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ABSTRACT

Participation of wind energy in the generation portfolio of power systems is increasing, making it more
challenging for system operators to adequately maintain system security. It therefore becomes
increasingly crucial to accurately predict the wind generation. This work investigates how different
parameters influence the performance of forecasting algorithms. Firstly, this work analyzes the combined
influence of the input data, batch size, number of neurons and hidden layers, and the training data on the
forecast accuracy across forecast horizons of 5, 15, 30 and 60 min. It was found that increasing look ahead
times require among others more hidden layers and lower batch sizes. Next, the optimizer and loss
function leading to the most accurate forecasts were identified. It was concluded that the Adadelta
optimizer and Mean Absolute Error loss function consistently result in the best performing forecasting
algorithm. Finally, it was investigated if the most accurate optimizer-loss function combination is
influenced by the choice of the performance metric. Whereas the Adadelta-Mean Absolute Error pair
remains the most accurate combination irrespective of the evaluation metric, a strong relation was
observed between the Root Mean Square Error performance metric and Mean Square Error loss function.

Analyses were performed on 12 wind farms.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With increasing penetration of wind generation, it becomes
essential for system operators to accurately predict future wind
power injections in the power system, in order to ensure reliable
and affordable supply of electricity [1—4]. Imbalances in the power
system could drastically increase as a result of forecast inaccuracies
and could even lead to frequency stability problems [5]. Wind
generation forecasting is performed across different time horizons,
as summarized in Table 1.

Depending on the time horizon of interest, forecast models can
generally be divided in two categories: statistical models and
physical models. Statistical models are preferred for forecast hori-
zons up to 6 h ahead, whereas physical models perform more
accurately for longer forecast horizons [6].

* Corresponding author. Department of Electrical Sustainable Energy, Delft Uni-
versity of Technology (TUD), Delft, the Netherlands.
E-mail addresses: vinay.sewdien@tennet.eu, V.N.Sewdien@tudelft.nl
(V.N. Sewdien).
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1.1. Physical models

Physical models use atmospheric quantities (e.g. wind speed
and direction, temperature and pressure), physical properties (e.g.
terrain ruggedness index and wind farm layout) and numerical
weather predictions (NWP) as inputs for complex meteorological
models to forecast future parameters. Historical data are not
required for training these forecast model. Physical models are very
accurate for forecast horizons exceeding 6 h. However, one of the
main challenges with this approach is that it requires specialized
equipment for the acquisition and processing of the atmospheric
and physical data [7].

1.2. Statistical models

Statistical models are purely mathematical models and mainly
use past observed data, sometimes complemented with (NWP)
information. For statistical models, machine learning methods are
widely used [8], where artificial neural networks (ANN) are among
the top used techniques for short-term forecasting [4,7]. The review
performed in Ref. [9] even concluded that ANN based forecasting
methods are the most efficient ones, provided that the network
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Table 1
Forecasting time horizons in operational planning.
Forecasting Time Horizon Range Application
Long-term Days to weeks ahead e Maintenance schedules of transmission lines during low forecasted renewable energy generation
e Maintenance schedules of e.g. wind turbines in order to minimize revenue losses for wind farm owners
Short-term: Day Ahead 24 h ahead e Operational decision making with regards to the dispatch of renewable energy sources
e Dynamic assessment of operating reserves requirements (e.g. for balancing)
Short-term: Near Real Time Between 24 h and 5 min ahead e Adjustments of real time dispatch
e Dynamic assessment of operating reserves requirements (e.g. for ramp management)
e More accurate security analysis

Nomenclature

Abbreviation Description

HDS Historical data size (amount of historical data)
BS Batch size

HL Number of hidden layers

NuL Number of neurons in each hidden layer

TD Training Data

FH Forecast Horizon

configuration is optimized. Spatial correlation models and models
based on probabilistic methods are two other types of statistical
models.

This research focuses on ANN-based statistical models for short-
term forecast horizons of 5, 15, 30, and 60 min. The 5 min forecast
horizon (FH 5) is useful for ramp forecasting, which is crucial for
power systems with high penetration of wind generation [10,11], an
example of which is given in Ref. [12]. FH 15, FH 30 and FH 60 are
useful for intraday markets where quarter-hourly and hourly
products are traded.

The overall goal of this work is to investigate how the forecast
accuracy across different forecast horizons is influenced by changes
in the amount of historical data (i.e. historical data size, HDS), batch
size (BS), number of hidden layers (HL), number of neurons per
hidden layer (Ny ), the amount of training data (TD), and the type of
optimizer and loss function used in the ANN’s algorithm.

Whereas many previous publications have investigated the in-
fluence of the amount of historical data on the forecast accuracy,
few have analyzed the impact of HDS combined with other aspects
of the ANN’s structure. In Ref. [13] the influence of the HDS for a
single 1 h forecast of wind generation was investigated. The fore-
casting algorithm contained 1 hidden layer with 3 neurons, with TD
57%. It was found that the optimum HDS is dependent on the
learning rate of the algorithm. In Ref. [14] the influence of HDS on
the forecast accuracy in terms of root mean square error for FH 30
was investigated. The implemented forecasting algorithm con-
tained 1 hidden layer, whereas HDS was varied from 3 to 8. It was
concluded that the highest forecast accuracy is achieved for the
ANN with HDS 8. In Ref. [15] the influence of HL and HDS on the
wind generation forecast accuracy was investigated. It was found
that a simple ANN with HDS 2 and no hidden layers performed the
best in terms of forecast accuracy.

The aim of these papers was to identify the ANN with the
highest forecast accuracy across one specific forecast horizon for
wind generation. Furthermore, the solution space considered in
these papers was rather limited, as maximum two ANN parameters
were varied. Therefore there are still unresolved questions around
the impact of proper tuning of the ANN’s parameters on the accu-
racy and how this differs across different forecast horizons. Thus,

the first aim of this work is to address these points by examining
the combined influence of the amount of historical data, batch size,
number of hidden layers, number of neurons per hidden layer, and
the amount of training data on the forecast accuracy for forecast
horizons 5, 15, 30, and 60 min ahead. Also, for each of these forecast
horizons the impact of properly tuning the ANN’s parameters is
shown. This impact on the forecast accuracy will be considered by
observing the normalized mean absolute error. It should be noted
that the focus of this work is not on minimizing the forecast error,
but on observing how it is affected by variations in ANN properties
across the four different forecast horizons. With these insights it
becomes possible to optimize only those parameters that have the
biggest influence on the model’s performance.

It is acknowledged that practical forecast models will often
implement more complex ANNs than are implemented within this
study, such as recurrent networks [16,17] or hybrid models [18,19].
However, this study still reveals many insightful aspects and rec-
ommendations which are applicable for more complex imple-
mentations. For example, if using recurrent networks, the set of
parameters required for forecasting will not change from the ones
considered here. Alternatively, if using hybrid methods then only
the set of input parameters will change (to also include NWP data).
By completing the analysis on a more simple yet very effective ANN
(as evidenced by the achieved accuracies), the results can be more
easily comprehended and generalized.

In the ANN. the optimizer and loss (or cost) function are
important parts of the forecast algorithm. The goal of a loss function
is to determine the difference between an observed and its fore-
casted value. The optimizer minimizes the selected loss function by
updating a set of weights 0. However, according to the best
knowledge of the authors, the influence of different optimizer-loss
function pairs on the accuracy of wind power forecasting is not yet
examined. A majority of publications do not specify the optimizer
and loss function of the implemented forecast algorithm, whereas
those publications that do mention them, do not provide any
justification for the same. The mean squared error is used as loss
function in Refs. [13,15,20—24]. The ANNs in Ref. [22—25] imple-
mented the Levenberg-Marquardt algorithm as optimizer, whereas
ADALINE was used in Ref. [15]. Neither the optimizer nor the loss
function are given for the forecast model in Ref. [14]. The influence
of different permutations of optimizers and loss functions on the
forecast accuracy remains unknown. The second aim of this work is
to explore how different combinations of optimizers and loss
functions influence the error in wind generation forecasting.

Several performance metrics exist in literature for the evalua-
tion of forecast models. The most used ones are the root mean
squared error (RMSE, used in Ref. [21,24,26—29]), the mean abso-
lute error (MAE, used in Refs. [21,27,29—31]) and the mean absolute
percentage error (MAPE, used in Refs. [21,22,27—29,31]). Usually,
multiple metrics are used to evaluate the same forecast model. The
third aim of this research is to investigate whether there exists a
dependency between the performance metrics and the most ac-
curate optimizer-loss function combination.
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The main contribution of this research are as follows:

(1) Insights are given in how different ANN parameters in-
fluence the forecast accuracy. Increasing look ahead times
require more frequent updates of the ANN’s weights,
reducing the most efficient batch size to 5. For the considered
forecast horizons, it is observed that HDS 5 and HDS 10 lead
to the most accurate results. The influence of the considered
amounts of training data on the forecast accuracy was found
to be negligible;

(2) Based on extensive empirical analysis, the optimizer and
loss function leading to the most accurate wind genera-
tion forecast were identified. Adadelta and MAE were
found to be the most accurate optimizer and loss function,
respectively. This holds true independent of the forecast
horizon. This study furthermore gives empirical evidence for
(a) the consistent superiority of the MAE as a loss function
and (b) the superiority of adaptive optimizers that do not
require manual selection of the learning rate (i.e. Adadelta,
Adam, Adamax and Nadam) over other optimizers.

(3) The dependency between performance metrics and most
accurate optimizer-loss function was investigated. Inde-
pendent of the chosen performance metric, the Adadelta-
MAE combination results in the most accurate forecast per-
formance. Furthermore, a strong relation was observed be-
tween the nRMSE evaluation metric and the MSE loss
function, essentially showing that it may be worth consid-
ering using the MSE loss function if (and only if) the goal is to
minimize the nRMSE of the forecasts.

The remaining part of this study is organized as follows: Section
2 presents the research method that was used throughout this
work. The various parameters of the ANN that are considered in this
study are discussed in Section 3, whereas the analysis of the results
are given in Section 4. Finally, Section 5 presents the conclusions.

2. Research methodology

The aim of this research is to assess how different parameters of
an ANN based forecast model influence its forecast accuracy. To
facilitate this goal an ANN based forecast model is developed in
Python [32]. This Section presents the research methodology used
in this work. First a brief introduction of the ANN concept and its
main parameters is given, followed by the implemented simulation
approach. The Section concludes with information on the wind
power data used in this study.

2.1. Artificial neural networks

An ANN acts as a black box that maps inputs to outputs. In the
case of wind power forecasting, it aims to map inputs such as
observed wind power values or NWP data to future wind power

values. It learns this input-output mapping by training and opti-
mization. A brief summary of the basic form and function of an ANN
is provided here (full details can be found in Ref. [33]). Fig. 1

Synapse Neuron

Weighting Factor

—
Input Layer Hidden Layers Output Layer

Fig. 1. General architecture of an artificial neural network.

illustrates the general structure of an ANN.

It consists of an input layer, one or more hidden layers, an output
layer, and several synapses with their associated weighting factors.
Each layer contains a number of neurons. A synapse is the link
between two neurons of different layers. With respect to the
application of wind power forecasting, the input layer can consist of
either previously observed values of the wind power generation or
numerical weather prediction data (such as wind speed, pressure,
and temperature). Each input variable is assigned to a single neuron
in the input layer. The number of neurons in each hidden layer can
be chosen arbitrarily. Some sort of optimization is required here, as
the number of neurons in the hidden layers influences the forecast
performance. An activation function is used to define the output of
neurons for the next layer, according to (1). The dimension of the
output layer is determined by the number of outputs being
forecasted.

i
Vo=o| > wiy (1)
i=1

The activation function implemented in the ANN for this work is
the rectifier function [34] and can mathematically be described as
(2). It is widely used due to its low forecast error and high sparsity
[35,36].

(1) =max(0,7) (2)

Based on the objective function of the ANN’s optimizer, the
weighting factors are updated using the feed forward back propa-
gation (FFBP) technique [37]. The algorithm for the FFBP technique
can be decomposed in four steps. In the first step the input data is
fed into the ANN, after which a forecasted value is produced, ac-
cording to (3).!

(3)

output layer

1 The derivation of (3) is given in Appendix B.
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¥4 forecasted value of the gth neuron in the output layer.

J: number of neurons in hidden layer p

w; : weighting factor of synapse that connect the jth neuron of
hidden layer p to the gth neuron of the output layer

K: number of neurons in hidden layer p-1

N: number of neurons in input layer

HL 1: first hidden layer

P: number of hidden layers

In the second step, the error between the forecasted output,
which is a function of weighting factors w;, and its actual observed
value is determined using a loss function, see (4). The error is then
back propagated to the output layer. The loss functions are further
discussed in Section 3.3.

JO)=y-y (4)
0: vector containing all weighting factors w;

y :observed output
y: forecasted output

In the third step, the back propagation continues to the hidden
layers. In the final step, the weights are updated, with the aim of
minimizing the error. This algorithm stops when a predefined
number of epochs (i.e. optimization iterations) has been reached.
Usually, the objective function has a form like given in (5). It has the
target to minimize the error between the forecasted and observed
value. It is calculated as an average of loss functions ¢; for individual
training samples i.

1 N
i=1

At the start of each training process, the weights w; need to be
initialized. A well-known initialization method is the Xavier
initialization [38]. However, as was shown in Ref. [39], the Xavier
scheme is not appropriate for the rectifier activation function,
because the scheme requires a linear activation function. Therefore
the authors of [39] proposed the He initialization scheme, which
was used throughout this work. The influence of the weight
initialization methods on the forecast accuracy is out of the scope of
this work.

2.2. Simulation approach

Because of computational limitations, a sequential two step
approach is chosen for the parametric investigation (Fig. 2). A total
of 12 wind farms (sites) with different geographical characteristics
are investigated.

In Step 1, detailed in Fig. 3, the influence of the following pa-
rameters on the forecast accuracy is investigated, leading to a total
of 108 different permutations per site and FH:

- Number of inputs, i.e. the historical data size (HDS): 5, 10, 20°
- Number of hidden layers (HL): 1, 2, 3>

- Number of neurons per hidden layer (Ny): 100% (i.e. equal to
the number of neurons in the input layer) and 50% (i.e. equal to
the average of the neurons in the input and output layer).

- Size of the training data set (TD): 50% and 80% of the test data.

2 Higher number of inputs did not influence the forecast error positively.
3 More hidden layers did not influence the forecast error positively.

STEP 1

. Historic Data Size (HD)
. Number of Hidden

STEP 2

. Optimizers

Layers (HL) ; . |® LossFunctions
e  Neurons per Hidden ”le  Forecast Performance
Layer (Nu)

e Training Data Size (TD) Metric

. Batch Size (BS)

e

—
[T

N

. Two-step simulation approach.

SITE

g
=

o

Perform
Forecasting
Site, HL, FH,
HD, Ny, BS,

TD, nMAE

Fig. 3. Implemented simulation approach for Step 1.

—
o

- Batch size (BS), i.e. amount of observations after which the
weighting factors are updated: 5, 10, 20.

This first step contributes to the first goal of this research and
will provide a set of parameters that lead to the most accurate
forecast.

In Step 2 (Fig. 4) the influence of the optimizer and loss function
on the forecast performance is evaluated. The number of hidden
layers, neurons per hidden layer, and training data size are inputs
from Step 1.

The optimizers that are investigated in this research are the
Stochastic Gradient Descent, RMSprop, Adagrad, Adadelta, Adam,
Adamax, and Nadam. The following loss functions are evaluated:
mean squared error, mean absolute error, mean absolute percent-
age error, mean squared logarithmic error, squared hinge, hinge,
logcosh, binary crossentropy, kullback leibler divergence, poisson,
and cosine proximity. The assessment is carried out for FH 5, FH 15,
FH 30 and FH 60.

The influence of the choice of forecast performance metric, i.e.
normalized Mean Absolute Error (nMAE), normalized Mean Abso-
lute Percentage Error (nMAPE), or normalized Root Mean Square
Error (nRMSE), on the most accurate optimizer-loss function pair is
also assessed.

This second step contributes to the second and third goal of this
research and will identify the optimizer-loss function pair that re-
sults in the most accurate forecast, i.e. lowest nMAE, nMAPE, and
nRMSE.

2.3. Data

Depending on the location of a wind farm, the same forecast
algorithm can result in different forecast accuracies [40]. To ensure
robustness of the results, the analyses in Step 1 and Step 2 are
carried out for 12 wind farms, each with different geographical
characteristics. By doing so, the results can be considered general
enough and can be applied on wind farms with a wide range of
geographical characteristics.

The wind generation data used in this work is retrieved from the
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SITE
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»
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OPT

L

'

136

Fig. 5. Location and site IDs of considered wind farms.

WIND Prospector Toolkit of USA’s National Renewable Energy
Laboratory [41—44], and belongs to 12 different small wind parks of
16 MW each (Fig. 5 and Table 2).

Observed active power generation from the wind turbines is
available with a 5 min resolution for the time span 2007—2012. The
statistical parametric t-test was performed successfully (i.e. rejec-
tion of the null hypothesis) on the data sets to determine if all the
data belonged to the same population.

It should be mentioned that wind power forecasting is based on
the wind farm, geographical and weather information and is in-
dependent of the electricity network. Therefore the forecasting
results are not influenced by the structure and characteristics of the
electricity grid.

3. ANN parameters

This Section gives a short description of the main parameters
that are used throughout this work. Section 3.1 discusses the

Table 2

Wind farm locations.
Site ID Longitude Latitude
136 —93.660828 25.789566
1508 —82.809998 26.368622
7115 —99.497406 30.336601
8501 —77.39856 29.295036
13,604 —88.724579 33.849228
15,184 —80.262238 33.363693
48,312 —73.391205 37.496029
64,408 —70.430237 38.473736
79,930 —123.977585 39.193207
92,687 —118.889999 41.542522
94,690 —118.084106 41.870815
112,142 —90.955688 46.140095

metrics used for evaluating forecast models. Section 3.2 and Section
3.3 briefly introduce the optimizers and loss functions, respectively.

3.1. Forecast evaluation metrics

In order to evaluate the performance of different forecast
models, their accuracies are compared with each other. However,
this only makes sense when the input data is exactly the same
across all models. Evaluating a model’s performance using forecast
accuracies of the model at different geographic locations does not
lead to meaningful conclusions, as the accuracies are influenced by
the geographical characteristics of the wind farms under consid-
eration. The following metrics are widely used for quantifying
forecast accuracies:

Normalized Mean Absolute Error (nMAE):

avaE— 1SNy 5 6)
—P—N;\%—YJ

rated

Normalized Root Mean Square Error (nRMSE):

(7)

Normalized Mean Absolute Percentage Error (nMAPE, also
known as the bias error)
1 100 &
Prated N

Vi — Vi

Vi

nMAPE =

(8)

i=1

In (2)—(4) Py4teq is the nameplate capacity of the wind farm, N is
the number of samples in the data set, y; is the observed value at
timestep i, and y; is the forecasted value at timestep i.

The use of nRMSE for the evaluation of model performance is
discouraged, due to the fact that nRMSE is more sensitive to outliers
(i.e. larger errors are penalized more heavily). In wind speed
datasets that inherently have outliers, nRMSE gives a distorted view
of the forecast accuracy [45]. The nMAE metric is less susceptible to
this as inferred from (6) and is therefore used as much as possible
as the performance metric throughout this work. On the other
hand, when the goal is to minimize the risks resulting from forecast
inaccuracies instead of minimizing the forecast accuracy itself, the
nRMSE metric could be more useful. An example of a risk resulting
from forecast inaccuracies is the imbalance costs that occur in a
power system, due to inaccurate forecasting of the infeed of wind
energy [3]. The evaluation of different performance metrics to
capture the risks associated with forecast inaccuracies is in itself a
research topic that requires a comprehensive study, which is left as
future work. For the optimizer-loss function evaluation all the
above performance metrics are used, in order to illustrate the
impact of the performance metric choice on the most accurate
optimizer-loss function pair.

3.2. Optimizers

The goal of many ANN based models is to converge to a set of
parameters 0 that comply with an objective function J(0). Opti-
mizers in ANNs are required for updating the set of weights 0 used
for mapping the input to the output. Assume a training data set for
a forecasting algorithm containing N samples, each with P di-
mensions. At the i-th iteration, the following holds true for the
parameter set 0:

0;1=0;+ A0; (9)
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The convergence of the weights 0, with the aim of optimizing
the objective function J(0), is achieved through the gradient descent
method. In this method the updated parameter set 0,1 is achieved
by applying small changes A®; which are proportional to the
negative of the gradient of the function at the current point (0;):

A0,~ = — Qg (10)
« :learning rate.
g;: gradient of the parameters at the i-th iteration

Several optimizers exist, which are discussed below.

3.3. SGD

The Stochastic Gradient Descent (SGD) method [46] calculates
the gradient of a loss function J(0) with regards to the weights 0
after each sample pair (x'y'). A learning rate o needs to be deter-
mined manually and remains unchanged throughout the full set of
simulations. For the SGD method, a is identical for all input neurons
and is therefore defined as a global learning rate. The set of weights
0 are updated N times per epoch:

0i1="6; —OlVa]<9;Xi7yi) (11)

On the contrary, when using the batch gradient descent method,
the weights are updated only once per epoch.

3.4. Adagrad

The adaptive gradient descent (Adagrad) algorithm [47] con-
tains a global a.. This «, however, is not constant and is updated after
each iteration i. To implement this adaptive characteristic, Adagrad
introduces an exponentially decaying correction factor for each
dimension P and is based on all previous gradients of dimension P:

o
',7&'
\V Zn:lg%

« :global learning rate.

In this way, each dimension P has its own dynamic A6; which is
inversely proportional to the past gradient magnitudes. Because of
this characteristic, the algorithm is suitable for data sets with high
levels of sparsity [48]. One of the drawbacks of this method is the
manual selection of an initial global o.

A= — (12)

3.5. Adadelta

The Adadelta method [49] dynamically adapts the learning rate
over time using, among others, an exponentially decaying average
of the previous squared gradients. Furthermore, it eliminates the
need for the manual selection of a global o* as shown in (9):

_ RMS[AG];

A= =" Rutsig; @

(13)

One of the advantages of the Adadelta algorithm is that it is
robust against different initial values of o, which is not the case with
the SGD or Adagrad algorithm. The RMSprop and Adadelta methods
are somewhat similar. The main difference is that RMSprop still
requires the manual selection of the learning rate.

4 Full derivation of (9) is available in Ref. [44].

3.6. Adam

The adaptive moment estimation (Adam) method [50], like
Adagrad, determines a unique learning rate o; for each weight 6;,
which is updated for every sample pair x.y'. It uses two correction
factors for the update rule: an exponentially decaying average of
the previous squared gradients (like Adagrad and Adadelta) and an
exponentially decaying average of the previous updates Af;. In
Refs. [50] it was shown that Adam has a better performance than
other adaptive optimizer algorithms. It is among the most popular
optimizers used in ANNs [51]. When Adam is generalized, the
Adamax algorithm is achieved.

3.7. Nadam

The Nesterov-accelerated adaptive moment estimation
(Nadam) method [51] is developed based on the Adam algorithm.
The main difference is that whereas Adam uses a classical mo-
mentum for determining the exponentially decaying factor, Nadam
uses the Nesterov accelerated gradient.

3.8. Loss functions

A loss function is a mathematical formula that calculates the
difference between an observed output and its forecasted value. A
very simple loss function in given in (10):

J0)=y - 14

y : observed output.
yo: forecasted output for weights 0

Several loss functions exist and different loss functions will give
different errors for the same set of input data. As will be proven in
this work, the choice of the loss function has a significant effect on
the performance of the forecast model.

The mean squared error (MSE) is widely used in linear regression
and uses the ordinary least squares method for minimizing the
error. The mean absolute error (MAE) is used to measure the dis-
tance between an observed value and its forecast. Whereas it is
easier to calculate the derivative for the MSE, large errors have a
relatively bigger influence on the MSE. In these cases, the MAE is
more robust to outliers, since the error is not squared. To overcome
this issue, the mean squared logarithmic error (MSLE) loss function
can be used. One of the advantages of this function is that it does
not penalize large differences, given that the observed and fore-
casted values are also large numbers. However, when the large
errors are not related to outliers, MAE is more efficient in mini-
mizing the loss function, as it penalizes the large errors more
severely, and therefore forces a faster convergence of the weighting
factors 0. The mean absolute percentage error (MAPE) is a variant of
MAE. One of the drawbacks of the MAPE is that it cannot be used
when the observed value is 0 (i.e. division by 0).

The mathematical formulas for the loss functions considered in
this research are given below. The mathematical derivation of these
loss functions is out of the scope of this work.

N
Mean Squared Error loss(y,y) :% i — ¥i)? (15)
i=1

1
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All the optimizers and loss functions mentioned in Section 3
have been used for the evaluation of the ANN based forecast model.

4. Results & discussion

This section presents the results of the two previously
mentioned simulation steps. Three questions were investigated.
First, it was investigated how parameters of an ANN based forecast
model influence the model’s performance across different forecast
horizons. Second, the impact of the ANN’s optimizer and loss
function selection on the forecast accuracy was investigated. And
lastly, the influence of the model’s evaluation metric on the ranking
of the most efficient optimizer-loss function combination was
looked into.

4.1. Influence of ANN model parameters on forecast accuracy

The first aim of this research was to examine how the amount of
historical data, batch size, number of hidden layers, number of
neurons per hidden layer, and the amount of training data influence
the forecast accuracy for forecast horizons of 5, 15, 30, and 60 min.
For each of these forecast horizons, several permutations of the
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Fig. 10. Median versus Inter Quantile Range for optimizers.
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above mentioned parameters were produced for analyzing their
impact on the forecast accuracy, measured as nMAE. The analyses
were carried out for 12 different wind farms. For each of these 12
sites, Fig. 6 shows the five best nMAEs per forecast horizon. Fig. 7
depicts for each site the first quartile of the nMAE per forecast
horizon.

Two interesting observations can be made from Figs. 6 and 7.
First, for each of the sites, increasing forecast horizons consistently
lead to increasing forecast errors. As the predictability of the state
of any highly complex system (such as wind power generation)
decreases with increasing look ahead time, the forecast error in-
creases. Similar results were also achieved in Refs. [52—55]. Second,
for the same forecast horizon the forecast errors are different across
the different sites. When comparing different sites, it is observed
that sometimes forecasts with longer look ahead times perform
better (both, the top 5 as well as the first quartile) than forecasts
with shorter look ahead times. The 60 min forecast of site 136 has a
better performance than the 30 min forecast of site 7115, whereas
the 30 min forecast of site 1508 and the 15 min forecast of site
92,687 outperform respectively the 15 min forecast of site 8501 and
the 5 min forecast of site 8501. This is not an attribute of the
forecast model, but is due to the geographical characteristics and
ruggedness of the site. The ruggedness is expressed using the
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ruggedness index (RIX) and higher RIX values lead to increased
forecast errors [56]. Similar conclusions regarding the sensitivity of
the forecast error to site characteristics (i.e. RIX values) were also
achieved in Refs. [54,57,58].

Fig. 8 shows for the four FH how often each of the parameters
ended up in the top 5 nMAE. The higher the presence of a param-
eter in the top 5, the higher its influence on the forecast error.

With the aim of maximizing the system’s predictability with
increasing forecast horizons, the complexity of forecasting algo-
rithms also increases. Two factors that contribute to the algorithm’s
complexity are the architecture of the ANN (i.e. the number of
hidden layers, the number of neurons per hidden layer and, the
historical data size) and the training algorithm (i.e. the batch size
and the test data size).

In terms of the size of the training data set, it can be concluded
that it has a very small sensitivity for the forecast horizon and that
either 50% or 80% of the test data can be used for learning purposes.
However, the lower the size of the training data set, the earlier a
forecast model can be fully operational. In this research the test
data consisted one year of data, which results in a 6 months period
before the model could be fully operational.

Up to FH 30 one hidden layer provided sufficient complexity to
minimize the forecast error (41.7% of the top 5 cases for FH 5, 38.3%
for FH 15 and 46.7% for FH 30 contained one hidden layer). Two
hidden layers claimed a share of 46.7% in the top 5 nMAE for FH 60.
The complexity is even further increased by assigning 10 neurons
per hidden layer for FH 60 (in 46.7% of the top 5 cases), as opposed
to 5 neurons for FH 5 (in 61.7% of the top 5 cases). The share of batch
size 5 in the top 5 cases consistently increases with increasing
forecast horizons (from 36.7% for FH 5—71.7% for FH 60). This means
that compared to FH 5 the algorithm needs to update its weights
more often for FH 60. This increased complexity, resulting from the
increasing hidden layers, neurons per hidden layer, and reduced
batch size, confirms that the longer the look ahead time of the
forecast model, the more complex the ANN structure and training
algorithm will be [59].

Regarding the historical data size, it is observed that HDS 5 and
HDS 10 lead to the most accurate results. Furthermore, a steady
increase in the share of HDS 5 is observed until FH 30. For FH 60 the
share of HDS 5 in the top 5 decreases to 35%, whereas HDS 10 in-
creases to 55%. The reason for this could be the need for increased
observed data required for capturing the dynamics associated with
FH 60, which is confirmed when examining the variance: data sets
associated with FH 60 have a larger variance than datasets associ-
ated with FH 5.

The lowest forecast errors and associated ANN parameters for
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Fig. 12. Median versus Inter Quantile Range for loss functions.
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Table 3
Ranking of optimizer-loss function pairs based on nMAE.
Adadelta (%) Adagrad (%) Adam (%) Adamax (%) Nadam (%) RMSprop (%) SGD (%)
binary cross entropy 0 0 0 0 0 0 0
cosine proximity 0 0 0 0 0 0 0
hinge 0 0 0 0 0 0 0
kullback leibler divergence 0 0 0 0 0 0 0
logcosh 45 0 14 1.8 2.3 0.9 0
MAE 22.7 0.5 14.1 14.5 12.7 8.2 0
MAPE 0 0 0 0 0 0 0
MSE 0.5 0 0.5 0.5 0.5 0.5 0
MSLE 1.8 0 1.8 0.5 1.8 2.7 0.5
poisson 2.7 0 0.5 14 0 0.5 0
squared hinge 0 0 0 0 0 0 0
Table 4 of cases. In order to assess which optimizer and loss function is

Ranking of optimizers when using nMAE, nMAPE, and nRMSE.

Optimizer nMAE (%) nMAPE (%) nRMSE (%)
Adadelta 323 30.9 25.5
Adagrad 0.5 1.8 6.8

Adam 18.2 17.7 19.5
Adamax 18.6 19.1 17.3
Nadam 173 17.3 15.5
RMSprop 12.7 13.2 141

SGD 0.5 0 14

Table 5

Ranking of loss functions when using nMAE, nMAPE, and nRMSE.

Loss Function nMAE (%) nMAPE (%) nRMSE (%)
binary cross entropy 0 0 0
cosine proximity 0 0 0
Hinge 0 0 0
kullback leibler divergence 0 0 0
logcosh 109 123 25.0
MAE 72.7 71.4 34.5
MAPE 0 0 0
MSE 23 23 22.7
MSLE 9.1 7.7 10.9
poisson 5.0 6.4 6.8
squared hinge 0 0 0

each site and forecast horizon are given in APPENDIX A Parameters
of Best Performing ANNS.

4.2. Optimizer-loss function evaluation

The second goal of this research was to identify the optimizer,
loss function and optimizer-loss function combination that resulted
in the most accurate forecasting algorithm. A brute force search
across all possible combinations of optimizer and loss function was
conducted using varying forecast horizons, resulting in thousands

most appropriate, the errors associated with each resulting forecast
(across the 12 selected sites and different forecast horizons) were
calculated. This provided a ranked list of combinations for each site
and FH. Following this, the number of times an optimizer or loss
function appeared in the top 5 of the ranked list was calculated.
This was performed three times, using different error evaluation
methods (nMAE, nMAPE, and nRMSE).

From the results as shown in Fig. 9, it is observed that Adadelta is
the most accurate optimizer (32.3% of the top 5 cases), followed by
Adamax (18.6%) and Adam (18.2%). Adadelta has the biggest share
in the top 5 nMAEs for each forecast horizon: 26.7%, 20%, 31.7%, and
40% for respectively FH 5, FH 15, FH 30 and FH 60.

The best performance of Adadelta can be explained by the fact
that it does not require manual selection of the global learning rate
o (see (13)), unlike e.g. RMSprop and Adagrad. The influence of the
learning rate on the forecast accuracy and required simulation it-
erations have been thoroughly investigated in different fields
[30,60—67]. These studies successfully show the effect of incorrect
selection of the manual learning rate on the forecast performance.
The current work complements these conclusions by providing a
comparison among different optimizers, based on empirical results.
A majority of the publications on ANN based wind forecasting do
not mention the implemented optimizer. The ANNs in Ref. [22—25]
implemented the Levenberg-Marquardt algorithm as optimizer,
whereas ADALINE was used in Ref. [15]. However, none of the
publications elaborate on the choice of optimizer. This study pro-
vides empirical evidence on the superiority of the Adadelta opti-
mizer for short-term wind forecasting.

Fig. 10 plots for each optimizer the median versus the inter
quartile range (IQR) of the nMAE. The left graph gives an overview
of the performance of all optimizers, whereas the right graph fo-
cuses on the optimizers with the lowest median and the lowest IQR.
It indeed shows Adadelta as the optimizer with the lowest median.
Depending on the trade-off between variability (i.e. IQR) and ac-
curacy (i.e. median), users can chose different optimizers as the

Table 6
Ranking of optimizer-loss function pairs based on nMAPE.
Adadelta (%) Adagrad (%) Adam (%) Adamax (%) Nadam (%) RMSprop (%) SGD (%)

binary cross entropy 0 0 0 0 0 0 0
cosine proximity 0 0 0 0 0 0 0
hinge 0 0 0 0 0 0 0
kullback leibler divergence 0 0 0 0 0 0 0
logcosh 4.5 0 0.9 2.7 23 1.8 0
MAE 214 1.8 14.1 13.2 13.2 7.7 0
MAPE 0 0 0 0 0 0 0
MSE 0.5 0 0.5 0.5 0.5 0.5 0
MSLE 14 0 1.8 0.5 14 2.7 0
poisson 3.2 0 0.5 23 0 0.5 0
squared hinge 0 0 0 0 0 0 0




888 V.N. Sewdien et al. / Renewable Energy 161 (2020) 878—892

Table 7
Ranking of optimizer-loss function pairs based on nRMSE.
Adadelta (%) Adagrad (%) Adam (%) Adamax (%) Nadam (%) RMSprop (%) SGD (%)

binary cross entropy 0 0 0 0 0 0 0
cosine proximity 0 0 0 0 0 0 0
hinge 0 0 0 0 0 0 0
kullback leibler divergence 0 0 0 0 0 0 0
logcosh 5.9 2.7 4.1 2.7 5.5 4.1 0
MAE 10 14 7.7 7.7 45 3.2 0
MAPE 0 0 0 0 0 0 0
MSE 55 23 45 4.1 32 32 0
MSLE 1.8 0.5 14 1.8 14 2.7 14
poisson 2.3 0 1.8 0.9 0.9 0.9 0
squared hinge 0 0 0 0 0 0 0

4 =4—No Opt/Loss tuning
=4— Opt/Loss tuning

NMAE (%)
(o]

.
FH 30
Forecast Horizon (minutes)

‘
FH5 FH 15 FH 60

Fig. 13. nMAE comparison with and without optimizer-loss function tuning.

preferred algorithm.

Based on the ranking of the loss functions, as depicted in Fig. 11,
the mean absolute error results in the most accurate forecasting
algorithm (72.7% of the top 5 cases). This holds true across all the
investigated forecast horizons: its share in the top 5 nMAEs for each
forecast horizon is 30%, 51.7%, 100%, and 85% for respectively FH 5,
FH 15, FH 30 and FH 60. It is worth noting that the mean absolute
error remains the best loss function, independent of the choice of
performance metric, i.e. nMAE, nMAPE and nRMSE. This is
explained by the fact that the relation between the loss function
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t/Loss t
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Fig. 14. Additional improvement in nMAE as a result of optimizer-loss function tuning.

and any performance metric is unidirectional: the loss function
influences the performance of the forecasting algorithm, but not
the other way around. The goal of the loss function is to calculate
the difference between a forecasted and observed value in the
feedforward backpropagation algorithm, which is then used as
input for the optimizer. Depending on the performance of the loss
function, the weights of the neurons in the ANN are adjusted to
facilitate the convergence of the optimizer.

This is an interesting result, considering the fact that most of the
wind generation forecast models in literature have implemented
the MSE as loss function, e.g. Ref. [13,15,20—24]. This can be
explained by the fact that historically, the (R)MSE has been popular,
largely because of its theoretical relevance in statistical modelling
[68]. However, as these are more sensitive to outliers than the MAE,
using (R)MSE results in a slower convergence of the forecasting
algorithm, leading to less accurate results for the same number of
epochs. This study gives empirical evidence for the consistent su-
periority of the MAE as a loss function.

As was done for the optimizers, Fig. 12 illustrates the median
versus the IQR for each loss function. The figure on the left gives a
global overview of all the loss functions, whereas the figure on the
right zooms in on the region of interest (i.e. low median and low
IQR). One ANN configuration using the logcosh loss function has the
lowest median, whereas the mean absolute error performs better
on the IQR. As was the case with the optimizers, users might choose
different loss functions as the preferred choice, depending on the
trade-off between the variability and accuracy.

Table 3 gives for each considered optimizer-loss function pair its
share in the top 5 nMAEs. From this Table it is observed that the
Adadelta-MAE pair results in the most accurate forecast model,
with a share of 22.7% in the top 5 nMAEs. The second best
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Fig. 15. Observed versus forecasted values of most accurate implemented algorithm.
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combination is the Adamax-MAE pair (14.5%), followed by the
Adam-MAE pair (14.1%).

4.3. Influence of forecast performance metrics

The third goal of this research was to identify whether there
exists a relation between the forecast performance metrics (i.e.
nMAE, nMAPE and nRMSE) and the most accurate optimizer, loss
function, and optimizer-loss function combination. The most used
performance metrics are the RMSE (used in Refs. [21,24,26—29]),
the MAE (used in Refs. [21,27,29—-31]) and the MAPE (used in
Refs. [21,22,27—29,31]).

Table 4 shows for the investigated optimizers their share in the
top 5 nMAE, nMAPE and nRMSE. The order of the best optimizer is
the same across all performance metrics, with the only difference
for the nRMSE: Adam comes second and Adamax comes third (it’s
the other way around for nMAE and nMAPE). Therefore it is
concluded that the forecast performance metric has a negligible
influence on the optimizer’s ranking. Looking at the share of the
optimizers in the top 5, it is clear that the adaptive optimizers that
do not require manual selection of the learning rate (i.e. Adadelta,
Adam, Adamax and Nadam) clearly outperforms the other
optimizers.

For the loss functions, a strong relation is observed between the
nRMSE metric and the MSE, as is shown in Fig. 11 and Table 5.
Irrespective of this, the results show that it is still more appropriate
to use the mean absolute error as the loss function and the results
suggest that this is the best all-purpose loss function — particularly
if one is concerned with nMAE or nMAPE forecast errors. Table 5
Ranking of loss functions when using nMAE, nMAPE, and nRMSE.

The shares of the different optimizer-loss function combinations
in the top 5 when using the nMAE forecast performance metric, is
given in Table 3. Table 6 and Table 7 give the shares in the top 5
when using nMAPE, respectively nRMSE.

From these tables it is observed that the Adadelta-MAE pair
results in the most accurate forecast model, independent of the
metric used for evaluating the model’s performance. Adam-MAE
and Adamax-MAE are the next best pairs. The results suggest that
Adadelta is the most appropriate optimizer regardless of the error
that is being minimized. However, the shares differ significantly
when nRMSE is used. In this case, optimizer-loss function pairs
with MSE as the loss function have a major increase in their top 5
shares.

4.4. Value of increased forecast accuracy

The plots in Fig. 13 and Fig. 14 illustrate the achieved improve-
ments in forecast accuracies when optimizers and loss functions
are properly selected (i.e. the best possible selections are made)
compared to when they are not. For the 5 min and 60 min horizons,
improvements of 9%-pts, respectively 4%-pts can be gained, high-
lighting the importance of correct ANN design.

Placing this in perspective: for a 100 MW wind farm in the UK, a
1.2%-pts improvement in the nMAE could result in an increased
estimated yearly revenue of 177,000 EUR [69]. Similar analysis were
carried out for Ireland [70], Spain [71] and the IEEE 118-bus test
system [3], where the decrease in system operational costs and
increase in the revenue of wind farm owners as the result of im-
provements in the forecast accuracy were presented. The benefits
of improved forecast accuracies are not only limited to wind gen-
eration. In Ref. [2] the decrease in costs for ramping, curtailment
and system operation due to improved solar power forecasting are
presented.

Due to smoothing effects, the forecast accuracy may even
further decrease with increasing geographical area. When

compared to the forecast of a single wind farm (as is the case in this
research), forecast errors on control area level are up to 63% lower
[72].

Based on the results of this work, a forecasting algorithm was
developed with parameters tuned to lead to the most accurate
results. An overview of the observed and forecasted values
(including 95% confidence interval) for one instance are given in
Fig. 15.

Summarizing, the following key findings result from the pre-
sented work:

- Increasing look ahead times require more frequent updates of
the ANN’s weights, reducing the most efficient batch size to 5;
For the historical data size, it is observed that HDS 5 and HDS 10
lead to the most accurate results;

It was found that the influence of the considered amount of
training data, i.e. 6 months (50%) or 9.6 months (80%), is rather
limited;

- Adadelta was found to be the most accurate optimizer, as it does
not require manual selection of a global learning rate. The su-
periority of adaptive optimizers that do not require manual
selection of the learning rate over other optimizers was proven;
The MAE loss function leads by far to the most accurate fore-
casts, in contrast to the MSE, which is commonly used in
literature;

A strong relation was observed between the nRMSE evaluation
metric and the MSE loss function, essentially showing that it
may be worth considering using the MSE loss function if (and
only if) the goal is to minimize the nRMSE of the forecasts.

The analysis in this work focused on two categories of param-
eters. The results obtained for the ANN-structure related parame-
ters (e.g. number of hidden layers, neurons) are also applicable for
hybrid models, as they reveal which parameters have a large in-
fluence (e.g. batch size) on the forecast accuracy and which do not
(e.g. training data). For this category of parameters, any considered
forecasting method would need retuning of the suggested
parameters.

The conclusions regarding the ANN-algorithm related parame-
ters (i.e. optimizer and loss function) would remain valid for hybrid
and complex ANN models. Hybrid and complex ANN models
changes the ANN'’s structure (e.g. smaller historic data size, larger
batch size, etc.) and it was found that the most superior optimizer
and loss function are not dependent on the ANN-structure related
parameters (more so for the loss function than for the optimizer).
Therefore, these results are valuable and transferable to other
forecasting methods utilizing ANNs.

5. Conclusions

The share of cheap, volatile wind energy in the generation
portfolio of power systems is rapidly increasing across the world. Its
intermittent nature, however, poses new challenges for system
operators, with balancing being one of them. Therefore accurate
forecasting of wind generation becomes crucial for secure and
efficient system operation.

This research focused on forecasting wind generation for near
real time and operational planning purposes across forecast hori-
zons of 5, 15, 30, and 60 min. The main contributions of this
research are as follows. First, it was investigated how different
parameters of an ANN based forecasting algorithm influence the
forecast accuracy. It was found that increasing look ahead times
require more complex ANNSs. For up to 30 min ahead, the highest
accuracy is achieved if the ANN has 1 hidden layer and 5 neurons
per hidden layer. For 60 min ahead, 2 hidden layers and 10 neurons
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per hidden layer are required. The increasing complexity, related
with the increasing look ahead times, also requires more frequent
updates of the weights, reducing the most efficient batch size to 5.
For the historical data size, it is observed that HDS 5 and HDS 10
lead to the most accurate results. Furthermore, it was shown that
the influence of the amount of training data, i.e. 6 months (50%) or
9.6 months (80%), is rather limited. The models were capable of
achieving the same accuracies with 6 months of data, which could
result in earlier deployment of such forecast models.

Second, the optimizer, loss function, and optimizer-loss function
pair that lead to the most accurate forecasts were identified. Ada-
delta was found to be the most accurate optimizer, as it does not
require manual selection of a global learning rate. This study
furthermore gave empirical evidence for the superiority of adaptive
optimizers that do not require manual selection of the learning rate
(i.e. Adadelta, Adam, Adamax and Nadam) over other optimizers.
Whereas the RMSE was found to be the preferred loss function in
literature, the results obtained in this study do reveal that the MAE
by far leads to the most accurate forecasts. The Adadelta-MAE pair
was also identified as the most accurate optimizer-loss function
combination.

Finally, the relation between the identified optimizer-loss func-
tion pair in the previous step and the choice of evaluation metric
(nMAE, nMAPE, nRMSE) was investigated. Whereas the Adadelta-
MAE pair remains the most accurate combination independent of
the evaluation metric, a strong relation was observed between the
nRMSE evaluation metric and the MSE loss function. This is essen-
tially showing that it may be worth considering using the mean
squared error loss function if (and only if) the goal is to minimize the
nRMSE of the forecasts.

The studies conducted in this work were based on data retrieved
from 12 different wind farms, each with their own geographical
characteristics, and should therefore increase the applicability of
the obtained results.

The analyses in this research focused on forecasts for short-term
operational planning up to 60 min ahead. Future research could be
directed towards the same exercise for hybrid forecast models,
containing ANNs and NWP models. This would enable longer
forecast look ahead times.
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APPENDIX A. Parameters of Best Performing ANNs

The lowest forecast errors and associated ANN parameters for
each investigated site and forecast horizon are given in the tables
below.

Appendix B. Mathematical Expression of Feedforward
Algorithm

This Appendix derives the mathematical formula for the feed-
forward forecast algorithm. Consider Fig. A1 The ANN has 1 input

Table 8

Best ANN parameters for FH 5
Site FH HL Ny BS HDS TD nMAE (%)
136 5 2 5 10 10 0.8 2.405
1508 5 1 5 5 10 0.8 1.252
7115 5 3 5 5 10 0.5 1.534
8501 5 1 10 5 10 0.5 2.363
13,604 5 1 10 5 10 0.5 1.526
15,184 5 1 5 10 5 0.5 1.613
48,312 5 2 5 10 5 0.5 1.340
64,408 5 3 5 5 5 0.5 1.874
79,930 5 1 10 5 10 0.5 0.871
92,687 5 2 5 5 5 0.5 0.468
94,690 5 1 3 5 5 0.5 0.828
112,142 5 3 3 5 5 0.5 1.160

Table 9

Best ANN parameters for FH 15
Site FH HL NuL BS HDS D nMAE (%)
136 15 2 3 5 5 0.8 3.606
1508 15 3 3 20 5 0.5 2.537
7115 15 1 10 10 10 0.8 4.582
8501 15 1 10 20 10 0.5 4116
13,604 15 3 10 5 10 0.8 3.921
15,184 15 1 3 10 5 0.5 4.108
48,312 15 1 5 5 5 0.8 2910
64,408 15 2 5 10 10 0.8 3.819
79,930 15 3 5 5 10 0.8 2.151
92,687 15 2 3 5 5 0.5 1.906
94,690 15 3 10 5 10 0.8 2.926
112,142 15 2 5 5 5 0.5 3.718

Table 10

Best ANN parameters for FH 30
Site FH HL Ny BS HDS TD nMAE (%)
136 30 1 10 10 10 0.5 4.442
1508 30 3 5 10 5 0.5 3.409
7115 30 2 3 5 5 0.5 6.911
8501 30 3 5 5 5 0.5 4.893
13,604 30 1 5 10 5 0.8 6.547
15,184 30 2 5 5 5 0.8 6.049
48,312 30 3 5 5 5 0.5 4.447
64,408 30 1 10 10 10 0.8 4.930
79,930 30 3 20 5 20 0.2 4,035
92,687 30 3 5 5 5 0.8 3.503
94,690 30 1 5 5 5 0.5 5.272
112,142 30 1 5 10 5 0.5 6.215
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Table 11

Best ANN parameters for FH 60
Site FH HL Ny BS HDS TD nMAE (%)
136 60 2 5 5 10 0.8 5.840
1508 60 2 10 5 10 0.8 5.288
7115 60 3 10 5 10 0.5 11.542
8501 60 3 5 5 5 0.5 6.347
13,604 60 3 5 5 5 0.5 9.331
15,184 60 1 3 5 5 0.5 10.737
48,312 60 2 10 5 10 0.8 6.389
64,408 60 3 10 5 10 0.8 7.257
79,930 60 2 5 5 5 0.5 6.053
92,687 60 2 10 5 10 0.8 6.053
94,690 60 3 10 5 10 0.5 7.985
112,142 60 3 5 5 10 0.8 9.554

layer with three input neurons, two hidden layers with four neu-
rons each and one output layer with two neurons. Weight wj;
represents the weighting factor of the synapse connecting neuron i
to neuron j. For simplicity reasons, the activation function @(.) is
shown only for the output layer Fig. Al. However, all neurons,
except those in the input layer, have an activation function in the
same structure as is shown for the output layer.

Fig. A1l. Artificial neural network..

The value of the neurons in the first hidden layer (i.e. uy, uy, us,
uy) are calculated as given in (A1).

Uy = @(X1.W11 +X2.Wo 1 + X3.W311;
Uy = @(X1.W12 +X2.Wp 5 +X3.W3
us = o(xq W13 +X2.Wp3 +X3.W33
Uy = (p(X] W14 +X2.Wp g4 +X3.W34

(A1)

With N neurons in the input layer and K neurons in the first
hidden layer, (A1) can be generalized to (A2).

N
Ug=¢ Z Whn k-Xn (A2)
n=1

Similarly, the value of the neurons in the second hidden layer
are calculated using (A3).

b1 = (PEULWM + Uz Wy 1 +U3.W3 1 + U4~W4,1;
D2 = (U1 W12 +Up.Wp o +U3.W3 3 + Ug.Wy )
D3 = @ELH W13+ U Wy3+U3.W33 + U4~W4,3;
DPa = @(U1.W1 4 + Uy W3 4 + U3.W3 4+ Ug.Wyy4

(A3)

With K neurons in the first hidden layer and ] neurons in the
second hidden layer, (A3) can also be generalized:

K
pi=o( > wijug (A4)
=1

The value of the neurons in the second hidden layer can be
expressed in terms of the neurons of the input layer by substituting
(A2) in (A4):

K N
Di=¢ Z Wij-® Z Wi k-Xn (A5)
k=1 n=1

The values of the neurons in the output layer are calculated
using (A6) and can be generalized to (A7).

{Y1 = ¢EP1-W1,1 +D2.W2 1 +P3.W3 1 +Pg.Wq (A6)
Y2 = @(D1 W12 +P2.W33 +P3.W32 +PDg.Wyq>

J
Ya=o¢| > _ WigDp; (A7)
=

Finally, when substituting (A5) in (A7), the generalized mathe-
matical relation of the input neurons and the output neurons in
obtained:

J K N
Va=o| 2_Wige| D Wijo| X WniXn (A8)
Jj=1 k=1 n=1

Equation (A8) describes the concept of the feedforward fore-
casting algorithm.
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