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Abstract Understanding, comparing, and accurately predicting water demand at different spatial scales
is an important goal that will allow effective targeting of the appropriate operational and conservation efforts
under an uncertain future. This study uses data relating to water consumption available at the household
level, as well as postcode locations, household characteristics, and weather data in order to identify the
relationships between spatial scale, influencing factors, and forecasting accuracy. For this purpose, a
Gradient Boosting Machine (GBM) is used to predict water demand 1–7 days into the future. Results show
an exponential decay in prediction accuracy from aMean Absolute Percentage Error (MAPE) of 3.2% to 17%,
for a reduction in group size from 600 to 5 households. Adding explanatory variables to the forecasting
model reduces the MAPE up to 20% for the peak days and smaller household groups (20–56 households),
whereas for larger aggregations of properties (100–804 households), the range of improvement is much
smaller (up to 1.2%). Results also show that certain types of input variables (past consumption and
household characteristics) become more important for smaller aggregations of properties, whereas others
(weather data) become less important.

1. Introduction

The effectiveness of future efforts, technologies, and conservation strategies is heavily dependent on
accurately predicting water demand at the appropriate scale. From emerging technologies (e.g., gray water
recycling at the household level) to conservation campaigns (e.g., changing customer's attitudes) or even
future investments (e.g. building new reservoirs), solutions are typically targeted at a certain level of spatial
aggregation. Thus, accurately predicting demand at the appropriate scale is of the utmost importance for
their success.

As part of the commitment to sustainably manage their water resources, water companies are required to
reduce per capita consumption (PCC) and leakage, in order to reduce the impact they have on the environ-
ment (Ofwat, 2017). According to the Office for National Statistics, PCC in the United Kingdom is the fifth
highest in the EU (Bailey, 2019), amounting to a total of 114 L per capita per day. Gaining a better under-
standing of the factors that influence water use at different spatial scales can assist with developing improved
water demandmanagement strategies and curbing demand. Leakage also remains at relatively high rates, as
approximately 23% of the total inflow into the network is lost through leaks (Ulanicki et al., 2009). Ofwat,
one of the U.K. water industry's regulators, has challenged water companies to reduce this figure by 15%
by 2025 (Ofwat, 2019).

Operators can choose to estimate leakage at different reporting levels, such as district meter areas (DMAs),
water resource zone levels, or even an intermediate zone level within the distribution network (Ofwat, 2018).
In order to do this, they need to be able to accurately forecast water demand at different levels within the
network. Therefore, the forecasting accuracy that can be achieved at each level, as well as the factors that
determine it need to be assessed. This will allow water companies to make informed decisions and their
regulator to accurately assess their performance.

However, predicting water demand is not an easy task as there are many uncertainties involved in the pro-
cess. Themain challenges arise from the tight relationship between the human and natural systems in urban
environments, where more than half of the population currently resides (House‐Peters & Chang, 2011), as
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well as the many time‐ and space‐dependent factors that can influence water consumption (Parker &
Wilby, 2013). Furthermore, the maximum prediction accuracy that can be achieved as well as the most
influential explanatory factors can vary greatly depending on the spatial scale. When aggregating large areas,
the demand signal is fairly smooth since it averages out over a large number of water users. On the other
hand, small‐scale water use is likely to be associated with increased noise in the data, leading to a higher
uncertainty and thus increased errors.

This study explores in detail and quantifies the relationship between spatial scale and demand forecasting
accuracy while identifying the respective importance of different input variables. For this purpose, a
Gradient Boosting Machine (GBM) is built that uses a variety of input factors as explanatory variables, to
predict consumption 1–7 days into the future for different household group sizes. Overall, it aims to answer
two main questions:

1. What is the maximum demand forecasting accuracy that can be achieved at different spatial scales?
2. What are the most important influencing factors at each spatial scale?

The current paper is organized as follows. The next section discusses the results and shortfalls of previous
studies that implemented some sort of spatial variability in their water demand forecasting models. This is
followed by a brief description of the data that was used in the study. The methodology section provides
an overview of the model‐building process, in terms of the different spatial scales, input variable selection,
and description of the modeling technique. The next part presents the results of the study, in terms of the
accuracy and influencing factors. Finally, the paper concludes with a discussion of the messages derived
from this paper and a brief summary of key results and conclusions.

2. Background

Several studies attempted to predict water consumption, using a great variety of data, models, methods, as
well as explanatory variables (Adamowski et al., 2012; Anele et al., 2017; Brentan et al., 2017; Herrera
et al., 2010; Hutton & Kapelan, 2015; Matos et al., 2014; Romano & Kapelan, 2014; Prescott & Ulanicki,
2008; Tiwari & Adamowski, 2013; Xenochristou et al., 2018; Zubaidi et al., 2018). Some studies in the litera-
ture even accounted for the spatial variability of water demand (Balling et al., 2008; Chen & Boccelli, 2018;
House‐Peters et al., 2010; House‐Peters & Chang, 2011; Lee et al., 2010; Maheepala et al., 2011; Polebitski &
Palmer, 2010; Rathnayaka et al., 2017a). Lee et al. (2010) used space‐time variation and projections on popu-
lation density to forecast water demand for the city of Phoenix over a time‐space‐dependent grid. Although
integrating future estimates in the forecasting methodology improved the forecasting accuracy, Lee
et al. (2010) argued that additional input factors (other than population density) could improve the forecast-
ing accuracy. Rathnayaka et al. (2017a) introduced amodel that predicts water end‐uses for different types of
households at multiple temporal and spatial scales. Although this approach made use of a variety of house-
hold, temporal, and weather characteristics as predictors, it did not deal with consumption at each scale as a
separate problem. Instead, the total consumption was constructed by merely adding the individual end‐uses
of the households in each aggregation of properties. A study by Balling et al. (2008) investigated water con-
sumption among census tracts and the effect that several weather variables have on it. Using a variety of
explanatory variables, it concluded that census tracts' sensitivity to drought depends heavily on their socio-
economic and land use characteristics (particularly the presence of pools). However, results were only tested
at the census tract scale. House‐Peters et al. (2010) investigated the drivers of water demand in Hilsboro,
Oregon, and concluded that drought condition was not a good predictor of water use at the study area level,
although it was for certain census blocks containing large, new, affluent, and well‐educated households.

As it becomes apparent, although few studies implemented spatial variability in their forecasting models,
there are certain limitations. One of the limits for comprehensive spatial analysis of water demand has been
data availability at high spatial resolutions or in many cases the level of spatial aggregation of water con-
sumption data not matching the scale of the explanatory variables. In order to overcome this problem,
researchers often have to rely on interpolating or extrapolating data (House‐Peters & Chang, 2011; Lee
et al., 2010), that is, estimating values for locations within the study area or outside the study area, respec-
tively, which can be a challenging process (Lee et al., 2010). Even when data are available at the household
level, it often lacks spatial coordinates (House‐Peters & Chang, 2011), sometimes due to privacy concerns.
Another main problem derived from the current literature is the lack of a systematic comparison of
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accuracy and influencing factors at various spatial scales. Since the variables that influence water consump-
tion and the range of temporal and spatial scales can vary greatly at different settings and case studies, this
comparison cannot be derived by merely comparing the results of different studies in the literature. To sum-
marize, although a substantial increase in data availability, computational power, and new technologies
over the recent years has contributed in developing spatially explicit demand forecasting models, as well
as identifying and quantifying relationships among a variety of weather, social, and water consumption data
(House‐Peters & Chang, 2011; Rathnayaka et al., 2017b; Xenochristou et al., 2018), there is still the need to
develop methodologies that incorporate this information at multiple spatial scales (House‐Peters &
Chang, 2011).

This study aims to address this gap by making use of a very rich data set comprising of a variety of household
characteristics, weather data, temporal characteristics, and past consumption. The aim is to use these data to
identify and quantify the influence of the drivers of water demand at multiple spatial scales and determine
how they contribute to the accuracy of demand forecasting models.

3. Data
3.1. Data Description

The consumption data comes from a region in the southwest of England and relates to 1,793 properties.
These were monitored by the water company using smart meters at 15–30 min intervals, over a period of
almost 3 years (October 2014 to September 2017). The raw data set was carefully cleaned in order to exclude
incorrect and missing data, empty properties, and leakage. This process removed readings of more than
450 L/hr, as well as readings that remain unchanged for more than 24 hr. In addition, in order to exclude
small, constant leakages, the days and households with less than 10% and the months with less than 20%
of readings that are equal to 0 were also removed from the data set. A detailed description of the cleaning
process can be found in Xenochristou, Kapelan, and Hutton (2020).

The water company also collected data related to the households' characteristics and partial postcodes.
Information regarding the garden size, occupancy rate, metering status, rateable value of the property, resi-
dents' socioeconomic status (ACORN), and council tax band became available at the household level. The
occupancy rate of the household refers to the number of people living in the property, whereas the metering
status reflects if the property is billed based on their meter reading or not. In the United Kingdom, approxi-
mately half of the properties are unmetered (Xenochristou, Kapelan, & Hutton, 2020) and their water bill is
calculated based on an estimation, partly dependent on the property's rateable value. The higher the rateable
value of the property, the higher the water bill (for unmetered properties). ACORN is a geodemographic seg-
mentation of the U.K.'s population in customer types, based on social factors and population behavior (CACI
Limited, 2014). According to the ACORN guide, customers are divided into Groups A to Q, with Groups A to
E classified as affluent, F to J as comfortable, and K to Q as financially stretched. The council tax band
reflects the council tax rate the property belongs to, based on its location. Council tax bands vary from A
to H, from the lowest (A) to the highest (H) paying band. The garden size is the size in m2 of the property's
garden. Finally, postcodes in the United Kingdom are composed of four parts, indicating the area, district,
sector, and unit the house belongs to (Royal Mail, 2012). In this study, only the first two parts of the postcode,
corresponding to the area and district, were available and used to group the properties.

Each one of the above six household characteristics (garden size, rateable value, occupancy rate, council tax
band, rateable value, and ACORN group) divides the data set into different categories, depending on the
individual attributes of each household in the data set. For example, depending on the characteristic “garden
size,” the households are divided into three categories, “large,” “medium,” and “small,” reflecting the size of
the garden of the corresponding household. The categories created for each household characteristic are pre-
sented in Table 1. Out of all six characteristics, two of them (garden size andmetering status) were organized
into categories by the water company, whereas the rest of them (rateable value, acorn group, occupancy rate,
and council tax band) were divided by the authors. The aim in forming these categories was to create groups
that were large enough to be representative, while at the same time being distinct enough from the rest of the
groups to offer a certain explanatory value. A z statistic was used here to assess the similarity between the
groups. For example, the similarity between the distributions of daily consumption values over the 3 years
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in the data between council tax Bands A, B, and C was assessed using a z statistic and was deemed similar
enough to group them together into Categories A–C.

Furthermore, weather data on air temperature, soil temperature at 10 cm depth, humidity, sunshine
duration, and rainfall became available by the U.K.'s Meteorological Office (Met Office). These data were
recorded at the hourly or daily scale over the same period (October 2014 to September 2017), from hundreds
of weather stations across the study area, as part of the Met Office Integrated Data Archive System (MIDAS)
Land and Marine Surface Stations Data (Met Office, 2006a, 2006b, 2006c, 2006d, 2006e). When recorded
hourly, the values were transformed to either mean or total daily values. One additional weather variable
was created based on the rainfall data, indicating the number of consecutive days without rain. Since
weather data was gathered from hundreds of weather stations across the southwest, one value for each
weather variable was calculated as a weighted sum of the recorded values among all weather stations.
Each property was assigned to the weather station in the closest proximity and the weight of each weather
station was based on the number of properties assigned to it. The more properties a weather station was the
closest to (more than any other station), the higher the weight of its recordings (Xenochristou, Kapelan, &
Hutton, 2020).

Figure 1 gives a brief overview of the distribution of the six weather variables over the period of the study.
Weather in England is characterized by mild temperatures and consistent rainfall all year round.
Generally, maximum air temperatures vary between 5°C and 25°C, with very few exceptions, mostly over
the winter and summer months (Figure 1). Springs and summers are generally characterized by higher
temperatures, increased sunshine hours and lower humidity, although seasonality is not as prominent as
in continental climates. Finally, the total amount of rainfall seems to be reduced over the spring and summer
months. The presence of rainfall, however, which is often found to be the determining factor in water
demand forecasting studies, is consistent over all seasons, although it appears to be lower over the winter
months.

Previous analysis explored the interactions and correlations between all available explanatory variables
(Xenochristou, 2019). Although results showed that most household variables are weakly to moderately
correlated, these interactions were not strong enough to justify excluding any one of them from the model
(Xenochristou, 2019). Out of the six household variables examined here, the council tax band is the most
interrelated one, as it correlates with the acorn group as well as the property's rateable value and garden size.
In terms of the weather variables, a strong correlation was identified between air and soil temperature, as
well as between rainfall and days without rain (R2 > 0.90). Since the rainfall amount has a limited impact
on water consumption in the United Kingdom and soil temperature has a lesser effect than air temperature,
these two variables were excluded from further analysis (Xenochristou, Kapelan, & Hutton, 2020). Only four
weather variables, the maximum air temperature, total sunshine duration, relative humidity, and number of
days without rain are included in the following.

4. Methodology

This section describes the main steps of the model development process. These include the selection of the
spatial aggregation levels and candidate input variables, as well as the description of the modeling technique
and model technical implementation and assessment.

Table 1
Household Characteristics and Their Corresponding Categories

Garden size Rateable value Metering status

Large (>165 m2) High (top 30%) Metered (billed on meter reading)
Medium (61–165 m2) Medium (mid 40%) Unmetered (billed on an estimation)
Small (<60 m2) Low (bottom 30%)

ACORN group Occupancy rate Council tax band

Affluent (ACORN Groups A–E) High (3+ occupants) High (Tax Groups A–C)
Comfortable (ACORN Groups F–J) Medium (2–3 occupants) Medium (Tax Groups D–E)
Financially stretched (ACORN Groups K–Q) Low (1 occupant) Low (Tax Groups F–H)
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4.1. Spatial Aggregation

Initially, the households are grouped spatially based on their postcodes. This way, it is easy to ensure that
properties that are grouped together are in close geographical proximity and each property is counted exactly
once. As a result, the following three levels of spatial aggregation are created:

1. Network grouping: No grouping criteria are used. Consumption is aggregated among all properties for
each day in the data (Network; Figure 2a). Due to errors and inconsistencies, consumption is not avail-
able for every property over each day. Therefore this group can vary in composition among different days,
that is, include a slightly different collection of properties. The network group consists of 1,056 data
points (each data point represents 1 day), with 64–804 properties in each one, depending on data avail-
ability for the corresponding day.

2. Area‐based grouping: The first part of the postcode (e.g., BA) is used to group the properties into one of
six areas. This group consists of 6,336 data points (Areas; Figure 2a), with 1–212 properties in each one
(depending on data availability for the corresponding postcode and day). Each data point represents
the consumption of an area for 1 day.

3. District‐based grouping: The first and second part of the postcode (e.g., BA1) is used to group the proper-
ties into districts. This group consists of 76,032 data points (Districts; Figure 2a), with 1–56 properties in
each one (depending on data availability for the corresponding postcode and day). Each data point repre-
sents the consumption of a district for 1 day.

The three aggregation levels have a different range in household composition (i.e., the types of households
they consist of) among the groups. The smaller (district) groups are a lot more diverse in terms of the types of
households they contain, compared to the relatively homogenous network grouping. If there were no gaps in
the data and information for all households was available for each day in the data set, all days would contain
information about the same properties. Therefore, no variation would exist when aggregating the whole net-
work. More details regarding the household composition of each aggregation of properties are available in
the supporting information.

Figure 1. Variation of weather variables within each season over the period of the study.
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In order to create additional spatial scales, the household group size is set to a fixed number (from 5 to 600),
for each postcode and level of spatial aggregation (Figure 2b). Each aggregation level contains a number of
household groups for each day (this might slightly vary due to missing data), which is 63 for the district level,
6 for the area level, and 1 for the network level. When the household group size is set to a fixed number, the
groups that are smaller than the threshold are excluded from the data set, whereas the groups that are larger
are reduced to the fixed number of properties. When this threshold increases, the number of data points
decreases, as groups with less than the required number of households are removed from the data. The result
is nine different spatial scales, comprising of different household group sizes (Figure 2b). The group sizes are
set to 5, 10, and 20 for the district groups, 40, 80, and 120 for the area groups, and 200, 400, and 600 for the
whole network. The dots in Figure 2b illustrate the number and size of household groups that correspond to
each spatial scale, for each day in the data.

4.2. Model Inputs

As it was mentioned in the data section, a variety of input variables became available, including past
consumption and weather data as well as postcodes and household characteristics. Based on their nature,
the variables were divided into four distinct types:

Figure 2. (a) Range of household group sizes for each level of spatial aggregation among days and groups. Each grey dot
represents one household group. The number of the dots represents the number of groups in each spatial scale. The
size of the dots reflects the number of houses in each group. (b) Spatial scales created using the level of spatial
aggregation and a fixed group size, varying from 5 households for the district level to 600 for the network level.
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1. Past consumption data: Past consumption data are aggregated temporally at the daily level and spatially
at multiple scales. A sliding, 7 day window of past consumption is used as input in order to capture the
weekly repetition of demand patterns. This means that for every day in the data, the mean daily con-
sumption for each one of the 7 days prior to it was used to make predictions.

2. Household characteristics: These refer to the occupancy rate, acorn group, garden size, rateable value,
council tax band, andmetering status. Since each household group is composed of a variety of households
with different characteristics, the percentage of households in each category is used as an explanatory
variable, rather than the category itself. For example, for the characteristic “garden size,” there are three
possible categories, “large,” “medium,” and “small.” Each category is used as a continuous explanatory
variable in the model, with values varying from zero (0% of households) to one (100% of households).
In the case of the garden size, a possible composition for a household group is 30% large gardens, 60%
medium gardens, and 10% small gardens. Thus, the garden size is represented by three explanatory values
(0.30, 0.60, and 0.10), one for each category. The same applies to the rest of the household variables.

3. Temporal characteristics: These relate to the season and type of day (working day or weekend/holiday).
People tend to have different habits over different times of the year as well as the week; thus, temporal
variables can be helpful in capturing the time variability of demand.

4. Weather: Weather information includes four weather variables, air temperature, sunshine hours, relative
humidity, and number of consecutive days without rain. These can capture the weather‐dependent
variability of demand.

The above four variable types are treated as separate entities in the demand forecasting models, as they have
very distinct characteristics that relate to their availability, accessibility, reliability, and thus importance for
network operators. Some of the variables are always easily accessible, reliable, and ready to use (temporal
characteristics). Others can be expensive to acquire, store, and process, or even inaccurate, especially when
they are based on forecasts and estimations (weather and past consumption data). Information about house-
hold characteristics can be anywhere in between; some are relatively easily accessible (council tax band,
metering status, rateable value, and acorn), whereas others need to be collected through questionnaires
and inspections (Xenochristou, Kapelan, & Hutton, 2020).

Eight models with different configurations of the above input variables are tested at each level of spatial
aggregation (Table 2). Models 1 to 4 include a combination of past consumption data and other characteris-
tics as input, whereas Models 5 to 8 are built using only temporal, weather, and household characteristics.
Each day and group of properties corresponds to one training data point. Thus, the smaller the aggregation
level, the higher the number of training data points.

4.3. GBMs

Previous work (Xenochristou & Kapelan, 2020) focused on comparing a selection of machine learning mod-
els for water demand forecasting and identifying the one that achieves the best prediction accuracy. In that

Table 2
Model Configurations Tested at Each Level of Spatial Aggregation

Variable group Model input variables
Model

1 2 3 4 5 6 7 8

Past consumption 1–7 days prior X X X X
Temporal Type of day X X X X X X X

Month X X X X X X X
Household ACORN X X X

Garden size X X X
Metering status X X X
Rateable value X X X
Council tax band X X X
Occupancy rate X X X

Weather Sunshine hours X X X X
Air temperature X X X X
Humidity X X X X
Days without rain X X X X
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case, the models were compared at the postcode area level. This spatial scale was chosen to (a) avoid forming
very small groups of properties, as this would have interfered with the accuracy of the results, and (b) allow
for sufficient data points to train and test the model. Results showed that the GBM method combines high
prediction accuracy with ease of implementation hence was chosen for this work.

The idea behind GBMs is to combine a set of weak, base learners in order to create one strong learner. In this
study, the base learner is decision trees. The way decision trees work is by dividing the data set at each
branch in a way that maximizes entropy, that is, the homogeneity within each of the split groups. At each
branch (node) of the tree, a variable as well as a threshold value are chosen for splitting the data set. The tree
will keep dividing until it reaches a limit, typically defined by the user, such as a maximum tree depth or
minimum final node size.

The GBM algorithm uses bagging, as well as boosting in order to achieve the best result. Each tree is trained
on a subset of the original data, while at each node of the tree, the best variable for splitting is chosen among
a random sample of the input variables (bagging). At each step, one regression tree is built on the residual
errors of the previous tree with the aim to improve the final result. This way, the model gradually learns
harder parts of the problem, as higher weights are assigned to the areas of the training set where the highest
errors occurred (boosting). The result is altered at each step of the process by adjusting the overall prediction,
based on the new tree that is added to the model. The overall process in regression is set up as a simple opti-
mization problem, where the objective is to minimize the error in the objective function (gradient descent).

4.4. Model Implementation and Assessment

In order to build the model, the data set is randomly shuffled and divided into a training (70% of the data)
and a test (30% of the data) set. The training set is used to train and tune the model for the optimum set
of hyperparameters, whereas the test data set does not participate in the model‐building phase and is used
to carry an unbiased evaluation of the model's prediction accuracy, based on unseen data. Model training
is the process of fitting the model on the training data, whereas the tuning step refers to the selection of a
set of hyperparameters that are chosen before the training begins. These are important as they define how
closely or loosely the model fits the training data. In order to enhance the robustness of the hyperparameter
selection process, the performance of the hyperparameter values is tested on multiple subsets of the training
data using a fivefold cross validation process (Zhang, 1993). This means that the training set is divided into
five parts and at every iteration, four parts are used for training while one is used to assess the model
performance.

The GBM is trained and tuned for the optimum set of hyperparameters using the “h2o” package (LeDell
et al., 2019) written for R (R Core Team, 2013), which serves as an interface for the “h2o”machine learning
platform (Aiello et al., 2018). Predictions are made for different model configurations, groups of properties,
and forecast horizons. The model is retrained and retuned for every change in the input variables, forecast
horizon, or spatial aggregation. The automated machine learning capability of “h2o,” called “automl” (H2O.
ai, 2019), is used to identify the optimum set of hyperparameters in each case, using a random search
(Bergstra & Bengio, 2012). The high number of hyperparameters that require tuning (nine in total) increases
significantly the dimensionality of the search space. Thus, any exhaustive grid search manually implemen-
ted by the user would be counterproductive, especially since the aim is to train, tune, and compare a large
number of models.

Nine hyperparameters are tuned in this study for the GBM algorithm: the total number of trees that
construct the final model (ntrees); the size of the subsample of the training data set used to train each tree
(sample_rate); the maximum tree depth (max_depth); the number of variables that are sampled and tested
for splitting at each node, for the overall model as well as for each tree (col_sample_rate and col_sample_
rate_per_tree, respectively); the learning rate (learn_rate) of the algorithm, which is used to reduce the con-
tribution of subsequent trees to the final result; the histogram type used to assist with the splitting selection
process (histogram_type); and the minimum requirements for splitting at each node (min_split_improve-
ment and min_rows). More information regarding the model hyperparameter can be found in the ‘h2o’
documentation (H2O.ai, 2019).

After the model is properly trained and tuned, it is used on the test data set to make predictions for daily con-
sumption 1–7 days into the future. The model performance is assessed based on three criteria, the Mean
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Absolute Percentage Error (MAPE), mean square error (MSE), and R2 correlation coefficient, as each one of
these provided slightly different information. The MAPE is intuitive and independent of the scale of the
dependent variable, thus it can be used to compare results from different studies and variables of interest
(e.g., PCC and per household consumption). The MSE is sensitive to outliers, while the R2 shows the
variance in the dependent variable that can be explained by changes in the independent variable
(Xenochristou, 2019).

5. Results
5.1. Demand Forecasting Accuracy at Different Spatial Scales

Increasing the level of spatial aggregation consequently decreases the randomness and variability of the
water demand signal, making it easier to predict. However, it is unclear by how much. In the following,
the relationship between household group size and prediction accuracy is investigated in detail.

First, nine models are trained and tuned for the optimum set of hyperparameters and consequently assessed
for their ability to predict demand for different household group sizes, 1 day into the future. For comparison
purposes, each model is trained with the same input, 7 days of past consumption. Table 3 shows the aggre-
gation level, group size, and number of data points that were used to train each model as well as the results
acquired from each one based on three assessment criteria, the MAPE, MSE, and R2, for the training and test
data set. The results of the hyperparameter tuning process are summarized in the supporting information.

According to Table 3, the prediction error (MAPE and MSE) decreases (i.e., improves) as the group size
increases. The minimum MAPE corresponds to the largest aggregation, at the network level, with a group
size of 600 households, which has an error of 3.2% for the test data set (Group size ¼ 600; Table 3). The
largest MAPE on the other hand (MAPE ¼ 17%) relates to the smallest aggregation scale, at the district

level, with a group size of five households (Group size ¼ 5; Table 3).
The R2 value also increases with the group size, but only within the
same aggregation level.

However, it is still not clear which point represents the best balance
between prediction accuracy and household group size, that is, at which
spatial scale a further increase in group size does not offer a significant
reduction in prediction errors. This is depicted in Figure 3, which repre-
sents the balance between the MAPE and spatial scale, for the test data
set. According to Figure 3, the model error increases exponentially as the
household group size decreases. When everything else remains the same
(model structure and input variables), increasing the prediction group size
from 40 to 120 households reduces theMAPE by 2.6% (Figure 3). However,
for group sizes below ~20 households, the MAPE increases significantly
for a rather small decrease in group size. For example, the MAPE increases
an additional 7%, from 10% to 17%, for a decrease of 15 households per
group (from 20 to 5). On the other hand, for group sizes above ~200

Table 3
Prediction Accuracy Achieved for Nine Models Trained at Different Spatial Scales

Aggregation
level

Data
points

Group
size

MAPE (%) MSE (L2/day2) R2 (%)

Train Test Train Test Train Test

District 43,875 5 16.2 17.0 1,047 1,133 59.3 55.0
District 26,153 10 12.6 12.9 536 612 59.2 55.2
District 8,537 20 9.1 10.0 247 308 61.4 56.4
Area 5,729 40 6.9 7.7 148 186 59.3 51.8
Area 4,349 80 5.4 5.9 92 105 60.7 55.5
Area 1,915 120 3.2 5.1 32 83 85.7 61.7
Network 978 200 2.9 4.5 28 57 80.4 60.6
Network 922 400 3.1 3.8 34 49 70.0 64.8
Network 806 600 3.0 3.2 34 39 73.2 65.3

Figure 3. Model accuracy achieved for each household group size for the
test data set.
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households, the MAPE decreases marginally for a high increase in
group size (Figure 3).

5.2. Variable Importance at Different Spatial Scales

The three aggregation levels contain different household group sizes,
with different ranges in their daily consumption and different
amounts of data points (Table 4). In order to avoid increased predic-
tion errors associated with very small groups (<20 households), while
allowing to create distinct enough group sizes to allow for a meaning-
ful comparison, the minimum group size is set to 20, 60, and 100, for

the districts, areas, and network, respectively. The smaller the aggregation level, the smaller the mean group
size and the larger the number of data points. In addition, as consumption becomes more erratic and vari-
able for smaller household groups, the range in daily consumption also increases (Table 4).

Results are summarized in Figure 4 and Table 5. Figure 4 shows the prediction accuracy, in terms of MAPE,
for predictions 1–7 days ahead, over all days in the data (Figures 4a–4c), as well as peak days, that is, 10% of
the days with the highest consumption (Figures 4d–4f). Each plot represents one aggregation level (network,
area, and district) and eight model configurations, with each configuration corresponding to a different set of
input variables (Table 2). Table 5 shows theMAPE for eachmodel and each aggregation level, for 1 as well as

Table 4
Household Group Sizes, Number of Data Points, and Daily Water Consumption
Range, for Each Spatial Aggregation Level

Spatial
aggregation

Min group
size

Mean group
size

Number of
data points

Daily consumption
range (L per capita

per day)

Network 100 657 992 117–175
Areas 60 114 5,592 100–195
Districts 20 29 8,537 80–250

Figure 4. Mean Absolute Percentage Error (MAPE) for different model configurations and different spatial aggregations.
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7 days into the future, for all days and peak days. The hyperparameter values selected for each model are
available in the supporting information.

The best performing model for the network level is the one that uses all explanatory variables to make
predictions (Model 1). When past consumption data is included in the model (Models 1–4), temporal
characteristics reduce the MAPE by 0.5%, for predictions 1 day ahead (Model 3), while weather input further
reduces errors by 0.4% (Model 2) and household characteristics by 0.1% (Model 1). For Models 5–8 (no past
consumption data), weather input reduces the MAPE by 0.4% (Model 7), while household characteristics
reduce it by 0.1% (Model 6). Adding both household and temporal characteristics (Model 5) reduces model
errors by 0.9% (Table 5).

Although the MAPE value and variance increase for peak days, results are overall very similar. The best
performing model (MAPE ¼ 4.6%), for 1 day lead time, is the one that uses all predictors (Model 1).
However, for predictions 7 days into the future, the model with temporal, household, and weather
characteristics (Model 5) performs better (MAPE ¼ 6.1%) than the model (Model 1) that also incorporates
past consumption data (MAPE ¼ 6.4%) (Table 5). Temporal characteristics, on top of past consumption,
improve the MAPE by 2.5% (Model 3), for 1 day lead time. Weather input further reduces errors by 0.2%
(Model 2) and household characteristics by 0.6% (Model 1). ForModels 5–8 however (the ones excluding past
consumption data), household and weather input reduce errors by 0.4% (Model 6) and 0.1% (Model 7), for
predictions 1 day ahead. The combined effect of both of the above reduces the MAPE by 1.3%, a reduction
much higher than the simple addition of their individual contributions (Model 5). In both cases (all days
and peak days), the model that includes only temporal and weather variables (Model 7) performs better than
the model that includes only past consumption data (Model 4) (Table 5).

As the level of spatial aggregation decreases, the range in errors among the models drastically increases. The
best performingmodel for the areas is still the one that includes all variables (Model 1), for all days as well as
peak days (Figures 4b and 4e). In this case, temporal, weather, and household characteristics, on top of past
consumption data, reduce errors by 0.7%, 0.3%, and 0.1%, respectively, for all days, and 3.5%, 0.2%, and 0%,
respectively, for peak days. Weather input for the models without past consumption reduces errors by 0.3%
(Model 7), for 1 day lead time, whereas household characteristics reduce it by 1.5% (Model 6), for all days
(Table 5). The combined effect of both household and weather characteristics outperforms again the mere
addition of their individual contributions; the model that includes temporal, household, and weather vari-
ables (Model 5) has a MAPE of 4.2% for predictions 1 day ahead (an improvement of 2.1%), an error almost
as low as the best performing model (Model 1) (Table 5). The same is true for peak days; weather (Model 6)
and household (Model 7) input reduce errors by 1.6% each, whereas the combination of the two contributes
to an error reduction of 4.1% (Table 5). Finally, for peak days, the model with temporal and weather input
(Model 7; MAPE ¼ 9.9%) performs better than the model with past consumption data (Model 4;
MAPE ¼ 10.7%), for 1 day lead time.

For the district groups, the MAPE range increases further, varying from 6.7% to 12%, for predictions 1 day
ahead, for all days. In this case, past consumption data and household characteristics offer significant
improvements, whereas weather is rather irrelevant (Figure 4c). The model that includes all variables as

Table 5
MAPE Achieved for Eight Different Model Configurations for Predictions 1 and 7 days into the future, for Three Spatial Aggregations of Properties

NETWORK − MAPE (%) AREAS − MAPE (%) DISTRICTS − MAPE (%)

Model
All days Peak days All days Peak days All days Peak days

1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days

1 2.4 2.5 4.6 6.4 4.1 4.2 7.0 7.2 6.7 6.8 9.6 10.0
2 2.5 2.7 5.2 6.3 4.2 4.5 7.0 7.7 7.0 7.3 10.0 11.0
3 2.9 3.3 5.4 7.6 4.5 4.9 7.2 8.5 7.1 7.5 10.5 11.6
4 3.4 3.6 7.9 9.5 5.2 5.6 10.7 11.5 7.9 8.1 12.6 13.3
5 2.7 2.8 6.2 6.1 4.2 4.2 7.4 7.4 6.8 6.8 10.3 10.3
6 3.5 3.6 7.1 8.0 4.8 4.8 8.3 8.9 7.1 7.0 11.0 10.9
7 3.2 3.2 7.4 7.4 6.0 6.0 9.9 9.7 12.0 11.9 30.2 30.2
8 3.6 3.7 7.5 8.3 6.3 6.3 11.5 11.4 12.0 11.9 30.1 30.0
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input (Model 1) has once again the best performance (MAPE ¼ 6.7%; for 1 day lead), although temporal,
household, and weather input (Model 5) can achieve a similar accuracy (MAPE ¼ 6.8%), for all days in
the data. For 7 days ahead, Models 1 and 5 perform equally well for all days in the data (MAPE ¼ 6.8%),
whereas Model 5 performs slightly worse (MAPE ¼ 10.3%) compared to Model 1 (MAPE ¼ 10.0%) for peak
days. Past consumption data (Model 3) and household characteristics (Model 6), on top of temporal
characteristics, reduce errors by 4.9%, from 12.0% to 7.1%, for 1 day lead time (Table 5). Weather input
(models 2 and 7) offers hardly any benefit to the model for predictions across all days. However, it does
improve the MAPE by a maximum of 0.6% on peak days (Model 2), for predictions 7 days ahead. Finally,
the model that uses only weather and temporal characteristics (Model 7) has almost double the MAPE for
all days (MAPE¼ 12.0%) and triple for peak days (MAPE ¼ 30.2%), compared to the best performing model
(Model 1).

It is worth noting the upward trend of all models that include past consumption as an explanatory factor
(Models 1–4), as predictions move further into the future. Since water consumption is highly autocorrelated
from 1 day to the next one, predictions for 1 day ahead are more accurate than 7 days ahead. However, add-
ing weather and household input does reduce errors for predictions further into the future. On the other
hand, for models 5–8 (no past consumption input), the forecast horizon does not have an effect on the mod-
el's output (Figure 4). The result of this is that the best model sometimes shifts depending on the forecast
horizon, as models that include past consumption often perform best for 1 day lead time but are outper-
formed by the ones that have temporal, household, and weather input for increased lead times (e.g., 7 days).

6. Discussion

This paper shows that if everything else stays the same, water demand prediction errors improve for larger
aggregations of households, reaching constant prediction accuracy for groups larger than ~200 houses. This
is likely due to the fact that as the household group size decreases, water demand becomes more variable as
well as more random/erratic and therefore more difficult to predict. This is illustrated by the level of water
demand variability, which is clearly associated with the level of spatial aggregation; smaller groups have a
much higher daily water consumption range (80–250 L per capita per day for the district groups) compared
to larger ones (115–175 L per capita per day for the network grouping). As errors reduce for larger group
sizes, the R2 value increases, but only within the same aggregation level. While the variance in the response
variable (i.e., the water consumption) decreases as the group size increases, moving to a higher aggregation
level (e.g., from districts to areas) also has a negative effect; grouping together houses that are further away
from each other potentially creates less homogenous groups and thus reduces the explanatory value of the
predictor variables, in this case past consumption.

This demand variability in smaller household groups can be largely explained by different behaviors and
habits, and thus, results can be improved by adding the right explanatory factors as model inputs. Smaller
groups show a much higher range of MAPE, as they are associated not only with higher variations in water
demand but also higher variations in corresponding household characteristics. This means that the variance
in consumption among the smaller groups is largely explainable and prediction results can be significantly
improved by identifying the right explanatory variables to include in the model (Figure 4, Districts).
However, when groups are larger, hence more homogenous, the potential for error reduction are signifi-
cantly smaller (Figure 4, Network). This is the reason why explanatory variables that improve predictions
also vary between different spatial scales, with household characteristics becoming more important as
groups become smaller (Figure 4, Districts). The higher the variation of household composition between
groups, the higher the importance of household characteristics as explanatory factors of consumption
(Figure 4). On the other hand, when predicting water consumption for groups of households with similar
characteristics (e.g., when aggregating all households in the network for each day in the data), these charac-
teristics cannot explain the variance in consumption (Figure 4, Network). In order for a variable to be useful
input to a forecasting model, it needs to influence water consumption, as well as have a wide enough range
of values among the households or groups in the data set (Figure 4, Districts).

Past consumption data also became more important as the household group size reduced (Figure 4).
Household characteristics are embedded in past consumption, in addition to other factors that can define
the consumption behavior of a certain property or group of properties. Therefore, using past consumption
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data can be particularly valuable for smaller groups, since it can capture the individual behavior that relates
to the variability in their individual characteristics. This is demonstrated by examining the influence of the
explanatory variables for the district areas (Figure 4). When past consumption data is available, household
characteristics do not further improve the prediction accuracy of the model. However, when past consump-
tion is not used as model input, a combination of household, weather, and temporal characteristics can ade-
quately be used to characterize and thus predict water demand with the same accuracy. For example, adding
weather and household variables on top of past consumption reduced the MAPE a maximum of 1.6% for
peak days and district areas whereas for the model that did not include past consumption, adding household
and weather characteristics achieved a reduction of 19.7%, from 30% to 10.3%.

The effect of weather became noticeable only for larger groups of properties (Network and Areas, Figure 4),
while it is rather irrelevant when attempting to predict consumption for smaller household groups (Districts,
Figure 4). Previous studies found that the effect of weather on water consumption varies between house-
holds, days and times in the year (Xenochristou, Kapelan, & Hutton, 2020). Out of all households in the data
set, only few of them will alter their consumption behavior based on the weather and therefore using
weather input cannot improve predictions at small levels of spatial aggregation. In these cases, the model
would “learn” based on the majority of the data points, for which weather does not actually have an influ-
ence on consumption. However, when aggregating all properties for each day in the data, the effect of
weather can be seen in each data point (each day) used to train the model; therefore, in this case weather
is found to have a (slight) impact on consumption. Notably, the combined contribution of household and
weather characteristics in the model was in most cases much higher than their individual contributions.
This result confirms further what was already concluded from previous studies (Xenochristou, Kapelan, &
Hutton, 2020) that the influence of weather on water consumption is dynamic and it strongly depends on
the type of property and residents. Therefore, providing additional context in terms of household character-
istics on top of weather information can further improve results.

Finally, adding another dimension (or variable) to the problem, such as the temporal scale or model type
could provide further insights. Here, a GBMmodel and daily scale are used to compare the forecasting accu-
racy and variables of interest at different spatial scales. The daily scale allowed to incorporate additional
input variables in the model, such as the day of the week, and thus account for the weekly pattern of water
consumption. The GBM model was chosen for its accuracy and ease of implementation, based on previous
work that compared the forecasting accuracy of several machine learning models under different scenarios
(Xenochristou & Kapelan, 2020). Ideally, different models would have been tested at different spatial scales,
in order to determine the best one for each application. In addition, testing demand predictions over a grid of
spatial and temporal aggregations of consumption would demonstrate the limitations and opportunities that
arise at each scale. However, including each dimension of the water demand forecasting problem (such as
the temporal scale and model type) as an unknown variable would increase significantly the dimensionality
of the problem. As a result, it would also increase disproportionally the computational and time require-
ments of the analysis, and equally the processing and understanding of the results. In this case, the model
type and temporal scale were chosen by the authors and were not considered in the analysis as another
dimension of the problem, as this was out of the scope of the current work. Future work should focus on
creating a modeling framework that integrates more unknown aspects of the problem simultaneously, in
order to determine how they influence results.

7. Summary and Conclusions

This study explored the effect of the spatial scale on water demand forecasting, both in terms of prediction
accuracy and influencing factors. In order to achieve this, multiple models with different input variables
were trained on real‐life U.K. daily consumption records for different aggregations of consumption.
Initially, three different levels of spatial aggregation were created using the properties' postcode. One group
included all the households in the network (up to 804 properties per group) while the other two aggregated
the properties in the data set in 6 areas (up to 262 households per group), or 63 districts (up to 56 households
per group). At the same time, three household group sizes were fixed and tested for each aggregation level,
varrying from 5 (for the districts) to 600 (for the network) properties per group per day. A GBM was trained
using each of the above configurations and a prediction was made for the water consumption of the same
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groups, for 1 day into the future, using only past consumption as an explanatory factor. The purpose of this
was to compare themodeling accuracy amongmodels for different spatial scales. After this, different types of
model input variables (temporal characteristics, weather data, household characteristics, and past consump-
tion) were used in order to improve the prediction accuracy at each level of spatial aggregation (Network,
Areas, and Districts) and identify the most influential input factors.

The results obtained show the following:

1. The level of spatial aggregation has a direct influence on the demand forecasting accuracy. In general, the
higher the spatial scale of household aggregation, the more accurate are demand forecasts. For groups of
fewer than 20 households, the prediction error measured via MAPE increases exponentially with a
decrease in household group size. On the other hand, for group sizes above approximately 200 house-
holds, a further increase in group size only marginally reduces the MAPE.

2. Demand forecasting errors can be reduced by using additional explanatory variables, especially in the
case of smaller groups, where the error range varried significantly depending on the input factors used.
In this study, the most influential input variables that improved the demand forecasting accuracy varried
for different levels of spatial aggregation. Past consumption became more important for smaller aggrega-
tions of properties, along with household characteristics, while weather data contributed to the model's
accuracy only for larger household groups.

Although the effect of different levels of spatial aggregation was investigated in detail in this paper, this was
done within a fixed set of environmental conditions. All of the above analysis reflected the consumption of
houses in the southwest of England. In a different setting, with different prominent household and resident
characteristics, as well as climate, these results could be very different. Although the above methodology
could be replicated anywhere where the related data is available, it is important to note that the results could
possibly vary.

Data Availability Statement

The data for this study was made available by Wessex Water and is protected under a nondisclosure agree-
ment. Interested parties can ask for data access directly from Wessex Water. The weather data used in this
study was collected and became available by the Met Office. This data was provided to the author for
research purposes only and is available for purchase by the Met Office.
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