detailed, mathematical description of the model, the reader is

referred to its related literature. Note that the results that will be presented in this article are not limited to FLORIS and can straightforwardly be

reproduced with other static surrogate models.

FIGURE 2 The flow of information for the surrogate model ‘‘FLOw Redirection and Induction in Steady-state’’ (FLORIS). The left four blocks
represent the various model inputs, and the right two blocks represent the model outputs. Typically, the control settings and wind farm
properties are known and are time invariant. However, the ambient conditions are time variant, and the tuning parameters that provide the best
results are uncertain [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Simulation results for a wind farm with two DTU 10-MW wind turbines using FLOw Redirection and Induction in Steady-state
(FLORIS). The figure shows a horizontal flowfield and a cross-stream slice of the flow field in meter per second. The Gaussian nature of the
wakes is clearly seen [Colour figure can be viewed at wileyonlinelibrary.com]

3 METHODOLOGY: INTRODUCING A MEASURE OF OBSERVABILITY

The model adaptation solution of a WFC algorithm is not guaranteed to result in satisfactory performance. There has to be sufficient information

in the wind farm measurements to correctly determine the ambient conditions. Hence, an observability analysis provides useful insight before

the implementation of such a control algorithm. The traditional definition of observability refers to dynamical systems; a system is observable if

the initial conditions and the time series of the system states can be reconstructed from a time series of the system output signals. As FLORIS

is a static model, such a notion does not apply. Therefore, a static observability notion is defined as being true for a situation when the initial

conditions can be reconstructed from the system output signals. In this section, a mathematical definition of this observability is introduced for

the control framework presented in Figure 1.

3.1 Cost function in estimation

Generally, a simplistic, heuristic approach is used to determine the prevailing ambient conditions inside the wind farm. However, the reliability of

such methods vary, the literature on them is scarce, and these methods are limited in their accuracy. Rather, in this work, a surrogate wind farm

model is leveraged in a sensor fusion approach for the estimation of the ambient conditions.

In this work, the freestream wind speed, wind direction, and turbulence intensity are estimated using the readily available measurements of

each turbine. For example, consider a cost function that minimizes the error with the time-averaged power measurements of each turbine, as

J1(𝜙̂,Û∞, Î∞) =
1

NT

NT∑
i=1

(
Pmeasured

i − P̂FLORIS
i (𝜙̂,Û∞, Î∞)

)2

, (3)

with NT the number of turbines, and 𝜙̂, Û∞, and Î∞ being the freestream wind direction, wind speed, and turbulence intensity as evaluated in

FLORIS, respectively.* Using this cost function for model adaptation, the idea is that values for 𝜙̂, Û∞, and Î∞ are found such that the error between

the measured turbine power signals and what is predicted by FLORIS for these conditions is minimized. The cost function shown in Equation (3)

was used for model adaptation in Doekemeijer et al12 assuming 𝜙 was known a priori, which allowed the successful estimation of U∞ and I∞.

However, only using the turbine power measurements may lead to situations in which the true ambient conditions cannot be reconstructed

accurately. For example, consider the case in which all turbines inside the wind farm are operating in above-rated conditions. All turbines are

then generating their rated power, and one cannot distinguish different above-rated wind speeds from one another. To resolve this issue, one

can include the wind speed estimates from a local turbine wind speed estimator24,25 in the cost function. This term is denoted by J2, given as

J2(𝜙̂,Û∞, Î∞) =
1

NT

NT∑
i=1

(
Umeasured

i − Û
FLORIS
i (𝜙̂,Û∞, Î∞)

)2

, (4)

where Umeasured
i

is the measurement of the local wind speed estimator of turbine i, and Û
FLORIS
i is what FLORIS predicts the local wind speed to

be at turbine i for the hypothesized wind conditions 𝜙̂, Û∞, and Î∞. Note that the inflow wind speed at a turbine in FLORIS, denoted by Ûi, is

the freestream-equivalent wind speed at that turbine under zero yaw misalignment. Thus, the effects of a yaw misalignment of turbine i are not

accounted for in this signal. However, in practice, a typical local turbine wind speed estimator provides a freestream-equivalent wind speed using

the turbine power signal under the assumption of zero yaw misalignment. To account for the situation in which a turbine is misaligned with the

flow, one can model Û
FLORIS
i as

Û
FLORIS
i (𝛾i) = Û

FLORIS,unyawed
i · 3

√
cos𝜅 (𝛾i), (5)

* Note that the power measurements of different turbines can be weighted differently according to the amount of uncertainty in this measurement, as done in previous work.12 However, for
the observability analysis at hand, this additional level of complexity does not sufficiently add to the theoretical foundation presented in this work.
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in order to match the signal definition from the local wind speed estimator, Umeasured
i

. Finally, one can combine J1 and J2 into cost function

J12, as

J12 = 𝜆PJ1 + 𝜆UJ2, (6)

where 𝜆P and 𝜆U are weighing terms. Using the cost function defined in Equation (6), difficult situations may arise when trying to estimate 𝜙,

U∞, and I∞. For example, if there is no wake interaction, one cannot estimate the freestream turbulence intensity, as the effects of I∞ have no

correlation with (ie, impact on) the measured signals. Moreover, issues may arise concerning the estimation of 𝜙, as demonstrated in Figure 4.

In this situation, 𝜙̂ = 6.0◦ and 𝜙̂ = −3.6◦ yield almost identical values for Û
FLORIS
1,2 and P̂FLORIS

1,2
, thereby making it impossible to distinguish these

two situations using the measurements available.

To address the latter issue, local wind direction estimates of each turbine are included in the cost function, eg, using the filtered wind vane

measurements.26 This term is modeled as J3, given by

J3(𝜙) =
1

NT

NT∑
i=1

(
𝜙measured

i − 𝜙̂
)2
, (7)

where 𝜙measured
i

is the filtered wind vane measurement of turbine i and 𝜙̂ is the hypothesized wind direction in FLORIS. The complete cost function

J is now defined as

J(𝜙̂,Û∞, Î∞) =
1

NT

NT∑
i=1

⎛⎜⎜⎜⎜⎝
𝜆P

(
Pmeasured

i − P̂FLORIS
i (𝜙̂,Û∞, Î∞)

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contribution of local power measurements

+ 𝜆U

(
Umeasured

i − Û
FLORIS
i (𝜙̂,Û∞, Î∞)

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contribution of local wind speed estimates

+ 𝜆𝜙
(
𝜙measured

i − 𝜙̂
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contr. of local wind direction (vane) estimates

⎞⎟⎟⎟⎟⎠
, (8)

with 𝜆𝜙 a weighing term for the local wind direction estimates. This weighing term is to be chosen according to the relative measurement

noise and bias in the wind vane measurements, and could vary per turbine. The to-be-estimated quantities are 𝜙, U∞, and I∞. Each of the three

components includes a squared term to quadratically penalize mismatches between the surrogate model and sensor measurements. The situation

of Figure 4 becomes increasingly better conditioned as the contribution of the wind vane measurements increases, as visualized in Figure 5.

FIGURE 4 The issue of symmetry exemplified on a two-turbine wind farm for the estimation of 𝜙. The definitions are that 𝜙 = 0◦ when the air
moves from west to east (left to right) and is counterclockwise positive. The color bar depicts wind speed in meter per second. In this plot, it is
seen that 𝜙̂ = 6◦ and 𝜙̂ = −3.6◦ yield almost identical turbine power signals and local wind speeds, thus making them indistinguishable in the
cost function of Equation (6). This leads to an unobservable situation [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 The issue of exclusively using power measurements in the cost function J (Equation 8), exemplified on the two-turbine case of
Figure 4. In all subplots, 𝜆P = 10−12 and 𝜆U = 0 (In this example case, 𝜆U = 0 as it carries the same information as the power signals do. This
statement will be proven in Section 4.1.1). In the left figure, 𝜆𝜙 = 0 and thus exclusively power measurements are used. This leads to a critical
point at Δ𝜙 = −9.6◦ which has negligible cost, and thus, this point cannot be distinguished from the actual point Δ𝜙 = 0◦, with 𝜙̂ = 𝜙 + Δ𝜙,
leading to unobservability. This refers back to the situation shown in Figure 4. By including wind vane measurements (𝜆𝜙 > 0), the cost function
is better conditioned to uniquely estimate 𝜙. Note that 𝜆𝜙 should be chosen in accordance with the vane's measurement reliability [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 6 A visualization of how the
degree of observability  is calculated.
This is a continuation of the example
shown in Figures 4 and 5. Firstly, the cost
function J (left plot) is converted to a
measure  (right plot) which penalizes a
low cost far away from the true solution
(the true solution being Δ𝜙 = 0).
Secondly, the degree of observability  is
the minimum value of . In this example,
 is small due to J ≈ 0 at Δ𝜙 = −9.6◦

(referring back to 𝜙̂ = 6◦ and 𝜙̂ = −3.6◦),
and the situation is thus poorly
observable. This agrees with the
qualitative discussion from Section 3.1
[Colour figure can be viewed at
wileyonlinelibrary.com]

Thus, it is clear that local wind speed measurements (to deal with above-rated wind speeds), wind direction measurements (to deal with

situations as exemplified in Figure 4), and wake interaction (to enable correlation between I∞ and the measurements) are required to promote

observability of the freestream conditions over the full range of operation. When multiple minima exist at a notable distance from the true

solution (in the example case of Figures 4 and 5, this would be ||Δ𝜙|| ≫ 0, with 𝜙̂ = 𝜙+Δ𝜙), the ambient conditions cannot be reliably estimated,

and the situation becomes unobservable.†

However, while it is clear that particular situations are unobservable, a quantitative measure is still required to determine the degree of

unobservability. For example, is the situation in Figure 5 with 𝜆𝜙 = 1.0 ‘‘observable enough’’ to uniquely determine the ambient conditions? To

answer such questions, a quantitative measure of unobservability for static models is introduced in the next section.

3.2 A quantitative measure for unobservability

With the cost function defined, a quantitative measure on the degree of observability of a particular situation is defined. With ‘‘situation,’’ we imply

a particular wind farm layout, the true ambient conditions and a specific choice of the regularization terms 𝜆P, 𝜆U, and 𝜆𝜙. The main contribution

of this paper is the introduction of such a mathematical notion for observability. The observability of a particular situation  is defined as

 = min () , (9)

where (𝜙̂, Û∞, Î∞) =

{
∞ if||Δ𝜙|| < b𝜙 AND ||ΔU∞|| < bu AND ||ΔI∞|| < bI,

J(𝜙̂,Û∞ ,Î∞)
k𝜙(Δ𝜙)2+kU(ΔU∞)2+kI(ΔI∞)2

otherwise,
(10)

with J as defined in Equation (8), k𝜙, kU, and kI denoting normalization terms, and b𝜙, bU, and b𝜙 being thresholds. Further, Δ𝜙 = 𝜙 − 𝜙̂,

ΔU∞ = U∞ − Û∞, and ΔI∞ = I∞ − Î∞ denote the difference between the true and hypothesized ambient conditions, respectively. In the remainder

of this section, the working principle will be explained.

The function  is defined such that critical points (low cost J, far away from the true solution) have a low value (less observable—hard to

tell apart from the true solution), while situations in which the cost J is high yields a high value (more observable—easier to distinguish from the

true solution). Furthermore, the threshold terms are present to ensure that any value estimated close enough to the true optimum does not

‘‘endanger’’ the observability. A more elaborate discussion on these thresholds can be found in Appendix A.

Figure 6 demonstrates how the observability  is calculated for the example situation discussed in Section 3.1. Note that this is not necessarily

a realistic scenario, but rather is discussed to provide insight into the method. The function  is derived from the cost function J following

Equation (10). The cost function has two minima: one at Δ𝜙 = −9.6◦ and one at Δ𝜙 = 0◦, indicating that there are two hypothetical wind

directions that produce near-identical turbine power signals. This leads to a low observability.

Note that the measured quantities in J are taken as the values from the surrogate model (FLORIS) with the true ambient conditions, thus

assuming a perfect model of the system. In reality, this will not hold, and the work herein presents an idealized case (theoretical upper bound) of

observability.

Finally, with a measure for observability defined, we can determine and analyze the observability of a particular wind farm for a certain wind

direction, wind speed, and turbulence intensity. The process is as follows.

† Note that observability has a different notion in the field of control engineering for dynamical systems. In this article, an equivalent definition is defined for the static problem outlined in this
section.
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1. Firstly, we evaluate the degree of observability of a single situation at a time. With a situation, we imply a wind farm subjected to a certain

ambient inflow, giving us a certain set of measurements. For example, continuing the example two-turbine wind farm of Section 3.1, the

observability for this wind farm is investigated at a true freestream wind speed of 7.0 m s−1, a freestream wind direction of 6◦, and a

turbulence intensity of 6.5%. Referring back to Figure 4, our measurements would be

Pmeasured = PFLORIS(𝜙 = 6◦,U∞ = 7.0ms−1, I∞ = 0.065) =
[

2.47 · 106, 1.01 · 106
]
, (11)

Umeasured = UFLORIS(𝜙 = 6◦,U∞ = 7.0ms−1, I∞ = 0.065) =
[

7.0, 5.5
]
, (12)

𝜙measured =
[

6.0, 6.0
]

(13)

The measurement vectors contain two entries, for turbines 1 and 2, respectively. In this simulation, the turbines are assumed to be aligned

with the inflow wind direction; 𝛾1,2 = 0.

2. Secondly, we now assume that we do not know what the ambient conditions generated these measurements. This represents our estimation

step. With this set of measurements, the cost function J of Equation (8) is calculated for a range of hypothetical (tested) ambient conditions.

For this example, the estimation algorithm is limited to the estimation of U∞ and 𝜙. The (two-dimensional) cost function is evaluated over

the following ranges:

Δ𝜙 =
[
−20.0 −19.2 −18.4 … 19.2 20.0

]
, with 𝜙 = 6◦ + Δ𝜙, (14)

ΔU∞ =
[
−1.50 −1.25 −1.0 … 1.25 1.50

]
, with U∞ = 7.0 m s−1 + ΔU∞, (15)

ΔI∞ =
[

0.0
]
, with I∞ = 0.065 + ΔI∞. (16)

If I∞ is additionally to be estimated, the (three-dimensional) cost function is also evaluated over the following range for ΔI∞:

ΔI∞ =
[
−0.06 −0.03 0.0 0.03 0.06

]
, with I∞ = 0.065 + ΔI∞. (17)

Furthermore, the turbine yaw angles are fixed in the inertial frame and assumed to be known a priori in the cost function evaluations. Thus,

if the cost function is evaluated for Δ𝜙 = 10◦, then 𝛾̂1,2 = −10◦.

3. Finally, we check whether our estimation algorithm was successful. A two-dimensional (for ΔI∞ = 0) or three-dimensional (for ΔI∞ =[
−0.06 … 0.06

]
) cost matrix is obtained following Equation (8), from which  is calculated following Equation (10). The degree of

observability  is the minimum value of , being a positive real number.

The degree of observability  can be calculated for a range of true wind directions following the process described above and displayed in

a single picture. The results of such an observability analysis assuming only power measurements are available (𝜆P = 1, 𝜆U = 0 and 𝜆𝜙 = 0) are

shown in Figure 7 for a six-turbine wind farm. Note that 𝜆U and 𝜆𝜙 are zero to provide insight into the results. In a practical WFC implementation,

one would opt for 𝜆U > 0 and 𝜆𝜙 > 0, if these measurements are available.

FIGURE 7 Observability plots for the six-turbine wind farm over a range of true wind directions (from 0◦ to 360◦, plotted in 61 discrete points
along the polar axis) and two true wind speeds (6.5 and 9.0 m s−1). The true turbulence intensity is assumed to be known in the estimation
problem, thus J(𝜙,U∞, I∞) = J(𝜙,U∞) and ΔI∞ = 0, where the estimability of 𝜙 and U∞ is assessed. Thus, for each of the 61 × 2 situations (a
situation is defined as a particular true wind direction and wind speed for this six-turbine layout), the steps described earlier this section are
followed. The results are normalized to a scale of 0 to 1, with 0 being unobservable and 1 being to the best observable situation
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Each of the two radial plots shown in Figure 7 represents the degrees of observability for 61 different wind directions. There is one degree of

observability defined for each true wind direction, plotted as a particular color across the polar axis. This thus indicates the estimability of 𝜙 and

U∞ for this true wind direction. For each of the 61 true wind directions, a two-dimensional cost function  was calculated over the variables

Δ𝜙 = [−20◦,−19.2◦,−18.4◦, ...20.0◦] and ΔU∞ = [−1.50,−1.25,−1.00, ...1.50] m s−1. Then,  was taken to be the lowest value of , being the

degree of observability for this true wind direction, true wind speed, true turbulence intensity, wind farm layout, and with 𝜙 and U∞ being the

to-be-estimated parameters. We refer to this as the degree of observability for this particular situation.

Figure 7 clearly shows that the 𝜙 and U∞ can only be estimated for a narrow range of true wind directions when only power measurements

are available. This makes sense, since there is only wake interaction for a small range of wind directions. Without wake interaction, one

cannot distinguish, for example, between the case where all turbines operate under a yaw misalignment and a higher inflow wind speed,

from the case where all turbines operate without a yaw misalignment and a lower inflow wind speed. Furthermore, an interesting difference

between the observability plot for a true wind speed of 6.5 and 9.0 m s−1 is the degree of observability at the true wind directions of 90◦

and 270◦. This is because of the fact that the downstream turbines operate below cut-in wind speed for the 6.5 m s−1 case at these wind

directions due to the close spacing and the wake effects. As these downstream turbines do not generate any power, their signals hold little

information. For the 9.0 m s−1 case, all turbines operate above cut-in wind speed, and thus, these power signals contain more information about

the flow.

The methodology presented in this section serve for explanation purposes, and the cases becomes more interesting when considering more

complicated farm layouts, various combinations of wind vane and wind speed measurements, and the inclusion of turbulence intensity estimation.

This is the focus of the next section.

4 A COMPREHENSIVE OBSERVABILITY ANALYSIS FOR THREE WIND FARM LAYOUTS

The observability of the ambient conditions is investigated in this section for three different wind farm layouts, namely, two symmetrical

wind farms and one asymmetrical wind farm. The layouts are shown in Figure 8. The asymmetrical eight-turbine wind farm is an interesting

configuration, as there is more unique wake interaction situations in this layout. This reduces the issues with symmetry previously demonstrated

in Figure 4 compared with symmetrical wind farm layouts.

For each topology, the observability is calculated for 61 × 4 × 4 = 976 situations, namely, for 61 wind directions 𝜙 = [0◦,6◦,12◦, … ,354◦],
4 levels of turbulence intensity I∞ = [0.065,0.095,0.125,0.155], and four wind speeds U∞ = [6.5,9.0,11.4,14.5] m s−1, of which the latter

wind speed is above rated. Thus, for each of these 976 conditions, a multidimensional cost function is set up, and the most critical situation is

determined following Equation (10), upon which the observability for this situation is calculated using Equation (9). The parameters therein are

shown in Table B1.

This section is separated in two parts. In Section 4.1, the observability of the various situations is assessed under the assumption that the

freestream turbulence intensity is known a priori. This simplifies the estimation problem and requires less information to be extracted from the

measurements at hand. However, neglecting the estimation of I∞ is expected to significantly worsen the accuracy of the surrogate model in a

practical WFC algorithm. Hence, the observability with the inclusion of I∞ is presented in Section 4.2.

4.1 Estimating 𝜙 and U∞ under perfect knowledge of I∞

First, the observability of various situations under the assumption that the turbulence intensity is known, Î∞ = I∞, is looked into. The range

over which each particular cost function is calculated is Δ𝜙 = [−20◦,−19.2◦,−18.4◦, ...20.0◦] and ΔU∞ = [−1.50,−1.25,−1.00, ...1.50] m s−1. The

discretization of these parameters were tuned for convergence, such that the solutions no longer notably change at a higher precision. The range

of these parameters is chosen to resemble the typical prior knowledge one has about the true ambient conditions in such an estimation problem.

4.1.1 Redundancy in the cost function: Power and wind speed estimates

One important notion in the cost function shown in Equation (8) is that the local wind speed estimates and the turbine power signals carry duplicate

information. Specifically, as the local wind speed estimators rely on the turbine power signal, the turbine power measurements theoretically add

FIGURE 8 The three wind farm
layouts used in a comprehensive
observability analysis to
demonstrate the working
principles of the algorithm
presented in Section 3. The
turbines are DTU 10-MW
turbines21 with a rotor diameter
D of 178.3 m and a hub height of
119 m
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FIGURE 9 The observability for a range of wind speeds, wind directions, and turbulence intensities under the assumption that I∞ is known, with
𝜆𝜙 = 0. The observability in each radial plot is normalized with respect to its highest value. The percentage on the bottom-right corner of each
radial plot indicates to what degree the local wind speed measurements contribute to the observability. It can be seen that the power
measurements provide no additional information compared with wind speed estimates and no information at all above rated wind speeds
(top-right subplot) [Colour figure can be viewed at wileyonlinelibrary.com]

no information to the cost function that is not already included in the wind speed estimator signals. To validate this, an observability analysis is

performed for the six-turbine wind farm under 𝜆𝜙 = 0 and various values for 𝜆P and 𝜆U. The results are shown in Figure 9.

From this figure, one can immediately see that situations in which all turbines are in above-rated operation are unobservable when 𝜆U = 0

(top-right subplot). This subplot shows some observability when the turbulence intensity is low and the wake interactions are deep, such that one

or multiple downstream turbines are operating below rated conditions. Furthermore, turbine power measurements do not add anything to the

observability compared with the wind speed estimates. Note that the observability plots are not identical for below-rated conditions as power is

cubically related to the wind speed, Pi ∝ U3
i

, and thus, the observability is spread slightly differently within the radial plots. Though, the trends

are identical. Hence, in the remainder of this work, 𝜆P = 0.

An important remark is that a different surrogate model, eg, one that directly correlates the upstream turbulence intensity with the upstream

turbine power production, may provide a higher degree of observability from the same power measurements. Currently, such a correlation is not

present in FLORIS.

4.1.2 Using exclusively wind speed estimator measurements (𝜆P = 0, 𝜆U = 1, 𝜆𝜙 = 0)

Here, the situation with solely wind speed measurements available is investigated; 𝜆P = 𝜆𝜙 = 0 and 𝜆U = 1. This is comparable with the estimation

framework applied in previous work,12 in which wind vane measurements were not assumed to be available. This is a particularly difficult problem,

as previous results from Section 3 suggest. In the remainder of this section, all three wind farm layouts will be addressed. The observability roses

are shown in Figure 10.

A number of observations can be made from Figure 10. Firstly, for the two-turbine wind farm, it is clear that the wind direction and wind speed

can only be estimated accurately for a narrow range of wind directions—specifically, in which there is sufficient wake interaction. Theoretically,

the U∞ can always be reconstructed from the wind speed estimate of the upstream turbine, and the upstream turbine can be distinguished if
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FIGURE 10 The observability for a range of wind speeds, wind directions, and wind farm layouts under the assumption that I∞ is known, with
𝜆P = 𝜆𝜙 = 0. The observability in each radial plot is normalized with respect to its highest value. The percentage on the bottom-right corner of
each radial plot indicates to what degree the local wind speed measurements contribute to the observability, which in this situation is 100%
[Colour figure can be viewed at wileyonlinelibrary.com]

there is wake interaction: it is the turbine with the highest power signal. The wind direction can then be estimated by looking at the quantity of

wake losses at the downstream turbine. However, this may lead to situations in which two hypothesized wind directions lead to a near-identical

inflow wind speed Ui, as was seen previously in Figure 4.

Secondly, for the six-turbine wind farm, it can be seen that this topology has more wake interaction than the two-turbine wind farm and thus

has an increased observability for many situations. However, there are still situations with little to no wake interaction which are unobservable.

Note that the radial plots for both the two-turbine wind farm and the six-turbine wind farm are radially symmetrical, as the topologies are also

radially symmetrical.

Thirdly, for the eight-turbine wind farm, one can directly see that observability greatly increases due to many more unique wake interaction

between turbines. With all topologies, generally, it is noted that a higher atmospheric turbulence leads to a lower observability. Specifically,

the turbulence intensity reduces the wake interaction with downstream turbines. The results from Figure 10 show that 𝜙 and U∞ can only be

reconstructed for particular situations, and thus, care has to be taken in such estimation algorithms and related WFC algorithms. The next section

shows the estimability of 𝜙 and U∞ with the inclusion of wind vane measurements.

4.1.3 Using local wind speed and wind direction estimates (𝜆P = 0, 𝜆U = 1, 𝜆𝜙 = 10)

By including local estimates of the wind direction, 𝜆𝜙 > 0, one can attain observability for all situations, as shown in Figure 11. Now, one assumes

both wind speed measurements and wind vane measurements to be available.

It is clear to see that all the necessary information is contained in the measurements available for the estimation of U∞ and 𝜙: all situations

appear observable. Observability is guaranteed due to the availability of local wind speed and wind direction measurements, which are quantities

directly derived from the ambient wind speed, ambient wind direction, and the wake interactions. Note that there are some variations within
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FIGURE 11 The observability for a range of wind speeds, wind directions, and wind farm layouts under the assumption that I∞ is known, with
𝜆U = 1 and 𝜆𝜙 = 10. The observability in each radial plot is normalized with respect to its highest value. The percentage on the bottom-right
corner of each radial plot indicates to what degree the local wind speed measurements contribute to the observability, which provides an idea to
the robustness of the solution [Colour figure can be viewed at wileyonlinelibrary.com]

the radial circle, which are both due to physical effects such as more or less wake interaction and due to fact that the search space of the cost

function (Δ𝜙, ΔU∞, ΔI∞) is discretized at a finite resolution.

The tools presented in this work may prove useful to find a balanced trade-off in the cost function between the contributions from various

measurement sources. However, even with an accurate estimation of 𝜙 and U∞, significant model discrepancies may remain. The freestream

turbulence intensity I∞ has a relatively large impact on the optimal turbine setpoints for wake steering, as it has a direct relationship to the degree

of wake recovery. Hence, the estimation of I∞ is a necessity in reliable WF algorithms. In the next section, the estimation of I∞ is incorporated

into the observability analysis.

4.2 The full estimation problem: Estimating 𝜙, U∞, and I∞

While observability for all situations was shown in Section 4.1.3, a compromising assumption was made that the freestream turbulence intensity

I∞ was known. In reality, this is not a realistic assumption and I∞ must be estimated together with U∞ and 𝜙. The observability when estimating

𝜙, U∞, and I∞ is shown in Figure 12, where ΔI∞ = [−0.06,−0.03, 0.0, 0.03, 0.06].
Several observations can be made. Firstly, one can directly see that the observability significantly reduces for a large range of conditions

compared with only the estimation of 𝜙 and U∞. For the two-turbine case, observability only remains for the narrow window of wind directions

in which there is wake interaction. This can be explained by the fact that the measurements provide direct information on 𝜙 and U∞, while the

estimation of I∞ is enabled through inversion of the surrogate model and the usage of the local wind speed measurement at the downstream

turbine. This only applies when wake interaction is present.

Secondly, observability is reduced in the six-turbine case compared with Figure 11, yet observability remains more widespread than the

two-turbine case. More wake interaction and multiple-wake interaction leads to the fact that the turbine power signals are more sensitive to

the freestream turbulence and thus yield a higher observability than the two-turbine case. Additionally, while a higher turbulence intensity leads
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FIGURE 12 The observability for a range of wind speeds, wind directions, and wind farm layouts with 𝜆U = 1 and 𝜆𝜙 = 10. The observability in
each radial plot is normalized with respect to its highest value. The percentage on the bottom-right corner of each radial plot indicates to what
degree the local wind speed measurements contribute to the observability, which provides an idea to the robustness of the solution [Colour
figure can be viewed at wileyonlinelibrary.com]

to additional wake recovery, it also leads to wider wakes which can impact a downstream turbine where it would not for lower turbulence

intensities. These two effects have an opposite effect on the observability, and hence observability does not uniformly decrease with an increase

in the freestream turbulence intensity.

Thirdly, the eight-turbine wind farm has the most observable situations from the three topologies. Due to the many unique wake interactions,

the solutions become relatively sensitive to the freestream turbulence intensity, and the ambient conditions can be estimated for most conditions.

Though, also in this wind farm, one can find several situations in which the freestream conditions cannot uniquely be reconstructed from the

measurements available.

An important remark to make is that all results presented in this section ignore the possibility of other measurement sources. While this

framework allows the inclusion of turbulence intensity measurements, this was not pursued here. Additionally, one may argue that temporal

correlation of measurements would allow for additional information on the ambient conditions. This would require a dynamic mathematical

model that correlates the ambient conditions and the turbine measurements and a state estimation algorithm such as a Kalman filter. This is out

of the scope of this article.

Finally, recall that these results present an idealized case, in which there is no measurement noise, and the surrogate model is used to generate

the measurements, implying that the surrogate model perfectly represents reality. None of these assumptions are valid in practice, and thus, the

observability roses presented in this section will further diminish. Though, the results presented in this section are an useful step towards the

synthesis of an algorithm that estimates the ambient conditions in a robust manner. The observability roses from Figure 12 provide a theoretical

upper limit on the relative estimatibility of the ambient conditions 𝜙, U∞ and I∞ from the measurements available. This can provide guidance in

C algorithms on when to estimate certain parameters. Since 𝜙 and U∞ are always estimable according to Figure 11, the observability analysis

presented in this section can be used to determine whether to estimate I∞ in addition to U∞ and 𝜙. If the situation is observable enough (which

is to be selected experimentally), the measurements should contain sufficient information to reliably estimate I∞. If not, one can assume I∞ to
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be equal to its past value (since the turbulence intensity also does not change very rapidly in the field) and exclusively estimate 𝜙 and U∞. This

approach is currently being explored and will be published in future work.

5 CONCLUSIONS

Over the last years, the scientific community surrounding WFC has shown an increasing amount of interest towards the real-time estimation of

the ambient conditions inside a wind farm. This ambient flow information is essential to the optimization of the turbine yaw angles for wake

steering, which is currently the most popular methodology of WFC for power maximization. The degree of reconstructability of the ambient

conditions highly depends on the meaurements available and the wind farm layout. For many situations, it is clear to see that the ambient

conditions cannot be estimated. However, no quantitative measure exists to represent the degree of estimability of the ambient conditions. This

paper addresses this scientific gap.

The main contribution of this paper is the introduction of a novel, mathematical definition for the observability of the ambient conditions. This

measure describes how well the true ambient conditions can be distinguished from hypothesized ambient conditions through a model inversion

approach for a particular set of measurements. This measure of observability is modular and can easily be extended with other measurement

sources or other surrogate models. While a number of outcomes of this article may seem apparent, this theoretical framework provides the tools

for extended analysis and a quantitative measure for the estimability of the inflow properties leveraging different measurement sources and

surrogate models.

In several case studies, we show the usefulness of the proposed measure. Moreover, while information concerning the wind direction can be

derived by looking at the turbine power signals and the inter-turbine wake interactions, the case studies presented show that there is a strong need

for wind direction measurements for WFC to sufficiently cover observability for any topology and any ambient condition. Generally, situations

in which there is sufficient wake interaction are observable, while situations with little to no wake interactions are unobservable.‡ Furthermore,

the mathematical framework supports the straightforward notion that local turbine power measurements provide no additional information

compared with local wind speed estimates, implying that power measurements can be omitted from the cost function.§ Also, more complicated,

unstructured wind farm layouts generally result in a higher observability as there are more unique wake interactions between turbines.

In general, even with local wind speed and wind direction information, one still cannot reconstruct the full set of ambient conditions (wind

speed, wind direction, and turbulence intensity) for all conditions that a particular wind farm may encounter. Thus, before one may attempt to

estimate the ambient conditions, one should consider whether the situation is observable in the first place. Using this information, one may

condition their WFC algorithm to situations that are sufficiently observable. This aids in improving the reliability of WFC algorithms and thereby

hopefully the willingness to adopt such algorithms by the industry.
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APPENDIX A: ADDRESSING IRREGULAR BEHAVIOR, NUMERICAL ISSUES, AND SINGULARITIES IN THE CALCULATION OF

THE DEGREE OF OBSERVABILITY

Equation (10) provides a clear measure for the degree of observability of a particular situation. With this formulation, evaluated ambient

conditions far away from the true ambient conditions (eg, ||Δ𝜙|| ≫ 0) that yield a low estimation error J are penalized heavily. Namely, the

nominator is small and the denominator is large, leading to a low value of . In such a situation, it is unclear what the true ambient conditions are

based on the measurements available. These situations result in a low degree of observability. Alternatively, situations with a high cost far away

from the true ambient conditions result in a high degree of observability.
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DOEKEMEIJER AND VAN WINGERDEN

FIGURE A1 This figure depicts
the issue when Δ𝜙 ≈ 0 for the
calculation of  using
Equation (10). The cost function
shown here refers back to the
two-turbine wind farm previously
discussed in Section 3.1 with
𝜆𝜙 = 𝜆U = 0. In the top-left figure,
J, the mean-squared error in
turbine power signals, is plotted
as a function of the hypothesized
wind direction. Estimating the
observability following
Equation (9) leads to a singularity
point at Δ𝜙 = 0, while clearly
J = 0 at the origin (true solution)
should not lead to
unobservability. This is corrected
for by using a deadzone in
proximity of Δ𝜙 = 0, as by
Equation (10) [Colour figure can
be viewed at
wileyonlinelibrary.com]

However, by simply dividing the cost function J over the distance between the evaluated and true ambient conditions leads to undesired

behaviour near the true ambient conditions (eg, Δ𝜙 ≈ 0). For example, a singularity arises when the evaluated ambient conditions 𝜙̂, Û∞, and Î∞

are exactly the true ambient conditions 𝜙, U∞, and I∞, respectively. Namely, then

(𝜙,U∞, I∞) =
0
0

= undefined.

Similarly, when the evaluated conditions are very close to the true conditions, it becomes difficult to envision what the function of  will look

like. For example, if J = 0 at Δ𝜙̂ = 0.2◦, then the situation would turn out to be unobservable. This is because one cannot distinguish the true

ambient condition (𝜙 = 0◦) from a different evaluated condition (𝜙̂ = 0.2◦). Clearly, this should not yield an unobservable situation, and a situation

where J is very low ‘‘close enough’’ to the true conditions should not negatively impact the observability of the situation. To address this issue, a

‘‘deadzone’’ is introduced for  in proximity of the true ambient conditions. This deadzone enforces observability when the evaluated ambient

conditions are close enough to the true ambient conditions. This can be seen as the upper formula in Equation (10), in which  = ∞ within the

deadzone region. The effect of a deadzone is visualized in Figure A1. This deadzone resolves the issues related to singularities and numerical

sensitivities.

APPENDIX B

k𝜙
1

40
deg−1 b𝜙 4 deg

kU
1
3

m−1s bU 0.25 ms−1

kI
1

0.12
bI 0.03

TABLE B1 Relevant cost function parameters (left: normalization terms, right: deadzone
threshold) for Equation (9)
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