
 
 

Delft University of Technology

An Efficient High-Throughput LZ77-Based Decompressor in Reconfigurable Logic

Fang, Jian; Chen, Jianyu; Lee, Jinho; Al-Ars, Zaid; Hofstee, Peter

DOI
10.1007/s11265-020-01547-w
Publication date
2020
Document Version
Final published version
Published in
Journal of Signal Processing Systems

Citation (APA)
Fang, J., Chen, J., Lee, J., Al-Ars, Z., & Hofstee, P. (2020). An Efficient High-Throughput LZ77-Based
Decompressor in Reconfigurable Logic. Journal of Signal Processing Systems, 92(9), 931-947.
https://doi.org/10.1007/s11265-020-01547-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11265-020-01547-w
https://doi.org/10.1007/s11265-020-01547-w


https://doi.org/10.1007/s11265-020-01547-w

An Efficient High-Throughput LZ77-Based Decompressor
in Reconfigurable Logic

Jian Fang1,2 · Jianyu Chen2 · Jinho Lee3 · Zaid Al-Ars2 ·H. Peter Hofstee2,4

Received: 2 December 2019 / Revised: 8 March 2020 / Accepted: 5 May 2020
© The Author(s) 2020

Abstract
To best leverage high-bandwidth storage and network technologies requires an improvement in the speed at which we can
decompress data. We present a “refine and recycle” method applicable to LZ77-type decompressors that enables efficient
high-bandwidth designs and present an implementation in reconfigurable logic. The method refines the write commands
(for literal tokens) and read commands (for copy tokens) to a set of commands that target a single bank of block ram, and
rather than performing all the dependency calculations saves logic by recycling (read) commands that return with an invalid
result. A single “Snappy” decompressor implemented in reconfigurable logic leveraging this method is capable of processing
multiple literal or copy tokens per cycle and achieves up to 7.2GB/s, which can keep pace with an NVMe device. The
proposed method is about an order of magnitude faster and an order of magnitude more power efficient than a state-of-the-art
single-core software implementation. The logic and block ram resources required by the decompressor are sufficiently low
so that a set of these decompressors can be implemented on a single FPGA of reasonable size to keep up with the bandwidth
provided by the most recent interface technologies.

Keywords Decompression · FPGA · Acceleration · Snappy · CAPI

1 Introduction

Compression and decompression algorithms are widely
used to reduce storage space and data transmission
bandwidth. Typically, compression and decompression are
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computation-intensive applications and can consume signi-
ficant CPU resources. This is especially true for systems
that aim to combine in-memory analytics with fast storage
such as can be provided by multiple NVMe drives. A high-
end system of this type might provide 70+GB/s of NVMe
(read) bandwidth, achievable today with 24 NVMe devices
of 800K (4KB) IOPs each, a typical number for a PCIe
Gen3-based enterprise NVMe device. With the best CPU-
based Snappy decompressors reaching 1.8GB/s per core 40
cores are required just to keep up with this decompression
bandwidth. To release CPU resources for other tasks,
accelerators such as graphic processing units (GPUs) and
field programmable gate arrays (FPGAs) can be used to
accelerate the compression and decompression.

While much prior work has studied how to improve the
compression speed of lossless data compression [9, 13, 24],
in many scenarios the data is compressed once for storage
and decompressed multiple times whenever it is read or
processed.

Existing studies [17, 20, 25, 29, 30] illustrate that an
FPGA is a promising platform for lossless data decom-
pression. The customizable capability, the feasibility of bit-
level control, and high degrees of parallelism of the FPGA
allow designs to have many light-weight customized cores,
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enhancing performance. Leveraging these advantages, the
pipelined FPGA designs of LZSS [17, 20], LZW [30] and
Zlib [18, 29] all achieve good decompression throughput.
However, these prior designs only process one token per
FPGA cycle, resulting in limited speedup compared to
software implementations. The studies [25] and [5] propose
solutions to handle multiple tokens per cycle. However, both
solutions require multiple copies of the history buffer and
require extra control logic to handle BRAM bank conflicts
caused by parallel reads/writes from different tokens,
leading to low area efficiency and/or a low clock frequency.

One of the popular compression and decompression
algorithms in big data and data analytic applications is
Snappy [15], which is supported by many data formats
including Apache Parquet [8] and Apache ORC [7].

A compressed Snappy file consists of tokens, where
a token contains the original data itself (literal token) or
a back reference to previously written data (copy token).
Even with a large and fast FPGA fabric, decompression
throughput is degraded by stalls introduced by read-after-
write (RAW) data dependencies. When processing tokens in
a pipeline, copy tokens may need to stall and wait until the
prior data is valid.

In this paper, we propose two techniques to achieve
efficient high single-decompressor throughput by keeping
only a single BRAM-banked copy of the history data and
operating on each BRAM independently. A first stage
efficiently refines the tokens into commands that operate on
a single BRAM and steers the commands to the appropriate
one. In the second stage, rather than spending a lot of logic
on calculating the dependencies and scheduling operations,
a recycle method is used where each BRAM command
executes immediately and those that return with invalid
data are recycled to avoid stalls caused by the RAW
dependency. We apply these techniques to Snappy [15]
decompression and implement a Snappy decompression
accelerator on a CAPI2-attached FPGA platform equipped
with a Xilinx VU3P FPGA. Experimental results show that
our proposed method achieves up to 7.2 GB/s throughput
per decompressor, with each decompressor using 14.2% of
the logic and 7% of the BRAM resources of the device.

Compared to a state-of-the-art single-core software
implementation [1] on the Power9 CPU, the proposed
method is about an order of magnitude faster and an order
of magnitude more power efficient. This paper extends our
previous study [10, 11], implementing an instance with
multiple decompressors and evaluating its performance. A
VU3P FPGA can contain up to five such decompressors.
An instance with two decompressors activated can saturate
CAPI2 bandwidth, while a fully active instance with
five decompressors can keep pace with the bandwidth of
OpenCAPI.

Specifically, this paper makes the following contribu-
tions.

– We present a refine method to increase decompression
parallelism by breaking tokens into BRAM commands
that operate independently.

– We propose a recycle method to reduce the stalls caused
by the intrinsic data dependencies in the compressed
file.

– We apply these techniques to develop a Snappy
decompressor that can process multiple tokens per
cycle.

– We evaluate end-to-end performance. An engine
containing one decompressor can achieve up to 7.2
GB/s throughput. A instance with two decompressors
can saturate CAPI2 bandwidth, while an instance
containing five compressors can keep pace with the
OpenCAPI bandwidth.

– We implement multi-engine instances with different
numbers of decompressors and evaluate and compare
their performance. The performance of the multi-engine
instance is proportional to the number of engines until
it reaches the the bound of the interface bandwidth.

– We discuss and compare a strong decompressor that
can process multiple tokens per cycle to multiple light
decompressors that each can only process one token per
cycle.

2 Snappy (De)compression Algorithm

Snappy is an LZ77-based [31] byte-level (de)compression
algorithm widely used in big data systems, especially in the
Hadoop ecosystem, and is supported by big data formats
such as Parquet [8] and ORC [7]. Snappy works with a fixed
uncompressed block size (64KB) without any delimiters
to imply the block boundary. Thus, a compressor can
easily partition the data into blocks and compress them in
parallel, but achieving concurrency in the decompressor is
difficult because block boundaries are not known due to the
variable compressed block size. Because the 64kB blocks
are individually compressed, there is a fixed (64kB) history
buffer during decompression, unlike the sliding history
buffers used in LZ77, for example. Similar to the LZ77
compression algorithm, the Snappy compression algorithm
reads the incoming data and compares it with the previous
input. If a sequence of repeated bytes is found, Snappy uses
a (length, offset) tuple, copy token, to replace this repeated
sequence. The length indicates the length of the repeated
sequence, while the offset is the distance from the current
position back to the start of the repeated sequence, limited
to the 64kB block size. For those sequences not found in the
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Figure 1 Format of Snappy
literal tokens.

history, Snappy records the original data in another type of
token, the literal tokens.

The details of the Snappy token format are shown in
Figs. 1 and 2. Snappy supports different sizes of tokens,
including 1 to 5 bytes for literal tokens, excluding the data
itself, and 2 to 5 bytes for copy tokens1. The size and the
type of a token can be decoded from the first byte of the
token, also known as the tag byte, which contains token
information including the type of the token and the size of
the token. Other information such as the length of the literal
content, the length and the offset of the copy content is also
stored in the tag byte, but they can be stored in the next two
bytes if necessary.

Snappy decompression is the reverse process of the
compression. It translates a stream with literal tokens and
copy tokens into uncompressed data. Even though Snappy
decompression is less computationally intensive than
Snappy compression, the internal dependency limits the
decompression parallelism. To the best of our knowledge,
the highest Snappy decompression throughput is reported
in [3] using the “lzbench” [1] benchmark, where the
throughput reaches 1.8GB/s on a Core i7-6700K CPU
running at 4.0GHz. Table 1 shows the pseudo code of the
Snappy decompression, which can also be applied to other
LZ-based decompression algorithms.

The first step is to parse the input stream (variable ptr)
into tokens (Line 4 & 5). During this step, as shown in
Line 4 of Table 1, the tag byte (the first byte of a token)
is read and parsed to obtain the information of the token,
e.g. the token type (type), the length of the literal string
(lit len), the length of copy string (copy len), and the
length of extra bytes of this token (extra len). Since the
token length varies and might be larger than one byte, if the

1Snappy 1.1 supports 1 to 3 bytes literal tokens and 2 to 3 bytes copy
tokens

token requires extra bytes (length indicated by extra len in
Line 5) to store the information, it needs to read and parse
these bytes to extract and update the token information. For
a literal token, as it contains the uncompressed data that can
be read directly from the token, the uncompressed data is
extracted and added to the history buffer (Line 11). For a
copy token, the repeated sequence can be read according to
the offset (variable copy off set) and the length (variable
copy len), after which the data will be updated to the tail
of the history (Line 7 & 8). When a block is decompressed
(Line 3), the decompressor outputs the history buffer and
resets it (Line 13 & 2) for the decompression of the next
block.

There are three data dependencies during decompression.
The first dependency occurs when locating the block
boundary (Line 3). As the size of a compressed block
is a variable, a block boundary cannot be located until
the previous block has been decompressed, which brings
challenges to leverage the block-level parallelism. The
second dependency occurs during the generation of the
token (Line 4 & 5). A Snappy compressed file typically
contains different sizes of tokens, where the size of a token
can be decoded from the first byte of this token (known
as the tag byte), exclusive the literal content. Consequently,
a token boundary cannot be recognized until the previous
token is decoded, which prevents the parallel execution of
multiple tokens. The third dependency is the RAW data
dependency between the reads from the copy token and
the writes from all tokens (between Line 7 and Line 8 &
11). During the execution of a copy token, it first reads the
repeated sequence from the history buffer that might be not
valid yet if multiple tokens are processed in parallel. In this
case, the execution of this copy token needs to be stalled and
wait until the request data is valid. In this paper, we focus on
the latter two dependencies, and the solutions to reduce the
impact of these dependencies are explained in Section 5.3
(second dependency) and Section 4.2 (third dependency).
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Figure 2 Format of Snappy
copy tokens.

Snappy compression works on a 64KB block level.
A file larger than 64KB will be divided into several
64KB blocks and compressed independently. Each 64KB
block uses its own history. After that, the compressed
blocks join together constructing a complete compressed
file. Similarly, Snappy decompression follows the 64KB
block granularity. However, the length of the compressed
blocks differ block-by-block, and Snappy files do not
record the boundary between different compressed blocks.
Thus, to calculate the block boundaries, either additional
computation is required or 64KB data blocks must be
decompressed sequentially. This paper does not address the
block boundary issue but instead focuses on providing fast
and efficient decompression of a sequence of compressed
blocks.

3 RelatedWork

Although compression tasks are more computationally
intensive than the decompression, the decompressor is more
difficult to parallelize than the compressor. Typically, the
compressor can split the data into blocks and compress
these blocks independently in different cores or processors

Table 1 Procedure of Snappy decompression.

to increase the parallelism and throughput, while the
decompressor can not easily leverage this block-level
parallelism. This is because the compressed block size is
variable, and the block boundary is difficult to locate before
the previous block is decompressed. Such challenges can
be observed from some parallel version of compression
algorithms such as pbzip2 [14], where the compression can
have near-linear speedup to the single core throughput, but
the decompression cannot.

Many recent studies consider improving the speed
of lossless decompression. The study in [12] discusses
some of the prior work in the context of databases. To
address block boundary problems, [19] explores the block-
level parallelism by performing pattern matching on the
delimiters to predict the block boundaries. However, this
technique cannot be applied to Snappy decompression
since Snappy does not use any delimiters but uses a fixed
uncompressed block size (64KB) as the boundary. Another
way to utilize the block-level parallelism is to add some
constraints during the compression, e.g adding padding
to make fixed size compressed blocks [4] or add some
meta data to indicate the boundary of the blocks [26]. A
drawback of these methods is that it is only applicable to the
modified compression algorithms (add padding) or even not
compatible to the original (de)compression algorithms (add
meta data).

The idea of using FPGAs to accelerate decompression
has been studied for years. On the one hand, FPGAs provide
a high-degree of parallelism by adopting techniques such
as task-level parallelization, data-level parallelization, and
pipelining. On the other hand, the parallel array structure
in an FPGA offers tremendous internal memory bandwidth.
One approach is to pipeline the design and separate the
token parsing and token execution stages [17, 20, 29, 30].
However, these methods only decompress one token each
FPGA cycle, limiting throughput.

Other works study the possibility of processing multiple
tokens in parallel. [23] proposes a parallel LZ4 decom-
pression engine that has separate hardware paths for literal
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tokens and copy tokens. The idea builds on the observa-
tion that the literal token is independent since it contains
the original data, while the copy token relies on the pre-
vious history. A similar two-path method for LZ77-based
decompression is shown in [16], where a slow-path routine
is proposed to handle large literal tokens and long offset
copy tokens, while a fast-path routine is adopted for the
remaining cases. [5] introduces a method to decode variable
length encoded data streams that allows a decoder to decode
a portion of the input streams by exploring all possibilities
of bit spill. The correct decoded streams among all the pos-
sibilities are selected as long as the bit spill is calculated
and the previous portion is correctly decoded. [25] proposes
a token-level parallel Snappy decompressor that can pro-
cess two tokens every cycle. It uses a similar method as [5]
to parse an eight-byte input into tokens in an earlier stage,
while in the later stages, a conflict detector is adopted to
detect the type of conflict between two adjacent tokens and
only allow those two tokens without conflict to be processed
in parallel. However, these works cannot easily scale up
to process more tokens in parallel because it requires very
complex control logic and duplication of BRAM resources
to handle the BRAM bank conflicts and data dependencies.

The GPU solution proposed in [26] provides a multi-
round resolution method to handle the data dependencies. In
each round, all the tokens with read data valid are executed,
while those with data invalid will be pending and wait for
the next round of execution. This method allows out-of-
order execution and does not stall when a request needs to
read the invalid data. However, this method requires specific
arrangement of the tokens, and thus requires modification
of the compression algorithm.

This paper presents a new FPGA decompressor architec-
ture that can process multiple tokens in parallel and operate
at a high clock frequency without duplicating the history
buffers. It adopts a refine and recycle method to reduce
the impact of the BRAM conflicts and data dependencies,
and increases the decompression parallelism, while con-
forming to the Snappy standard. This paper extends our

previous work [11] with multi-engine results and presents
more extensive explanations of the architecture and imple-
mentation, and elaborates the evaluation and discussion.

4 Refine and Recycle Technique

4.1 The Refine Technique for BRAM Bank Conflict

Typically, in FPGAs, the large history buffers (e.g. 32KB
in GZIP and 64KB in Snappy) can be implemented using
BRAMs. Taking Snappy as an example, as shown in
Fig. 3, to construct a 64KB history buffer, a minimum
number of BRAMs are required: 16 4KB blocks for the
Xilinx Ultrascale Architecture [21]. These 16 BRAMs can
be configured to read/write independently, so that more
parallelism can be achieved. However, due to the structure
of BRAMs, a BRAM block supports limited parallel reads
or writes, e.g. one read and one write in the simple dual
port configuration. Thus, if more than one read or more than
one write need to access different lines in the same BRAM,
a conflict occurs (e.g. conflict on bank 2 between read R1
and read R2 in Fig. 3). We call this conflict a BRAM bank
conflict (BBC).

For Snappy specifically, the maximum literal length for a
literal token and the maximum copy length for copy tokens
in the current Snappy version is 64B. As the BRAM can
only be configured to a maximum 8B width, there is a
significant possibility that a BBC occurs when processing
two tokens in the same cycle, and processing more tokens
in parallel further increases the probability of a BBC. The
analysis from [25] shows that if two tokens are processed in
parallel, more than 30% of the reads from adjacent tokens
have conflicts. This number might increase when more
tokens are required to be processed in parallel. A naive
way to deal with the BBCs is to only process one of the
conflicting tokens and stall the others until the this token
completes. For example, in Fig. 3, when a read request from
a copy token (R1) has a BBC with another read request

Figure 3 An example of BRAM
bank conflicts in Snappy
(request processing in the token
level).
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from another copy token (R2), the execution of R2 stalls
and waits until R1 is finished, so does the case between
(R2) and (R3). Obviously, this method sacrifices some
parallelism and even leads to a degradation from parallel
processing to sequential processing. Duplicating the history
buffers can also relieve the impact of BBCs. The previous
work [25] uses a double set of history buffers, where
two parallel reads are assigned to different set of history.
So, the two reads from the two tokens never have BBCs.
However, this method only solves the read BBCs but not
the write BBCs, since the writes need to update both sets of
history to maintain the data consistency. Moreover, to scale
this method to process more tokens in parallel, additional
sets (linearly proportional to the number of tokens being
processed in parallel) of BRAMs are required.

To reduce the impact of BBCs, we present a refine
method to increase token execution parallelism without
duplicating the history buffers. As demonstrated in Fig. 4,
the idea is to break the execution of tokens into finer-grain
operations, the BRAM copy/write commands, and for each
BRAM to execute its own reads and writes independently.
The read requests R1 and R2 in Fig. 3 only have a BBC
in bank 2, while the other parts of these two reads do
not conflict. We refine the token into BRAM commands
operating on each bank independently. As a result, for the
reads in the non-conflicting banks of R2 (bank 0 & 1), we
allow the execution of the reads on these banks from R2.
For the conflicting bank 2, R1 and R2 cannot be processed
concurrently.

The implementation of this method requires extra logic
to refine the tokens into independent BRAM commands
(the BRAM command parser presented in Section 5.4) and
distribute these commands to the proper BRAM, which
costs extra FPGA resource, especially LUTs.

The proposed method takes advantage of the parallelism
of the array structure in FPGAs by operating at a finer-
grained level, the single BRAM read/write level, compared
with the token-level. It supports partially executing multiple
tokens in parallel even when these tokens have BBCs. In
the extreme case, the proposed method can achieve up
to 16 BRAM operations in parallel, meaning generating
the decompressed blocks at a speed of 128B per cycle.

This refine method can also reduce the read-after-write
dependency impact mentioned in Section 4.2. If the read
data of a read request from a copy token is partially
valid, this method allows this copy token to only read
the valid data and update the corresponding part of the
history, instead of waiting until all the bytes are valid. This
method can obtain high degree of parallelism without using
resource-intensive dependency checking mechanisms such
as “scoreboarding”.

4.2 The Recycle Technique for RAWDependency

The Read-After-Write (RAW) dependency between data
reads and writes on the history buffer is another challenge
for parallelization. If a read needs to fetch data from some
memory address that the data has not yet been written to,
a hazard occurs, and thus this read needs to wait until
the data is written. A straightforward solution [25] is to
execute the tokens sequentially and perform detection to
decide whether the tokens can be processed in parallel. If
a RAW hazard is detected between two tokens that are
being processed in the same cycle, it forces the latter token
to stall until the previous token is processed. Even though
we can apply the forwarding technique to reduce the stall
penalty, detecting multiple tokens and forwarding the data to
the correct position requires complicated control logic and
significant hardware resource.

Another solution is to allow out-of-order execution.
That is when a RAW hazard occurs between two tokens,
subsequent tokens are allowed to be executed without
waiting, similar to out-of-order execution in the CPU
architecture. Fortunately, in the decompression case, this
does not require a complex textbook solution such
“Tomasulo” or “Scoreboarding” to store the state of the
pending tokens.

Instead, rerunning pending tokens after the execution
of all or some of the remaining tokens guarantees the
correctness of this out-of-order execution. This is because
there is no write-after-write or write-after-read dependency
during the decompression, or two different writes never
write the same place and the write data never changes after
the data is read. So, there is no need to record the write data

Figure 4 Request processing
with the refine method.
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states, and thus a simpler out-of-order execution model can
satisfy the requirement, which saves logic resources.

In this paper, we present the recycle method to reduce
the impact of RAW dependency at a BRAM command
granularity. Specifically, when a command needs to read the
history data that may not be not valid yet, the decompressor
executes this command immediately without checking if
all the data is valid. If the data that has been read is
detected to be not entirely valid, this command (invalid
data part) should be recycled and stored in a recycle buffer,
where it will be executed again (likely after a few other
commands are executed). If the data is still invalid in the
next execution, this decompressor performs this recycle-
and-execute procedure repeatedly until the read data is
valid.

Thus this method executes the commands in a relaxed
model and allows continuous execution on the commands
without stalling the pipeline in almost all cases. The
method provides more parallelism since it does not need
to be restricted to the degree of parallelism calculated by
dependency detection. The implementation of the recycle

buffers needs extra memory resources and a few LUTs on
an FPGA (see Table 3). Details of the design are presented
in Section 5.5

5 Snappy Decompressor Architecture

5.1 Architecture Overview

Figure 5 presents an overview of the proposed architecture.
It can be divided into two stages. The first stage parses
the input stream lines into tokens and refines these tokens
into BRAM commands that will be executed in the second
stage. It contains a slice parser to locate the boundary of
the tokens, multiple BRAM command parsers (BCPs) to
refine the tokens into BRAM commands, and an arbiter to
drive the output of the slice parser to one of the BCPs. In
the second stage, the BRAM commands are executed to
generate the decompressed data under the recycle method.
The execution modules, in total 16 of them, are the
main components in this stage, in which recycle buffers

Figure 5 Architecture overview.
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are utilized to perform the recycle mechanism. Since the
history buffer requires at least 16 BRAMs, we use 16
execution modules to activate all 16 BRAMs to obtain
high parallelism. Increasing (e.g. doubling) the number
of BRAMs and the number of execution modules might
further increase the parallelsim at the expense of more
BRAMs. However, due to the data dependencies, using
twice the number of execution modules does not bring
obvious performance improvement.

As shown in Fig. 6, the procedure starts with receiving a
16B input line into the slice parser together with the first 2B

of the next input line (required because a token is 1,2, or 3
bytes excluding the literal content). This 18B is parsed into a
“slice” that contains token boundary information including
which byte is a starting byte of a token, whether any of the
first 2B have been parsed in the previous slice, and whether
this slice starts with literal content, etc. After that, an arbiter
is used to distribute each slice to one of the BCPs that work
independently, and there the slice is split into one or multiple
BRAM commands.

There are two types of BRAM commands, write
commands and copy commands. The write command is

Figure 6 Proposed Snappy
Decompression Procedure.

938 J Sign Process Syst (2020) 92:931–947



generated from the literal token, indicating a data write
operation on the BRAM, while the copy command is
produced from the copy token which leads to a read
operation and a follow-up step to generate one or two
write commands to write the data in the appropriate BRAM
blocks.

In the next stage, write selectors and copy selectors
are used to steer the BRAM commands to the appropriate
execution module. Once the execution module receives a
write command and/or a copy command, it executes the
command and performs BRAM read/write operations. As
the BRAM can perform both a read and a write in the
same cycle, each execution module can simultaneously
process a write command and one copy command (only
the read operation) at the same time. The write command
will always be completed successfully once the execution
module receives it, which is not the case for the copy
command. After performing the read operation of the copy
command, the execution module runs two optional extra
tasks according to the read data, including generating new
write/copy commands and recycling the copy command.

If some bytes are invalid, the copy command will
be renewed (removing the completed portion from the
command) and collected by a recycle unit, and sent back for
the next round of execution.

If the read data contains at least one valid byte, new
write commands are generated to write this data to its
destination. It is possible that it generates one or two new
write commands. If the writing back address of read data
crosses the boundary of the BRAMs, it should be written to
two adjacent BRAMs, thus generating two write commands.

To save resources for multiplexers, we classify all
BRAMs into two sets: even and odd. The even set consists
of even numbered BRAMs, namely 0th, 2nd , 4th and so on.
The remaining BRAMs belong to the odd set. When two
write commands are generated in one cycle, their writing
targets are always one odd BRAM and one even BRAM.
Therefore, we can first sort them once they are generated,
and then do selection only within each set.

Once a 64KB history is built, this 64KB data is output as
the decompressed data block. After that, a new data block
is read, and this procedure will be repeated until all the data
blocks are decompressed.

5.2 History Buffer Organization

The 64KB history buffer consists of 16 4KB BRAM blocks,
using the FPGA 36Kb BRAM primitives in the Xilinx
UltraScale fabric. Each BRAM block is configured to have
one read port and one write port, with a line width of 72bits
(8B data and 8bits flags). Each bit from the 8bits flags

indicates whether the corresponding byte is valid. To access
a BRAM line, 4 bits of BRAM bank address, and 9 bits of
BRAM line address is required. The history data is stored
in these BRAMs in a striped manner to balance the BRAM
read/write command workload and to enhance parallelism.

5.3 Slice Parser

The slice parser aims to decode the input data lines into
tokens in parallel. Due to the variety of token sizes,
the starting byte of a token needs to be calculated from
the previous token. This data dependency presents an
obstacle for the parallelization of the parsing process. To
solve this problem, we assume all 16 input bytes are
starting bytes, and parse this input data line based on this
assumption. The correct branch will be chosen once the
first token is recognized. To achieve a high frequency for
the implementation, we propose a bit map based byte-split
detection algorithm by taking advantage of bit-level control
in FPGA designs.

A bit map is used to represent the assumption of starting
bytes, which is called the Assumption Bit Map (ABM) in
the remainder of this paper. For a N bytes input data line,
we need a N ∗ N ABM. As shown in Fig 7, taking an 8B
input data line as an example, cell(i, j) being equal to ‘1’
in the ABM means that if corresponding byte i is a starting
byte of one token, byte j is also a possible starting byte. If a
cell has a value ‘0’, it means if byte i is a starting byte, byte
j cannot be a starting byte.

This algorithm has three stages. In the first stage, an
ABM is initialized with all cells set to ‘1’. In the second
stage, based on the assumption, each row in the ABM is
updated in parallel. For row i, if the size of the token starts
with the assumption byte is L, the following L − 1 bits are
set to be 0. The final stage merges the whole ABM along
with the slice flag from the previous slice, and calculate
a Position Vector (PV). The PV is generated by following
a cascading chain. First of all, the slice flag from the
previous slice points out which is the starting byte of the
first token in the current slice (e.g. byte 1 in Fig. 7). Then
the corresponding row in the ABM is used to find the first
byte of the next token (byte 5 in Fig. 7), and its row in the
ABM is used for finding the next token. This procedure is
repeated (all within a single FPGA cycle) until all the tokens
in this slice are found. The PV is an N-bit vector that its
ith bit equal to ‘1’ means the ith byte in the current slice
is a starting byte of a token. Meanwhile, the slice flag will
be updated. In addition to the starting byte position of the
first token in the next slice, the slice flag contains other
informations such as whether the next slice starts with literal
content, the unprocessed length of the literal content, etc.

939J Sign Process Syst (2020) 92:931–947



Figure 7 Procedure of the slice
parser and structure of the
Assumption Bit Map.

5.4 BRAM Command Parser

The BRAM command parser refines the tokens and
generates BRAM commands based on the parsed slice. The
structure of the BCP is demonstrated in Fig. 8. The first
step is to generate tokens based on the token boundary
information that is stored in the PV. Literal tokens and
copy tokens output from the token generator are assigned to
different paths for further refining in the BRAM command
generator. In the literal token path, the BRAM command
generator calculates the token write address and length, and
splits this write operation into multiple ones to map the write
address to the BRAM address. Within a slice, the maximum
length of the literal token is 16B (i.e. the largest write is
16B), which can generate up to 3 BRAM write commands
where each write command has a maximum width of 8B.
In the copy token path, the BRAM command generator
performs a similar split operation but maps both the read
address and the write address to the BRAM address. A copy
token can copy up to 64B data. Hence, it generates up to 9
BRAM copy commands.

Since multiple commands are generated each cycle, to
prevent stalling the pipeline, we use multiple sets of FIFOs
to store them before sending them to the corresponding
execution module. Specifically, 4 FIFOs are used to store
the literal commands which is enough to store all 3 BRAM
write commands generated in one cycle. Similarly, 16 copy
command FIFOs are used to handle the maximum 9 BRAM
copy commands. To keep up with the input stream rate (16B
per cycle), multiple BCPs can work in parallel to enhance
the parsing throughput.

5.5 ExecutionModule

The execution module performs BRAM command execu-
tion and the recycle mechanism. Its structure is illustrated
in Fig. 9. It receives up to 1 write command from the write
command selector and 1 copy command from the copy
command selector. Since each BRAM has one independent
read port and one independent write port, each BRAM can
process one read command and one copy command each
clock cycle. For the write command, the write control logic
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Figure 8 Structure of BRAM
command parser.

extracts the write address from the write command and per-
forms a BRAM write operation. Similarly, the read control
logic extracts the read address from the read command and
performs a BRAM read operation.

While the write command can always be processed
successfully, the copy command can fail when the target
data is not ready in the BRAM. So, there should be a recycle
mechanism for failed copy commands. After reading the
data, the unsolved control logic checks whether the read
data is valid. There are three different kinds of results: 1)
all the target data is ready (hit); 2) only part of the target
data are ready (partial hit); 3) none of the target data is
ready (miss). In the hit case and the partial hit case, the new
command generator produces one or two write commands
to write the copy results to one or two BRAMs, depending
on the alignment of the write data. In the partial hit case
and the miss case, a new copy command is generated and
recycled, waiting for the next round of execution.

5.6 Selector Selection Strategy

The BRAM write commands and copy commands are
placed in separate paths, and can work in parallel. The
Write Command Selector gives priority to recycled write
commands. Priority is next given to write commands from
one of the BCPs using a round robin method. The Copy

Command Selector gives priority to the copy commands
from one of the BCPs when there is a small number of
copy commands residing in the recycle FIFO. However,
when this number reaches a threshold, priority will be
given back to the recycle commands. This way, it not only
provides enough commands to be issued and executed, but
also guarantees the recycle FIFO does not overflow, and no
deadlock occurs.

6 Experimental Results

6.1 Experimental Setup

To evaluate the proposed design, an implementation is
created targeting the Xilinx Virtex Ultrascale VU3P-
2 device on an AlphaData ADM-PCIE-9V3 board and
integrated with the POWER9 CAPI 2.0 [27] interface. The
CAPI 2.0 interface on this card supports the CAPI protocol
at an effective data rate of approximately 13 GB/s. The
FPGA design is compared with an optimized software
Snappy decompression implementation [1] compiled by gcc
7.3.0 with “O3” option and running on a POWER9 CPU in
little endian mode with Ubuntu 18.04.1 LTS.

We test our Snappy decompressor for functionality and
performance on 6 different data sets. The features of the data
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Figure 9 Structure of execution
module.

sets are listed in Table 2. The first three data sets are from the
“lineitem” table of the TPC-H benchmarks in the database
domain. We use the whole table (Table) and two different
columns including a long integer column (Integer) and a
string column (String). The data set Wiki [22] is an XML
file dump from Wikipedia, while the Matrix is a sparse
matrix from the Matrix Market [2]. We also use a very
high compression ratio file (Geo) that stores geographic
information .

6.2 System Integration

The proposed Snappy decompressor communicates with
host memory through the CAPI 2.0 interface. The Power
Service Layer (PSL) in the CAPI 2.0 support conversion
between the CAPI protocol and the AXI protocol, and thus
the Snappy decompressor can talk to the host memory using
the AXI bus. To activate full CAPI 2.0 bandwidth, the AXI
bus should be configured in 512 bits or 64 bytes width. If

Table 2 Benchmarks used and throughput results.

Files Original Compression Throughput (GB/s) Speedup

size (MB) ratio CPU FPGA

Integer 45.8 1.70 0.59 4.40 7.46

String 157.4 2.45 0.69 6.02 8.70

Table 724.7 2.07 0.59 6.11 10.35

Matrix 771.3 2.75 0.80 4.80 6.00

Wiki 953.7 1.97 0.56 5.72 10.21

Geo 128.0 5.50 1.41 7.21 5.11
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Table 3 Resource utilization of design components.

Resource LUTs BRAMs1 Flip-Flops

Recycle buffer 1.1K(0.3%) 8(1.2%) 1K(0.1%)

Decompressor(incl. recycle buffer) 56K(14.2%) 50(7.0%) 37K(4.7%)

CAPI2 interface 82K(20.8%) 238(33.0%) 79K(10.0%)

Total 138K(35.0%) 288(40.0%) 116K(14.7%)

1 One 18kb BRAM is counted as a half of one 36kb BRAM

an instance with multiple decompressors is deployed, an IO
controller is needed and placed between the decompressors
and the CAPI 2.0 interface to handle the input data
distribution to the correct decompressor, as well as output
data collection from the corresponding decompressor.

6.3 Resource Utilization

Table 3 lists the resource utilization of our design timing
at 250MHz. The decompressor configured with 6 BCPs
and 16 execution module takes around 14.2% of the LUTs,
7% of the BRAMs, 4.7% of the Flip-Flops in the VU3P
FPGA. The recycle buffers, the components that are used to
support out-of-order execution, only take 0.3% of the LUTs
and 1.2% of the BRAMs. The CAPI 2.0 interface logic
implementation takes up around 20.8% of the LUTs and
33% of the BRAMs. Multi-unit designs can share the CAPI
2.0 interface logic between all the decompressors, and thus
the (VU3P) device can support up to 5 engines.

6.4 End-to-end Throughput Performance

We measure the end-to-end decompression throughput
reading and writing from host memory. We compare
our design with the software implementation running on
one POWER9 CPU core (remember that parallelizing

Snappy decompression is difficult due to unknown block
boundaries).

Figure 10 shows the end-to-end throughput performance
of the proposed architecture configured with 6 BCPs.
The proposed Snappy decompressor reaches up to 7.2
GB/s output throughput or 31 bytes per cycle for the file
(Geo) with high compression ratio, while for the database
application (Table) and web application (Wiki) it achieves
6.1 GB/s and 5.7 GB/s, which is 10 times faster than
the software implementation. One decompressor can easily
keep pace with a (Gen3 PCIe x4) NVMe device, and the
throughput of an implementation containing two of such
engines can reach the CAPI 2.0 bandwidth upper bound.

Regarding the power efficiency, the 22-core POWER9
CPU is running under 190 watts, and thus it can provide up
to 0.16GB/s per watt. However, the whole ADM 9V3 card
can support 5 engines under 25 watts [6], which corresponds
to up to 1.44GB/s per watt. Consequently, our Snappy
decompressor is almost an order of magnitude more power
efficient than the software implementation.

6.5 Impact of # of BCPs

As explained in Section 5, the number of BCPs corresponds
to the number of tokens that can be refined into BRAM
commands per cycle. We compare the resource utilization

Figure 10 Throughput of
Snappy decompression.
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and throughput of different numbers of BCPs, and present
the results that are normalized by setting the resource usage
and throughput of one BCP as 1 in Fig 11. Increasing from
one BCP to two leads to 10% more LUT usage, but results
in around 90% more throughput and no changes in BRAM
usage. However, the increase of the throughput on Matrix
slows down after 3 BCPs and the throughput remains stable
after 5 BCPs. A similar trend can be seen in Wiki where
the throughput improvement drops after 7 BCPs. This is
because after increasing the number of BCPs, the bottleneck
moves to the stage of parsing the input line into tokens.
Generally, a 16B-input line contains 3-7 tokens depending
on the compressed file, while the maximum number of
tokens is 8, thus explaining the limited benefits of adding
more BCPs. One way to achieve higher performance is to
increase both the input-line size and the number of BCPs.
However, this might bring new challenges to the resource
utilization and clock frequency, and even reach the upper
bound of the independent BRAM operations parallelism.

6.6 Comparison of Decompression Accelerators

We compare our design with state-of-the-art decompression
accelerators in Table 4. By using 6 BCPs, a single
decompressor of our design can output up to 31B per cycle
at a clock frequency of 250MHz. It is around 14.5x and 3.7x
faster then the prior work on ZLIB[18] and Snappy [25].
Even scaling up the other designs to the same frequency,
our design is still around 10x and 2x faster, respectively. In
addition, our design is much more area-efficient, measured
in MB/s per 1K LUTs and MB/s per BRAM (36kb), which
is 1.4x more LUT efficient than the ZLIB implementation
in [18] and 2.4x more BRAM efficient than the Snappy
implementation in [25].

Compared with FPGA-based Snappy decompression
implementation from the commercial library, the Vitis Data
Compression Library (VDCL) [28], the proposed methods

Figure 11 Impact of number of BCPs. Ta
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is 25x and 4x faster than a single engine implementation and
an 8-engine implementation, respectively. The single engine
implementation from the VDCL only cost 0.81K LUTs,
meaning 2.7x more LUT-efficient than the proposed design,
while the proposed design is still around 2.2x more LUT-
efficient than the 8-engine implementation from VDCL.
However, the proposed design requires the minimum
number of BRAMs to achieve the same throughput, which
means 8.1x and 11.7x more BRAM efficient than the single
engine implementation and the 8-engine implementation
from the VDCL.

7Multi-Engine Evaluation

7.1 Evaluation

Multiple decompressors working in parallel decompressing
multiple files can achieve throughput that can saturate
the interface bandwidth. According to the throughput
performance of a single decompressor, two to four of such
decompressors should be sufficient to keep up with the
CAPI 2.0 bandwidth depending on the compressed file.
We implement multi-engine instances with the number
of decompressors varying from two to four and evaluate
their performance. To avoid workload unbalancing between
different decompressors, in each test, we use a same input
file for all the decompressors.

Table 5 illustrates the resource usage of the multi-engine
instances that are configured with different numbers of
the decompressor engines at 250MHz. We can see that
the different types of resources, including LUTs, Flip-
Flops, and BRAMs, increase linearly with the number of
decompressor engines. The critical path of the design is
within the decompressor slice parser. With multiple engines
no non-local resources are required to build the engine. In
addition, cycles can be added to get data to the engine if
needed to maintain frequency. Thus, to maintain 250MHz
frequency in a multi-engine instance, only a few resources
are needed The design is limited by LUTs, and a VU3P
FPGA can contain up to 5 engines. More engines are

possible to be placed in such a device if the design can be
optimized to have more balance between LUTs and other
resources such as BRAMs.

Fig 12 presents the throughput of the multi-engine
instances with different numbers of decompressors con-
figured. We can see that the throughput performance of
multi-engine instances increases proportionally when the
number of engines change from 1 to 2, and almost lin-
early from 2 to 3. However, performance saturates when the
engine number increases from 3 to 4, and finally remains at
around 13 GB/s. This is because the CAPI 2.0 interface has
an effective rate of around 13 GB/s, and the throughput of
the 4-engine instance has reached this bound.

7.2 Discussion

In this section we examine some of the tradeoffs between a
designs with fewer strong decompressors and one with more
smaller decompressors. Strong engines generally consume
more resource per unit of performance than less performant
ones, but may require more logic to coordinate between the
host interface and the engines. Also, as is the case for the
64kB history file in the Snappy decompressor, a minimum
amount of resource may be required independent of the
performance of the decompressor.

Obviously, when there is insufficient parallelism in the
problem, e.g. not enough independent files to be processed,
fewer, more performant engines will perform better. On
the other hand, when there is sufficient concurrency, e.g.
a number of files to process that is substantially larger
than the number of engines, then a design that optimizes
performance per unit of resource with smaller engines may
well be preferred. There may also be overhead associated
with task switching an engine from one file to the next,
further favoring the smaller engine case.

Thus, it is difficult to tell which is the better one
between the “Strong-but-fewer” solution and the “Light-
but-more” solution. An reasonable answer is that it depends
on the application. For example, if the application contains
decompression on a large number of small compressed files,
it might be better to choose the “Light-but-more” solution.

Table 5 Resource utilization of multi-engine (250MHz).

Resource LUTs BRAMs1 Flip-Flops

CAPI2 82K(20.8%) 238(33.0%) 79K(10.0%)

1-engine 138K(35.0%) 288(40.0%) 116K(14.7%)

2-engine 195K(49.4%) 338(47.0%) 153K(19.4%)

3-engine 251K(63.9%) 388(54.0%) 190K(24.1%)

4-engine 308K(78.3%) 438(61.0%) 227K(28.7%)
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Figure 12 Throughput of multi-engine instance.

In contrast, if the application requires to decompress files
with large size, the “Strong-but-fewer” solution should be
selected.

When a general-purpose engine is implemented, strong
engines are generally preferred, as the worst case for a
strong engine (e.g. processing 100 files sequentially) is a lot
better than the worst case for small engines (decompressing
a single large file with just one small engine).

8 Conclusion

The control and data dependencies intrinsic in the design of
a decompressor present an architectural challenge. Even in
situations where it is acceptable to achieve high throughput
performance by processing multiple streams, a design that
processes a single token or a single input byte each
cycle becomes severely BRAM limited for (de)compression
protocols that require a sizable history buffer. Designs that
decode multiple tokens per cycle could use the BRAMs
efficiently in principle, but resolving the data dependencies
leads to either very complex control logic, or to duplication
of BRAM resources. Prior designs have therefore exhibited
only limited concurrency or required duplication of the
history buffers.

This paper presented a refine and recycle method to
address this challenge and applies it to Snappy decompres-
sion to design an FPGA-based Snappy decompressor. In an
earlier stage, the proposed design refines the tokens into
commands that operate on a single BRAM independently
to reduce the impact of the BRAM bank conflicts. In the
second stage, a recycle method is used where each BRAM
command executes immediately without dependency check-
ing and those that return with invalid data are recycled to
avoid stalls caused by the RAW dependency. For a sin-
gle Snappy input stream our design processes up to 16
input bytes per cycle. The end-to-end evaluation shows

that the design achieves up to 7.2 GB/s output through-
put or about an order of magnitude faster than the software
implementation in the POWER9 CPU. This bandwidth for
a single-stream decompressor is sufficient for an NVMe
(PCIe x4) device. Two of these decompressor engines, oper-
ating on independent streams, can saturate a PCIe Gen4 or
CAPI 2.0×8 interface, and the design is efficient enough to
easily support data rates for an OpenCAPI 3.0×8 interface.
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