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Summary

Historically speaking, alternating current (ac) has been the standard for commercial
electrical energy distribution. This is mainly because, in ac systems, electrical en-
ergy was easily transformed to di erent voltages levels, increasing the e ciency of
transmitting power over long distances. However, technological advances in, for ex-
ample, power electronics, and societal concerns such as global warming indicate that
a re-evaluation of the current distribution systems is timely.

Direct current (dc) distribution systems are foreseen to have advantages over their
ac counterparts in terms of e ciency, distribution lines, power conversion and control.
Moreover, most renewable energy sources and modern loads produce or utilize dc, or
have a dc link in their conversion steps. However, the stability, control, protection
and standardization of these systems, and the market inertia of ac systems are major
challenges for the broad adoption of dc distribution systems.

Steady-State, Dynamic and Transient Modeling

Adequate models of dc distribution grids are required for the analysis, design and
optimization of these systems. In this thesis new and improved methods are pro-
posed for steady-state and dynamic modeling. Two novel steady-state methods are
presented, which are shown to be better than the methods in existing literature with
respect to convergence, computational e ort and accuracy. Furthermore, a dynamic
state-space model is proposed that can be e ciently applied to any system topology,
and can be used for the stability analysis of these systems. Moreover, an improved
symmetrical component decomposition method is presented, which enables simpli ed
(fault) analysis. Transient models for dc distribution systems are brie y discussed,
but the development of transient models is outside of the scope of this thesis.

Algebraic and Plug-and-Play Stability

As a result of the decreasing conventional generation, the inertia of electrical grids is
signi cantly decreased. Furthermore, more and more tightly regulated load converters
that have a destabilizing e ect on the system’s voltage (and frequency) are proliferated
throughout the grid. Consequently, the stability of systems with substantial renewable




Summary

generation is more challenging. In this thesis a method to algebraically derive the
stability of any dc distribution system is presented. Moreover, utilizing a Brayton-
Moser representation of these systems, two simple requirements are derived for plug-
and-play stability (i.e., stability requirements that can be applied to any system, even
systems that are subjected to uncertainty or change).

Decentralized Control Strategy and Algorithm

Decentralized control is essential to deal with the trend to decentralize generation
and segment the distribution grid, and to manage the potential absence of a commu-
nication infrastructure. In this thesis a decentralized control scheme is proposed that
ensures global stability and voltage propriety for dc distribution grids. The control
scheme divides the acceptable voltage range into demand response, emission, absorp-
tion and supply response regions, and speci es the behavior of converters in these
regions. Furthermore, it is shown that inadequate energy utilization can occur, when
voltage dependent demand response is utilized. Therefore, the Grid Sense Multiple
Access (GSMA) is proposed, which improves the system and energy utilization by
employing an exponential backo routine.

Decentralized Protection Framework and Scheme

Because of the absence of a natural zero crossing, low inertia, meshed topologies and
bi-directional power ow, the protection of low voltage dc grids is more challenging
than conventional ac grids. In this thesis a decentralized protection framework is pre-
sented, which partitions the grid into zones and tiers according to their short-circuit
potential and provided level of protection respectively. Furthermore, a decentralized
protection scheme is proposed, which consists of a modi ed solid-state circuit breaker
topology and a speci ed time-current characteristic. It is experimentally shown that
this protection scheme ensures security and selectivity for radial and meshed low
voltage dc grids.

Vi



Samenvatting

Historisch gezien is wisselstroom de standaard voor de commerciele distributie van
elektrische energie. Dit komt voornamelijk omdat wisselspanning makkelijk werd ge-
transformeerd naar verschillende spanningsniveaus, wat de e cientie van vermogens-
distributie over lange afstanden verhoogd. Technologische vooruitgang in bijvoor-
beeld vermogenselektronica, en maatschappelijke problemen zoals de opwarming van
de aarde, geven echter aan dat een herevaluatie van huidige en toekomstige distribu-
tiesystemen misschien op zijn plaats is.

Gelijkstroomdistributiesystemen hebben, naar verwachting, een aantal voorde-
len ten opzichte van wisselstroomsystemen op het gebied van distributie, e cientie,
omzetting en besturing. Daar komt nog bij dat de meeste duurzame energiebronnen
en moderne belastingen gebruik maken van gelijkstroom in hun omzettingstappen.
De marktinertie van wisselstroomsystemen en de stabiliteit, besturing, bescherming,
standaardisatie van gelijkstroomsystemen vormen echter uitdagingen voor de brede
toepassing van gelijkstroomdistributiesystemen.

Statische, Dynamische en Transiente Modellen

Adequate modellen zijn vereist voor de analyse, het ontwerp en de optimalisatie
van gelijkstroomdistributiesystemen. In dit proefschrift worden nieuwe en verbeterde
methoden gepresenteerd voor het bepalen van de statische en dynamische toestanden
van deze systemen. De twee gepresenteerde statische methoden blijken beter te zijn
dan de methoden uit de bestaande literatuur met betrekking tot de convergentie, ben-
odigde rekenkracht en nauwkeurigheid. Verder wordt er een dynamisch state-space
model gepresenteerd welke e cient kan worden toegepast op elke systeemtopologie,
en gebruikt kan worden voor stabiliteitsanalyse. Bovendien wordt een verbeterde
symmetrische componenten decompositiemethode voorgesteld, wat de analyse (van
kortsluitingen) simpli cieert. Transiente modellen voor gelijkstroomsystemen worden
besproken, maar de ontwikkeling van transiente modellen valt buiten de strekking van
dit proefschrift.

vii
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Algebra sche en Plug-and-Play Stabiliteit

De afname van conventionele elektriciteitsopwekking leidt tot een aanzienlijke vermin-
dering van de inertie in elektriciteitsnetten. Bovendien neemt de hoeveelheid strak
gereguleerde belastingen die een negatief e ect hebben op de stabiliteit van de span-
ning en frequentie alleen maar toe. Zodoende, wordt de stabiliteit van distributiesys-
temen met veel duurzame energieopwekking steeds uitdagender. In dit proefschrift
wordt een methode gepresenteerd om de stabiliteit van gelijkstroomdistributiesyste-
men algebra sch af te leiden. Verder worden, met behulp van een Brayton-Moser
vertegenwoordiging van deze systemen, twee eenvoudige vereisten afgeleid voor de
plug-and-play stabiliteit van gelijkstroomsystemen (i.e., stabiliteitsvereisten die toeg-
past kunnen worden op elk systeem, ook systemen die onderhevig zijn aan onzekerheid
of veranderingen).

Decentrale Besturingsstrategie en Besturingsalgorithme

Decentrale besturing is essentieel om met de decentralisatie van elektriciteitspro-
ductie, de segmentatie van distributienetten, en de potentiele afwezigheid van een
communicatie-infrastructuur om te gaan. In dit proefschrift wordt een decentrale bes-
turingsstrategie voorgesteld die zorgt voor globale stabiliteit en juistheid van de span-
ningen. De besturingsstrategie verdeelt het acceptabele spanningsbereik in belasting-
sturing, emissie, absorptie en productiesturing gebieden, en speci ceert het gedrag
van omzetters in deze gebieden. Verder wordt aangetoond dat de energiebenutting
ontoerijkend kan zijn wanneer spanningsafhankelijke belasting- of productiesturing
wordt gebruikt. Daarom wordt het Grid Sense Multiple Access (GSMA) algorithme
gepresenteerd, die de benutting van het systeem en de energie verbetert door een
exponentiele backo routine te gebruiken.

Decentraal Beschermingsraamwerk en Beveiligingsschema

Vanwege de afwezigheid van een natuurlijke nuldoorgang, lage inertie, gemaasde
topologieen en bidirectionele stroom, is de bescherming van gelijkstroomnetten een
grotere uitdaging dan voor conventionele wisselstroomnetten. In dit proefschrift wordt
een decentraal beveiligingsraamwerk besproken dat het netwerk verdeelt in zones en
regios op basis van hun kortsluitingspotentieel en de geboden veiligheid. Verder wordt
een decentraal beveiligingsschema gepresenteerd, bestaande uit een ontwerp voor een
stroomonderbrekerontwerp op basis van halfgeleiders en tijdstroomkarakteristiek. Ex-
perimenteel wordt aangetoond dat dit beveiligingsschema zorgt voor veiligheid en
selectiviteit voor zowel radiale en gemaasde laagspanningsnetten.

viii



Contents

Summary

Samenvatting

1

3

Introduction

1.1 Motivation . .. .. .. ...
1.2 Thesis Objective and Research Questions . . . . ... .........
1.3 Contributions . . . . . . . ...
14 ThesisOutline . . .. .. .. .. . . . ...

Steady-State, Dynamic, and Transient Modeling

2.1 Introduction . . . . . . . ...
2.2 Generalized System Description . . . . . . .. ... .. .. .......
2.3 Steady-State Modeling . . . . ... ... ... ... ..
24 Dynamic Modeling . . . . . .. .. ...
2.5 Symmetrical Component Decomposition . . . . . .. ... ... ....
2.6 Transient Modeling . . . . . . ... ... ..
2.7 Experimental Validation . . . . .. ... ... ... ... .
2.8 Conclusions . . . . . ..

Algebraic and Plug-and-Play Stability

3.1 Introduction. . . . . . . ... ...
3.2 Small-Signal Converter Model . . . . . .. ... ... ... .......
3.3 Algebraic Derivation of Stability . . . .. ... .............
3.4 Plug-and-Play Stability . . . ... ... ... ... ...........
3.5 Experimental Results. . . . . . .. ... ... ... ... . . ... ...
3.6 Conclusions . . . . . . ..

vii

O AN PR PR

oo ~

12
21
27
38
39
41




CONTENTS

4 Decentralized Control Strategy and Algorithm
4.1 Introduction. . . . . . . . . ..
4.2 Decentralized Control Strategy . . . . . . . . . ... ... .. ... ..
4.3 Grid Sense Multiple Access Algorithm . . . . . ... ... ... ....
4.4 Experimental Results. . . . . ... ... ... .. ... .........
45 Conclusions . . . . . ..

5 Decentralized Protection Framework and Scheme
5.1 Introduction. . . . . . . . . . . ..
5.2 Decentralized Protection Framework . . . . .. .. ... ... .. ...
5.3 Plug-and-Play Protection Scheme . . . . . .. ... ... ... .....
5.4 Experimental Validation . . . . .. ... ... ... ... .. ... .
5.5 Conclusions . . . . . . . . e

6 Conclusions

A Experimental Setup
A.1 Power Electronic Converters .. . . . . . . . . . . . . i
A.2 Distribution Lines . . . . . . . .. ... ...
A.3 Solid-state Circuit Breaker . . . . . . . . . . ... . ... . .......
A.4 Laboratory Power Supplies . . . .. .. ... ... . ... ......

B Converter Controller Design and Models
B.1 Converter Controller Design . . . . . . . .. . ... ... ... .....
B.2 Converter Models . . . . . . . . . .. .. ...

References
List of Publications
Acknowledgements

Biography

111

115
115
116
117
118

119
119
124

139

141

143

145



Chapter 1

Introduction

1.1 Motivation

Future distribution grids face major challenges [1]. Firstly, electrical energy demand
is growing worldwide. It is estimated that the utilization of distribution systems in
developed countries will reach their maximum capacity in the near future, while for
developing countries there is still an increasing need for infrastructure. Secondly,
the introduction of distributed renewable energy generation presents new challenges
on the stability, reliability and management of these grids. Distribution grids will
need to allow bidirectional power ow as distributed generation introduces highly
dynamic power ows. Moreover, to ensure reliability, distribution grids should be
able to cope with the variable character of renewable energy sources. Since both
challenges have to be faced in the near future there is an opportunity to reassess the
architecture and nature of distribution systems. Furthermore, technological advances
such as renewable energy generation and societal concerns such as global warming
also indicate that a re-evaluation of the current distribution system is timely [2].
Historically speaking, ac power has been the standard for commercial electrical
energy systems. This was mainly because ac electrical energy was easily transformed
to di erent voltage levels, increasing the e ciency of transmitting power over long
distances [3,4]. However, advances in power electronics have made it equally simple
to convert dc electrical energy to di erent voltage levels. As a result, a re-evaluation
of dc could be made for many distribution, industrial and domestic applications.
Nowadays dc systems are foreseen to have advantages over their ac counterparts
in terms of distribution, e ciency, power conversion and control [5,6]. Lines that
operate on dc have higher capacity, lower losses, and can carry power over longer
distances. Furthermore, most distributed renewable energy resources and loads have
an inherent dc nature (e.g., photovoltaic panels and laptops), or have a dc link in
their ac/ac conversion steps (e.g., wind turbines). Therefore, it makes sense to in-
crease the overall e ciency by employing dc on the distribution network, reducing
the number of conversion steps between supply and demand. Moreover, because the
switching frequencies of power electronic converters are typically much higher than




1. Introduction

the fundamental 50/60 Hz frequency of ac grids, the size of passive components in
the conversion steps can signi cantly be reduced. Lastly, dc grids do not require the
synchronization of frequency and phase, or reactive power governance. Consequently,
the control and interconnection of dc grids are signi cantly simpler than their ac
counterparts.

As a consequence of the advantages of dc systems their adoption is growing sig-
ni cantly. For example, the utilization of these systems for applications such as high
voltage transmission, data centers, telecommunications, commercial and residential
buildings, and street lighting is ever increasing [7{17]. Furthermore, a variety of
novel applications, such as microgrids and device level distribution, have been identi-

ed [6,18].

Although the advantages of dc distribution systems are signi cant, there are also
several challenges for the broad adoption of dc grids. Therefore, this thesis aims to aid
broad adoption of dc distribution grids by addressing the main technical challenges.
Non-technical challenges, such as the standardization of dc grids and the market
inertia of ac systems, are outside the scope of this thesis. Due to practical limitations,
the focus of this thesis is mainly low voltage grids with a voltage rating below 1500 V
and a power rating below 100 kW (e.g., microgrids), but most of the theories and
results of this thesis can also be applied to larger scale grids.

1.2 Thesis Objective and Research Questions

In this section it will be explained why the stability, control and protection of dc
distribution systems are identi ed as key technical challenges for their broad adoption.
Furthermore, to tackle these challenges appropriate modeling techniques are required.
Therefore, the primary objective of this thesis is

\To improve the modeling, stability, control and protection
of dc distribution systems.

The main research is partitioned into several research questions with their indi-
vidual objectives. The research questions correspond to the di erent chapters in this
thesis and are given by

Chapter 2. How can the modeling of dc distribution systems be improved?

To assess the behavior, stability, control and protection of dc distribution systems ac-
curate and computationally e cient models are required. Although accurate, most dc
distribution system models are derived from their ac counterparts, leading to compu-
tationally suboptimal solutions. Therefore, this chapter aims to introduce novel and
improved methods to model the behavior of dc distribution systems. Transient mod-
els, which take propagation delay into account, are discussed, but the development of
novel transient methods outside the scope of this thesis.

Chapter 3. How can the stability of dc systems be analyzed and ensured?

2



1.2. Thesis Objective and Research Questions

With conventional generation, the kinetic energy of the rotor’s moment of inertia is
linked to the frequency of the distribution grid. Consequently, conventional genera-
tion provides inertia to the grid’s frequency. However, with the increasing share of
renewable energy sources, the inertia of future distribution grids is signi cantly de-
creased [19]. Moreover, tightly regulated load converters behave as constant power
loads. Constant power loads exhibit negative incremental input impedance, which has
a destabilizing e ect on distribution systems [20]. Therefore, stability is a signi cant
challenge for future ac and dc distribution grids.

Literature presents several methods for analyzing the stability of dc distribution
systems. However, these methods do not allow for generalized conclusions about the
sensitivity to speci ¢ system parameters, or the derivation of stability guidelines that
can be applied to any system. Therefore, methods to analyze the stability of any dc
distribution system, regardless of its topology, and the derivation of plug-and-play
stability guidelines are the main focus of this chapter.

Chapter 4. How should the decentralized control of dc systems be organized?

Traditionally, electrical power grids have had a centralized and radial structure. How-
ever, large scale renewable power generation is likely to occur in regions of high re-
source availability, rather than regions of high consumption. Furthermore, because
of the decentralization of generation, the power ow in distribution grids is no longer
unidirectional [21{23]. Additionally, the notion of segmenting the grid into, for ex-
ample, microgrids is increasing [24, 25]. Moreover, because of the reducing inertia,
faster response of the control will be required. Therefore, the control strategies for
electrical power grids need to be adapted to ensure the balance of supply and demand
on shorter time scales, for varying system topologies and varying power ow.
Because of the distributed nature of future electrical power grids it is often not
desirable to use communication. Furthermore, for systems with a communication
infrastructure, it is imperative that the system sustains operation when there is a
communication malfunction. Therefore, decentralized control is essential for future
electrical power grids [26,27]. The goal of this chapter is to establish decentralized
control that ensures global stability and energy utilization in dc distribution grids.

Chapter 5. How should the decentralized protection of dc systems be organized?

The protection of low voltage dc grids is more challenging than the protection of
conventional low voltage ac systems. Fundamentally, it is more di cult to interrupt
inductive currents and extinguish arcs, since the voltages and currents in dc grids do
not have a natural zero crossing [28,29]. Furthermore, these grids are often meshed
and/or subjected to bi-directional power ows, complicating the detection and selec-
tivity compared to conventional radial networks [30]. Moreover, to prevent high fault
currents and blackouts, low voltage dc grids usually require fast fault interruption (in
the order of microseconds) [31, 32].

Bi-directional power ow, and fast fault interruption complicates selective fault
clearance. Literature presents several methods to establish selectivity via communica-
tion or by utilizing knowledge about the grid’s topology and parameters. However, in

3



1. Introduction

order to reduce reliance on a communication infrastructure and improve scalability,
this chapter endeavors to achieve selective plug-and-play protection of dc systems,
without utilizing communication.

Appendix A How can the research in this thesis be experimentally veri ed?

To verify the developed models, theoretical derivations and simulation results, a labo-
ratory scale dc microgrid was developed. In this chapter the designs of the developed
power electronic converters, line emulation circuits and solid-state circuit breakers are
described.

Appendix B How can the built power electronic converters be modeled and tuned?

The scienti ¢ contribution of the modeling and tuning of power electronic converters
in the laboratory setup is marginal. However, it is described in this chapter to make
it easier to reproduce the results that are presented in this thesis.

1.3 Contributions

The main contributions of this thesis to the eld of low voltage dc distribution systems,
and the sections in which they can be found, are summarized below

Section 2.3 Two steady-state modeling methods that are better than existing meth-
ods in terms of computational e ort, convergence and accuracy

Section 2.4 A state-space modeling method that can be applied to any system,
includes the mutual coupling between parallel conductors and can also
be employed for stability analysis

Section 2.5 An improved symmetrical component decomposition method, which al-
lows for the inclusion of the neutral conductor and ground fault analysis

Section 3.3 An algebraic method for the derivation of the stability of any dc system
from the system’s state-space matrices

Section 3.4 The requirements for plug-and-play stability of dc systems, derived from
a Brayton-Moser representation of the system

Section 4.2 A decentralized control strategy that ensures plug-and-play stability
and voltage propriety

Section 4.3 The GSMA algorithm, which improves the energy utilisation of systems
with voltage dependent demand or supply response

Section 5.2 A decentralized protection framework, which provides insight into the
dangers and requirements of interacting with di erent parts dc grids

Section 5.3 A decentralized plug-and-play protection scheme that ensures security
and selectivity for radial and meshed low voltage dc grids




1.4. Thesis Outline

1.4 Thesis Outline

The outline of the remainder of this thesis, of which the details were discussed in Sec-
tion 1.2 and Section 1.3, and the interrelation between the chapters are schematically

shown in Figure 1.1.

!

Chapter 2
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Chapter 3 Chapter 4 Chapter 5
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Figure 1.1: Outline of this thesis and the interrelation between the chapters






Chapter 2

Steady-State, Dynamic, and Transient Modeling

Appropriate models of dc distribution grids are required for the analysis, design and
optimization of these systems. Therefore, literature on existing modeling methods is
reviewed and several novel methods are developed to aid the research into, for example,
stability, control and protection of dc distribution systems. In this chapter two novel
steady-state modeling methods are derived that signi cantly reduce computational ef-
fort, while retaining or improving on accuracy and convergence, compared to existing
methods. Furthermore, a state-space dynamic model is presented that, unlike methods
presented in literature, includes mutual couplings between the lines’ multiple conduc-
tors, can be applied to any system and facilitates stability analysis. Additionally, an
improved symmetrical component decomposition method is proposed that allows for
the ground fault analysis of bipolar dc distribution systems. Future research into the
transient modeling of these systems is still imperative for the design and analysis of
protection devices and schemes for these systems.

This chapter is based on

N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, \A State-Space
Approach to Modelling DC Distribution Systems", IEEE Transactions on Power Systems, vol.
33, no. 1, Jan. 2018.

N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, "Symmetrical Com-
ponent Decomposition of DC Distribution Systems", IEEE Transactions on Power Systems,
vol. 33, no. 3, May 2018.

N. H. van der Blij, D. Chaifouroosh, T. B. Soeiro, L. M. Ramirez-Elizondo, M. T. J. Spaan,
Claudio A. Canizares and P. Bauer, "Novel Power Flow Methods for DC Grids", 29th Inter-
national Symposium on Industrial Electronics (ISIE), 2020.




2. Steady-State, Dynamic, and Transient Modeling

2.1 Introduction

The aim of any model is to simulate, visualize and analyze the behavior of the system
it is modeling. To model dc distribution grids it is important to identify the relevant
system aspects that the user wants to model. Therefore, it is imperative to rst de ne
the end-goal in order to choose the appropriate modeling method. For example, dc
distribution grid models can be used for the analysis, design and optimization of
markets, stability, control and protection.

In this thesis, the models of dc distribution grids are divided into three categories.
Firstly, when frequency dependent e ects and propagation delays need to be taken
into account a transient model is required. These models are accurate from time
steps in the order of picoseconds, but are often too computationally intensive for
simulations longer than several microseconds [33]. Secondly, when propagation delays
can be neglected but the dynamic behavior of capacitances, inductances and discrete
elements in the grid are of importance a dynamic model is recommended. These
models are generally accurate in timescales from a few microseconds, but still require
a lot of computational e ort for simulations longer than several seconds. Lastly, for
simulations spanning longer than several seconds, a steady-state model often su ces.
The di erent types of models and the respective timescales they are generally applied
to are graphically depicted in Figure 2.1.

Steady -State Models

Dynamic Models

Transient Models

1) ) ] J
ps ns [+3 ms s min hours
Figure 2.1: The timescales of the di erent types of distribution grid models

In Section 2.2, the incidence matrix and line models, which are used in this chapter
to model dc distribution systems, are presented. In Section 2.3, several existing and
two novel steady-state modeling methods are compared. In Section 2.4, a state-space
dynamic model for dc distribution systems is presented. In Section 2.5, a symmetrical
component decomposition method for bipolar dc distribution systems is proposed
that further simpli es modeling. In Section 2.6, transient models for dc distribution
systems are brie y discussed. Lastly, in Section 2.7, some of the models are veri ed
using experimental results.

8



2.2. Generalized System Description

2.2 Generalized System Description

In essence, any dc distribution grid consists of n nodes that are interconnected by |
distribution lines with m conductors. Furthermore, power electronic converters are
connected to some or all of the nodes. An example of a bipolar dc distribution grid
(with a metallic neutral) that has 5 nodes, 8 lines with 3 conductors, and 5 power
electronic converters is shown in Figure 2.2.

Figure 2.2: Example of a bipolar dc distribution system with 5 nodes, 8 lines with 3
conductors, and 5 power electronic converters

2.2.1 Incidence Matrix

The incidence matrix of the dc distribution depicts the connectivity of the electrical
network. Strictly speaking, it represents the directed graph of the system, where each
row represents a distribution line and every column represents a node in the system.
The element in row j and column i of the incidence matrix, , is given by

1 if 1 is owing from node i
1 if I is owing to node i

;0= (2.1
where the indices i and j are used to indicate the nodes and lines of the system
respectively. Therefore, I indicates the current owing in distribution line j.
Unipolar and bipolar dc distribution systems have more than one conductor in
each line. Since the conductors in the line have di erent potentials and carry dif-
ferent currents, each individual conductor must be modeled separately. Therefore,
the incidence matrix is extended to be able to di erentiate between conductors. The

multi-conductor incidence matrix is given by
(G Dm+k (i I)m+k)= (;i); (2.2)
where the total number of nodes, distribution lines and conductors are depicted by

n, I, and m respectively. Moreover, the di erent indices for the nodes, distribution
lines and conductors are given by i, j, and k respectively.



2. Steady-State, Dynamic, and Transient Modeling

Ny |1 Ny |2 N3

— =e— o

Figure 2.3: DC distribution system with 3 nodes and 2 lines with 3 conductors

To illustrate how the incidence matrix is composed, the bipolar distribution system
shown in Figure 2.3 is used. Since this system contains 2 lines and 3 nodes the
incidence matrix will have 2 rows and 3 columns respectively. The rst line connects
n; and n, and the second line connects n, and n3, therefore the incidence matrix is
given by

1 1 0
=0 1 1 2.3)
It is important that realize that in this example the conventions of the currents in the
lines are chosen from n; to n, and from n, to n3. However, the chosen convention
is arbitrary and inconsequential to the results of models, which utilize this incidence
matrix.

In this example, the dc distribution system is bipolar and therefore has 3 con-
ductors in every line. Therefore, since there are 2 3 individual currents and 3 3
individual voltages, the multi-conductor incidence matrix has 6 rows and 9 columns.
By utilizing (2.2) and cycling through all the indices, the multi-conductor incidence
matrix is derived to be2

3
100 1 0 O 0 0
010 O 1 0 0 0 O
g0 01 0 O 1 0 0 O
R0 00 1 0 O 1 0 O (2.4)
000 O 1 0 O 1 0

oo0o0 o0 o0 1 0 o0 1

The multi-conductor incidence matrix orders the nodes rst according to the dif-
ferent conductors (positive, neutral and negative), and then according to their num-
bering. Therefore, the columns represent the nodes of the system according to

Ni+ Nip N1 N+ Ny N2 N3+ N3q N3 (2.5)

Similarly, the lines are ordered rst according the di erent conductors, and then
according to their numbering. Therefore, the rows represent the lines of the system

according to
2 3
|1+

I1n

:1 : (2.6)
2+

I2n

I,

10



2.2. Generalized System Description

2.2.2 Distribution lines

Transmission and distribution lines are usually modeled by taking their electromag-
netic phenomena into account. The most common lumped element models for these
lines are shown in Figure 2.4. Although the resistive, inductive and capacitive ele-
ments are usually distributed over the lines, this approach provides reasonable ac-
curacy when the wavelength of the signals are much longer than the length of the
lines [34].

(a)

(b)
R L R L
GE%C VzGi%l/zC VzGE%VzC
(c)

YR YL YL YR

G C

Figure 2.4: Gamma (@), pi (b), and T (c) lumped element line models

The models shown in Figure 2.4 are the models for a line in a monopolar dc
system and therefore the return current ows through ground. However, in general,
dc ground currents are not allowed since they cause corrosion [35]. On the other
hand, the presence of multiple conductors introduces mutual couplings between the
conductors in the form of mutual inductance, conductance, and capacitance. These
couplings can have a signi cant e ect on the behavior of the system. The lumped
element pi model for a bipolar distribution line that includes the mutual couplings is
shown in Figure 2.5.

Vi

Figure 2.5: Lumped element pi model of a bipolar distribution line that includes
mutual couplings

11



2. Steady-State, Dynamic, and Transient Modeling

2.3 Steady-State Modeling

Steady-state methods, also sometimes called load ow or power ow methods, deter-
mine the steady-state operating point of an electrical power system. In general, the
main goal of these methods is to determine all the bus voltages and line currents of a
system, given the injected or consumed power of each node [36,37]. Power ow anal-
ysis is most widely used for operation and planning of electrical power systems, but
can also be used for more complex processes such as stability analysis, optimization
routines, ow-based market simulations and N-1 security assessments [38].

Several methods are found in literature that are able to determine the steady-state
operating point of power systems. Most commonly the power ow is found iteratively
by utilizing analytical methods based on Gauss-Seidel (GS), Newton-Raphson (NR),
Backward-Forward (BF) sweep methods, or by incorporating the system’s equations
into an Optimization Problem (OP) [37{40]. However, a Quadratic Solver (QS) can
also be used to nd the power ow solution by directly solving the quadratic equa-
tions [41].

In this section a steady-state model, which can be applied to any dc grid, is
presented and it is shown how the power ow equations can be derived from this
model. Furthermore, the most common existing power ow methods for dc grids are
discussed and it is shown how they can be applied to dc grids. Moreover, two novel
power ow methods are proposed which prove to be better than existing methods in
terms of accuracy, convergence and computational e ort.

2.3.1 Power Flow Formulation for DC Grids

In Figure 2.4 the di erent lumped element line models were presented for distribution
lines. Conveniently all the lumped element models are reduced to the same steady-
state model, which consists of a single resistor. Essentially, since the focus of this
section is on the steady-state, the inductive and capacitive components can be ne-
glected. Furthermore, the conductance G is also neglected since most systems have
very high R=G ratio, which is especially true for distribution systems [42].

If all the resistances of the lines in the dc systems are put in a diagonal matrix R,
the currents in the system’s lines are

IL=R ! Un; 2.7

where Uy is the vector containing the voltages at each node, and I is the vector
containing the currents in each line.

According to Kirchho ’s law the sum of the currents owing into each node must
equal 0. Therefore, the current owing from the power electronic converters into each
node, de ned as Iy, must be equal to the current owing out of that node via the
connected lines. Accordingly,

In= "IL= TR 1 Uy =VYUy; (2.8)

where Y is the admittance matrix of the dc system.

12



2.3. Steady-State Modeling

From (2.8) it seems linear and simple to nd the voltages in the system from the
injected or consumed power at each node. However, when the power in each node is
used instead of the injected current, the system’s equations become

Pn =hUnNGY Un (2.9)

where h ; i represents the scalar product of two vectors. From this equation it is clear
that the equation becomes quadratic and can therefore not be solved directly.

More importantly, the admittance matrix is singular and can therefore not be
inverted. This is because, if only the currents are de ned in the system, an in nite
number of solutions exist for the node voltages. Therefore, a slack node (a node with
a constant voltage) is usually de ned in the system to solve the power ow equations.
However, any node which provides a behavior relative to a speci ed voltage will result
in a single solution and therefore make the system solvable.

2.3.2 Power Flow Methods for DC Grids

In this subsection the most commonly used methods for solving power ow problems
are discussed in detail. Furthermore, it is shown how these methods can be applied to
dc grids by utilizing the notation from the previous subsection. Moreover, two novel
power ow methods are presented, which arise from the dc system’s equations.

Quadratic Solver (QS)

Equation (2.9) showed that the relation between the node power and the node voltages
is quadratic. The expansion of this equation results in

X
Pi=Ui YiUj; (2.10)
i=1

where Yjj refers to the element in row i and column j of the admittance matrix Y .
In matrix form this equation becomes

2 3
U ::: 0
0 .. Un
To solve these equations directly often Newton or Quasi-Newton methods are used

to nd the solution [41]. For the power ow simulations in this thesis, the Newton
search algorithm is used.

13



2. Steady-State, Dynamic, and Transient Modeling

Optimisation Problem (OP)

It is also possible to adapt the power ow problem into a quadratically constrained
quadratic problem (QCQP). This optimization problem is de ned as

(2.12)

X
st. i=Pi U YijUj: (2.13)
i=1

Methods to solve these types of problems include the interior point, augmented
Lagrangian and the Simplex algorithms [43{45]. In this thesis the interior point solver
is used to solve the optimization problem, to which the Hessian and the Gradient
matrices are provided to improve convergence.

Gauss-Seidel (GS)

The Gauss-Seidel method is based on a simple xed-point iteration process [37,46].
It composes the equations for each individual node voltage and iterates on a node by
node basis until the convergence criteria are met. The equations for the voltage at
each node, for the k-th iteration, are given by

Uik+1 —
o _ 1
1 5P X NPT KA
—@—k YijUj YijUj . (2.14)

In matrix form this equation becomes

1 Pk
Yii UK

Uit = Y, Un (2.15)

where Y is the admittance matrix where the diagonal entries are removed, and Y,
represents the i-th row of this matrix.

In general the Gauss-Seidel method is easy to implement, but the convergence is
slow compared to other methods. Therefore, an accelerating factor is often used to
improve convergence [37]. The algorithm is then appended with

Ukt =uk+ Ukt Uk (2.16)

where usually an  between 1.4 and 1.6 is used [37].

Newton-Raphson (NR)

The Newton-Raphson method and its many variations is the most widely used com-
putational method [37,47{49]. For this method the mismatch between the speci ed
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2.3. Steady-State Modeling

power and the calculated power is composed as
X
Pnii =Pi Ui Y5U5: 2.17)
i=1

In order to reduce this mismatch, the Jacobian matrix (the rst derivative com-
ponent in the Taylor approximation of the system) is used to determine the next
iteration of the node voltages according to

Ut =un®+3 1 PN (2.18)

where the Jacobian, J, is given by

A
1 n
=3 L
0Py 6P
@2’1 @Un3
U 0
=v§: + &+ diag(Y Un); (2.19)
O Un

where diag() is a function that makes a diagonal matrix from the elements of a vector.

Since the partial derivatives are taken into account, the Newton-Raphson con-
verges relatively fast. However, every iteration requires a refactorization of the Jaco-
bian leading to increased computational e ort per iteration, although strategies could
be used to reduce this computational burden as is done for ac power ow techniques.

Backward-Forward (BF)

Another method that has been successfully implemented several times in literature
for radial or weakly meshed dc grids is the Backward-Forward sweep method [50{52],
where at every iteration, backward and forward sweeps are carried out. For the
backward sweep the node voltages are considered constant and therefore the current
from each converter is

k= Fi. (2.20)

Next the algorithm iterates through all the lines from downstream to upstream. Then
for every line j connecting node a (downstream) to node b (upstream) the current in
line I; and the current owing in node I, are found by
=1k (2.21)
IK=1k+1k (2.22)
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2. Steady-State, Dynamic, and Transient Modeling

Consequently, the node current Iy is the sum of the currents in downstream lines,
and the current in every line is the cumulative current in its downstream node. For
the forward sweep the line currents are considered constant and the node voltages are
calculated. Again the algorithm iterates through all the lines, but now from upstream
to downstream, and the node voltages are given by

USTt = Ut IfR;: (2.23)

The main advantages of the Backward-Forward method are its simplicity and
convergence. However, a downstream-upstream hierarchy of the lines in the system
is required and the method only converges for radial or weakly meshed dc grids.

Direct Matrix - Current Approximation (DM-CA)

Here, a novel power ow method is presented that combines the strengths of the NR,
BF and interior point methods to solve the quadratic problem. For every iteration,
the constant power loads are linearized as a constant current load, utilizing the node
voltages from the previous iteration. The resulting system is linear and the resulting
node voltages can be solved explicitly.

It was mentioned before that for the admittance matrix to be invertible one or
more of the voltages in the system must be referenced to a pre-determined voltage.
If one or more of the nodes in the system are a slack node (have a constant voltage),
the currents in the lines are given by

IL=R ! Uy +R 0\; (2.24)

where Uy contains the unknown node voltages and On contains the known node
voltages. Furthermore, contains the columns of the incidence matrix referring
to the unknown node voltages and " contains the columns of the incidence matrix
referring to the known node voltages.

The currents owing from the converters into nodes which voltage is not de ned
must therefore be equal to

In= "R Uy+ TR 0N =Y UN + o (2.25)

By taking inspiration from the Backward-Forward method, and utilizing (2.25),
the (unknown) voltages for each iteration can be calculated by

02, 3 1

ugt =Yy 1g§ Z |o§: (2.26)

This method directly uses the system’s matrices instead of the Jacobian, and
approximates the constant power nodes as a current source. Therefore, this method
is referred here as the Direct Matrix - Current Approximation (DM-CA) method.

Sp
by

]

[=3
U

3x]
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2.3. Steady-State Modeling

The main advantage of this method is that the matrix Y remains constant during
the iterations and therefore only has to be factorized once. Only the injected current
for each node, B—‘I and the product with the factorized admittance matrix has to be
determined every iteration. Therefore, the complexity of this method mostly depends
on one factorization of the admittance matrix and multiple matrix multiplications.

Direct Matrix - Impedance Approximation (DM-1A)

Another novel power ow technique is proposed here, where the constant power con-
verter model is modi ed by adding a parallel impedance. Therefore, the current
owing from each constant power converter is given by
I_|<+1 2Pi l:)i Uk+1 _ 2F)i
1

1 zkuyktt (2.27)

T

Consequently, the current owing from the converters into each node is
In=Z Un +Y Uy +lg; (2.28)

where Z is a diagonal impedance matrix which elements are determined from (2.27).
The voltages at each iteration can then be determined by utilizing

022p3 1
3
k+1 _ k 1 1 glé §
Uy = Z +Y : lo'x: (2.29)
2Pn
uk

Since this method adds an impedance to the approximation of the constant power
nodes, this method is referred here as the DM-1A method. The main advantage of
this method over the DM-CA is that its iterations converge faster, since it also takes
into account the gradient from the constant power converters’ behavior. However,
this comes at the cost of having to factorize (ZX) ' + Y at every iteration, thus
increasing the complexity of every iteration. Both the DM-CA and DM-IA methods
give a numerical approximation of the power ow solution with an error dependent
on the convergence criteria.

An advantage of both DM methods is that they can deal with a broader set of grids
than those with only slack and constant power nodes. In this case, any linear node
behavior can be modeled by a linear combination of a constant voltage, impedance, or
current node. Furthermore, non-linear behavior can be approximated by a constant
current and a constant impedance that are updated every iteration, as was done for
the constant power nodes. However, for the sake of convergence, every grid has to
have at least one slack node, or a node with an impedance.

2.3.3 Comparison of the Power Flow Methods

In this subsection, the power ow methods presented in the previous section are
compared with respect to accuracy, convergence, and computational e ort. Accuracy
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2. Steady-State, Dynamic, and Transient Modeling

is de ned here as a Root Mean Square Error (RMSE) with respect to the actual
solution of the power ow problem. For the iterative methods, the convergence is
given by the number of iterations that are required to achieve a convergence criteria,
with computational e ort being measured as the required computational time to
converge.

For the iterative power ow methods, the iterative process stops when the solution
converges with a desired tolerance according to

UKt uk i
-1t UF ! 8i; (2.30)
where is the desired tolerance. Note that a set tolerance does not always guarantee
a similar accuracy for all methods, which will be shown later.

The results in this section are obtained by implementing the power ow methods
in Matlab 2017b, and run on a computer with Windows 7, an Intel Xeon E5-1620
processor, and 8 GB of RAM.

IEEE Test Feeder

To compare the power ow methods the IEEE European Low Voltage Test Feeder [53]
is used, as is illustrated in Figure 2.6, and consists of 111 nodes and 112 lines. The
ac feeder is a representative neighborhood grid that includes household load pro les
and line parameters, and it is assumed here to be a dc feeder with the same line
parameters. In this case, 10.000 simulations of one day are carried out, where a day
consists of 96 time steps of 15 minutes. In addition to the 55 households included
in the test feeder, 15 photovoltaic (PV) systems and 15 electric vehicles (EVs) are
randomly distributed among the households for every simulation. A convergence
tolerance of 10 © is used.

Figure 2.6: IEEE European Low Voltage Test Feeder that is used for the comparison
of the power ow methods [53]
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2.3. Steady-State Modeling

The power consumption from each household is randomly determined, assuming
a uniform Probability Density Function (PDF) from the provided load pro les in the
test feeder at every time step. Furthermore, the PV production is simulated using
a Gaussian PDF, with a variance of 1/6 of the expected value. Additionally, the
arrival time of the EVs is simulated by a Gaussian PDF with a mean at 18:00 and
a standard deviation of 1.2 hours, while the charging time is de ned as a Weibull
distribution with k = 2:022 and = 2:837 [54, 55], resulting in a Gaussian-like PDF
for the probability that a vehicle is charging with a constant power of 3 kW. The
expected power for all these grid elements are shown in Figure 2.7.

——Household
| [PV
51500 EV
o)
2
a 1000 |
-
)
O
8 500 VAl
L
o | ZANE
0:00 5:00 10:00 15:00 20:00

time [h]

Figure 2.7: Expected power for the IEEE test feeder load pro les, photovoltaic sys-
tems, and electric vehicles

Numerical Results

For the rst step in the power ow calculations, an initial guess of 350 V is used at
all nodes. Furthermore, the solution of each time step t is used as initial guess for
the next time step (t + 1). Note that, because this system is relatively large and the
matrices are sparse, LU factorization signi cantly reduces the average computation
times.

The RMSE, average number of iterations, and average computation time (per
simulation of a day) for the various power ow methods applied to the IEEE test
feeder are shown in Table 2.1. Observe that the OP and DM-IA methods converge
faster (have less iterations on average), since both these methods incorporate the
non-linear behavior of the constant power loads. Besides the GS method (which is
notorious for slow convergence) and QS method (which is not an iterative method),
the other methods exhibit similar convergence.

Notice that the DM methods require the least computational e ort of all the power
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2. Steady-State, Dynamic, and Transient Modeling

metnod | Rue fpus | froee | e
GS 0.000189 367 2.87
NR 1:1 10 ° 2.74 0.0445
BF 30 10 ° 2.88 0.109
DM-CA || 2:9 10 ° 2.87 0.0031
DM-IA 2:7 10 ™ 2.00 0.0175
QS 5:3 10 15 N/A 240
oP 4:1 10 10 2.00 9.54

Table 2.1: Computational metrics with =10 ©

ow methods. Moreover, even though the DM-IA converges faster than the DM-CA
method, the DM-CA method requires the least computational e ort of all methods.
This is because, for the DM-CA method, the factorized admittance matrix is re-used
for every iteration and every time step. Also note that, due to the slow convergence
and many iterations of the GS method, the GS does not achieve the level of accuracy
that one would expect with these convergence criteria. Consequently, these criteria
should be adjusted for the GS method if higher levels of accuracy are required.

For the previous simulation, a convergence tolerance = 10 © was used. However,
to ensure that a comprehensive comparison of the di erent power ow methods is
given, the RMSE, average number of iterations, and average computation time for
the same simulation with = 10 2 are given in Table 2.2. Note that, as expected, for
all methods, the average number of required iterations decreases when the convergence
tolerance is substantially increased. Nevertheless, the results are consistent with the
previous simulations.

Method | RMSE [pu] | yoroto | i 08
GS 0.00841 1.028 0.0141
NR 5:9 10 7 1.684 0.0277
BF 1:1 10 © 1.683 0.0705
DM-CA || 1:1 10 © 1.683 0.0022
DM-1A 6:0 10 10 1.684 0.0141
QS 2:4 10 12 N/A 240

oP 3:4 10 10 2.003 9.59

Table 2.2: Computational metrics with =10 3
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2.4. Dynamic Modeling

2.4 Dynamic Modeling

Dynamic models take into account the behavior of the discrete elements (e.g., power
electronic switches) and energy storage elements (e.g., capacitors and inductors) in the
system. Typically this means that the model includes the behavior of, for example,
the capacitors, inductors and power electronic switches in the system.

Literature presents several types of dynamic models. For example, dc distribu-
tion grids can be modeled according to their transfer functions [56{58]. Furthermore,
di erent state-space approaches exist to the model dc distribution grids [59{62]. Ad-
ditionally, specialized transient simulations environments can be employed for the
dynamic modeling of these systems [63]. However, existing models only consider
monopolar con gurations and, when extended to other con gurations, do not allow
for mutual couplings to be taken into account.

In this section a exible generalized modeling method is presented that simpli es
the analysis, design, and optimization of dc distribution systems. The developed
method is exible enough to allow for the analysis of dc distribution systems with
any number of nodes, distribution lines, and conductors, in any con guration. The
novelty of the developed method lies in that it allows for multiple conductors, and that
mutual couplings and conductance to ground can be taken into account. Furthermore,
a procedure is presented how the matrices of a distribution system can be derived
programmatically. Therefore, the method can be implemented in many simulation
environments, and it allows for rapid analysis of di erent systems without the need
of (re)building the model through a GUI. Commercial simulation tools could produce
similar results as the model. However, the mathematical nature of the presented
model o ers a signi cant advantage over these tools. It allows for the algebraic
analysis of, for example, stability and control of dc distribution systems.

The presented model is valid when the lines are much shorter than the wavelengths
of the signals in the system. Therefore, the model can be used for any dc distribution
or transmission system of any power rating as long as the above statement is true.

2.4.1 State-Space Approach

To model the distribution system using a state-space approach the state variables
must be chosen. For this model the state variables are chosen to be the voltages at
each node and the currents in each distribution line. The formula for these voltages
and currents are

CUN = lpet; (2.31)

LL =Ug; (2.32)

where Uy are the voltages at each node, 1, are the net currents owing into each
node, I, are the currents owing in each distribution line, U_ are the voltage over

each distribution line’s inductance, and C and L are the matrices for the capacitance
and inductance of the network respectively.
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The net current owing into each node consists of the current from the connected
converter(s), the current from connected distribution lines, and current leaked through
admittances. Similarly, the voltage over the inductance of the distribution line relates
to the voltage di erence between the two connected nodes and the voltage drop over
the distribution line’s resistance. Therefore, by expanding (2.31) and (2.32), the
di erential equations become

CUn=In "I GUyn; (2.33)
LL = Uy RIg; (2.34)

where Iy are the currents owing into the node from the connected converter(s),
is the multi-conductor incidence matrix presented in Section 2.2, and G and R are
the matrices for the conductance and resistance of the network respectively.

With the inverses of the capacitance and inductance matrices the state-space equa-
tions can be derived to be

Uuv=C Iy C ! TIL C Gun; (2.35)
L=L"'uUy L BRI (2.36)

To solve these state-space equations they can be molded into the form of
X = AxX + Bu; (2.37)

y = DX+ Eu; (2.38)

where X is the set of state variables, u is the set of input variables, y are the output
variables, and A, B, D and E are the state-space matrices.

The state variables and input variables for di erent conductors are grouped by
node or line, and are composed as

X= Uz Uip Unim iz 12 lym (2.39)

u= Ina Ing2 INjim (2.40)
where U;;k is the voltage of conductor k at node i, Ij;k is the current owing in con-
ductor k of distribution line j, and In:i.k is the total current owing from converter(s)
into conductor k of node i.

Subsequently, from (2.35) and (2.36), the A, B, D, and E matrices for the state-
space equations are then derived as

= 10 g (2.41)

- c'. (2.42)
D=1; (2.43)
E=;; (2.44)

where ; indicates an empty matrix and 1 indicates an identity matrix.
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The impedance matrices (R and L) and the admittance matrices (G and C) are
formed using the impedance and admittance matrices of the distribution lines. The
general form of these matrices is

2 3
R:; O 0
Rij = g o z (2.45)
P
0 0 Rm
2 3
Liz My Mim
LL;j = g M.21 Fzz | . : : (2.46)
: i ' I\/I(m 1)m
2Mm1 I\/Im(m 1) Lnm 3
224
Cik Co2 Cim
k=1
224 . .
Co Cok K :
CLj = k=1 : (2.47)
e . %m 1)m
Cm1 Cm(m 1) Cmk
k=1
2 P 3
Gik G2 Gim
k=1
224 .
Go1 Gok g :
G = k=1 ; (2.48)
; . g(m 1)m
Gm1 C':‘m(m 1) Gmk
k=1

where the elements of Ry;j L ;j, Cr;j and G indicate resistance, (mutual) in-
ductance, capacitance and conductance of the distribution lines’ conductors. The
elements of these matrices for a bipolar line can be found in Figure 2.5

Subsequently, since a type of -model is used the capacitance and conductance ma-
trices of each node can be found by summing half of the capacitance and conductance
of each distribution line connected to it. Accordingly,

Cni=3  Cuyl Gi)&0) (249)
i=1
1 X
Gni=3 Gugl (i) &0 (2.50)
j=1
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If any external capacitance or conductance (such as grounding) is added to the net-
work they can also be incorporated in these equations.

Finally, the impedance and admittance matrices that are used in the state-space
equations are formed according to

2 3
Rea O 0
Rzg o o z (2.51)
: .0
0 0 RL;I
2 3
ng o o z (2.52)
Lo
0 0 I—L;I
2 3
Cni O 0
C:g 0 R %; (2.53)
Lo 0
2 O 0 CN;n
Gnii O 0
G= 0 R g (2.54)
T |
O O GN;n

The presented state-space method for the distribution network allows for the em-
ployment of any convenient converter model. This is achieved through the input
vector I of the state-space model and the output vector containing the node volt-
ages and line currents. In this thesis, the models that are depicted in Appendix B are
used in conjunction with this model.

2.4.2 Simulation of a Bipolar DC Distribution Grid

For illustrative purposes, the bipolar dc distribution grid shown in Figure 2.2 is sim-
ulated in this section. During the simulation, the voltage is regulated by a droop
controlled converter at node n; with a chosen droop constant of 1050 W/V, while the
converters at the other nodes control their output power. The converters are modeled
with the average model presented in Appendix B. Furthermore, the line parameters
that are used for the simulation are typical values for 100 m distribution lines, which
can be found in Table A.2.

The scenario for which this distribution grid is simulated is shown in Table 2.3.
The reference voltage and droop constant of the droop controlled converter remain
constant, while the other converters change their output power at varying times.
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t[ms] || Uy [V | P, [W] | P3 [W] | Py [W] | Ps [W]
0 700 0 0 0 0
10 700 1500 0 0 0
20 700 1500 0 0 -1500
30 700 1500 | -3000 0 -1500
40 700 1500 | -3000 | 2250 | -1500
50 700 1500 | -3000 | 2250 | -1500

Table 2.3: Scenario for the simulation of the bipolar dc distribution system

The resulting node voltages and line currents for this scenario are shown in Fig-
ure 2.8. Because this system is balanced, the negative pole quantities are identical
but opposite in sign to the positive pole quantities and the neutral quantities are zero,
therefore for clarity’s sake only the positive pole quantities are shown.

From the node voltages and line currents it is seen that the system is stable and
power is exchanged according to the scenario. It is seen that, because of the droop
control, the voltage in the system is closely related to the power demanded from, or
supplied to, the system. Furthermore, the currents in the system show oscillations that
are caused by the interaction of the converters’ output capacitors and the distribution
lines” inductance.

Since the network is connected in a star con guration with respect to the voltage
regulated node and is otherwise symmetrical, between 0.02 s and 0.03s the steady-
state current in lines I, and I3 becomes negligible. Furthermore, the voltage in the
system returns to around the reference voltage in this case.

Interestingly, the currents owing in the lines connected to the droop controlled
converter have a signi cantly longer time constant than the currents owing in the
lines between the constant power controlled converters. This is because the time
constant formed by the droop impedance and the capacitance in the system is much
slower than the time constants of the lines themselves.

2.4.3 Discussion

The state-space approach to modeling dc distribution systems presented in this sec-
tion has a couple of distinct advantages over other methods. Firstly, the same model
can be used for systems with any number of nodes, lines and conductors and in any
con guration, because of the generalized approach to describing the system according
to its incidence matrix. Secondly, the state-space matrices can be derived program-
matically by following the procedures outlined in (2.45) to (2.54), making it possible
to simplify and automate the modeling. Lastly, due to the mathematical nature of
the approach, the model allows for the algebraic analysis of, for example, the stability
and control of dc distribution systems.
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Figure 2.8: Node voltages and line currents of the bipolar dc distribution grid for the
given scenario
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2.5 Symmetrical Component Decomposition

Bipolar grids are becoming the norm for dc grids. The main advantages of bipolar
grids are the relatively low voltage rating of the lines, exibility and redundancy [13,
64]. However, since bipolar systems have multiple conductors there is a possibility
of imbalance. If the current owing in the positive pole is not exactly opposite to
the current owing in the negative pole, a current will ow in the neutral conductor.
Consequently, a neutral conductor will be required as ground currents are generally
not allowed because they cause corrosion [35].

In ac distribution systems the symmetrical component decomposition method has
become a typical tool to simplify the analysis of complex power networks [65]. The
symmetrical component decomposition method simpli es the analysis of (un)balanced
systems, and short circuit or ground faults. Therefore, it is compelling to see if a
similar technique can be applied to dc distribution grids.

Previous research decomposed bipolar dc distribution grid into a common mode
and a di erential mode [66,67]. However, the transformation only takes the positive
and negative pole quantities into account. Therefore, the neutral is neglected unless
signi cant assumptions are made. Furthermore, the voltages taken for the trans-
formation are the voltages of the poles with respect to the neutral. As a result, the
information of the neutral voltage, and therefore the voltages of the poles with respect
to ground, is lost in the transformation. Consequently, no capacitance or conductance
to ground can be taken into account.

In this section an improved method to decompose bipolar dc distribution systems
into symmetrical components is presented. The improved method inherently includes
the neutral quantities, capacitance and conductance to ground, and allows for ground
fault analysis. Furthermore, a generalized method is presented to transform network
components to the symmetrical domain. Additionally, several equivalent circuits of
various (a)symmetrical faults are presented.

2.5.1 Symmetrical Component Decomposition Background

Any asymmetrical set of N co-planar vectors can be represented by a symmetrical set
of N vectors [68]. As a result, three phase ac systems are commonly decomposed into

their zero sequence, negative sequence and positive sequence according to
2 3 21 1 323

Xo 1 1 Xa
4x,5 = 3 11 254x,5: (2.55)
X 1 2 Xe
where = el2 =3 and X is any variable (e.g., current or voltage).

Firstly, the positive sequence (X) represents a system of 3 phases of equal magni-
tude that are displaced 120 degrees with respect to each other. Secondly, the negative
sequence (X1) represents a system of 3 phases that are perfectly displaced 120 degrees
in the opposite (phase) direction. Lastly, the 3 phases of the zero sequence (Xp) are
equal in magnitude and are in phase. This is shown schematically in Figure 2.9.
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Figure 2.9: Symmetrical component decomposition of ac systems

Bipolar dc systems where the neutral is solidly grounded, although very di erent
from the ac systems, can be seen as 2 phase systems, where the positive and neg-
ative poles are the phases. This potentially asymmetrical system can therefore be
decomposed in a symmetrical set of 2 vectors.

The symmetrical set of vectors contains one vector that represents the balanced
component of the system, the di erential mode, and one vector that represents the
unbalanced component of the system, the common mode [66,67]. By choosing =el ,
this system can be decomposed into symmetrical components utilizing

X1
Xs

(2.56)

N =
Y
=
X

where X; and X, are the unbalanced and balanced symmetrical components re-
spectively, while X, and X are the positive and negative pole quantities respec-
tively [66, 67].

The inverse of this symmetrical components transformation is

Xe _ 1 1 Xi .
X =1 1 %" (2.57)

However, this approach to decomposing dc distribution grids into symmetrical com-
ponents has several disadvantages when a distribution system with a metallic return
is modeled.

A distribution line model of a solidly grounded bipolar system is given in Fig-
ure 2.10 as an example. The series resistance (R ) and inductance (L ), and shunt
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Figure 2.10: Lumped element model of a solidly grounded bipolar distribution line

capacitance (C ) and conductance (G ) matrices of this model are

R N (2.58)
L. M,
L= U (2.59)
_ Ci+C. c.
c =L o ie (2.60)
G = G+*+G~ G . (2.61)

G.+ G +G,

where the diagonal elements in the series matrices arise from voltage drops caused by
the current in that conductor and the diagonal elements originate from voltage drops
caused by currents in other conductors (e.g., via mutual inductance). The diagonal
elements of the shunt matrices stem from the sum of the connected components
through which current is leaked and the diagonal elements indicate to where these
components are connected.

For the distribution lines the resistance is characterized according to the voltage
drop over the distribution line

U =RI; (2.62)

where U is the voltage drop over the distribution line.
The step by step derivation of the resistance matrix in the symmetrical domain is

Al Up=R A lly; (2.63)
U =AR A llp; (2.64)
Ry, =AR A 1 (2.65)

where A is the symmetrical component transformation matrix from (2.56), the
subscript indicates the original pole domain, and the 12 subscript indicates the sym-
metrical domain.
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In a similar fashion the inductance, capacitance and conductance matrices in the
symmetrical domain are derived to be

L, =AL A 1 (2.66)
Cn=AC A L (2.67)
G, =AG A L (2.68)

Equations (2.65) to (2.68) are used to compute the system’s matrices in the sym-
metrical domain. The matrices in the symmetrical domain of the line shown in Fig-
ure 2.10, given that the distribution lines are symmetrical (.., R+ =R ,L+ =L ,
Ci=C and G4 =G ), are

Riz = R0+ R?+ ; (2.69)
Lo = L +OM+ L. OM+ ; (2.70)
Cipo = C0+ c. +02C+ ; (2.71)
G = GO+ G. +OzG+ (2.72)

From (2.69) to (2.72) it is seen that the currents and voltages in the symmetrical
domain are independent. Independent means that no (mutual) coupling occurs be-
tween the two components. The independence of the symmetrical domain circuit is
further illustrated by the equivalent circuit in Figure 2.11.

R, L,
Uy
Gy C,

Gz C,

Uz
R L

Figure 2.11: Equivalent circuit of the solidly grounded bipolar distribution line model
in the symmetrical domain

2.5.2 Improved Symmetrical Component Decomposition

In the previous section it is assumed that the neutral current passes through ground.
However, this is usually not allowed as this causes corrosion. Therefore, generally a
metallic return (neutral conductor) is used. Under the assumption that the neutral
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conductor carries both the current of the positive and negative pole, the currents can
be represented by 2 3 2 3
1 0

.
4, 5=4 1 15 :+ : (2.73)
| 0 1

The assumption in (2.73) and its inverse can be used to incorporate the neutral
conductor quantities into the symmetrical domain. However, in this section it is
suggested to modify the transform to directly include the neutral conductor. The
transform matrices then become

1 2 1 1 11 2 1
0_ o + _1 )
A=A S 1 1 2 §3 0,3’ (2.74)
2 3 3
1 0 11
Al=41 15aA1=4 2 05: (2.75)

0 1 1 1

Although this modi ed transformation does directly take the neutral conductor
into account, and allows for the inclusion of capacitance and conductance to ground, it
is based on two major assumptions: it is assumed that the neutral voltage is exactly
opposite to twice the unbalanced component voltage, and that the neutral current
is exactly opposite to twice the unbalanced component current. These assumptions
are only valid if the neutral conductor is symmetrical with both pole conductors.
However, this is not the case if there are any asymmetries in the system.

Therefore, it is proposed to view the bipolar dc distribution system as a 3 vector
system and accordingly decompose it into 3 symmetrical components instead of 2.
The proposed transformation is

2X 3 2p§ pi pi 32X 3

0 =+

4x,5 = 1&4& 2 b 54x,.5: (2.76)
X 6 3 0 3 X

where Xg, X3 and X5 are the bias, unbalanced and balanced symmetrical components
of the system respectively.

The bias component represents an equal dc o set of the pole and neutral quantities,
while the unbalanced and balanced components are the same as previously described.
The inverse of this transformation is

2 3 2p- p-32 3
. 1 p2 1 3 Xo

4x,5=p= 4p§ 2 B 54x,5: (2.77)
X 6 M5 9 3 Xz

The added bias component transformation and the modi cation of the balanced
component transformation are chosen in such a way that if there is asymmetry in
the system the symmetrical domain matrices are still symmetrical. Moreover, the
transformation is orthogonal and power invariant.
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Figure 2.12: Lumped element model of a bipolar distribution line with a metallic
return

An example of a bipolar distribution line model with a metallic return is given
in Figure 2.12. The resistance, capacitance, inductance and conductance matrices of
this line model are

2 3
Ry 0 0
R =40 R, 005; (2.78)
oP 0 R
2 Cii  Cun c, 3
1=+;N; P
C :E C+n ) Cni Cc n z; (2_79)
|=+;n; P
C+ n C 1
3 iI=+;n
Ly Min Mi
L =4Msn Ln M ,5; (2.80)
My M, L
2 G+| G+n G+ 3
i=+;n; P
G =§ Gan G G on z: (2.81)
iI=+;n; P
G+ G n G i
i=+;n;

The system’s matrices in the symmetrical domain can be determined analogously
to (2.65) to (2.68). For example, the series resistance matrix in the symmetrical
domain is determined by

Roo=TR T % (2.82)

where the symmetrical transformation matrix T is obtained from (2.76), subscript 012
indicates the symmetrical domain, and the  subscript still indicates the (original)
pole domain.
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Consequently, the system’s matrices in the symmetrical domain, in the case the
distribution lines are symmetrical, are

2 3
R+ O 0

Ro>=40 Ry 05; (2.83)
0 0 Ru:
3
Ly +2M4n 0 0
Lo, =4 0 L+ Muyn 0 S; (2.84)
0 0 Ly Myn
2 3
C.+ 0 0
Co2=40 Ci+3Cun 0 S; (2.85)
> 0 0 Cy +Cipn+2C,
G+ 0 0
Goi2=40 G4 +3G4n 0 5: (2.86)
0 0 Gi+ +Gyp + 2G4

From these matrices it can be seen that the bias, unbalanced and balanced com-
ponents are again fully independent. Additionally, it can be noted that this transform
exhibits similarities to the symmetrical decomposition of symmetrical 3 phase ac dis-
tribution lines.

The equivalent circuits in the symmetrical domain, in case the transmission lines
are symmetrical, can be derived from (2.83) to (2.86) and are shown in Figure 2.13.
The symmetrical domain parameters in this gure (e.g., Ro, Lo, Co and Gyp) are
obtained from (2.83) to (2.86).

Ro Lo
Uo
Go Co
II R, L,
Us
G1 Ci
II R, L,
U,
G, C,

Figure 2.13: Equivalent circuit of the symmetric bipolar distribution line model with
metallic return in the symmetrical domain

Consequently, the (dynamic) analysis of dc distribution systems can be signi -
cantly simpli ed by using the symmetrical component decomposition method. If a
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balanced system is analyzed only the balanced component has to be investigated com-
pared to the positive, neutral and negative components in the original pole domain.
For simulations this means a reduction of the variables by two thirds. Similarly, for
unbalanced systems only the balanced and unbalanced component have to be investi-
gated. Moreover, the system matrices are sparse further simplifying computation for
unbalanced systems.

Sources and Loads in the Symmetrical Domain

The behavior of most nodes (loads and sources) in dc distribution systems can be
modeled as a combination of an output capacitance, a voltage source with a (vir-
tual) series resistance, and current source with a (virtual) shunt resistance. This is

illustrated in Figure 2.14.

U,e

Upe— C.—=

U.e

Ry |

Us®

Figure 2.14: Equivalent circuits of the node behavior in the original pole domain

To nd the equivalent circuits in the symmetrical domain (2.76), (2.77) and the
previously derived transformation method illustrated in (2.82) are used. The equiva-

R||:| WO U

Rs

C= R ||e
Us
Rs

Cc:: R| ||e
Us

lent circuits in the symmetrical domain are shown in Figure 2.15.

Uo.—

Ul._

U2=

2C,

Figure 2.15: Equivalent circuits of the node behavior in the symmetrical domain
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2.5.3 Analysis of (A)symmetrical Faults

The previous subsection showed how the symmetrical component decomposition can
simplify the dynamic analysis of a bipolar dc distribution grid. Analogously to ac sys-
tems, the symmetrical component decomposition can also be employed to determine
the fault currents of various (a)symmetrical faults. In this subsection alternative
method for determining the steady-state fault currents is presented. This is done
by creating Thevenin equivalent circuits of the symmetrical components at the fault
location.

To arrive at the equivalent circuits in the symmetrical domain several assumptions
have to be made. Firstly, it is assumed that the entire system, besides the fault, is
symmetrical. Secondly, it is assumed that the superposition principle can be applied.
Therefore, the system’s currents, other than the fault current, can be neglected during
the analysis of the fault. Thirdly, it is assumed that capacitance and inductance can
be neglected in steady-state. Lastly, Thevenin’s theorem is applied, which allows for
the replacement of the non-faulted part of the system by an equivalent generator and
a series resistance for each symmetrical component (see Figure 2.16A).

For several types of faults the circuit in the pole domain and the equivalent circuit
in the symmetrical domain are shown in Figure 2.16. The derivation of the pole-
to-ground (Figure 2.16B), double pole-to-ground (Figure 2.16C), and pole-to-pole
(Figure 2.16D) faults will be given in this subsection.

First, the pole-to-ground fault is analyzed. It is important to di erentiate the
voltage at the location of the Thevenin equivalent sources (E) and at the location
where the fault occurs (U). Accordingly, during the pole-to-ground fault

EY =RY 1. +Uy =R% 14 + Relf; (2.87)

where E% and R’ are the Thevenin equivalents in the pole domain, I is the fault
current and R¢ is the fault resistance.

This equation can be solved without knowing the pole domain Thevenin equivalent
parameters. Applying the transformations (2.76) and (2.77) to (2.87) results in

where the numbered subscripts denote that the quantities are in the symmetrical
domain.

The fault current is equal to the current in the positive pole, while the currents in
the neutral and negative pole conductor are 0 A. Therefore, using (2.76) to transform
these currents to the symmetrical domain gives

If = p§|0 = péll = pélz: (2.89)
Substituting (2.89) into (2.88) yields
B2 + BL + B2
If = s 6 2 . (2.90)

- Ro 4 Ri L R2
Rf+3+6+2

The equivalent circuit in the symmetrical domain is shown in Figure 2.16B.
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Figure 2.16: Equivalent circuits of (a)symmetrical faults and their equivalent circuits
in the symmetrical domain for A) non-faulted systems, B) single phase-to-ground
faults, C) double pole-to-ground faults and D) pole-to-pole faults
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For the double pole-to-ground fault (2.88) still holds. However, now the fault
current is the addition of both the pole currents. Moreover, since the voltages of
the positive and negative pole at the fault location are equal (U = U.) the bias
component voltage U, is 0 V. The currents in the symmetrical domain and the fault
current are therefore

If = p§|o = IOéll; (2.91)
_ E2,
I, = R, (2.92)
Substituting (2.91) and (2.92) into (2.88) yields
B2 + pL
If = s__ ¢ (2.93)

TRerEE
The equivalent circuit in the symmetrical domain is given in Figure 2.16C.

For the pole-to-pole fault the current in the positive pole is opposite to the current
in the negative pole. Moreover, the voltage equation must be modi ed to

E, U: LR,=E"+1R": (2.94)

The current in the positive and negative pole are equal but opposite in sign. There-
fore, once again using the transform, the relations between the fault current and the
currents in the symmetrical domain are

o

lo=1,=0; (295)
1, =21 (2.96)
Using the symmetrical component transformations from (2.76) and (2.77) it can be
shown that

E E E Ryl
&0,+&£+&2, Rflf ﬂéjz =
3 6 2 2

Consequently, using (2.95), (2.96) and (2.97) the fault current is derived to be

PoE,

It
The equivalent circuit in the symmetrical domain is shown in Figure 2.16D.

Other faults than the ones depicted in Figure 2.16 are derived in an analogous
fashion. From the derivations and equivalent circuits it can be seen that the transform
can be used for the analysis of faults in a similar fashion to the ac symmetrical
component decomposition method.
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2.6 Transient Modeling

Non-transient models often assume a lumped element representation of the distribu-
tion line. Typically the Gamma, pi, or T models, shown in Figure 2.4, are used [69].
The lumped element models can be solved by, for example, their di erential equations,
transfer function, or a state-space representation.

The limitations of (most) lumped element models lie in the neglect of propagation
delays and frequency dependent e ects. In general, parameters such as resistance,
capacitance, conductance and inductance are assumed constant, while in reality they
are frequency dependent. Moreover, it is usually assumed that changes at one side of
the line are instantly discernible at the other side, while in reality there are propaga-
tion delays. The validity of neglecting propagation delays depends on the wavelength
of the signal

= p— (2.99)

f rr

where is the wavelength, T is the frequency of the signal, c is the speed of light, and
r and  are the relative permittivity and relative permeability of the distribution
line respectively. Usually it is assumed that propagation delays can be neglected

when the length of the distribution line is much smaller than the wavelength of the
signal [34].

To circumvent the problem of wavelengths becoming comparable to the lengths
of the distribution lines the model can be broken up into smaller pieces which in-
dividually have lengths much shorter than the wavelength of the signal. However,
solving such a segmented model could quickly become time consuming depending on
the required number of subsections [70].

Other models directly take the propagation delay into account in their equations.
Popular examples of such models are the Bergeron model and variants of the travelling
wave model [70,71]. For the latter it is required to t the frequency response of the
model to a set of rational functions.

Since transients such as short-circuits often impose high frequency oscillations
on the system, models that include propagation delays are often called transient
models. The most common transient models are based on distributed lumped element
models or travelling wave models. Some specialized transient simulation environments
that implement these methods exist such as the PSCAD-EMTDC, EMTP, and ATP
software packages. Generally, transient models are more accurate than non-transients
models, but are much more complex and require much more computational power and
time for a simulation.

Transient models that are speci cally designed and optimized for dc systems are
imperative for the future research and development of the protection devices and
schemes for these systems. However, due to time constraints the development of
transient models for dc systems are not inside the scope of these thesis, and therefore
remain an open research question.
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2.7 Experimental Validation

In the previous sections the novel steady-state models were veri ed using established
power ow methods from literature, and it was shown that the models in the sym-
metrical domain are mathematically equivalent to the developed dynamic models. In
this section an experimental setup is used to verify the state-space modeling method
proposed in Section 2.4. For this experiment three power electronic converters are
interconnected via three lines in the meshed (ring) con guration, which is depicted
in Figure 2.17. Detailed descriptions of the dc sources, converters and line emulation
circuits that are used for the experiment are given in Appendix A.

e

Figure 2.17: Experimental setup that is used to verify the state-space modeling
method proposed in Section 2.4

(a) Schematic (b) Picture

For the experiment a droop controlled converter is located at ny, which the refer-
ence input current is given by

Ud U0 .
Zyg

l; = (2.100)
where Uq is the reference output voltage and Zy4 is the droop impedance. During
the experiment Uy and Zy are set to 350 V and 1 respectively. Furthermore, two
constant power controlled converters are located n, and nsz. Moreover, the input
voltage for all these converters is regulated at 175 V. The reference output power and
the droop parameters of these converters over time are given in Table 2.4.

tims] || Ug [Vl | Za[ 1| Py W] | Ps [W]
-5 350 1 0 0
0 350 1 2100 0
23 350 1 2100 | 2100

Table 2.4: Scenario of the experiment to verify the state-space modeling method
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Figure 2.18: Experimental and simulation results for the dc distribution system shown
in Figure 2.17 and under the scenario shown in Table 2.4

The experimental and simulation results are given in Figure 2.18. Observe that,
for both the simulation and experiment, clear drops in voltage can be seen after a
load step occurs, after which the system converges with a slower time constant to the
steady-state voltage. Furthermore, the currents show fast current oscillations after the
occurrence of a load step, which are caused by the interactions between the converters’
output capacitance over the lines’ inductance. The oscillations in the experimental
results, which are not present in the simulation results, are caused by the voltage and
current probes’ measurement errors. Overall, the experimental results show that the
state-space modeling method and the converter models presented in Appendix B are
adequate for modeling larger interconnected systems.
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2.8 Conclusions

Models of dc distribution systems are required for the analysis, design and optimiza-
tion of the markets, stability, control and protection in these systems. In this chapter
existing steady-state, dynamic and transient distribution grid models were discussed,
and novel and improved models were presented.

It was examined how the power ow of dc distribution systems can be determined
by using the Gauss-Seidel, Newton-Rhapson and Backward-Forward methods, and by
solving it as a quadratic or optimization problem. Furthermore, two novel iterative
methods were presented, which model the non-linear converters as current sources
(Direct Matrix - Current Approximation method) or as a current source with an
impedance in parallel (Direct Matrix - Impedance Approximation method) and then
perform linear iterations to arrive at the power ow solution. It was shown that the
Direct Matrix methods require up to 93 % less computational e ort than the estab-
lished methods, while providing similar or better accuracy and convergence. In the
future the Direct Matrix methods can be used to signi cantly reduce the computa-
tional e ort required for the operation and planning of dc power systems. Moreover,
they can be used for stability analysis, optimization routines, market simulations and
N-1 security assessments.

The dynamic behavior of dc distribution systems is often modeled via the system’s
transfer functions or state-space matrices. In this chapter a new approach to compos-
ing the state-space models via its nodes, lines, conductors and incidence matrix was
presented. In contrast to the dynamic models found in literature, the presented mod-
eling method di erentiates between the di erent conductors in each line and takes
their mutual couplings into account. Furthermore, due to the mathematical nature
of the model, it allows for the algebraic analysis of, for example, the stability and
control of dc distribution systems. Additionally, rapid analysis of various systems can
be achieved, since the derivation of the state-space matrices can be automated by
utilizing the incidence matrix. Moreover, experimental results showed that the model
can accurately predict the dynamic behavior of dc distribution systems.

Previously proposed symmetrical component decomposition methods for bipolar
dc distribution systems assume that the neutral is solidly grounded, and decompose
the system into two components. Consequently, these models are not able to ap-
propriately model bipolar systems with a metallic neutral, and they cannot be used
to perform (ground) fault analysis. To resolve these limitations, it is proposed to
decompose the system into three components with transformation matrices that are
orthogonal and power invariant. It was demonstrated that the proposed method re-
duces the number of variables (degrees of freedom) that are required to model dc
distribution systems by up to a factor of three. Furthermore, it was shown that it
substantially simpli es the analysis of (ground) faults in these systems.

Although solutions were presented in this chapter for the steady-state and dynamic
modeling of dc distribution systems, a novel transient model was not presented. For
future research and development of protection devices and schemes it is still imperative
that a transient model, which is optimized for dc systems, is developed.
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Chapter 3

Algebraic and Plug-and-Play Stability

The increasing share of renewable energy generation and constant power loads pose
signi cant challenges on the stability of distribution systems. Therefore, literature
on the stability of dc distribution systems is reviewed and novel methods to analyze
and ensure stability are developed. In this chapter an algebraic method to analyze the
stability of any dc distribution system is presented, which allows for some general-
ized conclusions on the systems’ sensitivity towards system parameters. Furthermore,
plug-and-play stability guidelines are derived for dc distribution systems, such that
a communication infrastructure and knowledge about the system’s topology are not
required to achieve global (i.e., system-wide) stability. Experiments showed that addi-
tional research into the impedance characteristic of power electronic converters is still
vital.

This chapter is based on
N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, \Stability of DC
Distribution Systems: An Algebraic Derivation", Energies, vol. 10, Jul. 2017.

N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, \Stability and
Decentralized Control of Plug-and-Play DC Distribution Grids", IEEE Access, vol. 6, 2018.
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3.1 Introduction

In this chapter, dc distribution systems are considered to be stable if all the voltages
and currents in the system converge to a steady-state and all oscillations/disturbances
are eventually damped out.

Traditionally speaking, stability is ensured by regulating the supply of conven-
tional generators, which also provide a signi cant amount of inertia to the grid. How-
ever, with the increasing share of renewable energy sources, the inertia of transmission
grids and consequently distribution grids is signi cantly decreased [19]. Therefore, in
grids with a substantial share of renewable energy sources, the balance of supply and
demand must be ensured on a much shorter time scale than in conventional grids.

Another challenge for the stability is the increasing amount of tightly regulated
load converters that behave as constant power loads. Constant power loads have the
voltage-current characteristic shown in Figure 3.1. The slope of the characteristic
is negative at all currents, which is shown in Figure 3.1 for one operating point.
Consequently, when the voltage at the converter’s node decreases, the current that the
converter draws from the node increases. This behavior can cause voltage instability,
but also ampli es oscillations in the grid [20].

Voltage [V]

Current [A]

Figure 3.1: Voltage-current characteristic of a power electronic converter with con-
stant power control

In Section 3.2, the small-signal converter models that are used for the stability
analysis are presented. In Section 3.3, it is shown how the stability of any dc dis-
tribution grid can be determined algebraically. In Section 3.4, stability requirements
are derived for plug-and-play grids, utilizing a Brayton-Moser representation. Lastly,
in Section 3.5, some of the ndings are experimentally veri ed.
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3.2 Small-Signal Converter Model

Several models of power electronic converters have been reported in literature in order
to analyze the stability of dc distribution systems. Large-signal models fully describe
the non-linear behavior of the system, while small-signal models linearize compo-
nents at a certain operating point. Since deriving stability from large-signal models
for larger dc distribution systems is intractable, small-signal models of power elec-
tronic converters are utilized. Most small-signal methods average and/or linearize the
power electronic converters, which is reasonably accurate on time frames longer than
the switching period of the semiconductors. Furthermore, the bandwidths of these
converters are typically lower than one-tenth of the switching frequency. Therefore,
inside the control bandwidth, it can be assumed the converters react instantaneously
to disturbances in the system [29, 72].

3.2.1 Norton Equivalent Small-Signal Model

In one operating point, the higher level control of power electronic converters can
be characterized as a linear combination of constant voltage, current, impedance, or
constant power behaviors. While the constant voltage controlled converter can be
modeled by an ideal voltage source, other converters can be modeled by the Norton
equivalent small-signal model shown in Figure 3.2. This Norton equivalent small-
signal model consist of a constant current source I, a parallel impedance Z; and the
output capacitance Ce.

1 | [ze==C

Figure 3.2: Norton equivalent small-signal models for power electronic converters

For example, constant current controlled converters can be implemented by letting
the impedance go to in nity, while constant impedance controlled converters can be
implemented by letting the current source go to zero.

3.2.2 Droop and Constant Power Controlled Converters

Since it is assumed that power electronic converters react instantaneously within their
control bandwidths, droop and constant power controlled converters can be modeled
according to their ideal equivalent circuits shown in Figure 3.3 on the left.
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Figure 3.3: Ideal (left) and linearized Norton equivalent circuits (right) for droop
(top) and constant power (bottom) controlled converters

The currents owing from the droop and constant power controlled converters into
the nodes they are connected to are respectively given by

_Uo Ui

Iy = 7, (3.1)
_ P

L= U, 3.2

where Uy is the reference voltage, U; is voltage of the node the converter is connected
to, Zg is the (virtual) impedance of the droop controller, and P, is the load’s power.

The derivation of the Norton equivalent of the droop controlled converter is triv-
ial, while the constant power controlled converter needs to be linearized around the
voltage U. Consequently, the rst component of the Taylor series approximation for
these converters are given by

Uy U; Ui

lg= =2 1=, .

ATz, zZg %0z 3:3)
2P, P U;

b= L+ dui=1, = 4

I UZUI oo Z (3.4

where Z; is the equivalent impedance of the constant power load converter and U is
the voltage at which the constant power load is linearized. The equivalent circuits of
these (small-signal) models of droop sources and constant power loads are shown in
Figure 3.3 on the right.
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3.3 Algebraic Derivation of Stability

Four main approaches to analyze the stability of dc distribution grids can be identi ed.
Firstly, the minor loop gain (the relationship between the complex load and source
impedance) can be evaluated. Di erent limits on the minor loop gain have been
proposed to ensure stability. However, this approach assumes unidirectional power

ow and measurements are essential for accurate impedance estimations [29,73{75].
Secondly, a root locus analysis of the system can be done and the locations of the
poles can be investigated [57,61, 76{78]. Nevertheless, this approach does not provide
mathematical insight into the origin of the (in)stability. Thirdly, an analysis based on
Lyapunov methods can be conducted [79{82]. However, these are not easily applied
and require a suitable construction of the Lyapunov storage function. Lastly, the roots
of the system can be derived from the eigenvalues of its state-space matrix [83{87].
The disadvantage of this method is that the converters need to be linearized.

Previous research often only analyzes speci ¢ systems or uses oversimpli ed models
and therefore no generalized conclusions can be derived. For example, only star type
systems with a source at the central node are analyzed [86], the node capacitance is
not considered in the equations [59], or no (general) conclusions regarding stability
are provided [77]. Therefore, any verdicts on the e ect of system parameters (e.g.
inductance, capacitance and droop coe cients) on the distribution system’s stability
cannot be generalized.

In this section a generalized method to algebraically analyze the stability of dc
distribution systems, regardless of con guration, is presented. The method can be
used to derive necessary and su cient conditions for the stability by determining the
system’s eigenvalues algebraically.

3.3.1 Stability of Simple DC Distribution Systems

The simplest (potentially unstable) dc distribution grid is a converter that controls the
voltage that is connected to a constant power controlled converter via a distribution
line. This simple grid, where the constant power load is replaced by its Norton
equivalent circuit, is shown in Figure 3.4.

Source L 1. R Load

MINST]
@us —c| |z lo

Figure 3.4: Simple dc distribution grid containing a constant voltage source and a
constant power load connected via a distribution line
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The voltage of the constant power load’s output capacitor Uc relates to the net
current owing into the capacitor, and the line current I_ relates to the voltage over
its inductor. Therefore, the di erential equations are

Clc=1 +1, L. (3.5)
Z
L, =Us Uc RI.: (3.6)

Consequently, the state-space formulation of this system is derived to be

- lo @7)
N TR T 0L Us '

rl= o

The characteristic equation and eigenvalues of any matrix A can be found by
solving jA Ij and (JA 1j = 0) respectively. The determinant of the left-hand
matrix, and therefore the characteristic equation of this system, is

R 1 1 R
2y 24— o+ )
L CZz LC LCZ (3:8)
Consequently, the poles of the simple example system are given by
= 2
2L 2Cz, 2 L CZz LC LCZ

Since any system is considered stable if all poles have negative real parts, this system
is considered stable if and only if

R 1

—+— >0 .

L tecz 0; (3.10)
1 1
—+_—>0: A1
R¥Z 0 (3.11)

Note that (3.10) ensures that the time constant (or damping) of the line is more than
the time constant (or ampli cation) of the constant power load. Furthermore, (3.11)
makes sure that, when the load voltage uctuates, the change in current from the
source is more than the change in current of the load

Another simple dc distribution grid is shown in Figure 3.5. In this case a droop
controlled converter is connected to a constant power load converter. The state-space
formulation of this dc distribution system is given by

2 3 2 0 7132 3 ZL 0 3
1 21C1 Cl 1 C1 I .

4,,5=4"79 1 i 54,5447 15 o . (3.12)
2 1 22?2 C 2 Cz I5-0
L L - T & 0 0
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Droop Source L I.L R Load
; S @
I1 Z1 ci—= _—C Z> lo

Figure 3.5: Simple dc distribution grid containing a droop controlled source and a
constant power load connected via a distribution line

Via the determinant of the state matrix, the characteristic equation is derived to be
34 2 R + L + L
L CizZy CyZ,
1 L C;R  CiR
+ +
LC_‘]_CZ Z]_Zz Z]_ ZZ
1 R 1 1
4 4
LC.C, Zi1Z, Z1 Z;
To ensure that all of this system’s poles have negative real parts, it is required
that all coe cients of the characteristic equation are positive. Therefore, to ensure
stability it is required that

+C,+Cy +

(3.13)

R 1 1
+ +

R 4+ >0 3.14
L Cizi C.Z, (3.14)
L CR CiR
+ + +C,+Cy >0 )
57t 2.t TC*tCi>0 (3.15)
R 11
++ >0 (3.16)

2172, Z1 23
In this third order case, one additional condition will make the set of conditions
required and su cient. This additional condition is that the product of the second
and third coe cients is greater than the fourth.
If, for the sake of simplicity, the resistance R is neglected and the source is located
at nq, the system presented in Figure 3.5 is stable if and only if

122 > jZ4j; (3.17)
C2jZaj > Cujz4j; (3.18)
L
C,+Cy > jzlzzj, (319)
L C2 L Cl

+ > — + — 3.20
C2Z1Z5  Ci1Zy Ci1Z2jZ5)  Cojzsj (3.20)

Observe that these conditions again relate to the time constants in the system and
the impedances of the source and load.
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3.3.2 Stability of Any DC Distribution System

The approach used in the previous subsection is in this subsection extended for any
dc distribution system. To generalize the model for power electronic converters, the
current owing from any converter into the grid is assumed to have the form of

1

li = lip ZUi; (3.21)

where Uj is the voltage at the input terminals, Z; is the (linearized) impedance and

li-o is the (linearized) output current of the converter. For instance, l;.o and Z; are
positive for droop controlled sources, and negative for constant power loads.

By combining (2.33), (2.34) and (3.21) the state-space formulation for any dc
distribution consisting of nodes, distribution lines, and (linearized) power electronic
converters is derived to be

Uv _ Clzt ctT uy +(:1

I.L = L 1 L 1R ||_ - ||\|;0; (322)

where Z is the matrix containing the impedances of the power electronic convert-
ers and Ino is the vector of the constant term currents (lj.0) from the converters
connected to each node.

The Location of the Equilibrium

Besides the stability, the equilibrium (steady-state) of the system can be derived from
the state-space equations. In steady-state the time derivatives in the system are zero.
The steady-state node voltages and line currents can therefore be determined by

1

UN _ C 1Z 1 C 17T C 1 '
L - L1 L R : Inco: (3.23)
The inverse of the left-hand state matrix (A) can be decomposed as
1 T 1
1_ Z C 0 |
A = R 0 L - (3.249)

Consequently, by substituting (3.24) into (3.23), the steady-state node voltages and
line currents are derived to be

1
Uv _ 2z T Inco .

n = - : (3.25)

Identifying that the matrix of (3.25) is a block matrix, the node voltages at the
equilibrium are
Un=@Z *+ TR ') YIno; (3.26)

which is equivalent to multiplying the constant term currents by the equivalent
impedance of the network.
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Stability from the Characteristic Equation

The stability of dc distribution systems can be evaluated by determining the eigen-
values of the state matrix. For the sake of simplicity it is rewritten as

E F
G h (3.27)

where F and G are not necessarily square matrices.
The characteristic equation of this matrix (JA  Ij) will always have the form of

N+L 2.

ap N*Lh4g, N*L 1445, CllaNaL. (3.28)

where N and L are the number of nodes and number of distribution lines respectively.
Therefore, this characteristic equation has N + L coe cients and N + L zeros.

The coe cients of the characteristic equation can be determined from the state
matrix by utilizing traces of powers or the principal minors of the matrix [88, 89].
Therefore, they can by found by

a, =1; (3.29)
1 ey k m+1
aj+k = K am Tr(A ); (3.30)
m=
arek = (1) ks (3.31)

where Tr is the trace of a matrix, and i is the k-th order principal minor of A.

Utilizing (3.27) and (3.30) the algebraic representation of the rst ve coe cients
of the characteristic equation are determined to be

a; =1, (3.32)
X
a; = Aii; (3.33)
1
1 X X
asz =§ AiiAjj (F G)ii; (3.34)
i6j i
1 X 1 X< 1 X<
a= = AiiAjjAk+ 5 EBi(FG)j +5  Hii(GF)jj (3.35)
i6j6k i6j i6j
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1 X 1 X
3 =5, AiiAjjAAn < EiiEjj(F Gk
i6j6kesl i6j6k
1 X 1 X
= HiiHji(GF ¢ EiiHjj(F G
isjek

1 X
(EFHG)i 5 (HGEF)i

1 X

2
1
= Eii(FHG)jj +§ Hii(GEF)jj

+
1 X< , 1X
3 (FG)ii + 7 (FG)ii(FG)ij (3.36)

From (3.32) to (3.36) it becomes apparent that the coe cients relate to the com-
binations of the sources’, loads’ and distribution lines’ time coe cients, of increasing
order with each subsequent coe cient (without creating loops).

For these systems to be stable it is required, but not su cient, that all coe cients
are larger than zero [90]. To make the conditions su cient n +1 2 additional
coe cients need to be added [91]. These so-called Routh coe cients can be found in
the leftmost column of the Routh array, which is given by

2 3
ai az as i an-+L
a ag ap o an-+L
B b1;1 b1;2 b1:3 S b1:(N+L)=2 .
B = ba:1 ba:2 ba:3 T bo:(N+L)=2 ’ (3.37)
bN+L 2;1 bN+L 2;2 bN+L 2,3 ... bN+L 2;(N+L)=2
where the b;.; elements are recursively determined by
by = Bi+i:1Bij1+j Bi;lBl+i;1+j: (3.38)
B1+i;1
For example, the rst two Routh coe cients are
b1 = aras  as; (3.39)
by = @apazay + aas asas ag (3.40)

Any dc distribution system is stable if and only if all the coe cients of the charac-
teristic equation and the relevant Routh coe cients (by;j) are larger than zero.

3.3.3 Stability Analysis of Example Systems

To demonstrate the utility of the presented method the stability of three dc distribu-
tion systems in di erent con gurations is analyzed. For these examples it is assumed
that the source is located at node n; of each con guration, however, moving the
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source to a di erent node yields similar results. Furthermore, a sensitivity analysis
is done and a few general misconceptions concerning the stability of dc distribution
systems are discussed.

Bus Con guration

An example of a dc distribution system in a bus con guration is shown in Figure 3.6.
The idea of such a con guration is one \bus", or set of distribution lines, without
branches or meshes. For the shown example it is assumed that a source is situated
at ny; and two loads are situated at n, and nz. However, the derivation for other
con gurations is analogous. For the sake of simplicity the resistance of the distribution
lines is neglected.

L, 2

e
H e

Figure 3.6: Example of a dc distribution grid with three nodes and two lines in a bus
con guration

Using (3.27) and (3.30) the coe cients of the characteristic equation are derived
to be

a =1; (3.41)
1 1 1
= + + :
Ci12Z; C,Z, CsZ3
1 1 1 1
= + + + +
CiL; CoL; Gl CGCslo
1 1 1
+ + ;
C1Z2:CyZ, C1Z:C3Z3 CyZ,C3Z3
1 1 1
= + +
C1Z2:C,Z2,C3Z3 C1L1CZ, Ci1L1C3Z;5
1 1 1
+ + +
CoLiCaZs  ColiCiZs  ColoCiZs
1 1 1
+ + :
C,L,C3Z3 Cs3L,CrZ, CilL,CiZ4
= 1 + ! +
C12Z2,CrZ,C3L, C1Z:C3Z3C5L4
1 + 1 +
C1Z2,C3Z23CoL, CyZ,C3Z3CqL4
1 1 1
+ + :
C.L;CL, CqL41C3L,  C,oL1C3l,

ap

(3.42)

az

(3.43)

a

(3.44)

as

(3.45)
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1 1 1

ag = + + .
C1Z:C,L1C3L, CyZ,C1L;1CsL, C3Z3C1L1CoL,

(3.46)

Now if, for simplicity, it is assumed that the capacitance in each node (C;) and
inductance in each distribution line (L;) are equal, two simple requirements for the
stability of this system result, which are given by

1
Zi< ——+ (3.47)
zVz
2Z, Z3 .
Z, > [+ %%z s (3.48)

where the rst requirement is derived from the even coe cients, and the second
requirement follows from the odd coe cients.
Interestingly, from these requirements a constraint on the capacitance and induc-

tance is derived to be
3C 2 1 2

— > — + — 4+ ——

L~ z2 z7 ZyZ3’

which depicts a minimum on the ratio between the capacitance and inductance for
stability to be feasible.

The derived requirements are necessary but not su cient for stability. To make the
set of requirements su cient additional constraints can be derived from the Routh
coe cients. In general, the requirements derived from the Routh coe cients are
more complex, but the result is similar to the requirements from the characteristic
equation’s coe cients, as is shown in (3.20). Utilizing (3.37) and (3.38), if the ratio
between the capacitance and inductance is large enough, it is su cient for stability if

(3.49)

which is a stricter versions of (3.47) that was derived from the characteristic equation’s
coe cients.

Ring Con guration

The second example is a dc distribution system in a \ring" con guration shown in
Figure 3.7. In this case the ring con guration does not have any branches but it has
a single mesh. In this example the source is located at n; and loads are located at n;
and ns.

Analogously to the bus con guration, the requirements on the source’s impedance
for the stability of this system can be derived from the characteristic equation. These
requirements are derived to be

Z, Z3 1

<Zl<

P e T (3.51)
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Figure 3.7: Example of a dc distribution grid with three nodes and three lines in a
ring con guration

Star Con guration

The last example is a dc distribution system in a \star" con guration, which is shown
in Figure 3.8. In this case the star con guration has branches, but no meshes. Since
in most cases the source is situated in the center node, it is assumed that the system
has a source placed at n; and a load is placed at n,, nz and n4.

Figure 3.8: Example of a dc distribution grid with four nodes and three lines in a star
con guration

Analogously to the previous examples, the requirements on the source’s impedance
to ensure the stability of this system are derived to be

5( ZoZs  Z2Z4 Z3Zs) 3

- 3.52
Zp + 23+ Zy + E525ata 2+ 2+ (3.52)

The stability requirements for the three examples show strong congruence with re-
spect to the sensitivity towards, for example, inductance and capacitance. Therefore,
it becomes viable to make some general conclusions.
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Sensitivity Analysis

Similar results with respect to previous work are found for some of the parameters.
With respect to inductance the results of this section are congruent with previous
works [57,59], where a decrease in inductance leads to improved stability. Fur-
thermore, from the equations in the previous section, it can be observed that the
impedance of the droop controlled source has an upper and lower bound. The upper
bound is related to the power drawn by the loads in the system, while the lower
bound is related to the oscillations in the system. These oscillations originate from
the interaction of capacitance at di erent nodes through the lines’ inductance. These
results are also congruent with the literature [92,93].

Generally, it is thought that increasing the capacitance is bene cial for the sta-
bility of the system. From (3.49), (3.51) and (3.52) it is clear that indeed there is
a minimum required capacitance in order to achieve stability, and increasin the ca-
pacitance further improves the damping of the system. However, (3.42) and (3.46)
suggest a negative e ect on the overall damping of the system. The second (az)
and last (an+1) coe cients are the sum and product of all eigenvalues respectively.
Therefore, when the capacitance is increased the sum and product of all eigenvalues
are decreased leading to decreased damping in the system.

Interestingly, (3.42) and (3.46) suggest that decreasing the source capacitance
compared to the load capacitance has a positive in uence on the damping in the sys-
tem. However, this not necessarily always true since the decrease of source impedance
also has a negative e ect on some of the coe cients (e.g. ag). As validation of this
observation the maximum real part of the eigenvalues as function of the source ca-
pacitance for the bus example is shown in Figure 3.9. For this sensitivity analysis
it is assumed that the resistance and inductance of the lines are 0 and 0.36 H
respectively. Furthermore, the converters’ output capacitance source impedance and
load impedance are given by 50 F, 5 and -125 respectively.

0

-500
=
&

< -1000
©
=

-1500

-2000 L L L L
0 0.5 1 1.5 2 25
C,F x107

Figure 3.9: Maximum real part of the eigenvalues as function of the line resistance
for the bus example shown in Figure 3.6
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3.4 Plug-and-Play Stability

Previous studies into the stability of dc distribution grids often do not ensure global
stability, or only apply to well de ned systems (i.e., systems with known topology
and/or parameters) or systems that utilize some form of communication. For exam-
ple, (non-)linear droop based strategies are commonly used for many systems [94{99].
Although droop based strategies do not require any communication they do not ensure
global stability unless the system’s parameters and topology are known. Furthermore,
several strategies exist that adapt the virtual impedance or operating mode of the con-
verters depending on system parameters [100{106]. These methods further improve
stability when exibility is available in the system, but still rely on well de ned system
parameters (e.g., load power) or communication for global stability.

In this section easy-to-use global (small-signal) stability guidelines are presented
for plug-and-play dc distribution grids that are without communication. The global
stability guidelines are derived using a Brayton-Moser representation of the system to
arrive at a suitable Lyapunov candidate function. The derived guidelines only pose
requirements on the output capacitors of constant power loads and the total load of
the constant power loads in the system.

3.4.1 DC Distribution System Equilibrium

As was shown in Section 3.3, the equilibrium can be found by assuming that all time
derivatives in the system are zero. Therefore, from (3.23) the state variables at the
equilibrium are given by

U C 1Z 1 C 17T C 1
LT 1k N NP (3.53)

Moreover, the node voltages are found to be
Uv=Z '+ TR ') YIno; (3.54)

which is equivalent to nding equivalent impedance of the network topology. Never-
theless, providing su cient and necessary conditions for the existence of this inverse
for any topology is not feasible, since  is unknown.

However, su cient conditions for the existence of an equilibrium are available.
According to [82,107] an equilibrium is guaranteed to exist if the total load power of
the network is bound by

ug .
4R
where P is the total load power of the network, Uy is the reference voltage of source(s)
in the system and R is the total resistance of the network.

This su cient condition for the existence of an equilibrium can be substantiated
and slightly appended by utilizing a simple example circuit shown in Figure 3.10.

P (3.55)
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Figure 3.10: Equivalent steady-state circuit of a droop controlled source connected to
a constant power load via an arbitrary dc distribution network

This gure depicts the steady-state circuit of a droop controlled source connected to
a constant power load via an arbitrary dc distribution network. The voltage at the
load side’s output capacitance is given by

P\Zs P|R0_
Ui U’

U =Up (3.56)
where R’ is the equivalent resistance of the arbitrary dc distribution network between
the source and the load.

For this system an equilibrium exists if and only if

ug

Pl 2z +RY

(3.57)
For an arbitrary dc distribution system with an arbitrary number of loads, in the
worst case, all the currents from all the constant power loads ow through all line
resistances. Consequently, the existence of an equilibrium can be ensured by

VI
4(237£R)' (3.58)

Adequacy of the Equilibrium

Equation (3.58) ensures the existence of an equilibrium, but it does not ensure that
the voltage in the system remains within preferred limits. Therefore, it must be
ensured that the voltage remains above the minimum voltage Unin.

In the worst (allowed) case the load current is given by I, = Ulrjnlin' Therefore, using
the example circuit from Figure 3.10, the equilibrium has voltages that are above the
minimum voltage if and only if

PiZs PR

U
0 l-Jmin Umin

Equivalently to the existence of the equilibrium, in the worst case scenario all the
load currents ow through all the resistances in the network. Therefore the adequacy
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of the equilibrium in the worst case scenario is ensured by

Umin(UO Umin)_
Zs +R '

= (3.60)

which, as long as the minimum voltage is not chosen to be exactly half of the reference
voltage, is stricter than (3.58).

3.4.2 Brayton-Moser Stability

To assess the asymptotic stability the Lyapunov’s method is used. From the system’s
state-space representation (3.23), the natural Lyapunov function candidate is given

by

1

0= Go E|._TR|._+|._T Un: (3.61)
> 2U: 2 2

Go = Pr.i InU; UI;; - vi + 2;' - Uil (3.62)
S;i zZ;i

1
where Gg is the resistive co-content of the sources and loads [82]. The di erent terms
in (3.62) are for constant power, droop, constant impedance and constant current
converters that are connected to each node respectively.

Utilizing the natural Lyapunov candidate function and the resistive co-content,
the dynamic equations of the system can be rewritten as

QoX = 0x o (3.63)

- C 5 .
QO_; L

(3.64)
However, Lyapunov function candidate ¢ is not suitable to ensure stability of
the system, since it is not sign de nite. Therefore, a closely related Brayton-Moser
potential is de ned, which is given by
c 3

1
= rT;D((@x o)’ - L Gx o)+ o (3.65)

where max is the maximum time constant (L=R) of all the distribution lines in the
dc distribution system [82, 108, 109].
Subsequently, by substituting X = Qg @x o into (3.65) and utilizing QX =
@x , the Brayton-Moser potential and the matrix Q corresponding to the Brayton-
Moser potential are found to be

1

c ;
Ox = max(@% 0)" L O0x o+0@x o (3.66)
— max@X@XGO"'C max T .
Q= - maxR L (3.67)
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The Lyapunov function V that follows from this Brayton-Moser representation is
given by
vV =X QX; (3.68)

which according to LaSalle’s invariance principle makes the system asymptotically
stable if

V=X'(Q 0x0x )X O (3.69)
Q o (3.70)

where Q 0 indicates that the matrix Q is positive de nite.

System Convexity

The rst condition for asymptotic stability is given by (3.69) and it can be shown
that this equation reduces to

(Q @x06x ) O (3.71)

where Q is zero when the system is at rest, and negative or negligible otherwise [82].
Therefore, the system is convex if @x @x 0, which is valid when

Pri 1 1

— + +

Ui Zs;i Zz;i

12
Rjlj +
i i
In the worst case scenario all currents ow through all the lines, there is only one
droop source, and constant power loads all operate at the minimum voltage Unin.
Therefore, convexity is ensured if

0: (3.72)

p Ymn . (3.73)
Zs+R '’ '
which is less strict than (3.60) as long as the minimum voltage is more than half the
reference voltage.

The same result can be obtained using a more intuitive approach. Figure 3.11
shows a linearized version of the example circuit shown in Figure 3.10, where the
constant power load is replaced by a current source and a parallel impedance (see
Section 3.2). This equivalent circuit converges to the equilibrium if a perturbation
on the load voltage causes a larger change in the source current than a change in the
load current. In other words, if

1 1
Z+R Z/ G719
U2
Zs +R’ ?:; (3.75)
U2
P, ﬁ'RO; (3.76)
S

which, in the worst case scenario, is equivalent to (3.73).
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Droop Source 5e Load

Figure 3.11: Incremental steady-state circuit of a droop controlled source connected
to a constant power load via an arbitrary dc distribution network

Asymptotic Stability

The second condition for asymptotic stability is given by (3.67). Clearly, the choice
of max ensures that ,axR L 0. Therefore, it can be derived that Q 0 when
the diagonal entries of Q are positive de nite [82]. Furthermore, max@x@xGg+ C
is positive de nite if (for each node) it is true that

P
max Ml + max + max + C > 0' (377)
Ui2 Zs;i Zz;i I
which is always true for nodes to which no constant power nodes are connected (or
other converters with negative incremental impedance). Furthermore, for nodes to
which only constant power nodes are connected it is required that

Py

Ci> Ty L. (3.78)
min

Intuitively this requirement can be explained by the time constants and damping

of the system. If (3.78) is true, then the damping of each distribution line is more

than the ampli cation caused by the constant power loads with respect to oscillations

in the system.

3.4.3 Stability Guidelines

Any dc distribution system is stable if all four guidelines, (3.58), (3.60), (3.73) and
(3.77), are adhered to. These guidelines are simple, robust and su cient for stability
and can be valuable for designing dc distribution systems that exhibit changes in
components, topology and/or power. Usually, when the minimum allowed voltage
is more than half the reference voltage, only (3.60) and (3.77) have to be taken into
account. This is because, in this case, (3.58) and (3.73) are less strict variants of (3.60).

With the direct application of the guidelines, the constraints on the power elec-
tronic converters can become rather conservative, especially for larger systems. There-
fore, it can be bene cial to take a di erent approach to applying these guidelines. A
decentralized control strategy which incorporates the stability guidelines is proposed
in Chapter 4.
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3.5 Experimental Results

The previous sections showed how the stability of dc distribution systems can be de-
rived algebraically, and how the plug-and-play stability of these grids can be ensured.
In this section an experimental setup is used to provide practical insight into the sta-
bility of dc distribution grids. For the experiments, the bus con guration depicted in
Figure 3.12 is used. Speci cations for all the components in this experimental setup
can be found in Appendix A.

(a) Schematic (b) Picture

Figure 3.12: Setup that is used to analyze the stability of dc distribution systems

For the experiment a droop controlled converter is located at n;, which reference
input current is given by

Ud Uo .

Zg
where the reference droop voltage Uy is set to 350 V, and the droop impedance Zq is
set to either 0.2, 1.0 or 8.3 . Furthermore, two constant power controlled converters
are located at n, and nz. Moreover, the input voltage of all the converters is regulated
at 100 V. The reference output power over time of the constant power load converters
are given in Table 3.1. The experimental results, for the di erent droop impedances,
are shown in Figure 3.13.

li = (3.79)

t[ms] || Uq [V] | P, [W] | Py [W]
-5 350 0 0
0 350 | 1200 0
20 350 | 1200 | 1200

Table 3.1: Scenario for the stability experiments
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Figure 3.13: Experimental results for the dc distribution system shown in Figure 3.12
and under the scenario shown in Table 3.1, for di erent values of the droop impedance
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From Figure 3.13 it is seen that, when the droop impedance Z4 is 1.0 , the
system behaves as expected from the theoretical analysis developed in the previous
sections. Even though the natural oscillation frequencies of the system, 1150 and
2300 Hz, are just outside of the control bandwidth of the converters (1000 Hz), the
system is stable. However, the system does not fully damp the oscillations when the
droop impedance is 0.2 , and does not go unstable when the voltage drops below
half the reference voltage.

Given a line inductance of 32 H, a line resistance of 120 m , a desired minimum
system voltage of 315 V, and an output capacitance of 288 F, according to (3.78), the
maximum power that each load can draw from the grid without causing oscillatory
instability is around 100 kW. However, it is seen from Figure 3.13 that the system
is unstable when the droop impedance is 0.2 . Moreover, the line currents show
signi cant oscillations even before the constant power load converters draw power
from the grid.

In this case the oscillatory behavior is caused by the practical limitations of the
converter compared to the idealized model. When the droop constant decreases the
(virtual) RC time constant of the converter decreases. In this case, when the droop
constant is 0.2 , the RC time constant becomes lower than the time constant of the
voltage measurement circuits. Consequently, the converter itself is operating outside
of its control bandwidth.

Note that the system is stable even when the droop impedance is 8.3 and
the voltage goes below half the reference voltage (i.e., 175 V). Initially, this seems
contradictory with the ndings of Section 3.4. However, in this case the input current
is drooped and not the output current, and the output current is given by

UiUs Uo
lo= ——— 3.80
=0 7 (3.80)
Assuming that the input voltage remains constant the output power of this system is
then given by

Ud Uo )

Po = U;j Zs

(3.81)

which in contrary to the output current droop provides more power to the grid even
if the voltage drops below half of the reference voltage. The output power of output
current droop is given by

Ud Uo )

Po=U, 7

(3.82)

Therefore, it might be that input current droop, or output power droop, is more
suitable for ensuring voltage stability in dc distribution grids.
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3.6 Conclusions

The stability of distribution systems faces challenges such as decreasing inertia due to
the increasing share of renewable energy, and the increasing number of constant power
load converters that exhibit negative incremental impedance. In this chapter a method
was presented to algebraically derive the stability of any dc distribution system, and
global stability guidelines were derived using a Brayton-Moser representation of the
system.

Deriving the stability of larger dc distribution systems, using large-signal models,
is intractable. Therefore, to analyze the stability in these systems, a Norton equiva-
lent small-signal converter model was used to approximate any (non-)linear behavior
via a constant current source with an impedance in parallel. This simpli cation is
reasonably accurate within the control bandwidth of the converters.

It was discussed that the stability of dc distribution systems can be derived by
utilizing minor loop gain, root locus, Lyapunov or eigenvalue methods. However,
previous research only analyzed speci ¢ systems or used oversimpli ed models and
therefore no generalized conclusions could be drawn. This chapter showed how the
stability of dc distribution systems can be algebraically derived from their state-space
matrices, which, unlike other techniques, does not neglect node capacitance or line
inductance. Utilizing this method it was con rmed that increasing line inductance
and decreasing line resistance has a negative e ect on the system’s stability. Moreover,
it was shown that increasing the capacitance of source converters can deteriorate the
stability, in contrast with increasing the capacitance of load converters.

No guidelines were provided in literature for the global stability of dc distribu-
tion grids, without using communication or knowing the topology of the system. A
Brayton-Moser representation of dc distribution systems was used to arrive at a suit-
able Lyapunov candidate function, and subsequently guidelines were derived for global
plug-and-play stability. The guidelines ensure that an equilibrium exists, the voltages
in the system are above the desired minimum voltage, the system converges to the
equilibrium and oscillations are damped. To prevent instability, the capacitance of
constant power loads needs to be sized appropriately and the voltage drops in the
system need to be limited.

Experimental results con rmed that two modes of instability exist in dc distribu-
tion grids; voltage instability and oscillatory instability. Furthermore, they showed
that the practical limitations of converters need to be taken into account for the stable
operation of dc distribution systems. Although idealized representations of the con-
verters lead to convenient stability guidelines, the impedance of the converters must
be analyzed at all relevant frequencies to ensure stability.

When designing a dc distribution system, the results from this chapter can be
used to ensure and analyze its stability. However, future research into the impedance
characteristics of various converter topologies and their control is still essential.
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Chapter 4

Decentralized Control Strategy and Algorithm

Decentralized control is essential to deal with the decentralization and segmentation
of the distribution grid, and the potential absence of a communication infrastructure.
In this chapter, literature on the decentralized control of dc grids is surveyed, and a
decentralized control scheme is proposed that ensures global stability and voltage pro-
priety for plug-and-play dc distribution systems. Furthermore, it is shown that voltage
dependent demand or supply response can cause inadequate energy utilization. There-
fore, the Grid Sense Multiple Access (GSMA) algorithm is proposed, which relies on
an exponential backo mechanism to improve system and energy utilization. Sev-
eral simulations and experiments are carried out, validating the decentralized control
strategy and algorithm.

This chapter is based on

N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, \Stability and
Decentralized Control of Plug-and-Play DC Distribution Grids", IEEE Access, vol. 6, 2018.

N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, \Grid Sense
Multiple Access: A Decentralized Control Algorithm for DC Grids", International Journal of
Electrical Power & Energy Systems, 2020.
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4.1 Introduction

Di erent strategies can be used to control, for example, the power ow, stability and
unit commitment in dc distribution systems. The di erent approaches are frequently
divided into centralized, decentralized and distributed control strategies [29,110]. For
centralized control, a central controller determines the behavior of all the actors in the
system. On the other hand, in decentralized control, each individual actor determines
its own actions without communicating with other devices. Furthermore, distributed
control is characterized by actors that communicate only with close neighbors to reach
a consensus on their actions.

For dc distribution systems, a hierarchical control scheme is often used, which is a
combination of the di erent control approaches [26,29]. The typical di erent layers of
a hierarchical control system are shown in Figure 4.1. First, the physical layer consists
of the converters, distribution lines and other components of the network. Second,
the decentralized control layer only uses locally available information. Third, the
coordinated control is characterized by control schemes that utilize communication for
providing functionalities such as voltage restoration, power sharing and stability. Last,
the management layer pursues complex auxiliary objectives, which are often executed
on a slower time frame, such as power ow control and economic optimization.

Figure 4.1: Typical layers in the hierarchical control of dc distribution systems

The hierarchical approach to controlling dc distribution system is well researched,
especially when communication is used [26, 111, 112]. Furthermore, decentralized
control is the foundation for any control architecture, since the grid must remain
operational even if the communication infrastructure is (temporarily) unavailable.
Therefore, this chapter focuses on the decentralized control of dc distribution grids. In
Section 4.2, a decentralized control strategy is proposed that ensures global stability
for any dc distribution system. In Section 4.3, a decentralized control algorithm
is proposed that improves energy utilization. Last, in section 4.4, experiments are
carried out to validate the proposed strategy and algorithm.
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4.2 Decentralized Control Strategy

Several decentralized strategies are presented in literature in order to improve the
stability, power quality and power sharing of dc grids. Droop based control strategies
are commonly used for many systems [96, 113, 114]. Further e orts improve power
quality and stability by adapting the converters’ virtual impedance or operating mode
depending on measured parameters [103, 115, 116].

Some plug-and-play strategies have also been proposed [117,118]. For example,
local controllers can be updated after a change in the system occurs [117,118]. Al-
ternatively, a (centralized) power management strategy can specify the set points of
the converters in the grid [27]. Moreover, global stability can be ensured when a well-
de ned topology is used [103,119,120]. Overall, these control strategies require some
form of communication, or require well-known system topologies and parameters, to
ensure global stability.

In Section 3.4 the global stability guidelines were derived using a Brayton-Moser
representation of the system to arrive to a Lyapunov candidate function. In this
section, a decentralized control strategy is proposed that implements these stability
guidelines, and supplementary converter guidelines for plug-and-play dc distribution
grids that are (temporarily) without communication.

4.2.1 Decentralized Control for Stability

From Section 3.4 it is clear that, to ensure voltage propriety and a damped system,
any dc distribution system must adhere to (3.60) and (3.77). It is straightforward to
ensure su cient damping on oscillations in the system, by requiring that the output
capacitances of all constant power loads in the system are sized using (3.78). Note
that max is independent on the length and con guration of the distribution lines,
and therefore only depends on the ratio of inductance and resistance of the lines or,
in other words, the type of lines that are used.

It is less straightforward to ensure voltage propriety from (3.60), since the total
load power, total resistance of the network and the droop impedance are often vari-
able or unknown for plug-and-play systems. Therefore, to ensure that the voltage
stays within its minimum and maximum voltage, a decentralized control strategy is
proposed, instead of applying (3.60) directly.

The converters in dc distribution grids can be categorized as source, load or hybrid
converters. Although renewable energy sources are variable and uncertain by nature,
due to maximum power point tracking algorithms, they exhibit constant power be-
havior in time frames shorter than seconds [121]. Load converters exhibit behaviors
such as constant impedance, constant power, constant current or a combination of
these behaviors [122]. Hybrid converters are able to both supply and consume power,
and often exhibit constant power behavior or mimic constant impedance behavior.

To guarantee global stability and propriety of the voltage, it must be ensured that
the voltage never goes below the minimum voltage or above the maximum voltage.
Previous research showed the advantages of dividing the acceptable voltage range into
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regions where the converters’ mode of operation is varied [103{105,119,120]. However,
no concrete strategies were presented for voltage propriety or global stability. It is
proposed here to divide the acceptable voltage range into supply response, absorption,
emission and demand response regions. An example of such division of voltages is
given in Figure 4.2, although the di erent regions do not necessarily need to be divided
with identical proportions.

Figure 4.2: The division of the acceptable voltage range into supply response, absorp-
tion, emission and demand response voltage regions

The absorption and emission regions are the naturally desired regions of operation
of the dc distribution grid. In these regions the load and source converters operate
at constant power, while the hybrid converters (e.g., batteries) regulate the voltage.
In the emission region, when the voltage is below the nominal voltage, the hybrid
converters supply power to the grid. In this region, the hybrid converters ramp up
their supplied current as the voltage reduces. In the absorption region, when the
voltage is above the nominal voltage, the hybrid converters consume power from the
grid. Analogously, the hybrid converters ramp up their consumed current as the
voltage increases. When there are no hybrid converters in the network the system
will always operate in the supply or demand response regions.

If the voltage enters the demand response region it means that the source and
hybrid converters cannot cope with the power demand. Therefore, in the demand
response region the load must be decreased. Loads either decrease their power grad-
ually (e.g., by dimming lights) or switch o when a speci ed voltage is reached. The
voltage at which the loads are switched o determines their priority. However, no
load is allowed to consume power when the voltage is below the minimum voltage.

If the voltage reaches the supply response region the loads and hybrid converters
cannot consume the power supplied by the sources. Therefore, in this region the
power supply must be reduced. Similar to the demand response, the sources either
gradually decrease their output power or switch o at a speci ed voltage. However,
no source is allowed to supply power when the voltage is above the maximum voltage.
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An example of the behavior in the voltage regions for source, load and hybrid
converters is shown in Figure 4.3. In this example the source and load converters’
power is ramped down in the supply and demand response regions.

Figure 4.3: Example of a source (grey), load (black) and hybrid (dashed) converters’
voltage-current characteristic that complies with the decentralized control strategy

4.2.2 Converter Guidelines

Applying the decentralized control strategy from the previous subsection ensures
global stability and voltage propriety. However, it is preferable to de ne additional
constraints on the behavior of the converters in dc distribution systems. To illustrate
this, the simple system shown in Figure 4.4 is used. For this example, the source’s
voltage U is assumed to be constant, while the load’s current I is variable.

Figure 4.4. Example dc distribution system used to derive the converter guidelines
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Because it is used in the load’s control decisions, the voltage of the capacitor U,
is of interest. The transfer function H(s) for the capacitor voltage as function of the
load current 1 is given by

HE) = ~———— 4.1

sC + sL+R

and the poles are found to be
r—__
_ R R2Z 1
Pr2=50  az cr

When the capacitance or inductance is neglected, the poles are respectively approxi-
mated by

(4.2)

R
P1;2 TQ (4.3)
—l' 4.4)
P1;2 RC .

Consequently, the transients in the system are bounded by the time constants of
the distribution line ( = L=R) and capacitance ( = RC). To prevent transients
signi cantly a ecting control decisions, it is recommended that, any change is ramped
over a signi cantly longer period than the slowest time constant of the system.
When the current source | is ramped with a ramp rate a the dynamic response of
the capacitor’s voltage can be found by using the inverse Laplace transformation
1

a 1
Uu®=L?!' = ———_ (4.5)
s? sC+ghm
Us(t) = Ug(0) +a( Rt L+CRZ+e 2 f(t); (4.6)
__ P
PER 3L CR? sinh Lo8- AL
f(t) = P +
CRZ 4L .
Peme—r "
L CR? cosh SR 4 . 4.7)
2 CL

In (4.6), e =t f(t) represents the transients in the system which are damped out
over time. Furthermore, Uc(0) aRt represents the steady-state of the system for
the load current 1(0) + at. Moreover, aL + aCR? represents the o set between
the steady-state of the system and the perceived voltage during the ramping of the
current.

In the worst case, the o set of the capacitor’s voltage with respect to the steady-
state value can therefore be approximated by alL. Therefore, a desired accuracy of
the converter’s controller can be achieved by choosing an appropriate ramp rate a.
For more complex systems, the accuracy can be ensured by assessing the equivalent
inductance (in the worst case the total inductance) of the system.
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4.3 Grid Sense Multiple Access Algorithm

Literature presents several decentralized strategies to ensure stability, power quality
and power sharing for smart grids. Droop based control strategies are commonly used
for many systems [96,113,114]. Further e orts improve power quality and stability
by adapting the converters’ virtual impedance or operating mode depending on the
measured parameters [103,115,116]. Moreover, several plug-and-play strategies are
presented [117,118]. Often, an overarching hierarchical control is used to control the
power ow [111,112,123].

Decentralized control strategies often implement demand and supply response
based on local measurements. It is shown in this section that, when voltage de-
pendent demand and supply response is implemented in dc systems with converters
that exhibit discrete behavior (that do not ramp their output power, but switch on or
0 entirely), the system and energy utilization can become inadequate. In these cases
it must be determined, with or without communication, which subset of the converters
remain operational in order to improve system and energy utilization. Furthermore,
the Grid Sense Multiple Access algorithm is proposed to improve system and energy
utilization, without employing communication. The algorithm enables a subset of
the converters to remain connected to the grid, by introducing an exponential backo
time between connection attempts. Moreover, it is shown that the priority of the con-
verters and behavior of the algorithm can be in uenced by altering the algorithm’s
parameters.

4.3.1 Decentralized Control and Discrete Behavior

To ensure stability and power quality of dc grids, the voltages between the maximum
and minimum allowed voltage are divided into supply response, absorption, emission
and demand response regions, as is shown in Figure 4.2. In the supply and demand re-
sponse regions, the respective sources and loads are disconnected before the maximum
or minimum voltage is reached. This is done to prevent the voltage from exceeding
the maximum voltage or becoming less than the minimum voltage, but also to ensure
stability. The change in output power can either be ramped or abruptly switched at
a speci ed voltage.

Sources and Loads with Discrete Behavior

Sources and loads, such as photovoltaic panels and resistive heating, can easily ramp
their output power. However, not all applications have that capability. Furthermore,
many current standards indicate a xed voltage to switch o , instead of a region over
which it can be ramped. They exhibit so-called discrete behavior, since these sources
and loads can only be switched on or o .

For the sources and loads with discrete behavior, the voltage at which it is dis-
connected determines its priority. In larger systems such as distribution systems, it is
likely that there are multiple converters with the same priority. For example, multiple
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houses in a neighborhood with photovoltaic panels, or multiple street lights in a street
lighting system.

The combination of this form of decentralized control and discrete behavior can
reduce the energy utilization in smart grids. To illustrate this, a dc system consisting
of a photovoltaic panel and two loads, which are switched o at a speci ed voltage, is
investigated. When the photovoltaic panel is only producing enough power to supply
one load, the voltage will eventually drop below the voltage threshold and both loads
will switch o . However, in this case one of the loads could have remained operational.

Experimental Results for Loads with Discrete Behavior

To demonstrate this behavior, the experimental set-up shown in Figure 4.5 is used.
The set-up is discussed in more detail in Section 4.4, but in essence it consists of a
droop controlled converter and two constant power load controlled converters.

Figure 4.5: Schematic of the experimental dc microgrid set-up consisting of one droop
controlled converter and two constant power controlled converters

The droop converter is rst operating with a reference voltage of 350 V and a
droop constant of 250 W/V, while the two load converters are consuming a constant
power of 2.5 kW and switch o when the voltage drops below 325 V. Subsequently,
at t = 0.05 s, the droop constant is reduced to 125 W/V. The output voltage of the
droop converter and the output currents of the converters are shown in Figure 4.6.
Observe that both loads detect an undervoltage and switch o , although one of the
loads could have consumed 2.5 kW without the voltage dropping below 325 V. Ideally,
only one load should switch o , while the other remains operational. However, since
no central controller or communication link is available to ensure that one of the loads
remains operational, the system and the available energy are not fully utilized.
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Figure 4.6: Experimental results for two identical loads with discrete behavior and a
reduction in the droop converter’s droop constant

4.3.2 Grid Sense Multiple Access Algorithm

It was shown that converters, which have identical priority and exhibit discrete behav-
ior, can cause inadequate system and energy utilization. Intuitively, a simple solution
might seem to reconnect the converters when the voltage crosses a certain thresh-
old. However, even if the number of connection attempts are limited, both converters
detect the same number of failures and eventually both abort attempting connection.

The Grid Sense Multiple Access Voltage Detection (GSMA/VD) algorithm is pro-
posed, which is inspired by the Carrier Sense Multiple Access Collision Detection
(CSMA/CD) algorithm, used for local area networking in the beginning of Ether-
net [124]. In the CSMA/CD algorithm, data is only sent if the carrier is available
and, when a collision is detected during transmission, a jamming signal is sent and the
sender waits for a random time interval before re-attempting transmission. Similarly,
in the GSMA/VD algorithm, converters connect to a grid when the voltage is above
its threshold and, when an undervoltage is detected, the connection is aborted and
the converter waits for a random time before re-attempting connection.

The GSMA algorithm uses exponential backo to make it unlikely that di erent
converters repeatedly attempt reconnection simultaneously. When a converter is con-
nected to the grid, its number of connection attempts N is set to the start value S and
the converter is put in an 0 state. From the o state, if the number of attempts is
less than the maximum number of attempts K, the voltage at the converter’s output
is measured until an acceptable level is reached. Subsequently, the converter will wait
a random time between 0 and EN, where is the base time constant and E is
the exponential base. Afterwards, the number of attempts is incremented and the
converter is switched on. Finally, the grid is continuously sensed and the converter is
disconnected if the voltage threshold is crossed. Furthermore, the number of attempts
is set to the reset value R if the converter remains successfully connected for at least
the reset time T,.
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The GSMA/VD algorithm for loads in dc grids is shown in Figure 4.7, but a
similar approach can be used for source converters.

Figure 4.7: The GSMA/VD algorithm for loads in dc smart grids with discrete be-
havior
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GSMA/VD Parameters

The GSMA/VD parameters, which are used for the simulations and experiments in
this section, are summarized in Table 4.1. In this subsection, the signi cance of these
parameters is discussed, but the optimization of the exponential backo component
of the GSMA/VD algorithm is beyond of the scope of this thesis, partly because it is
dependent on the system and application of the algorithm, presented in [125, 126].

[ms] | Ty[Ims] | E|S|R|K
1 25 213|181

Table 4.1: GSMA/VD parameters, which are used in the simulations and experiments

The base time constant  determines the time scaling of the control algorithm,
which will mostly be determined by the response time of the system. The dc grids
in this chapter have a total capacitance of around 1 mF, and a droop impedance of
maximally 1 . Therefore, the RC time constants of these systems are around 1 ms.

The reset time T, determines when a connection attempt is deemed successful.
Therefore, T, should be signi cantly larger than the base time constant to ensure
that the system has reached steady-state, but as low as possible to speed up the
decision making process. In this chapter, a conservative reset time of 25 ms is chosen.

The exponential base E dictates how quickly the waiting time increases for consec-
utive connection attempts. A high base reduces the number of connection attempts
as the waiting time increases rapidly, increasing the chance of reaching the reset time.
However, the probability of long decision making times are relatively high. On the
other hand, a low base generally ensures lower overall decision making times, but may
result in many failed connection attempts. Since the objective of the algorithm is to
improve energy utilization, and the uctuations in voltage are deemed acceptable, a
base of 2 is chosen.

The start parameter S and the reset parameter R determine if the algorithm
prioritizes converters that are attempting connection, or converters that are already
successfully connected. If S < R connecting converters have priority over already
connected converters, when S = R all converters have equal priority, and when S > R
connected converters have priority. Assuming the priority of connected converters
and an exponential base of 2, S is chosen as 3 and R is chosen as 1. In this case, the
probability that the connected converters reach the reset time in one of the attempts
before the connecting converters is high.

The maximum number of attempts K determines how many attempts the con-
verter will take, before connection will be aborted. It must be large enough to make
the probability that a converter incorrectly aborts is su ciently small. However,
smaller values of K reduce the number of voltage uctuations (caused by the failed
attempts) and therefore improve the power quality of the system. In this chapter, K
is chosen as 8, leading to a nal connection attempt with a random time between 0
and 256 ms, making it likely that one of the converters reaches the reset time.
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The factor  regulates the hysteresis margin between the voltage at which the
converter is disconnected and the voltage at which the converter attempts connection.
For loads, the voltage margin is always equal to or larger than 1, while for sources

is always equal to or lower than 1. In this chapter, hysteresis is not required and
therefore is chosen to be 1.

4.3.3 GSMA/VD Simulation Examples

In this subsection several simulations are performed to illustrate the behavior of the
GSMA/VD algorithm. For most of the simulations a reduction in droop constant
mostly causes the need for demand response. However, changes in system topology,
generation or consumption can also provoke supply or demand response.

Figure 4.8: Example dc system for the simulations of the GSMA/VD algorithm

For the simulation the bipolar dc smart grid shown in Figure 4.8, and the state-
space models from Section 2.4 are used. The resistance, inductance and capacitance of
the lines, which are used in the simulations, are 1.0 ,0.25 mHand 0.5 F respectively.

A droop source is situated at n;, which has a reference voltage of 350 V and
a droop impedance of 140 W/V. Furthermore, two constant power loads, controlled
with the GSMA/VD algorithm, are situated at the other nodes and their reference
powers over time are given in Table 4.2.

t[ms] || P, [W] | P3 [W] | Py [W] | Ps [W]

0 0 0 0 0
50 1500 0 0 1500
100 1500 3000 0 1500

150 1500 3000 2250 1500

Table 4.2: Load powers for the GSMA/VD simulations
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Scenario without Demand Response

For the rst simulation, the pole-to-pole voltage at which the constant power load
converters switch o is con gured as 630 V ( 315 V). The node voltages, as a result
of the given scenario, are shown in Figure 4.9. For clarity’s sake, and because the
system is symmetrical, only the positive pole quantities are displayed. In the gure,
the loads at nodes n, to ns are indicated with L, to Ls.

Figure 4.9: Node voltages for the system in Figure 4.8 and the scenario in Table 4.2,
when demand response is not required

From Figure 4.9, it is seen that the system remains stable, and that the voltage
remains above the 315 V voltage limit. In this case, no demand response is required
from any of the GSMA/VD controllers. The only visible e ect of the GSMA/VD
controllers is the di erence of the (short) initial delay at around 50 ms when loads
L, and Ls are switched on. This di erence is caused by the stochastic nature of the
GSMA/VD controllers.
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Scenario with Demand Response

For the second simulation, the pole to pole voltage at which the load converters are
disconnected is changed to 675 V ( 337.5 V). The simulation results for the positive
pole node voltages are shown in Figure 4.10. In this scenario, demand response is
required to ensure that the system remains above the desired minimum voltage. In
this case, load L3 cannot connect to the grid as this would lead to unacceptably low
voltages.

Figure 4.10: Node voltages for the system in Figure 4.8 and the scenario in Table 4.2,
when demand response is required

From Figure 4.10, several observations can be made on the algorithm’s behavior
in a scenario where demand response needs to be applied. First, a small di erence
in the delay of loads L, and Ls can again be seen around 50 ms. Second, at around
100 ms, the load at n3 cannot be switched on since this brings the voltage at nz below

337.5 V. Therefore, this load attempts to connect 5 times at increasing intervals,
after which the connection is aborted. Third, the source can supply power to load
L, without the voltage dropping below 337.5 V. Load L4 is shortly interrupted
at 210 ms because of the last attempted connection of load Ls. However, load L4
recovers quickly since the time it was connected exceeds the reset time, T, of 25 ms.
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Scenario with Simultaneous Connection

The last simulation is designed to illustrate the behavior of the GSMA/VD algorithm
when two loads, which have the same voltage threshold, attempt connection at the
same time. Such a scenario can occur, for example after a blackout. For this sim-
ulation, only loads L, and Ls are operated, and the pole to pole voltage at which
the loads are disconnected is changed to 690 V ( 345 V). Under these conditions,
only one of these identical loads can be supplied by the source. Since both loads have
the same priority, which converter remains connected to the grid is random. The
simulation results for the positive pole node voltages are shown in Figure 4.11.

Figure 4.11: Node voltages for the system in Figure 4.8 and the scenario in Table 4.2,
when two loads are connected simultaneously

At 50 ms, the converters attempt connections at roughly the same time twice
and therefore both fail to connect. However, at around 75 ms the load L, attempts
connection signi cantly earlier than load Ls and therefore the reset time is exceeded.
Consequently, after the next three connection attempts of load Ls, load L, recovers
quickly and remains connected. Nonetheless, the last three unsuccessful connection
attempts of load Ls cause short interruptions in the operation of load L.
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4.4 Experimental Results

In this section the behavior of the GSMA/VD algorithm is validated by conducting
experiments on a laboratory scale dc distribution grid. Four experiments are con-
ducted to show the algorithm’s behavior in di erent scenarios. The experimental
set-up consists of three power electronic converters, which are connected to a dc bus
via line emulation circuits. More detailed information on the power electronic con-
verters and the line emulation circuits can be found in Appendix A. A simpli ed
schematic and a picture of the experimental set-up is shown in Figure 4.12.

(a) Schematical overview (b) Picture

Figure 4.12: Experimental setup that is used to validate the behavior of the GSMA
algorithm

During the experiments, the three converters are operated as dc/dc interleaved
boost converters. One of the converters, labeled throughout the section as \Droop",
implements a power droop control with a reference voltage of 350 V. The two other
converters, labeled \Load 1" and \Load 2", are programmed to exhibit constant power
load behavior with a power of 2.5 kW each.

In this section, the droop converter is operated with a reference voltage of 350 V
and a droop constant of 250 W/V, unless otherwise speci ed. Furthermore, the
two load converters are operated as 2.5 KW constant power loads with GSMA/VD
controllers. Moreover, the voltage at which the GSMA/VD algorithm disconnects the
load converters is set to 325 V.

4.4.1 Disconnection of a Single Load

For the rst experiment only one load is connected to the dc microgrid, while the
other load remains non-operational. The droop constant of the droop converter is
then reduced from 250 W/V to 75 W/V at t = 0:1 s. The resulting output voltage
of the droop converter and the output currents from all the converters are shown in
Figure 4.13.
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Figure 4.13: Experimental results for one load utilizing the GSMA/VD algorithm

Observe that, at t = 0:1 s, Load 1 attempts reconnection up to seven times with
increasing intervals between attempts. Finally, the connection is completely aborted
and the system is left in steady-state without the load connected at a voltage of 350 V.

4.4.2 Demand Response of Two Loads with Equal Priority

For the second experiment, both loads are connected to the dc microgrid. Subse-
quently, the droop constant is reduced from 250 W/V to 125 W/V att =0:1s. The
experimental results for this scenario are shown in Figure 4.14.

Figure 4.14: Experimental results for two loads with the GSMA/VD algorithm of
which only one can remain connected to the grid
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When the droop constant reduces at t = 0.1 s neither of the converters are able to
connect successfully to the grid at  rst. However, at around 0.3 s Load 1 is successfully
connected for more than 25 ms. Therefore, the number of connection attempts for
Load 1 is reset and it remains connected after Load 2 reaches its maximum number
of attempts.

4.4.3 Priority According to the Connection Status

For the third experiment, the droop constant of the droop converter is kept at
125 W/V during the experiment. Load 2 is successfully connected to the grid, af-
ter which Load 1 attempts connection at t = 0.1 s. The droop converter’s output
voltage and all the converters output currents are shown in Figure 4.15.

Figure 4.15: Experimental results for two loads with the GSMA/VD algorithm show-
ing the priority of an already connected converter

Note that, due to the choice in S and R, the GSMA algorithm gives priority to
converters which are already connected to the grid. Consequently, Load 1 is unsuc-
cessful in connecting to the grid, while Load 2 remains connected. However, it is
important to note that this is only the case if they have the same priority in terms of
the voltage at which they switch o , which will be shown in the last experiment.

4.4.4 Priority According to the Voltage Limit

For the last experiment, the droop constant of the droop converter is again kept at
125 W/V during the experiment. The threshold voltage at which Load 2 switches o
is changed to 320 V, while that of Load 1 remains at 325 V. Load 1 is successfully
connected to the dc microgrid rst, after which Load 2 is switched on at t = 0.1 s.
The results of this experiment are shown in Figure 4.16.
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Figure 4.16: Experimental results for two loads with the GSMA/VD algorithm when
the priority is set by the voltage at which they switch o

Observe that, although the GSMA algorithm enables decisions to be made when
converters of equal priority are connected, the priority of converters is still primarily
determined by the voltage at which they switch o . In the experiment, Load 1 detects
an undervoltage when Load 2 attempts connection, while Load 2 does not. Therefore,
Load 1 attempts to reconnect until its maximum number of attempts is reached, after
which connection is aborted.

Advantages and Challenges of GSMA

The GSMA algorithm has several advantages. First, the algorithm is suitable for
grids which (temporarily) do not have a communication infrastructure. Second, the
priority of loads and sources is still primarily determined by the chosen voltage at
which the converter disconnects. Third, the priority between connected converters
and connecting converters with the same thresholds can be selected via R and S.
Last, when converters have equal priority, it is randomly decided which subset of
converters remain connected to the grid.

There are also a few drawbacks related to the GSMA algorithm. First, due to the
local measurement of the grid, the priorities of the converters can be distorted due to
the e ects of the grid topology. However, this is not a consequence of the algorithm
but a general consequence of decentralized control. Second, although uctuations do
not occur endlessly, up to K uctuations occur for every signi cant change in the
system where a decision must be made. Nevertheless, the uctuations occur within
the set minimum and maximum voltage. Third, during the decision-making process
(which takes up to EX*1), converters equal in priority can experience intermittent
operation. For the chosen parameters, a decision is made within 500 ms.
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4.5 Conclusions

Because of the decentralization and segmentation of the grid, and in order to sustain
operation when the communication infrastructure is (temporarily) unavailable, decen-
tralized control is essential for dc distribution systems. The decentralized controllers
must ensure that the system is stable and a balance between supply and demand is
found, without utilizing any form of communication.

It was discussed that droop control is the most commonly applied strategy in dc
distribution systems, and that stability and power quality can further be improved by
adapting the controller according to the state of the system. However, the methods
from literature only guarantee stability for well de ned systems or if communication
is used. In this chapter a decentralized control strategy was proposed that ensures
global plug-and-play stability and voltage propriety, without using communication.
First, the area between the desired maximum and minimum voltage was divided into
demand response, emission, absorption and supply response regions. Second, it was
described how source, load and hybrid converters should behave in these regions. In
general, converters should ramp their output power or switch on/o when the locally
measured voltage changes. Last, to ensure precise control decisions, it was discussed
that the ramp time and ramp rate of converters are bound by the system’s time
constants and desired accuracy.

It was experimentally shown that decentralized control strategies, which imple-
ment voltage dependent supply or demand response, can cause inadequate energy
utilization. For example, when a source is only able to supply the power for one of
two loads and both loads detect an undervoltage and switch o . To solve this issue,
the GSMA algorithm was proposed, which measures the local voltage and implements
an exponential backo when the voltage crosses the set threshold. Simulations showed
that the GSMA algorithm allows a subset of converters, which have the same volt-
age threshold, to remain connected to the grid, improving the energy utilization in
the grid. Moreover, the priority between several converters can be controlled via the
algorithm’s parameters.

Several experiments were performed, which con rmed that the decentralized con-
trol strategy ensures stability and voltage propriety. Furthermore, the experiments
showed that the GSMA algorithm works in practice and the priority of converters can
be set according to their connection status and voltage thresholds.

The results from this chapter can be used to build a foundation for the control of
dc distribution systems. However, it is recommended to also implement some form
of coordinated control in order to improve, for example, the economic viability of the
systems. Distributed control can achieve complex objectives, without requiring or
depending on an expensive communication infrastructure.
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Chapter 5

Decentralized Protection Framework and Scheme

The protection of low voltage dc grid is challenging due to the lack of a natural zero
crossing, low inertia, meshed topologies and bi-directional power ows. In this chap-
ter, the literature is reviewed, and a decentralized protection framework is presented
that o ers entities interacting with di erent parts of the grid insight on the dan-
gers and requirements. Furthermore, a decentralized protection scheme is proposed,
which ensures selectivity via a distinct solid-state circuit breaker topology and time-
current characteristic for the protection devices. Experiments showed that the protec-
tion scheme is e ective at ensuring security and selectivity for radial and meshed low
voltage DC grids. However, future research into the grounding, overvoltage protection
and residual current detection is still recommended.

This chapter is based on

N. H. van der Blij, P. Purgat, T. B. Soeiro, L. M. Ramirez-Elizondo, M. T. J. Spaan and
P. Bauer, \Protection Framework for Low Voltage DC Grids", 19th Power Electronics and
Motion Control Conference (PEMC), 2020.

N. H. van der Blij, P. Purgat, T. B. Soeiro, L. M. Ramirez-Elizondo, M. T. J. Spaan and P.
Bauer, \Decentralized Plug-and-Play Protection Scheme for Low Voltage DC Grids", Energies,
vol. 13, Jun. 2020.
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5.1 Introduction

In this chapter, a nanogrid refers to a grid inside a building or property that is
able to be operated independently, which typically have a power rating of up to
10 kW. Furthermore, microgrids refer to (independent) low voltage grids that have
a power rating of up to 500 kW. Microgrids interconnect several nanogrids and/or
higher power production, consumption and storage. Additionally, when this chapter
refers to macrogrid it refers to any distribution or transmission grid that is not low
voltage [127]. An example of a system that is de ned in this way is shown in Figure 5.1.

Figure 5.1: A microgrid that consists of several nanogrids, production, and storage
that is connected to other microgrids and the macrogrid [127]

In general, the protection system of low voltage dc grids must ensure that:
It is safe for devices and individuals to interact with the grid.

The detection methods are sensitive to the di erent types of faults.

The protection devices are secure, such that they do not unnecessarily trip.
The protection scheme is selective and isolates only the faulted section.
The fault is cleared fast, to prevent damage and blackouts.

The protection of the system is cost-e ective.

Moreover, the protection system must adhere to each of these requirements under
non-faulted, overvoltage, overcurrent and fault clearing conditions [128{130].

In Section 5.2, a zonal decentralized protection framework is presented for low
voltage dc grids, which partitions the grid according to short-circuit potential and
the provided degree of protection. In Section 5.3, a decentralized plug-and-play pro-
tection scheme is proposed that utilizes a distinct SSCB topology and time-current
characteristic to achieve selectivity. In Section 5.4, several experiments are carried
out to validate the ndings.
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5.2 Decentralized Protection Framework

For personnel and devices it is crucial to know the dangers and requirements for
interacting with di erent parts of the grid. Therefore, the grid is partitioned into
di erent protection zones, where the protection is able to galvanically isolate the
zones from each other. The suggested zones di erentiate between sections of the grid
according to their short-circuit potential or equivalently to their voltage. The various
protection zones for low voltage dc grids are shown in Fig. 5.2.

Figure 5.2: Protection zones for low voltage dc grids where the zones are distinguished
according to their short-circuit potentials

Zone 0 occurs at the interfaces of the low voltage grid(s) and the macrogrid, or
other medium or high voltage applications (for example, a wind turbine). Among
all the zones Zone 0 has the highest potential short-circuit currents and therefore is
conceivably the most harmful to entities and devices interacting with it.

Zone 1 is mostly situated on a microgrid level where the voltage between the
conductors and ground ranges from 350 to 1500 V (often in unipolar or bipolar con-

guration). This region mostly interfaces di erent nanogrids, generation, storage and
the macrogrid, and therefore is likely to have a relatively high short-circuit potential
but relatively low inertia. Therefore, this zone has the potential for high short-circuit
currents, but which will only persist for several microseconds to milliseconds.

Zone 2 is found in nanogrids with voltages between 42 and 350 V, which are
mostly in monopolar or unipolar con gurations. Nanogrids can be interfaced to a
microgrid via a converter, or via a (solid-state) circuit breaker. This zone is charac-
terized by relatively low short-circuit potential, but high inertia due to the low voltage
and combined capacitance of the many converters in this grid.

89



5. Decentralized Protection Framework and Scheme

Zone 3 arises on the application or device level and in this zone the standards for
Safety/Protected Extra Low Voltage (SELV/PELV) should be adhered to. Therefore,
the voltage should be kept below 42 V and it should be safe to touch everywhere in
the system. This zone is likely to occur at, for example, photovoltaic panels and
USB-C interfaces.

It is important to emphasize that zones can only be crossed by protection that
provides provide galvanic isolation. Therefore, solid-state circuit breakers must in-
clude an auxiliary mechanical switch in order to cross di erent zones. Furthermore, in
this chapter it is assumed that the nanogrids are interfaced to microgrids via a circuit
breaker, and not via a power electronic converter. This is because most nanogrids,
such as households, only operate at their peak power a fraction of the time they are
operational. Consequently, it is both more cost and energy e cient to utilize a circuit
breaker at the entrance of a house instead of a fully rated power electronic converter
(which is also a common practice for low voltage ac grids).

5.2.1 Protection Tiers for Low Voltage DC Grids

The previous subsection divided low voltage dc grids into several zones according to
their (short-circuit) potential. However, not only this determines how safe a grid
section is, but also the provided level of protection in that area. Therefore, in this
subsection the zones are further divided into tiers of protection.

The parts of the zone that do not provide any protection for faults and/or short-
circuits fall under Tier A. This tier occurs, for example, at the terminals of source
and storage devices. Since this tier does not provide any guarantee on the safety
or survivability of entities and devices interacting with the tier, the probability for
serious injury or damage can be high. Therefore, any possibility for interaction with
this tier should be minimized.

In Tier B no autonomous protection devices are present, but devices are individu-
ally protected. In this tier short-circuits and faults are not interrupted, but connected
devices are not destroyed due to internal or external transient events. This protection
can be provided by specialized protection circuitry, or by the power electronic con-
verters and the control thereof. However, the probability for the injury of personnel
can still be high in this tier.

Faults in Tier C are interrupted when a speci ed current persists for a speci ed
amount of time. Additionally, connected devices in this tier should also be protected
from damage due to faults. The protection required for this tier could be provided
by, for example, fuses, converters and/or circuit breakers.

Tier D ensures that faults are interrupted before signi cant current can ow.
Since fault currents in this tier are the lowest, this tier provides the lowest probability
for damage and/or injury. In the following sections it will be explained that, in most
cases, solid-state protection devices with an internal fault limiting inductance are
preferred for this tier of protection.

To illustrate the di erent tiers a simpli cation of the current path from the house-
hold battery to the macrogrid from the Fig. 5.2 is considered. If we assume that the
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power electronic converters in the low voltage dc grid provide overcurrent protection
(but not fault current prevention) and the circuit breakers provide Tier D protection,
the di erent tiers of this system are shown in Fig. 5.3.

Figure 5.3: Protection tiers for low voltage dc grids where the tiers are distinguished
according to their levels of fault propagation

From Fig. 5.3 it is clear that, if the power electronic converters only provide
overcurrent protection, a Tier D circuit breaker should be placed near it to ensure
Tier D protection. Overall, the protection tier of a zone is determined by the device
with the lowest protection grade connected to it. Therefore, it is likely bene cial to
standardize a minimum protection tier for devices in each zone. Moreover, since loads
can only provide limited energy to the fault, there will likely be di erent requirements
for source/storage converters and load converters for acquiring the same protection
tier.

5.2.2 Protection Recommendations for Low Voltage DC Grids

For all zones, possibilities for interaction with Tier A sections of the grid should be
minimized as much as possible. Furthermore, to ensure the survivability of devices in
the system when short-circuits occur, the capacitors of the converters should be able
to survive (a limited number of) short-circuit discharges.

In Zone 3 the grid is touch-safe and therefore, additional protection is not nec-
essarily required. However, it is recommended that each device in this zone is able
to withstand a short-circuit at its terminal. Therefore, it is advisable that extra low
voltage devices are interconnected utilizing a Zone 3-B con guration.

Zone 2 is not touch-safe, but the short-circuit potentials and inductances are
relatively low. Therefore, it is sensible that fault currents are limited by using a
Zone 2-C con guration. Di erent sections in Zone 2-C can be isolated with fuses
(or a current limiter), and sources and storage devices should not feed into the fault
inde nitely.

For Zone 0 and Zone 1 the short-circuit potential and inductance in the grid are
typically large. Protection in accessible portions of these zones should be of at least
Tier D. Tier D protection is required in these grids to prevent blackouts and to ensure
selectivity.
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5.3 Plug-and-Play Protection Scheme

Because of the limited overload capability of power electronic converters, being able
to withstand short-circuit conditions for milliseconds leads to oversized components
in terms of current-carrying capability [32,128,131]. Furthermore, for dc systems with
low inertia, a blackout is inevitable when a fault is sustained for a longer period of
time. Therefore, although fuses, electromechanical devices and hybrid circuit breakers
provide solutions for clearing faults in the order of milliseconds to seconds, much faster
fault detection and interruption is required for low voltage dc systems [32, 132{134].
In this chapter, the low voltage dc distribution systems are protected with SSCBs
that can detect and interrupt faults within microseconds [135, 136].

Several non-unit and unit protection schemes for low voltage dc grids have been re-
ported in literature [110,137,138]. Non-unit protection schemes utilize local measure-
ments in order to detect faults. Many of these protection schemes measure the current
and current rate-of-change, and circuit breakers are opened when preset thresholds
are exceeded, but the utilization of higher order derivatives of the current and the
grid’s voltage are also reported [139{141]. The main advantages of hon-unit protection
schemes are their simplicity, and their resilience to the failure of protection devices
when a hierarchical structure of circuit breakers is used. However, these schemes
have di culty isolating only the faulted areas of the grid and thus achieving selec-
tivity. Therefore, protection schemes were proposed that utilize knowledge about the
system’s topology in order to achieve selectivity. For example, faults can be located
by measuring the grid’s impedance and comparing it to known line parameters, or a
wavelet transform can be used to identify faults by comparing them to simulations of
the system [142{146]. Furthermore, a handshaking protection scheme was introduced,
which locates and isolates a fault by temporarily powering down the dc system [147].
Nevertheless, these methods struggle to ensure selectivity when system parameters
are uncertain or the system topology is changing. On the other hand, unit pro-
tection schemes achieve selectivity by utilizing a communication infrastructure. For
instance, di erential protection schemes locate faults by comparing the currents at
di erent locations in the system, and event-based protection schemes ensure selec-
tivity by combining local detection with central decision-making [148{154] However,
since fast fault detection and interruption is required in low voltage dc grids, utilizing
a communication infrastructure is not desirable.

In this section it is experimentally demonstrated that fast fault propagation and
the commutation of inductive currents are two challenges for the selectivity of decen-
tralized protection schemes. Furthermore, a decentralized plug-and-play protection
scheme is presented, which ensures selectivity without utilizing communication and
with minimal knowledge about the system. The protection scheme is plug-and-play in
the sense that selective protection is provided on both sides of the circuit breakers in
the system, regardless of the system’s con guration or where the circuit breakers are
located in the system and without requiring (re)con guration of the circuit breakers.
Moreover, the protection scheme is experimentally validated, showing the e ectiveness
of the protection scheme for di erent low voltage dc systems under various conditions.
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5.3.1 Short-Circuit Fault Currents in Low Voltage DC Grids

In low voltage dc grids overvoltages can occur when, for instance, lightning strikes one
of the conductors. Therefore, surge arresters such as Metal Oxide Varistors (MOVs)
or spark gaps should be used to clamp the voltage. Furthermore, short-circuits can
occur when, for example, a tree falls on one of the overhead lines or the insulation
deteriorates in one of the underground lines. In those cases, one or more conductors
are short-circuited to each other or to the ground [155].

To calculate the short-circuit fault current in a monopolar dc grid, the equivalent
circuit in Figure 5.4 is used [137, 139, 143]. The fault current is highest when the
voltage on the non-faulted part of the system remains constant, and therefore this
part of the system is modeled by a voltage source Ug.. Furthermore, the SSCB is
modeled by an ideal switch, its on-state resistance Rcg and its (intrinsic) inductance
Lcg. Therefore, the overhead or underground line(s) between the SSCB and the
short-circuit are modeled by a lumped element -model.

Figure 5.4: Equivalent circuit to calculate the worst-case short-circuit fault current
in dc grids

Simulation results for the current during a low resistance fault (0.1 ) and a high
resistance fault (10 ) are shown in Figure 5.5. The fault current is shown for di erent
lengths of the distribution line between the SSCB and the fault, which have a typical
resistance of 1  /km, an inductance of 0.25 mH/km and a capacitance of 0.5 F/km.
Furthermore, during these simulations the grid voltage Uq. is 350 V, the on-resistance
Rcg is 0.1 , and the SSCB’s inductance Lcg is1 H.

Since C_ is small, the fault current can be approximated by

Udc
Rce +RL +Re

Rce R *RE ¢

I=(t) = 1 e Les*bo ; (5.1)

where Rg is the resistance of the fault.

Note that the steady-state fault current is only determined by the total resistance,
which is the reason short-circuit currents are so high in dc grids. Moreover, the line
length only has a signi cant in uence on the steady-state current when the fault
resistance is low. Furthermore, by di erentiating (5.1) it becomes clear that the
current rate of change is only determined by the sum of the inductances in the system.
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Figure 5.5: Simulation results for the fault current in the equivalent circuit of Fig-
ure 5.4 for di erent fault resistances and distribution line lengths

The thermal and electrical design of the SSCBs and other components in the grid
are dependent on the duration and magnitude of the worst-case fault current that
they need to be able to sustain. In the worst case, the short-circuit occurs close to
the terminals of the SSCB, making the total inductance close to Lcg. Furthermore,
SSCB'’s are designed to have as low on-state resistance as possible in order to improve
the system’s e ciency. Therefore, if the current before the fault was the nominal
current l,om, the worst-case fault current can be approximated by

Ugct
IF:max = w + lhom; (5.2)
CcB

where tmax is the maximum time that the SSCB needs to detect the fault and open
its switches.

From (5.2) it is clear that, in order to reduce the worst-case fault current, fast
fault detection and interruption are essential. Furthermore, even though SSCBs can
detect and clear faults within 1 s, a current limiting inductance is often added to
SSCBs in order to further limit the maximum fault current. For example, assuming
a grid voltage of 350 V, an SSCB clearing time of 1 s, a nominal current of 20 A,
and a current limiting inductance of 1 H, the maximum fault current is 370 A.

Since the worst-case fault current develops when the short-circuit occurs at the
SSCB’s terminals, this worst-case fault current is not dependent on the system’s pa-
rameters or uncertainty in the system. Furthermore, pole-to-pole faults in (grounded)
unipolar and bipolar grids exhibit similar behavior to the behavior described in this
section, although the resistance and inductance of the return path has to be taken into
account. However, because ground faults in these grids have an identical equivalent
circuit and behavior, the maximum fault currents in these grids are the same.
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5.3.2 Design and Experimental Validation of the SSCBs

The base design of the SSCBs that were developed to investigate non-unit protection
schemes is shown in Figure 5.6. To interrupt the various short-circuit faults, two
anti-series SiC (Cree C3MO0065090D) switches are used for both the positive pole
and the neutral. Furthermore, to prevent an avalanche breakdown of the switches
and overvoltages in the grid, Metal Oxide Varistors (MOVSs) are used to clamp the
voltage. The design parameters of the SSCB are given in Table 5.1.

Figure 5.6: Base design of the solid-state circuit breakers that are used in this chapter

Parameter Acronym Value
Nominal voltage Unom 350 V
Nominal current Inom 10 A
On-state resistance per pole | Rcp 130 m

Current limiting inductance | Lcg 1.0 H
Maximum clearing time tmax 1.0 s

Table 5.1: Design parameters of the solid-state circuit breaker

The SSCB measures the current via a high bandwidth hall-sensor, and the current
rate-of-change (di/dt) via the voltage across the current limiting inductor. Using
analog comparators, logical gates, and a latch circuit, the switches are turned o
when the current through the SSCB or the voltage across the inductor exceed their
set thresholds. It will be shown that it is able to detect and open its switches within
1 s after its thresholds are exceeded. A picture of the SSCB’s hardware realization
can be found in Appendix A in Figure A.4b.

To validate the operation of the developed SSCB, one side is connected to a voltage
source of 350 V while a short-circuit is induced at the other side using a mechanical
relay and a variable resistor, which is shown in Figure 5.7. For the experiments, the
thresholds for the overcurrent and inductor voltage (di/dt) detection are set to 21 A
and 20 V (20 MA/s) respectively.
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Figure 5.7: Experimental setup for the validation of the solid-state circuit breaker’s
operation

To show the correct operation of the overcurrent detection, the SSCB is short-
circuited at its terminal with a relatively high fault resistance and low inductance (8
and 0 H respectively). The fault current I and the voltage over the current limiting
inductor U, for this experiment are shown in Figure 5.8. At the fault occurrence the
di/dt is high, but because the analog detection circuits use small Iter capacitors and
the system’s time constant is low (due to the large fault resistance), the voltage over
the inductor does not exceed its 20 V threshold long enough to trip the di/dt detection
circuit. However, when the fault current exceeds the 21 A threshold, overcurrent is
detected by the analog control logics and the switches are opened within 1 s.

Figure 5.8: Experimental results when the SSCB is short-circuited with a high fault
resistance resulting in the overcurrent detection being triggered when the current
exceeds 21 A

To show the adequacy of the di/dt detection, the experiment is repeated with
relatively low fault resistance (2 ). The results for this experiment are shown in
Figure 5.9. Because the system’s time constant is lower, the voltage over the inductor
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remains above the threshold signi cantly longer. Therefore, the analog di/dt detection
is triggered and the fault is cleared within 400 ns of its occurrence.

Figure 5.9: Experimental results when the SSCB is short-circuited with a low fault
resistance resulting in the di/dt detection being triggered when the 20 V (20 MA/s)
threshold is exceeded for a longer time

From these two experiments it can be concluded that both the overcurrent and
di/Zdt detection circuits operate adequately, and the SSCB clears faults within 1 s.
In the remainder of this chapter three of these SSCBs will be used to experimentally
validate the presented theoretical work.

5.3.3 Non-unit Protection Scheme Challenges

It was shown that faults can be cleared by measuring the current and current rate of
change locally and tripping the breaker if preset thresholds are exceeded. Fast and
robust fault interruption is possible with such an approach, since no communication
infrastructure is utilized. However, it will be shown here that achieving selectivity is
challenging when using these non-unit protection methods.

Low Impedance Faults in Low Inductive Sections

Although the SSCBs current limiting inductance ensures a maximum fault current
magnitude, it does not always prevent the fault from propagating through the system
and tripping multiple protection devices. To show this the experimental setup shown
in Fig. 5.10 is used. In this setup, a constant voltage source of 350 V and two constant
current loads of 5 A are connected to a low inductive dc bus via three SSCBs. This
situation can occur, for example, in a dc household that is disconnected from the
main grid, where the photovoltaic (PV) panels are providing the energy for loads in
two other groups inside the house.
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(a) Schematic (b) Hardware realization

Figure 5.10: Experimental setup consisting of a constant voltage source and two
constant current loads connected through three SSCBs, and a short-circuit at the
terminals of one of the SSCBs

To show that, in some cases, the fault propagates through the system and trips
all the SSCBs before the SSCB in the faulted group can react, a short-circuit with a
very low fault resistance (0.75 ) is induced at the load-side terminal of CB3. The
experimental results for the voltage over the current limiting inductance of CB2 U,
and the currents owing in each circuit breaker are shown in Fig. 5.11. Observe that,
even though the fault occurs at the load side of CB3, the voltage over the current
limiting inductance and CB2 exceeds its threshold. Also note that the discharge of
the load converter’s capacitance contributes to the fault current.

Figure 5.11: Experimental results for the system shown in Figure 5.10a when the
fault resistance is 0.75
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It is important to realize this is not a consequence of utilizing di/dt detection. If
only overcurrent detection is used, the currents in CB1 and CB2 would exceed their
limits by the time CB3 clears the fault, because of the high current rate of change.
Therefore, a challenge for the selectivity of non-unit protection schemes is the fast
propagation of low impedance faults through low inductive (sections of) grids. In
radial grids, directional detection can be used to overcome this challenge, but for
meshed grids this does not work.

Commutation of Inductive Currents

When an SSCB interrupts an inductive current the opening SSCB does not always
dissipate the inductive energy, if the current has an alternative path. Consequently,
for a transient period, the inductive current will ow through the remainder of the
system, which can trip other SSCBs in the system. To show this the experimental
setup shown in Fig. 5.12 is used.

(a) Schematic (b) Hardware realization

Figure 5.12: Experimental setup consisting of a constant voltage source and two
constant current loads connected through an inductive line and two SSCBs

For this experiment, a constant voltage source of 350 V is connected to two con-
stant current loads, each consuming 10 A, via an inductive line and two SSCBs. This
situation can occur, for example, when a dc household is connected to a main grid.
The line in this experiment is emulated by an equivalent -circuit with an inductance
and resistance of 32 H and 120 m respectively for both poles, and a capacitance
between them of 45 nF, which are typical values for a 100 m distribution.

To show that, in some cases, commutated inductive currents can trip SSCBs in
non-faulted parts of the system, a short-circuit with a short-circuit resistance of 4.0
is induced at the load side of CB2. The current in the line and the currents in the
circuit breakers for this experiment are shown in Fig. 5.13.

Note that CB2 opens when the current exceeds its predetermined threshold. Sub-
sequently, the inductive current in the line, which was rst shared by CB1 and CB2, is
commutated to CB1 almost immediately and its di/dt detection is tripped. However,
if the di/dt measurement was not tripped, the overcurrent detection would have also
been tripped since the current through CB1 also brie y exceeds 21 A. Afterwards,
the inductive energy is dissipated in CB1’'s MOV’s.
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Figure 5.13: Experimental results for the system shown in Figure 5.12a when the
fault resistance is 4.0

When SSCBs are operating near their rated current, the commutation of inductive
currents would likely cause a cascade tripping circuit breakers in the system. More-
over, this challenge cannot be solved by directional detection, even in radial systems.
Therefore, the commutation of inductive currents poses a challenge for the selectivity
of non-unit protection schemes.

5.3.4 Proposed Plug-and-Play Protection Scheme

These challenges can be tackled by utilizing communication, but communication will
likely slow down fault detection. Furthermore, (directional) thresholds could be de-
signed to prevent unnecessary tripping, but doing so would require knowledge about
the system’s topology and parameters. Therefore, in order to achieve selective pro-
tection for plug-and-play low voltage dc grids, an alternative approach is proposed
here.

Proposed SSCB Topology to Delay Fault Propagation

It is proposed to append the SSCB topology with an RC damper on each terminal,
as is shown in Figure 5.14. The purpose of the dampers’ capacitance is to tem-
porarily provide a low impedance path for fault currents and commutated inductive
currents, delaying their propagation. However, if just a capacitance was added, high
frequency oscillations with low damping could occur between the damper capacitors
through the current limiting inductance, since the on-state resistance of the switches
is small. Therefore, resistances are added to the dampers in order to attenuate these
oscillations.
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Figure 5.14: Proposed solid-state circuit breaker topology with added RC dampers

In the proposed topology, the RC dampers together with the current limiting
inductance essentially form a low-pass LCR Iter. Making a loop inside the SSCB, the
sum of the voltages over the damper capacitors, damper resistors, on-state resistances
and current limiting inductances must be zero. Therefore, the di erential equation
for the inductor current is given by

z

2LCB@|(t) + (2Rgq + 2Rcp)I(t) + i 1(t)dt = 0: (5.3)
ot Cq

Di erentiating this equation, and dividing by 2Lcg Yyields
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1(t) = 0: (5.4)

Consequently, the transfer function of this system is given by
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